

AFRL-RZ-WP-TR-2011-2111

FORMAL UNITED SYSTEM ENGINEERING
DEVELOPMENT (FUSED) LANGUAGE

Mark Boddy, M. Michalowski, A. SchwerdFeger, H. Shackleton, and S. Vestal

Adventium Enterprises, LLC

AUGUST 2011
Final Report

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
PROPULSION DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7251
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Public Affairs Office (case number: 88ABW‐2011‐

6398) and is available to the general public, including foreign nationals. Copies may be obtained
from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RZ-WP-TR-2011-2111 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

____//signature//_____________________________ ______//signature//_____________________________

Douglas R Raney Jack Vondrell
Engineering Technician Chief, Mechanical Energy Conversion Branch
AFRL/RZPG AFRL/RZPG

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//signature//” stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

August 2011 Final 30 September 2010 – 30 June 2011
4. TITLE AND SUBTITLE

FORMAL UNITED SYSTEM ENGINEERING DEVELOPMENT (FUSED)
LANGUAGE

5a. CONTRACT NUMBER

FA8650-10-C-7076
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

62303E
6. AUTHOR(S)

Mark Boddy, M. Michalowski, A. SchwerdFeger, H. Shackleton, and
S. Vestal

5d. PROJECT NUMBER

3000
5e. TASK NUMBER

01
5f. WORK UNIT NUMBER

DM30010A
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Adventium Enterprises, LLC
111 3rd Ave. S, Suite 100
Minneapolis, MN 55401

 REPORT NUMBER

FUSED-DR-2

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Air Force Research Laboratory
Propulsion Directorate
Wright-Patterson Air Force Base, OH 45433-7251
Air Force Materiel Command
United States Air Force

 AGENCY ACRONYM(S)

AFRL/RZPG
11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER(S)

AFRL-RZ-WP-TR-2011-2111

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

PAO Case Number: 88ABW 2011-6398, cleared 13 DEC 2011. Report contains color.

14. ABSTRACT

The goal of this program was to develop a new extensible system representation metal-language, which we named the
Formal United System Engineering Development (FUSED) language, to specify complex relationships between models
written in multiple languages at multiple levels of abstraction and used by developers from many disciplines for many
purposes during a concurrent development process.
Our approach was to leverage the enormous investment in the great variety of existing domain-specific modeling
environments by creating a language that would complement these existing ones. FUSED is a language to compose
collections of models written in these various languages in a way that they can be used in a synergistic, verifiable,
multidisciplinary, model-based development activity.

15. SUBJECT TERMS

aircraft, electric power production & distribution, electrochemical energy storage

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 24

19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

Douglas R. Raney
19b. TELEPHONE NUMBER (Include Area Code)

N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

i
Approved for Public Release: Distribution Unlimited

TABLE OF CONTENTS

Section Page

List of Figures …………………………………………………………………………………….ii

1.0 Summary ... 1

2.0 Introduction ... 2

3.0 Methods, Assumptions, and Procedures ... 4

3.1 Assumptions and Approach .. 4

3.2 FUSED Language and Capabilities ... 4

3.3 FUSED User Experience ... 5

3.4 FUSED Structure and Operation ... 5

3.5 Specifying Model Languages and Types .. 6

3.6 Concrete Grammars ... 6

3.7 Abstract Types... 6

3.8 Doing Things with Compositions of Models .. 8

4. Results and Discussions .. 10

4.1 Trade Space Exploration of Abstract Equational Model .. 12

4.2 Trade Space Exploration of Mixed Fidelity Model .. 13

4.3 Vehicle Dynamics Simulation Using Solid and Aerodynamics Data 14

4.4 Verification of Multi-Model Consistency ... 15

4.5 Collaborative Multi-Disciplinary Design Optimization .. 16

5. Conclusion .. 17

6. Reference .. 18

List of Acronyms .……….. 19

ii
Approved for Public Release: Distribution Unlimited

LIST OF FIGURES

Figure Page

1. FUSED Glues Together Models in Existing Languages .. 4

2. Lockheed-Martin Desert Hawk UAV is a Real-World Basis for Demos 10

3. Demo Includes 10 Engineering Models in 9 Different Languages ... 11

4. FUSED Composition of Trade Space, Requirements, Equational Models 12

5. FUSED Composition of Requirements, Trade Space, Mixed Fidelity Models 113

6. FUSED Composition of Solid, Aerodynamics CFD, and Vehicle Dynamics Models 14

7. FUSED Composition of Solid, Avionics, and Inter-Model Consistency Verifier Models 15

8. FUSED Composition of Trade Space and Design Optimization Models 16

1
Approved for Public Release: Distribution Unlimited

1.0 SUMMARY

The goal of this program was to develop a new extensible system representation metal-language,
which we named the Formal United System Engineering Development language, to specify
complex relationships between models written in multiple languages at multiple levels of
abstraction and used by developers from many disciplines for many purposes during a concurrent
development process.

Our approach was to leverage the enormous investment in the great variety of existing domain-
specific modeling environments by creating a language that would complement these existing
ones. FUSED is a language to compose collections of models written in these various languages
in a way that they can be used in a synergistic, verifiable, multi-disciplinary, model-based
development activity. Existing languages, tools, and model libraries are used within the various
domain-specific modeling environments to perform the specialized engineering activities for
which those environments were created. FUSED operates at the requirements and system
engineering levels, where complex relationships between models of varying kinds and at varying
levels of abstraction must all be used collaboratively to perform overall system development.

We developed a preliminary FUSED language specification and supporting toolset. These were
successfully applied to a number of demonstration development tasks based on a small UAV
development scenario (a UAV that was based on an actual Lockheed-Martin product line).
Collectively these tasks demonstrated the composition of 10 different types of models
(requirements, abstract and mixed-fidelity equational, solid/geometric, aerodynamic, dynamical,
avionics, trade space, verification, design optimization) in 9 different modeling languages
(SysML, Excel, Creo/ProE, AVL, Modelica, AADL, ATSV, SMTLib, MiniZinc). The
compositions, when executed, performed activities such as moving analysis and simulation data
between models with strong type checking, verifying consistency conditions across multiple
models, and performing collaborative multi-disciplinary design optimization over models.

2
Approved for Public Release: Distribution Unlimited

2.0 INTRODUCTION

FUSED is a language used to specify compositions of design engineering models written in a
variety of other modeling languages (e.g. SysML for requirements, Creo/ProE for
solid/geometric models, Modelica for dynamical systems models, Excel for simple one-off
engineering models). A FUSED composition identifies a set of models and specifies
relationships between those models (e.g. parametric dependencies, part/whole assembly, inter-
model consistency conditions). A FUSED composition specification is a model just like any
other and can be mixed-and-matched to form more complex FUSED compositions.

FUSED allows engineers to use proven and accepted modeling languages and environments
within established engineering domains (e.g. Cre/ProEo users can use Creo/ProE and their legacy
models, Modelica users can use Modelica and their legacy models). We use an extensible
language approach to add those few features needed to cleanly interface with the system
engineering capabilities provided by the FUSED infrastructure (e.g. publish or subscribe model
elements to be obtained from or provided to the system engineer or other models, specify type
qualifier information for which no capability exists in the language currently). This is done in a
way that is a natural fit with the look-and-feel of the existing modeling environment (e.g. new
clause to declare uncertainty in standard Modelica parameter declarations, SysML extensions
appear as new profiles). The primary users of the FUSED language proper are requirements and
systems engineers, for whom it provides novel capabilities.

In addition to the obligatory editor of graphical FUSED specifications, FUSED tooling provides
the following capabilities:

 Automatically transfer elements between models with strong type checking (support a
single source of truth), including complex types (e.g. constraints, function signatures,
abstractions of the model structure itself) and type qualifiers (e.g. units, frame of
reference, uncertainties). The ability to deal with complex model types enables many
kinds of compositions not possible with current simulation workflow engines, e.g.
compose models with specialized consistency verification modeling environments.

 Automatically invoke analyses or simulations specified for a composition of models. The
possible combinations reflect the capabilities of the selected modeling languages and
tools. For example, a Creo/ProE model could be analyzed to obtain mass properties
while a Modelica model could be analyzed to obtain a simulation trajectory. Engineers
typically think of these as simulations, but we have paid particular attention to the ability
to exchange analysis and formal verification results as well (e.g. don’t simulate a real-
time schedule and deal with a set of test traces, do a schedulability analysis and use
guaranteed bounds).

 Automatically invoke verifications and design tools on a composition of models. Models
in a composition are often component models (e.g. a wheel), but they are also often
verification or design aid models (e.g. a model to obtain a Pareto frontier for another
model, a model to automatically optimize certain design configuration parameters of
another model).

 Track dependencies and change propagation between model elements and models. This
currently includes conventional make/build change tracking, with a capability to manage
and cache results across multiple configurations of a model. We are working towards

3
Approved for Public Release: Distribution Unlimited

smarter and finer-grained ripple effects analysis (e.g. determine that a change is not
significant enough to trigger re-analysis based on type qualifier information such as
uncertainty or sensitivity) within the context of a highly concurrent and collaborative
development process.

 Support for configurable models and requirements and design evolution. Features are
included to explicitly support definition and use of configurable models, integrate trade
space visualization and exploration environments, and integrate specialized design
optimizers at various points in the process.

 Support for multiple kinds of model composition. We currently support compositions
that allow models to use as inputs values that are obtained from other models as
determined by a FUSED model composition specification (what we call
publish/subscribe). We plan to add some support for part/whole compositions, both
within matching modeling environments (e.g. compose multi-model components having
matching domain-specific tools, such as composing solid component models within
Creo/ProE while simultaneously composing dynamical component models within
Modelica); and composing models using diverse but synergistic modeling environments
(e.g. co-simulation, such as composing a Modelica simulation with a FlightGear
environment simulation).

FUSED is extensible. It is designed so that support for selected modeling languages and tools,
and selected types of data and meta-data to be made visible and manageable at the multi-model
composition level, can be added. This is somewhat analogous to creating a plug-in to Eclipse,
except that FUSED is build using advanced language extension technologies (from the
University of Minnesota extensible languages group) so that much of this can be done at a more
concise and abstract level than writing Java code. However, it is still a programming-like
exercise, and extending FUSED to support a new modeling language or a new set of types would
be done by engineers trained for those particular tasks (e.g. a support group within an
organization, a vendor of a tool, a small company in that business). Eventually, we would hope a
set of plug-ins for common languages and tools would be available and could be installed by
users, analogous to the way it can be done with Eclipse today.

4
Approved for Public Release: Distribution Unlimited

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Assumptions and Approach

We assumed that it is not currently possible to develop a unified theory and semantics for
everything. We assumed it was not practical to layer-over existing languages with some new
meta-language and still replicate all the power and detail of the myriad of domain-specific
languages that exist. This is the basis of our approach to allow domain-specific users to keep
using modeling environments and methods they are already familiar with and focus on a meta-
language that adds new capabilities to compose multiple models from different domains.

Figure 1: FUSED Glues Together Models in Existing Languages

One of our conjectures was that advanced formal language notations and tools and extensible
language technologies would provide a powerful way to specify and implement our new FUSED
language and its supporting tools. We selected the Silver higher-order attribute grammar system
from the University of Minnesota to carry out our work. We believed then (and still do) that this
basis in formal programming languages and type and logic theory provides greater power and
assurance than alternative approaches based on, say, UML or semantic web concepts.
We also felt that concurrent, collaborative engineering raised challenges that had to be
supported. FUSED is more than a language for specifying static compositions of models. It
includes semantics, and the toolset includes support for, projects in which hundreds of engineers
may be concurrently modifying thousands of models.

3.2 FUSED Language and Capabilities

FUSED Language and Capabilities were summarized in the INTRODUCTION section.

5
Approved for Public Release: Distribution Unlimited

3.3 FUSED User Experience

We currently do our demos within the Eclipse environment. This offers the usual conveniences,
but also brings with it some inconveniences. The only real dependency we currently have on
Eclipse is that our graphical FUSED editor is built using Eclipse GEMS, otherwise vehicle
engineers could do their work using another IDE or none at all.

Engineers within a specific domain create an Eclipse project of the desired type, e.g. create a
Modelica project. An inconvenience is that most of the tools used in vehicle engineering lack
Eclipse plug-ins, so the special features Eclipse provides when plug-ins are available is lost
(unless someone develops these plug-ins, something that could be done as part of creating a
FUSED extension for a particular language -- but something we haven’t been doing for our
demos). The users see what they expect from their chosen flavor of project, but with a few
extensions. They see a few extensions available for the modeling language (e.g. ways to
subscribe to model elements they want to be provided to them, ways to declare things that cannot
be declared in the standard language such as uncertainties or frames-of-reference). There is also
added build functionality to support the FUSED capabilities listed above. If the engineer is
developing a configurable model, then they may need to add a few special specifications or
follow a few special guidelines if different model configurations make use of different model
files in a way the build cannot automatically deduce.

FUSED composition specifications are created in a new project that allows FUSED graphical
specifications to be developed using our FUSED graphical editing tool. These can be compiled
and executed to carry out some specified activity (e.g. perform consistency checks across the set
of models, do some sort of overall analysis of the composed set of models, run a design
optimization over the composition, perform sampling to estimate the Pareto frontier and explore
that).

An overall project isn’t just one engineer carrying out one sequential set of engineering
activities. We are concerned about hundreds of engineers concurrently making changes to
thousands of models across multiple engineering disciplines at multiple levels of abstraction.
We are trying to put in capabilities and features to help people stand on each other’s shoulders
instead of each other’s toes, but successful collaborative engineering is a matter of cultural and
management norms and processes that effectively use the collaboration features. These FUSED
features are obviously just a subset of the collaboration support provided by an overall common
repository such as VehicleForge, and they need to be thoughtfully integrated into that.

3.4 FUSED Structure and Operation

This section gives a high-level overview of how FUSED is built and operates. We overview
how languages and types (ontologies) are specified and how tools that operate on them are
generated. We overview how compositions of models are specified and how the tooling that
automatically does things with compositions works.

6
Approved for Public Release: Distribution Unlimited

3.5 Specifying Model Languages and Types

We use the Silver higher-order attribute grammar language and tools to specify and implement
tools that understand and extend the various modeling languages of interest. At a very high
level, Silver can be thought of as a scanner/parser generator on steroids (it has the power of a full
functional programming language). The library of Silver specifications we have written so far
could be divided, at a high level, into two groups: concrete grammars and abstract types.

3.6 Concrete Grammars

There are several concrete grammar specifications for various modeling languages. For
example, we took the standard Modelica grammar, tweaked it into the exact syntax used by
Silver, and added attributes so that we can generate a tool that can parse and perform some
semantic analysis on Modelica files. There are a couple of additional things we do beyond
traditional scanning/parsing.

Silver has special support for defining and implementing sets of extensions to existing languages.
It is easy to write add-ons that extend existing rules of the grammar, and it is easy to say how
these can be implemented by expanding (“forwarding” is the buzzword in the language extension
community) these into the host language (e.g. in our interval uncertainty demo, a clause
specifying an interval uncertainty for a parameter causes the parameter declaration to be split
into two declarations of a min and max parameter, and all statements that use that parameter get
split into two versions). The tool that is generated from these specifications will read a string in
the extended language and then write a string in the standard language. Note that Silver
specifications can thus include languages whose strings are to be written as well as languages
whose strings are to be parsed.

We often write specifications that just extract data. A modeling toolset uses many more file
formats than just the language written by users; there are typically a variety of intermediate and
analysis result file formats. We also generate parsers for some of these so that we can obtain the
results of various operations performed on models. For example, we generated tools that can
parse Creo/ProE mass properties analysis files and AVL aerodynamic stability derivatives files.

3.7 Abstract Types

Our library of Silver specifications also includes definitions of the types of model elements the
FUSED infrastructure knows how to deal with. These are types of data of interest to systems
engineers, or types of data that need to be exchanged or compared across different kinds of
modeling environments. This is our ontology, specified in a format that allows us to use Silver
to generate various tools that can operate on instances of these types.

Semantically and structurally, we are coming at this from a formal languages perspective. A
type of model element can have a structure as complex as Silver extending scanning and parsing
technology can handle (easily as complex as any current programming language), and its
semantics can be similarly as complex. For example, we have a constraint type (inequalities), we
have a typed object graph type that captures an abstraction of the overall static structure of a

7
Approved for Public Release: Distribution Unlimited

model, we have bits of a function signature type (so one model can call another as a function
during some analysis or evaluation activity).

Of course, that belies all the hard work of actually formally defining semantics for each
particular type. Pragmatically, we do what language people do today -- it is a matter of degree.
For a chosen modeling language, we have the semantics to work with that are provided by that
community. The modeling language communities have to bear the brunt of clearly defining and
formalizing their semantics as much as they can be convinced to do so. For our ontology types,
which cross domains, we have to come up with a semantics common across all the languages
that might potentially use that type/concept – again, we can do no better than those language
communities have done. The semantics of any particular ontology type comes from an abstract
semantics space that is common across all the modeling languages in which that type has any
meaning, and arguments need to be made that the appropriate abstraction relations hold within
each modeling environment.

We currently do not impose much of any structure on our collection of ontology types. We have
multiple roots, and multiple inheritance is supported. We don’t pick any particular model for
parametric typing, that falls within the scope of what our approach has the power to specify –
different modeling languages have different parametric typing systems, and we can support that.
There is a lot of potential power and flexibility in our approach, but of course with that comes
potential complexity. Effective ways to structure an overall ontology for this purpose is an area
of research.

One thing we do have is a concept we call type qualifiers. System engineers can add-on typing
information that cannot be specified in this or that particular modeling language. We currently
have type qualifiers for units, frame-of-reference, and interval and stochastic uncertainties.

Getting back to nuts and bolts, we use Silver to generate tools that can extract model elements of
the various types from files written in supported modeling languages, convert them to a
canonical internal representation (which inside the tool takes the form of a higher-order
attributed abstract parse tree), and convert from a canonical representation to any other language
representation in which elements of that type make any sense.

One concrete representation that we have for every ontology type is an XML representation that
we have defined. Any collection of model elements in any hierarchical namespace structure can
be written to a file in this format.

We also build a set of basic operations on elements of our ontology types. These are things like
extracting a subset of elements from a collection, composing elements to form a new collection,
adding type qualifiers, checking simple properties for an element, renaming, etc. These are the
sorts of mundane things a system engineer may need to specify in a FUSED composition in order
to get a particular set of models pasted together.

8
Approved for Public Release: Distribution Unlimited

3.8 Doing Things with Compositions of Models

The FUSED composition language currently exists as a graphical language. There are an editor
and a compiler that are implemented using Eclipse GEMS, which makes it much easier to
develop and change than if it were implemented in Java (say). From the beginning we’ve taken a
need-driven approach to language design – we identified the capabilities we felt were needed,
then identified how to go about providing them, and finally identified a high-level syntax in
which to specify them. The language continues to evolve.

The compiler generates ant build scripts. Executing a composition means executing a target in
one of these ant build scripts. The overall execution is actually a hierarchy of build scripts that
call each other. These scripts can be roughly divided into two kinds, those that are generated
entirely by the compiler for a specified composition, and builds for a particular model developed
in a particular modeling environment (which are the leaf builds in a tree of builds invoked for a
particular purpose by the system engineer).

A part of the process for developing FUSED extensions for a particular modeling environment is
the development of a template build script for that kind of modeling environment. The build
templates have different targets (operations) for the different kinds of things an engineer might
want to do with a model and the kinds of things the associated toolset is capable of. For
example, the Creo/ProE build template has targets to publish a mass properties analysis and
publish a typed object graph abstraction of a model, while the Modelica build template has a
target to produce a simulation trajectory.

Every build template accepts as an input parameter a path to an XML file containing a collection
of model elements in the FUSED common format. A build template may return a path to an
XML file containing a collection of model elements. The build template invokes the FUSED
operations and the local modeling tool invocations necessary to do all the model element
extractions and conversions, and all the extension-expanding pre-processing and output-
generating post-processing, that are needed to accomplish the desired task for the desired
configuration of that model.

We definitely encourage component developers to produce parametric or configurable models.
Sometimes the build scripts need to automate some of this, e.g. know which subsets of files need
to be used in which configurations. There may also be a need to restructure the inputs. For these
reasons, the build templates themselves need to subscribe or publish certain values. This is still a
little awkward now, model developers sometimes need to follow certain guidelines or hand-edit
pieces of the build template. We’re working on a concept of “FUSED wrappers” that makes this
more concisely specified and automated and allows model/component developers to control the
interfaces presented to the system engineer.

The FUSED compiler proper generates ant build scripts that invoke other ant build scripts. It
passes paths to collections of FUSED elements in canonical representation between model

9
Approved for Public Release: Distribution Unlimited

builds, performing FUSED operations on these collections as specified to get the various models
to talk to each other.

The build scripts currently do the usual dependency tracking and change propagation, using the
typical coarse-grained, semantics-free notions of file time-stamping or differencing. One of the
things we’re working towards is leveraging semantic and meta-data available to the tools to do
this in a smarter way. For example, if a solid model changes but a new mass properties analysis
says that various values have changed relatively little compared with the uncertainty meta-data
associated with those values, then don’t bother updating all the analysis results of all the other
models that depend on that value. This is a research area.

Build scripts can receive as parameters a path to another build script. This is done, for example,
in our trade space exploration demos, where the trade space builder repeatedly invokes the build
of a parameter model to sample the design space.

A model target may be invoked for a particular configuration of a model and with a particular set
of parameters for that analysis. For example, when requesting an aerodynamic analysis of an
AVL model, the user needs to specify vehicle configuration parameters (e.g. choice of wing) and
needs to specify a set of constraints that determine the “trim point” at which analysis is to be
performed. Some of our build scripts can automatically cache analysis results, using the
configuration and analysis parameters as a cache tag. This is a demo capability right now. To
make this useful in practice, we’d have to add typical cache management capabilities. We’d also
have to add somewhat novel ways to specify “close enough” semantics when determining a
cache hit, e.g. “a request for analysis with a mass of 3.17 is close enough to an earlier analysis
that used a mass of 3.12.”

Building on CCM and dependency tracking and change management technologies, adding smart
ripple effects analysis and change propagation, and providing a capability to do results caching,
are features intended to help support concurrent, collaborative engineering. But much more
thought needs to go into exactly how these would be used in conjunction with other
VehicleForge collaboration features in the context of a crowd-source acquisition process.

10
Approved for Public Release: Distribution Unlimited

4. RESULTS AND DISCUSSIONS

Our demonstrations were based around a development scenario for a small UAV. This scenario
was based on real-world experience gathered from the Lockheed-Martin Desert Hawk, illustrated
in the figure. This is a small, reusable UAV whose parts can be carried in a backpack. It can be
quickly assembled and hand-launched to perform local tactical surveillance missions.

Figure 2: Lockheed-Martin Desert Hawk UAV is a Real-World Basis for Demos

In our overall demonstration scenario we developed 10 different models, written in 9 different
languages, at different levels of abstractions. These were used in various compositions as we
demonstrated how FUSED and its tools could be used to perform selected system engineering
tasks with greater automation and assurance. The following figure illustrates the complete set of
models.

11
Approved for Public Release: Distribution Unlimited

Figure 3: Demo Includes 10 Engineering Models in 9 Different Languages

The following sections describe the FUSED compositions we developed for the various
demonstration tasks.

12
Approved for Public Release: Distribution Unlimited

4.1 Trade Space Exploration of Abstract Equational Model

Figure 4: FUSED Composition of Trade Space, Requirements, Equational Models

In this scenario, very early in the development process the system engineer has been given a
preliminary set of requirements and has developed an abstract equational model (in Excel) of the
UAV from basic aeronautical principles and formulas. This model includes design configuration
choices, such as wing parameters and choices of batteries and propellers and motors, that he is
uncertain about. In the above FUSED composition specification, requirements such as take-off
and cruise velocities, are published to the abstract equational model. This is then composed with
ATSV, a trade-space exploration and visualization tool that allows the requirements and systems
engineers to explore the trade-offs between requirements and design choices using a variety of
model sampling and visualization methods.

13
Approved for Public Release: Distribution Unlimited

\

4.2 Trade Space Exploration of Mixed Fidelity Model

Figure 5: FUSED Composition of Requirements, Trade Space, Mixed Fidelity Models

In the demonstration scenario, we imagine that the system engineer has determined that the
choices seem very sensitive to properties such as the exact surface areas of control surfaces and
vehicle mass properties, and to the coefficient of drag. Preliminary solid and aerondynamics
models are developed (in Creo/ProE and AVL, respectively) and analyzed to obtain more precise
estimates of the parameters. The composition of all these models is further combined with
ATSV so that trade space explorations can be performed over the hybrid model that has reduced
uncertainties.

14
Approved for Public Release: Distribution Unlimited

4.3 Vehicle Dynamics Simulation Using Solid and Aerodynamics Data

Figure 6: FUSED Composition of Solid, Aerodynamics CFD, and Vehicle Dynamics Models

The above specification shows a composition of a solid/geometric model of a UAV, an
aerodynamics/fluid dynamics model of that same UAV, and a Modelica model for the flight
dynamics. The right-most box indicates that the system engineer is interested in two specific
configurations, either a short or a long wing configuration (the solid and aero models are both
configurable for either of these choices). When this specification is compiled and executed, it
invokes operations on the solid model to publish the results of a mass properties analysis (e.g.
surface areas of control surfaces, total mass, moments of inertia); invokes operations on the
aerodynamics model at a set of trim points to obtain stability derivatives and other aerodynamic
coefficients; and then passes this data into the Modelica model. The Modelica model includes
extended subscription declarations to extract what it needs from this data to simulate a trajectory
for the selected vehicle configuration.

15
Approved for Public Release: Distribution Unlimited

4.4 Verification of Multi-Model Consistency

Figure 7: FUSED Composition of Solid, Avionics, and Inter-Model Consistency Verifier

Models

In the demo story, the above specification was created by a system engineer who was concerned
that the solid modeling team (a team of mechanical engineers) and the avionics team (a team of
computer system engineers) might produce specifications that are not fully consistent with each
other. In particular, he wants ongoing checking that the resources the avionics people say they
need do in fact have space and cabling allocated in the geometry. When executed, the above
specification causes an abstraction of model structure (an ontology type called a typed object
graph) to be published for both the solid model (in Creo/Proe) and the avionics model (in
AADL). A specification that there exists a suitable mapping from logical processors and busses
and devices in the avionics model onto physical elements of the solid model is written in the
SMTLib language (a semi-standard language that can be used to make logical assertions about
models). This SMTLib model subscribes to the two abstract structural representations and uses
one of the many SMT tools to model-check that such a mapping exists. Note that the SMT
model is not a model for a component, it is a design aid model used to verify a complex property
about the design itself.

16
Approved for Public Release: Distribution Unlimited

4.5 Collaborative Multi-Disciplinary Design Optimization

Figure 8: FUSED Composition of Trade Space and Design Optimization Models

In the demo story, customers working with requirements engineers are somewhat uncertain about
requirements. They would like to visualize and explore alternatives, and in particular they would
like to see the Pareto frontier of what existing technologies could provide them. For a UAV,
customers are concerned with things like range, endurance, and cruise velocity. A Trade Space
Visualizer (TSV) model is used to define the trade space, explore it using a number of sampling
methods, and visualize it using a number of common display formats.

TSV could be used to explore the overall design space including all the detailed engineering
design alternatives like choice of propeller, wing design parameters, etc. However, this demo
adds a collaborative multi-disciplinary optimization (MDO) twist to things. Rather than confuse
the customer with detailed engineering concerns, the TSV model is not composed with a raw
model of the vehicle. Instead, it is composed with a design optimization tool that uses a model
written in the standard MiniZinc language. When executed, the TSV tool will open and can be
commanded to collect samples of the trade space. Each sampling invokes the design
optimization model, which will automatically find a good set of lower-level design configuration
parameter values for that particular requirements sampling point.

17
Approved for Public Release: Distribution Unlimited

5. CONCLUSIONS

We believe our choice of higher-order attribute grammar and extensible language technology as
an enabler to do our work (to build the FUSED infrastructure with) is better than the other
alternatives we’ve seen – basing it on UML technologies or on web technologies. In our
experience, it has much more semantic power than the others. For example, it has been fairly
easy for us to deal with XML and XMI formats from the UML world, moreover with much more
semantics than provided by, say, XML schemas. The natural tie-in between our use of formal
languages and language semantics (e.g. type theories) provides a natural way to deal with
complex semantics in modeling languages.

Based on our experience, we also believe our tendency to allow subject matter experts in a
particular domain to use their favored languages and tools, rather than have them go through
some sort of layering on top, is the best choice. It seems a waste of effort to try and include
features in a META-Language that are already present in this or that domain-specific language;
in fact, it seems impractical to add the full power and convenience and conciseness. Our focus
has been in a META-Language that deals with relationships between these various models,
rather than one that tries to provide an integrated duplication of some portion of their capabilities
and semantics.

Having said that, it is important to deal with inter-model consistency. Our approach to this has
been two-fold. First, provide an extensible and rich type and meta-type system that allows
strong type-checking of elements that are moved between models or are of significance at the
system engineering level. Second, provide export of abstractions of models that can be used
with powerful verification technologies to show that complex consistency conditions hold
between two models. We performed demonstrations of both of these. However, more
experience is needed with both of these in order to mature these technologies.

Our approach to providing a sounder semantic basis for all this is to view the model elements
and associated types as abstractions that are published by or subscribed to from different models.
The semantics of these common types must fall within the intersection semantics of all the kinds
of models that may produce or consume them. More research is needed to extend typing theory
to deal with this situation. We need more powerful ways to structure complex ontologies of
types and meta-types. We also need a richer set of ways to deal with abstractions, in particular
ways to more formally define and verify what it means for an element that has been exported
from a model to be an abstraction for something within that model that is suited for the purposes
for which it is being used.

Additional research is also needed in support of more highly collaborative and concurrent
engineering processes. We have demonstrated some features to support this. More work is
needed in the area of ripple effects analysis (smart change propagation) so that designers are not
constantly dealing with trivial changes made in other areas while at the same time being certain
to stay consistent with changes that do impact their work. We have been working with teams
developing various Monte Carlo methods for uncertainty and global sensitivity analysis, and we
have done some work ourselves with interval solutions to DAE models, but much more work is
needed in the area of support for a rich set of uncertainty models.

18
Approved for Public Release: Distribution Unlimited

6. REFERENCES

Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C., “Satisfiability Modulo Theories,” in

Handbook of Satisfiability, IOS Press, Amsterdam, 2008, pp.737-797

Hoyle, C., Tumer, I.Y., Kurtoglu, T., Chen, W., “Multi-State Uncertainty Quantification for

Verifying the Correctness of Complex System Designs,” Proceedings of the ASME 2001

International Design Engineering Technical Conferences, August 2001.

Marler, R.T., Arora, J.S., “Survey of Multi-Objective Optimization Methods for Engineering,”

Structural and Multidisciplinary Optimization., 26, 6, April 2004 pp. 369-395.

Minnesota Extensible Language Tools, University of Minnesota,

http://melt.cs.umn.edu/index.html

Rihm, R. “Interval Methods for Initial Value Problems in ODEs,” in Topics in Validated

Computations: Proceedings of Imacs-Gamm International Workshop on Validated

Computations, Oldenburg, Germany, 30 August - 3 Sept, Elsevier Publishing Company,

Amsterdam, 1994

Trade Space Exploration, Penn State University, http://www.atsv.psu.edu/

Van Wyk, E., “Semantics of Attribute Grammars and their Roll in Language Development,”

University of Minnesota, November 2010

19
Approved for Public Release: Distribution Unlimited

List of Acronyms, Abbreviations, and Symbols

Acronym Description

AADL Avionic Architecture Description Language

ATSV Applied Trade Space Visualizer

AVL Adelson-Velskii and Landis (Computer Logic)

Creo/ProE Creo Pro Elements (3 dimensional Computer Aided Design Tool)

FUSED Formal United System Engineering Development language

MiniZinc medium-level constraint modelling language

MDO multi-disciplinary optimization

SMTLib Satisfiability Modulo Theories Library

SysML, Systems Modeling Language

TSV A Trade Space Visualizer

UAV Unmanned Aerial Vehicle

