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he advanced EMI and statistical classification models are applied to the cued data sets of the 
Metal Mapper and two next-generation portable sensors: MPV and 2x2 3D TEMTADS. The 

advanced models combine:  (1) the joint diagonalization (JD) algorithm for estimating the 
number of potential anomalies from the measured data without inversion, (2) the ortho-
normalized volume magnetic source (ONVMS) model for representing the EMI responses and 
extracting the intrinsic parameters (feature vector) of the targets, and (3) the Gaussian Mixture 
algorithm that utilizes the extracted features to classify buried objects as targets of interest (TOI) 
or not. The inversion and classification schemes of these advanced models consist of the 
following steps:  (i) build the multi-static-response (MSR) data matrix by combining the Tx and 
Rx data points of the advanced sensors; (ii) apply the JD to the MSR data matrix to determine its 
eigenvalues; (iii) estimate the data quality and the number of potential targets, based on the 
eigenvalues; (iv) study the temporal decay of the eigenvalues to identify the signal to noise ratio 
(SNR); (v) invert all data sets using the ONVMS-Differential Evolution algorithm; (vi) apply the 
semi-supervised GM clustering algorithm to the inverted total ONVMS to determine the clusters 
of anomalies; (vii) select anomalies from each cluster to build a custom training list;  
(viii) request the ground truth for the selected targets; (ix) use the obtained ground truth to score 
the unknown targets using the GM weights for the ONVMS clusters; and (x) submit the final 
dig-list to the ESTCP office for independent scoring. In this presentation the data inversion, 
processing and discrimination schemes of the advanced EMI models will be reviewed, and the 
classification results scored by the Institute for Defense Analyses (IDA) will be presented for 
Camp Beale, CA cued data sets of both MM and portable EMI sensors. 
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Fuze and Fuze-parts as TOI

Camp Beale TOI
Main TOI

Goals: 
1. Identify all TOIs. 
2. Assess technology.
3. Keep at least 75%         
non-TIOs in ground
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Challenges at CBE
Magnetic soil noise. 

Small S/N ratio.

TOI types: There were six types of main TOIs and eight types of native TOIs. 

There were only a few (1 to 5) fuzes of the same size; 

Small size (3cm and 5 cm) unexpected native fuzes as TOI.  

Multi Targets 
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The entire UXO classification process can be divided into three parts: 

p=F-1 [d ]
Inverse Operator

d =F [p]
Forward Operator

UXO classification  

1. Data Acquisition 2. Feature extraction 3. Decision  

MPV

Metal Mapper

2x2 Array Hand Held BUD

Feature selection 

Clustering and Classification 
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m1
m2

m3

Tx Rx

Forward Models
Multi dipole mode

The scattered EMI field is approximated 
as superposition of magnetic fields from 
each individual dipole, using the dyadic 
Green’s function:
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ONMVS

The scattered EMI field is approximated 
as magnetic field from groups of 
interacting dipoles using an ortho-
normalized function expansion: 
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b2 =f(m1, m2)
b3 =f(m1, m2, m3)
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m1
m2

m3

Tx Rx

Forward Models
Multi dipole mode

mi are determine  from the measured 
data by solving a linear system of 
equations.

Uses individual dipole 
polarizabilities for classification  

m2
b1=m1

m3

Tx Rx

b2 =f(m1, m2)
b3 =f(m1, m2, m3)

First it determines bq from the measured 
data without solving a linear system of 
equations, then it backs out mi

Uses total ONVMS/effective 
polarizabilities for classification

ONMVS

1 1( )G ⋅r m

2 2( )G ⋅r m

3 3( )G ⋅r m

1 1( )ψ ⋅r b

2 2( )ψ ⋅r b

3 3( )ψ ⋅r b
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QC using Joint Diagonalization

T
k k tD(t ) V [W(t )]V,  k=1, 2, ..., N=

[W(tNt)] =VTD(tNt)VT ….. [W(t2)] =VD(t2)VT

[W] =VD(t1)VT

• V  is a Eigen 
vectors 
matrix  

• D(t1) is a 
diagonal 
matrix

Represent MSR data matrix [W] in Space -Time

Max(NTx, NRx)

Time Channels 1:Nt

The goal is to: 
determine the eigenvalues of  [W] matrix for each time channel.  
find an eigenvector V that will be shared by all matrices.  

Build a Multi Static Response (MSR) data matrix [W] as:  
[ ] [ ]T

k k k tW (t ) (t ) (t ) ,  k=1, 2, ..., N⎡ ⎤= ⋅⎣ ⎦H H

Max(NTx, NRx)
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Choose discrimination features:
size and decay

Cluster the discrimination features

Identify an anomaly from each cluster, 
build a custom training list.
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Camp Beale MPV Classification Approach 
Invert all data for one, two and three targets;

Create custom training data using a statistical clustering (for example Matlab
function “clusterdata”, with “Ward Linkage”) and time decay curves of the inverted 
ONVMS. 

Request Custom training data and update TOI library.  

Invert as N=4, 5 targets, if necessary.  
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Library 

Test case 

Library target  
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Library 
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Single object inversion results

Magnetic soil’s response is 
modeled as  a targets    

Camp Beale MPV Classification Approach

Multi objects inversion results

Inverted ONMS for 60 mm: 

The ONVMS technique was able to model the 
magnetic soil’s EMI responses as a response from 
a target.  The technique extracted the real target 

features from the noisy data.  

At CBE MPV2 suffered from magnetic soil. 
This was mostly due to the deployment 
strategy, i.e.  the sensor was placed on the 
ground.
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Camp Beale MPV Classification results

95 anomalies were requested for 
custom training, out of those 16 
were TOI and 79 were scrap. 

All available MPV2 data were 
inverted and analyzed. 

No False Negatives: all TOI, total 
124= 89 (UXO) + 35(Fuzes),  were 
indentified correctly.

200 holes with clutter dug, 

587 holes with clutter were not dug.
i.e ~75 % of non-TOI left in the 
ground.  

Fuzes as Clutter 

Fuzes as UXO  
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Camp Beale 2x2 Array Classification Approach 
Conduct data QC using the JD technique, determine the number (N) of 

potential targets.  

Invert all data as N targets, with N is estimated from the JD.

Create custom training data using a statistical clustering, and eigenvalues time 
decay curves. 

Request Custom training data and update TOI library.  

Invert all data as more than N targets, if necessary.  

The JD eigenvalue analysis indicated that 
cell #758, contained more than one 
targets and signal from a target was 

highly disturbed, therefore the cell was 
included in the training data.  
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Camp Beale 2x2 Array Classification results

Fuzes as Clutter 

Fuzes as UXO  

98 anomalies were requested for 
custom training, out of those 24 were 
TOI and 74 were scrap. 

All  available 2x2 array data were 
inverted and analyzed. 

No False Negatives: all TOI, total of 
124 = 89 (UXO) + 35(Fuzes),  were 
indentified correctly.

191 holes with clutter dug, 

596 holes with clutter were not dug.
i.e ~76 % of non-TOI left in the ground.  
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Camp Beale CH2MHILL MM Classification results

132 anomalies were requested for 
custom training, out of that 25 were TOI  
and 107 were scrap. 

All  available CBE CH2MHILL data were 
inverted and analyzed. 

No False Negatives: all TOI, total 170= 
137 (UXO) + 33(Fuzes),  were 
indentified correctly.

183  Holes with clutter dug, 

1117 holes with clutter were not dug.
i.e ~86 % of non-TOI left in the ground.  

Fuzes as Clutter 

Fuzes as UXO  
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Used test pit data collected at site to establish feature libraries (grey
lines) for potential TOI
Plotted anomaly total ONVMS (green, blue, black lines) against feature
libraries to identify high probability TOIs (37mm shown in red outline)

Obtained by Sky Research Production team: 
Step 1:

Camp Beale Parsons MM Classification results
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Fuze Type 1 Fuze Type 2

Identified “suspicious” anomalies that did not match feature library responses
Requested ground truth for select group of possible TOIs
Discovered two TOI fuze types and two clutter types (horseshoe and survey nail)
Added the new TOI and clutter polarizabilities to the feature library

Horseshoe Survey Nail

Step 2: Identify the anomalies 
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Camp Beale Parsons MM Classification results 
obtained by Sky Research Production team

69 anomalies were requested for custom 
training, out of that 19 were TOI  and 50 
were scraps. 

All  available CBE Parsons  data were 
inverted and analyzed. 

No False Negatives: all TOI, total 170= 137 
(UXO) + 33(Fuzes),  were indentified 
correctly.

253 Holes with clutter dug, 

1047 Holes with clutter were not dug.
i.e ~81 % of non-TOI left in the ground.  

Fuzes as Clutter 

Fuzes as UXO  
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Difficult cases: JD applied to CBE anomaly #2277 

The curves of the MM MSR
data matrix eigenvalues versus
time do not show any evidence
of the 37 mm target.
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MM Position

Barbered wires

The ground truth revealed,
in fact, that the 37mm
target was 90 cm away
from the MM center.
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Summary

Advanced EMI models were applied to CBE Cued 
Data sets.
Studies showed that the models are able to deal 
effectively with cluttered environment.  
Classifications were demonstrated for both R&D and 
production EMI sensors.
No False Alarms. 
The models are easy to use for general users. 
The models were able to classify targets as small as 
3 cm size fuzes. 
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