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1.0 SUMMARY 

 

The goal of this program was to develop a new extensible system representation metal-language, 
which we named the Formal United System Engineering Development language, to specify 
complex relationships between models written in multiple languages at multiple levels of 
abstraction and used by developers from many disciplines for many purposes during a concurrent 
development process. 
 
Our approach was to leverage the enormous investment in the great variety of existing domain-
specific modeling environments by creating a language that would complement these existing 
ones.  FUSED is a language to compose collections of models written in these various languages 
in a way that they can be used in a synergistic, verifiable, multi-disciplinary, model-based 
development activity.  Existing languages, tools, and model libraries are used within the various 
domain-specific modeling environments to perform the specialized engineering activities for 
which those environments were created.  FUSED operates at the requirements and system 
engineering levels, where complex relationships between models of varying kinds and at varying 
levels of abstraction must all be used collaboratively to perform overall system development. 
 
We developed a preliminary FUSED language specification and supporting toolset.  These were 
successfully applied to a number of demonstration development tasks based on a small UAV 
development scenario (a UAV that was based on an actual Lockheed-Martin product line).  
Collectively these tasks demonstrated the composition of 10 different types of models 
(requirements, abstract and mixed-fidelity equational, solid/geometric, aerodynamic, dynamical, 
avionics, trade space, verification, design optimization) in 9 different modeling languages 
(SysML, Excel, Creo/ProE, AVL, Modelica, AADL, ATSV, SMTLib, MiniZinc).  The 
compositions, when executed, performed activities such as moving analysis and simulation data 
between models with strong type checking, verifying consistency conditions across multiple 
models, and performing collaborative multi-disciplinary design optimization over models. 
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2.0 INTRODUCTION 

FUSED is a language used to specify compositions of design engineering models written in a 
variety of other modeling languages (e.g. SysML for requirements, Creo/ProE for 
solid/geometric models, Modelica for dynamical systems models, Excel for simple one-off 
engineering models).  A FUSED composition identifies a set of models and specifies 
relationships between those models (e.g. parametric dependencies, part/whole assembly, inter-
model consistency conditions).  A FUSED composition specification is a model just like any 
other and can be mixed-and-matched to form more complex FUSED compositions. 
 
FUSED allows engineers to use proven and accepted modeling languages and environments 
within established engineering domains (e.g. Cre/ProEo users can use Creo/ProE and their legacy 
models, Modelica users can use Modelica and their legacy models).  We use an extensible 
language approach to add those few features needed to cleanly interface with the system 
engineering capabilities provided by the FUSED infrastructure (e.g. publish or subscribe model 
elements to be obtained from or provided to the system engineer or other models, specify type 
qualifier information for which no capability exists in the language currently).  This is done in a 
way that is a natural fit with the look-and-feel of the existing modeling environment (e.g. new 
clause to declare uncertainty in standard Modelica parameter declarations, SysML extensions 
appear as new profiles).  The primary users of the FUSED language proper are requirements and 
systems engineers, for whom it provides novel capabilities. 
 

In addition to the obligatory editor of graphical FUSED specifications, FUSED tooling provides 
the following capabilities: 

 Automatically transfer elements between models with strong type checking (support a 
single source of truth), including complex types (e.g. constraints, function signatures, 
abstractions of the model structure itself) and type qualifiers (e.g. units, frame of 
reference, uncertainties).  The ability to deal with complex model types enables many 
kinds of compositions not possible with current simulation workflow engines, e.g. 
compose models with specialized consistency verification modeling environments. 

 Automatically invoke analyses or simulations specified for a composition of models.  The 
possible combinations reflect the capabilities of the selected modeling languages and 
tools.  For example, a Creo/ProE model could be analyzed to obtain mass properties 
while a Modelica model could be analyzed to obtain a simulation trajectory.  Engineers 
typically think of these as simulations, but we have paid particular attention to the ability 
to exchange analysis and formal verification results as well (e.g. don’t simulate a real-
time schedule and deal with a set of test traces, do a schedulability analysis and use 
guaranteed bounds). 

 Automatically invoke verifications and design tools on a composition of models.  Models 
in a composition are often component models (e.g. a wheel), but they are also often 
verification or design aid models (e.g. a model to obtain a Pareto frontier for another 
model, a model to automatically optimize certain design configuration parameters of 
another model). 

 Track dependencies and change propagation between model elements and models.  This 
currently includes conventional make/build change tracking, with a capability to manage 
and cache results across multiple configurations of a model.  We are working towards 
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smarter and finer-grained ripple effects analysis (e.g. determine that a change is not 
significant enough to trigger re-analysis based on type qualifier information such as 
uncertainty or sensitivity) within the context of a highly concurrent and collaborative 
development process. 

 Support for configurable models and requirements and design evolution.  Features are 
included to explicitly support definition and use of configurable models, integrate trade 
space visualization and exploration environments, and integrate specialized design 
optimizers at various points in the process. 

 Support for multiple kinds of model composition.  We currently support compositions 
that allow models to use as inputs values that are obtained from other models as 
determined by a FUSED model composition specification (what we call 
publish/subscribe).   We plan to add some support for part/whole compositions, both 
within matching modeling environments (e.g. compose multi-model components having 
matching domain-specific tools, such as composing solid component models within 
Creo/ProE while simultaneously composing dynamical component models within 
Modelica); and composing models using diverse but synergistic modeling environments 
(e.g. co-simulation, such as composing a Modelica simulation with a FlightGear 
environment simulation). 
 

FUSED is extensible.  It is designed so that support for selected modeling languages and tools, 
and selected types of data and meta-data to be made visible and manageable at the multi-model 
composition level, can be added.  This is somewhat analogous to creating a plug-in to Eclipse, 
except that FUSED is build using advanced language extension technologies (from the 
University of Minnesota extensible languages group) so that much of this can be done at a more 
concise and abstract level than writing Java code.  However, it is still a programming-like 
exercise, and extending FUSED to support a new modeling language or a new set of types would 
be done by engineers trained for those particular tasks (e.g. a support group within an 
organization, a vendor of a tool, a small company in that business).  Eventually, we would hope a 
set of plug-ins for common languages and tools would be available and could be installed by 
users, analogous to the way it can be done with Eclipse today. 
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

 

3.1 Assumptions and Approach 

 

We assumed that it is not currently possible to develop a unified theory and semantics for 
everything.  We assumed it was not practical to layer-over existing languages with some new 
meta-language and still replicate all the power and detail of the myriad of domain-specific 
languages that exist.  This is the basis of our approach to allow domain-specific users to keep 
using modeling environments and methods they are already familiar with and focus on a meta-
language that adds new capabilities to compose multiple models from different domains. 
 

 

 

Figure 1: FUSED Glues Together Models in Existing Languages 

 

One of our conjectures was that advanced formal language notations and tools and extensible 
language technologies would provide a powerful way to specify and implement our new FUSED 
language and its supporting tools.  We selected the Silver higher-order attribute grammar system 
from the University of Minnesota to carry out our work.  We believed then (and still do) that this 
basis in formal programming languages and type and logic theory provides greater power and 
assurance than alternative approaches based on, say, UML or semantic web concepts. 
We also felt that concurrent, collaborative engineering raised challenges that had to be 
supported.  FUSED is more than a language for specifying static compositions of models.  It 
includes semantics, and the toolset includes support for, projects in which hundreds of engineers 
may be concurrently modifying thousands of models. 
 

3.2 FUSED Language and Capabilities 

 
FUSED Language and Capabilities were summarized in the INTRODUCTION section. 
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3.3 FUSED User Experience 

 

We currently do our demos within the Eclipse environment.  This offers the usual conveniences, 
but also brings with it some inconveniences.  The only real dependency we currently have on 
Eclipse is that our graphical FUSED editor is built using Eclipse GEMS, otherwise vehicle 
engineers could do their work using another IDE or none at all. 
 
Engineers within a specific domain create an Eclipse project of the desired type, e.g. create a 
Modelica project.  An inconvenience is that most of the tools used in vehicle engineering lack 
Eclipse plug-ins, so the special features Eclipse provides when plug-ins are available is lost 
(unless someone develops these plug-ins, something that could be done as part of creating a 
FUSED extension for a particular language -- but something we haven’t been doing for our 
demos).  The users see what they expect from their chosen flavor of project, but with a few 
extensions.  They see a few extensions available for the modeling language (e.g. ways to 
subscribe to model elements they want to be provided to them, ways to declare things that cannot 
be declared in the standard language such as uncertainties or frames-of-reference).  There is also 
added build functionality to support the FUSED capabilities listed above.  If the engineer is 
developing a configurable model, then they may need to add a few special specifications or 
follow a few special guidelines if different model configurations make use of different model 
files in a way the build cannot automatically deduce. 
 

FUSED composition specifications are created in a new project that allows FUSED graphical 
specifications to be developed using our FUSED graphical editing tool.  These can be compiled 
and executed to carry out some specified activity (e.g. perform consistency checks across the set 
of models, do some sort of overall analysis of the composed set of models, run a design 
optimization over the composition, perform sampling to estimate the Pareto frontier and explore 
that). 
 
An overall project isn’t just one engineer carrying out one sequential set of engineering 
activities.  We are concerned about hundreds of engineers concurrently making changes to 
thousands of models across multiple engineering disciplines at multiple levels of abstraction.  
We are trying to put in capabilities and features to help people stand on each other’s shoulders 
instead of each other’s toes, but successful collaborative engineering is a matter of cultural and 
management norms and processes that effectively use the collaboration features.   These FUSED 
features are obviously just a subset of the collaboration support provided by an overall common 
repository such as VehicleForge, and they need to be thoughtfully integrated into that. 
 
3.4 FUSED Structure and Operation 
 
This section gives a high-level overview of how FUSED is built and operates.  We overview 
how languages and types (ontologies) are specified and how tools that operate on them are 
generated.  We overview how compositions of models are specified and how the tooling that 
automatically does things with compositions works. 
 



6 
Approved for Public Release: Distribution Unlimited 

 

3.5 Specifying Model Languages and Types 
 
We use the Silver higher-order attribute grammar language and tools to specify and implement 
tools that understand and extend the various modeling languages of interest.  At a very high 
level, Silver can be thought of as a scanner/parser generator on steroids (it has the power of a full 
functional programming language).  The library of Silver specifications we have written so far 
could be divided, at a high level, into two groups: concrete grammars and abstract types. 
 
3.6 Concrete Grammars 
 
There are several concrete grammar specifications for various modeling languages.  For 
example, we took the standard Modelica grammar, tweaked it into the exact syntax used by 
Silver, and added attributes so that we can generate a tool that can parse and perform some 
semantic analysis on Modelica files.  There are a couple of additional things we do beyond 
traditional scanning/parsing.  
 
Silver has special support for defining and implementing sets of extensions to existing languages.  
It is easy to write add-ons that extend existing rules of the grammar, and it is easy to say how 
these can be implemented by expanding (“forwarding” is the buzzword in the language extension 
community) these into the host language (e.g. in our interval uncertainty demo, a clause 
specifying an interval uncertainty for a parameter causes the parameter declaration to be split 
into two declarations of a min and max parameter, and all statements that use that parameter get 
split into two versions).  The tool that is generated from these specifications will read a string in 
the extended language and then write a string in the standard language.  Note that Silver 
specifications can thus include languages whose strings are to be written as well as languages 
whose strings are to be parsed. 
 
We often write specifications that just extract data.  A modeling toolset uses many more file 
formats than just the language written by users; there are typically a variety of intermediate and 
analysis result file formats.  We also generate parsers for some of these so that we can obtain the 
results of various operations performed on models.  For example, we generated tools that can 
parse Creo/ProE mass properties analysis files and AVL aerodynamic stability derivatives files. 
 
3.7 Abstract Types 
 
Our library of Silver specifications also includes definitions of the types of model elements the 
FUSED infrastructure knows how to deal with.  These are types of data of interest to systems 
engineers, or types of data that need to be exchanged or compared across different kinds of 
modeling environments.  This is our ontology, specified in a format that allows us to use Silver 
to generate various tools that can operate on instances of these types. 
 
Semantically and structurally, we are coming at this from a formal languages perspective.  A 
type of model element can have a structure as complex as Silver extending scanning and parsing 
technology can handle (easily as complex as any current programming language), and its 
semantics can be similarly as complex.  For example, we have a constraint type (inequalities), we 
have a typed object graph type that captures an abstraction of the overall static structure of a 
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model, we have bits of a function signature type (so one model can call another as a function 
during some analysis or evaluation activity). 
 
Of course, that belies all the hard work of actually formally defining semantics for each 
particular type.   Pragmatically, we do what language people do today -- it is a matter of degree.  
For a chosen modeling language, we have the semantics to work with that are provided by that 
community.  The modeling language communities have to bear the brunt of clearly defining and 
formalizing their semantics as much as they can be convinced to do so. For our ontology types, 
which cross domains, we have to come up with a semantics common across all the languages 
that might potentially use that type/concept – again, we can do no better than those language 
communities have done.  The semantics of any particular ontology type comes from an abstract 
semantics space that is common across all the modeling languages in which that type has any 
meaning, and arguments need to be made that the appropriate abstraction relations hold within 
each modeling environment. 
 
We currently do not impose much of any structure on our collection of ontology types.  We have 
multiple roots, and multiple inheritance is supported.  We don’t pick any particular model for 
parametric typing, that falls within the scope of what our approach has the power to specify – 
different modeling languages have different parametric typing systems, and we can support that.  
There is a lot of potential power and flexibility in our approach, but of course with that comes 
potential complexity.  Effective ways to structure an overall ontology for this purpose is an area 
of research. 
 
One thing we do have is a concept we call type qualifiers.  System engineers can add-on typing 
information that cannot be specified in this or that particular modeling language.  We currently 
have type qualifiers for units, frame-of-reference, and interval and stochastic uncertainties. 
 
Getting back to nuts and bolts, we use Silver to generate tools that can extract model elements of 
the various types from files written in supported modeling languages, convert them to a 
canonical internal representation (which inside the tool takes the form of a higher-order 
attributed abstract parse tree), and convert from a canonical representation to any other language 
representation in which elements of that type make any sense. 
 
One concrete representation that we have for every ontology type is an XML representation that 
we have defined.  Any collection of model elements in any hierarchical namespace structure can 
be written to a file in this format. 
 
We also build a set of basic operations on elements of our ontology types.  These are things like 
extracting a subset of elements from a collection, composing elements to form a new collection, 
adding type qualifiers, checking simple properties for an element, renaming, etc.  These are the 
sorts of mundane things a system engineer may need to specify in a FUSED composition in order 
to get a particular set of models pasted together. 
 



8 
Approved for Public Release: Distribution Unlimited 

 

 
 
3.8 Doing Things with Compositions of Models 
 
The FUSED composition language currently exists as a graphical language.  There are an editor 
and a compiler that are implemented using Eclipse GEMS, which makes it much easier to 
develop and change than if it were implemented in Java (say).  From the beginning we’ve taken a 
need-driven approach to language design – we identified the capabilities we felt were needed, 
then identified how to go about providing them, and finally identified a high-level syntax in 
which to specify them.  The language continues to evolve.  
 
The compiler generates ant build scripts.  Executing a composition means executing a target in 
one of these ant build scripts.  The overall execution is actually a hierarchy of build scripts that 
call each other.  These scripts can be roughly divided into two kinds, those that are generated 
entirely by the compiler for a specified composition, and builds for a particular model developed 
in a particular modeling environment (which are the leaf builds in a tree of builds invoked for a 
particular purpose by the system engineer). 
 
A part of the process for developing FUSED extensions for a particular modeling environment is 
the development of a template build script for that kind of modeling environment.  The build 
templates have different targets (operations) for the different kinds of things an engineer might 
want to do with a model and the kinds of things the associated toolset is capable of.  For 
example, the Creo/ProE build template has targets to publish a mass properties analysis and 
publish a typed object graph abstraction of a model, while the Modelica build template has a 
target to produce a simulation trajectory.  
 
Every build template accepts as an input parameter a path to an XML file containing a collection 
of model elements in the FUSED common format.  A build template may return a path to an 
XML file containing a collection of model elements.  The build template invokes the FUSED 
operations and the local modeling tool invocations necessary to do all the model element 
extractions and conversions, and all the extension-expanding pre-processing and output-
generating post-processing, that are needed to accomplish the desired task for the desired 
configuration of that model. 
 
We definitely encourage component developers to produce parametric or configurable models.  
Sometimes the build scripts need to automate some of this, e.g. know which subsets of files need 
to be used in which configurations.  There may also be a need to restructure the inputs.  For these 
reasons, the build templates themselves need to subscribe or publish certain values.  This is still a 
little awkward now, model developers sometimes need to follow certain guidelines or hand-edit 
pieces of the build template.  We’re working on a concept of “FUSED wrappers” that makes this 
more concisely specified and automated and allows model/component developers to control the 
interfaces presented to the system engineer. 
 
The FUSED compiler proper generates ant build scripts that invoke other ant build scripts. It 
passes paths to collections of FUSED elements in canonical representation between model 
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builds, performing FUSED operations on these collections as specified to get the various models 
to talk to each other. 
 
The build scripts currently do the usual dependency tracking and change propagation, using the 
typical coarse-grained, semantics-free notions of file time-stamping or differencing.  One of the 
things we’re working towards is leveraging semantic and meta-data available to the tools to do 
this in a smarter way.  For example, if a solid model changes but a new mass properties analysis 
says that various values have changed relatively little compared with the uncertainty meta-data 
associated with those values, then don’t bother updating all the analysis results of all the other 
models that depend on that value.  This is a research area. 
 
Build scripts can receive as parameters a path to another build script.  This is done, for example, 
in our trade space exploration demos, where the trade space builder repeatedly invokes the build 
of a parameter model to sample the design space. 
 
A model target may be invoked for a particular configuration of a model and with a particular set 
of parameters for that analysis.  For example, when requesting an aerodynamic analysis of an 
AVL model, the user needs to specify vehicle configuration parameters (e.g. choice of wing) and 
needs to specify a set of constraints that determine the “trim point” at which analysis is to be 
performed.  Some of our build scripts can automatically cache analysis results, using the 
configuration and analysis parameters as a cache tag.  This is a demo capability right now.  To 
make this useful in practice, we’d have to add typical cache management capabilities.  We’d also 
have to add somewhat novel ways to specify “close enough” semantics when determining a 
cache hit, e.g. “a request for analysis with a mass of 3.17 is close enough to an earlier analysis 
that used a mass of 3.12.” 
 
Building on CCM and dependency tracking and change management technologies, adding smart 
ripple effects analysis and change propagation, and providing a capability to do results caching, 
are features intended to help support concurrent, collaborative engineering.  But much more 
thought needs to go into exactly how these would be used in conjunction with other 
VehicleForge collaboration features in the context of a crowd-source acquisition process. 
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4. RESULTS AND DISCUSSIONS 
 
Our demonstrations were based around a development scenario for a small UAV.  This scenario 
was based on real-world experience gathered from the Lockheed-Martin Desert Hawk, illustrated 
in the figure.  This is a small, reusable UAV whose parts can be carried in a backpack.  It can be 
quickly assembled and hand-launched to perform local tactical surveillance missions. 
 

 

Figure 2: Lockheed-Martin Desert Hawk UAV is a Real-World Basis for Demos 

 

In our overall demonstration scenario we developed 10 different models, written in 9 different 
languages, at different levels of abstractions.  These were used in various compositions as we 
demonstrated how FUSED and its tools could be used to perform selected system engineering 
tasks with greater automation and assurance.  The following figure illustrates the complete set of 
models. 
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Figure 3: Demo Includes 10 Engineering Models in 9 Different Languages 

 

 

The following sections describe the FUSED compositions we developed for the various 
demonstration tasks. 
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4.1 Trade Space Exploration of Abstract Equational Model 

 

 

Figure 4: FUSED Composition of Trade Space, Requirements, Equational Models 

 

In this scenario, very early in the development process the system engineer has been given a 
preliminary set of requirements and has developed an abstract equational model (in Excel) of the 
UAV from basic aeronautical principles and formulas.  This model includes design configuration 
choices, such as wing parameters and choices of batteries and propellers and motors, that he is 
uncertain about.  In the above FUSED composition specification, requirements such as take-off 
and cruise velocities, are published to the abstract equational model.  This is then composed with 
ATSV, a trade-space exploration and visualization tool that allows the requirements and systems 
engineers to explore the trade-offs between requirements and design choices using a variety of 
model sampling and visualization methods. 
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4.2 Trade Space Exploration of Mixed Fidelity Model 

 

 

Figure 5: FUSED Composition of Requirements, Trade Space, Mixed Fidelity Models 

 

In the demonstration scenario, we imagine that the system engineer has determined that the 
choices seem very sensitive to properties such as the exact surface areas of control surfaces and 
vehicle mass properties, and to the coefficient of drag.  Preliminary solid and aerondynamics 
models are developed (in Creo/ProE and AVL, respectively) and analyzed to obtain more precise 
estimates of the parameters.  The composition of all these models is further combined with 
ATSV so that trade space explorations can be performed over the hybrid model that has reduced 
uncertainties. 
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4.3 Vehicle Dynamics Simulation Using Solid and Aerodynamics Data 

 

 

Figure 6: FUSED Composition of Solid, Aerodynamics CFD, and Vehicle Dynamics Models 

 
The above specification shows a composition of a solid/geometric model of a UAV, an 
aerodynamics/fluid dynamics model of that same UAV, and a Modelica model for the flight 
dynamics.  The right-most box indicates that the system engineer is interested in two specific 
configurations, either a short or a long wing configuration (the solid and aero models are both 
configurable for either of these choices).  When this specification is compiled and executed, it 
invokes operations on the solid model to publish the results of a mass properties analysis (e.g. 
surface areas of control surfaces, total mass, moments of inertia); invokes operations on the 
aerodynamics model at a set of trim points to obtain stability derivatives and other aerodynamic 
coefficients; and then passes this data into the Modelica model.  The Modelica model includes 
extended subscription declarations to extract what it needs from this data to simulate a trajectory 
for the selected vehicle configuration. 
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4.4 Verification of Multi-Model Consistency 

 

Figure 7: FUSED Composition of Solid, Avionics, and Inter-Model Consistency Verifier 

Models 

 

In the demo story, the above specification was created by a system engineer who was concerned 
that the solid modeling team (a team of mechanical engineers) and the avionics team (a team of 
computer system engineers) might produce specifications that are not fully consistent with each 
other.  In particular, he wants ongoing checking that the resources the avionics people say they 
need do in fact have space and cabling allocated in the geometry.  When executed, the above 
specification causes an abstraction of model structure (an ontology type called a typed object 
graph) to be published for both the solid model (in Creo/Proe) and the avionics model (in 
AADL).  A specification that there exists a suitable mapping from logical processors and busses 
and devices in the avionics model onto physical elements of the solid model is written in the 
SMTLib language (a semi-standard language that can be used to make logical assertions about 
models).  This SMTLib model subscribes to the two abstract structural representations and uses 
one of the many SMT tools to model-check that such a mapping exists.  Note that the SMT 
model is not a model for a component, it is a design aid model used to verify a complex property 
about the design itself. 
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4.5 Collaborative Multi-Disciplinary Design Optimization  

 

Figure 8: FUSED Composition of Trade Space and Design Optimization Models 

 
 
In the demo story, customers working with requirements engineers are somewhat uncertain about 
requirements.  They would like to visualize and explore alternatives, and in particular they would 
like to see the Pareto frontier of what existing technologies could provide them.  For a UAV, 
customers are concerned with things like range, endurance, and cruise velocity.  A Trade Space 
Visualizer (TSV) model is used to define the trade space, explore it using a number of sampling 
methods, and visualize it using a number of common display formats. 
 
TSV could be used to explore the overall design space including all the detailed engineering 
design alternatives like choice of propeller, wing design parameters, etc.  However, this demo 
adds a collaborative multi-disciplinary optimization (MDO) twist to things.  Rather than confuse 
the customer with detailed engineering concerns, the TSV model is not composed with a raw 
model of the vehicle.  Instead, it is composed with a design optimization tool that uses a model 
written in the standard MiniZinc language.  When executed, the TSV tool will open and can be 
commanded to collect samples of the trade space.  Each sampling invokes the design 
optimization model, which will automatically find a good set of lower-level design configuration 
parameter values for that particular requirements sampling point. 
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5. CONCLUSIONS 
 

We believe our choice of higher-order attribute grammar and extensible language technology as 
an enabler to do our work (to build the FUSED infrastructure with) is better than the other 
alternatives we’ve seen – basing it on UML technologies or on web technologies.  In our 
experience, it has much more semantic power than the others.  For example, it has been fairly 
easy for us to deal with XML and XMI formats from the UML world, moreover with much more 
semantics than provided by, say, XML schemas.  The natural tie-in between our use of formal 
languages and language semantics (e.g. type theories) provides a natural way to deal with 
complex semantics in modeling languages. 
 
Based on our experience, we also believe our tendency to allow subject matter experts in a 
particular domain to use their favored languages and tools, rather than have them go through 
some sort of layering on top, is the best choice.  It seems a waste of effort to try and include 
features in a META-Language that are already present in this or that domain-specific language; 
in fact, it seems impractical to add the full power and convenience and conciseness. Our focus 
has been in a META-Language that deals with relationships between these various models, 
rather than one that tries to provide an integrated duplication of some portion of their capabilities 
and semantics. 
 
Having said that, it is important to deal with inter-model consistency.  Our approach to this has 
been two-fold.  First, provide an extensible and rich type and meta-type system that allows 
strong type-checking of elements that are moved between models or are of significance at the 
system engineering level.  Second, provide export of abstractions of models that can be used 
with powerful verification technologies to show that complex consistency conditions hold 
between two models.  We performed demonstrations of both of these.  However, more 
experience is needed with both of these in order to mature these technologies. 
 
Our approach to providing a sounder semantic basis for all this is to view the model elements 
and associated types as abstractions that are published by or subscribed to from different models.  
The semantics of these common types must fall within the intersection semantics of all the kinds 
of models that may produce or consume them.  More research is needed to extend typing theory 
to deal with this situation.  We need more powerful ways to structure complex ontologies of 
types and meta-types.  We also need a richer set of ways to deal with abstractions, in particular 
ways to more formally define and verify what it means for an element that has been exported 
from a model to be an abstraction for something within that model that is suited for the purposes 
for which it is being used. 
 
Additional research is also needed in support of more highly collaborative and concurrent 
engineering processes.  We have demonstrated some features to support this.  More work is 
needed in the area of ripple effects analysis (smart change propagation) so that designers are not 
constantly dealing with trivial changes made in other areas while at the same time being certain 
to stay consistent with changes that do impact their work.  We have been working with teams 
developing various Monte Carlo methods for uncertainty and global sensitivity analysis, and we 
have done some work ourselves with interval solutions to DAE models, but much more work is 
needed in the area of support for a rich set of uncertainty models. 
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List of Acronyms, Abbreviations, and Symbols 

 

Acronym  Description 

AADL   Avionic Architecture Description Language 

ATSV   Applied Trade Space Visualizer 

AVL   Adelson-Velskii and Landis (Computer Logic) 

Creo/ProE  Creo Pro Elements (3 dimensional Computer Aided Design Tool) 

FUSED   Formal United System Engineering Development language 

MiniZinc  medium-level constraint modelling language 

MDO    multi-disciplinary optimization   

SMTLib  Satisfiability Modulo Theories Library 

SysML,   Systems Modeling Language 

TSV      A Trade Space Visualizer 

UAV   Unmanned Aerial Vehicle 

 

 


