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AFIT/GAE/ENY/11-D01

Abstract

This research has been aimed at developing methods to predict mechanical

wear of sliding bodies at high velocities. Specifically, wear of test sled slippers at

the Holloman High Speed Test Track at Holloman AFB, NM, is being considered.

Developing a numerical model to represent the velocity range achieved at the test

track is infeasible, so numerical modeling techniques must be adopted. Previous

research has made use of finite element codes to simulate the high velocity sliding

event. However, the extreme velocities at the test track can create numerical errors

in the finite element codes. To avoid the numerical errors, an Eulerian-Lagrangian

hydrocode called CTH has been used to allow for a velocity range of 200 to 1,500

meters per second. The CTH model used in this research performs plane strain

analysis of a slipper colliding with a 6 µm radius semi-circular surface asperity.

The slipper-asperity collision event creates pressure waves in the slipper which

leads to failed cells and worn material. Equations have been derived to represent

the onset of plasticity and elastic wave speed through a material under plane strain

conditions. These equations were validated using the CTH model. Several failure

criteria were evaluated as possible methods to estimate damaged material from the

sliding body. The Johnson and Cook constitutive model was selected because of its

ability to handle high strains, strain rates, and temperatures. The model developed

in this thesis calculates total mechanical wear between 49.31% and 80.87% of the

experimental wear from the HHSTT January 2008 test mission.
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The Use of Various Failure Criteria

As Applied

To High Speed Wear

I. Introduction

The purpose of this research is to examine the interactions of sliding bodies at

high velocities that lead to wear. In order to accomplish this, the wear of test sled

slippers at the High Speed Test Track, (HHSTT), at Holloman Air Force Base (AFB)

is being considered. Principle concepts of impact and wave propagation are used to

evaluate different failure criterion within the material. This chapter will discuss the

goals of this thesis, as well as provide a background on the HHSTT. Also, previous

research in the formulation of wear models will be discussed.

1.1 Objective of Research

The HHSTT performs a variety of tests at high velocities using a rocket sled

system that rides on a set of rails. The sled is attached to the rails using slippers,

which are described in greater detail in Section 1.2. The rail is composed of AISI

1080 steel, whereas the slippers are made of VascoMax 300, a maraging steel. The

HHSTT engineers would like to be able to estimate the amount of wear of each slipper

to check whether it will reach a critical thickness before the end of the test run. The

goal of this research is to develop a numerical model to predict mechanical wear of an

HHSTT slipper as it slides down the track. These numerical models take advantage

of known viscoplastic characteristics to quantify an amount, or volume, of material

that has reached a prescribed failure criterion.

1.2 Holloman High Speed Test Track

The HHSTT is a rocket powered sled test track located at Holloman AFB in New

Mexico. This test track facility is used for a variety of experiments including ground
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level aerodynamic studies, investigating hypersonic conditions, munitions testing, and

egress systems. In April 2003, a land speed record of 2,885 m/s (6,453 miles per hour)

was set at the facility.

A rocket sled train used for these high speed experiments typically consists of

several pusher stages and one forebody stage. Rockets are attached to each sled

to accelerate the train to the desired velocity. The forebody sled carries the test

payload and required instrumentation along with the final rocket. The setup shown

in Figure 1.1 is the configuration used for a mission conducted in January 2008.

Figure 1.1: January 2008 Rocket Test Sled

The sleds ride on parallel AISI 1080 steel rails approximately 6,000 meters long.

Each sled is attached to the track by four slippers that wrap around the rail. Figure 1.2

shows the forebody sled attached to the rail for the record-setting mission in April

2003.

Slipper material is selected based on the maximum velocity of each slipper. The

first two pusher sleds in the January 2008 configuration use AISI 4130 steel inserts

placed between the rail and slipper housing, as shown in Figure 1.3. The steel inserts

are discarded after each test, whereas the slipper housings are reused. The third

pusher sled and forebody sled do not use the steel inserts, they only use slippers

fabricated from VascoMax 300. These slippers are discarded after each test due to

the amount of wear. Figure 1.4 shows the VascoMax 300 slippers attached to the rail.
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Figure 1.2: HHSTT Rocket Sled System

Figure 1.3: VascoMax 300 Slipper with AISI 4130 Steel Insert

3



Figure 1.4: VascoMax 300 Slipper without Steel Insert
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Sled designers have considered several variables that may lead to poor data

collection, or failed experiments. One concern is the amount of wear within the

slippers as they reach desired velocities. Figure 1.5 shows the standard dimensions

of the slippers used for the last pusher sled and forebody sled. The designers would

like to be able to estimate the amount of wear of each slipper to check whether it will

reach a critical thickness before the end of the test run.

Figure 1.5: HHSTT Slipper-Rail Dimensions

1.3 Summary of Previous Research

Research into the mechanics of wear has been ongoing for several decades. This

research has led to several definitions of wear. The American Society for Testing and

Materials, (ASTM), defines wear as “damage to a solid surface, generally involving

progressive loss of material, due to relative motion between that surface and a con-

tacting substance or substances” [5]. Researchers have developed various methods

and experiments to define the rate at which material is removed as it slides against

another surface.

One type of experiment is the pin on disk experiment. This experiment uses a

rotating disk, or ring, and pin placed on the surface of the rotating disk. A force is

applied to the pin and the material removed is measured. Figure 1.6 is a schematic

of a pin on disk experiment.
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Figure 1.6: Pin On Disk Experiment [13]

In 1956, Archard and Hirst [4] used a pin on disk experiment to study the wear

of metals under unlubricated conditions. From their research, Archard and Hirst

concluded that wear rate was initially dependent on time, until interface equilibrium

was reached and the wear rate became constant.

In 1960, Wolfson [36] studied the wear of materials in high speed track appli-

cations. Sixty tests were performed at varying velocities, bearing pressures, track

conditions, and sliding materials. The test allowed a sled to accelerate down a track.

Once the desired velocity was reached, a pin was dropped into contact with the rail

with a pneumatic device. This pin was held in contact with the rail at a constant

bearing pressure during the test. The pin was removed from the rail once a specified

sliding distance was reached. The amount of worn material was determined by com-

paring final dimensions and weights to initial values. Wear rates were determined by

dividing the volume of worn material by the sliding distance. A conversion method

was applied to Wolfson’s data to compare results to the analytical model developed

in this thesis. This conversion method and application of Wolfson’s data is described

in greater detail in Section 4.6.

In 1970, Farrell and Eyre [19] used pin-on-disk wear experiments to characterize

wear between two steels. Their work provided distinction between mild wear and

severe wear, the transition between the two states, and its dependence on both sliding

6



speed and applied load. Mild wear “involves the relatively slow removal of the tops of

the highest contacting asperities with little substrate distortion,” while severe wear

shows a greater scale of surface damages and “the wear rate increases by some two

orders of magnitude from that of mild wear and the maximum size of the wear particles

increases suddenly at the transition load.” Their work also showed that the coefficient

of friction, µ, is dependent on both the sliding velocity and applied load, as shown in

Figure 1.7.

Figure 1.7: Variation of Coefficient of Friction with Load [19]

The pin-on-disk experiments by Archard and Hirst, and Farrell and Eyre con-

sidered velocities on the order of 10 m/s. In 1976, Montgomery [30] published the

friction and wear of metals in high muzzle velocity weapons. A pin-on-disk experiment

was used with a velocity range of 3 to 550 m/s. In order to keep the pin from running

over the same path on each rotation of the disk, the pin was moved radially. Strain

gauges were used to measure the frictional and normal forces during the experiment.

Similar to Farrell and Eyre, Montgomery’s experiments showed that the coefficient

of friction was dependent on both the sliding velocity and applied load, or pressure.

The coefficient of friction was plotted as a function of the product of pressure and

velocity, Pv, in Figure 1.8.

At low Pv values, the coefficient of friction was higher. As the Pv value in-

creased, the coefficient of friction decreased exponentially to an asymptotic value.
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Figure 1.8: Variation of Coefficient of Friction with Pv [30]
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According to Montgomery, “the mechanism of wear at high sliding speeds is almost

certainly surface melting followed by subsequent removal of a portion of the melted

surface layer.” This surface melting creates a film of molten material along the sliding

interface, and effectively lowers the coefficient of friction to the asymptotic value in

Figure 1.8.

In 1987, Lim and Ashby [26] published a paper describing the various mecha-

nisms of wear. This paper formulated wear-mechanism maps showing the relationship

between wear mechanisms and test conditions, sliding velocity and pressure. These

wear mechanism maps were generated by applying two converging approaches. The

first approach was to plot experimental results, and identify the mechanisms by ob-

servation. The second approach was to use numerical equations describing each mech-

anism. The two methods generate a map showing the total wear rate and define the

contribution of each wear mechanism. Figure 1.9 shows the wear-mechanism map for

steel.

Contours of constant normalized wear rates were superimposed on fields show-

ing the regimes of dominance of different wear mechanisms. There were discontinu-

ities in the contours when they cross the field boundaries into the regimes of severe-

oxidational wear and melt wear. The wear rates given in parentheses were the values

when mild wear takes place. The shaded regions indicated a transition between mild

and severe wear [26]. The parameters were normalized to allow specimens of various

sizes and shapes. Section 2.2 describes the normalization in greater detail. Very little

work has been presented in the past that stresses the relationship between wear and

wave mechanics, which is a goal of this research.

1.4 AFIT and HHSTT Wear Research

In 2007, Cameron [12, 13] used equations developed by Archard, and Lim and

Ashby to characterize the wear of the HHSTT slipper from the 2003 test run. A code

was written to analyze dynamic data and estimate mechanical and melt wear depths.

The data was provided by Holloman using a program called Dynamic Analysis and
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Figure 1.9: Wear Mechanism Map for Steel [26]
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Design System, (DADS). The DADS data is discussed in greater detail in Section 3.1.

The test was a simulation of the forebody sled accelerating from 0 to 3,030 m/s at

a constant acceleration for 2.5 seconds. Cameron’s analysis calculated a mechanical

wear depth of 0.27 cm and a melt wear depth of 0.08 cm. The total wear depth

of 0.35 cm is less than the nominal thickness of the HHSTT slippers. The analysis

was deemed an acceptable initial approximation of high velocity slipper wear depth

because the slippers used at the track have never worn through the entire thickness

due to a test run.

In 2008, Chmiel [14] used a finite element analysis, (FEA), approach to predict

the wear of HHSTT slippers. Two methods were evaluated in the research. One

method used equations developed by Archard on a macro-scale in incremental steps,

and the second method utilized failure criterion based on material property on a micro-

scale. The methods were evaluated at low velocities so results could be compared to

previously published experiments. The incremental approach produced numerical

errors during simulation that were deemed unacceptable. The failure method based

on material properties was found to be a feasible solution.

In 2009, Burton [10, 11] studied the surface features of VascoMax 300 slipper

and AISI 1080 steel rail samples. An optical profilometer was used to gain accurate

measurements of the surface roughness. Figure 1.10 is a plot of recorded surface height

data. The data was then filtered to remove surface waviness and microstructural

features. Filtering the surface data was beneficial for modeling purposes because it

removed sharp edges and sudden changes in profile which can lead to singularities

when used in FEA models. Figure 1.11 is the FEA model of the slipper and rail

specimens with scanned and filtered profile geometry used by Burton.

The FEAmodel was used to study the effect of mesh refinement on the coefficient

of friction at the interface of the two sliding bodies. Burton stated: “If the key features

of the surface irregularity are not represented in the model, the model coefficient of

friction and the effective coefficient of friction for the macroscopic forces are essentially
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Figure 1.10: VascoMax 300 Surface Height Data [11]

Figure 1.11: Finite Element Model Used by Burton [11]
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the same.” This suggests that a precise measurement of the surface is not necessary

to model the coefficient of friction.

In 2009, Hale [20] used a micro-scale FEA approach similar to Chmiel to model

the mechanical wear rates of a hypothetical HHSTT test run. The velocity profile of

the third stage from the January 2008 mission, Figure 1.12, was used for this research.

The wear phenomenon is most accurately represented as a 3-dimensional problem. To

simplify the model, a plane strain approach was used to simulate a VascoMax 300

test slipper sliding on a rail made of AISI 1080 steel and colliding with a semicircular

surface asperity with a radius of 6 µm. The damage criterion used was based upon

the viscoplastic behavior of the material defined by the Johnson-Cook [23] model,

discussed in Section 2.4. The total damage accumulated by each finite element model

(FEM) run was divided by the distance slid to achieve a plane strain wear rate.
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Figure 1.12: HHSTT Third Stage Velocity Profile

Hale’s model approximates the wear of HHSTT slippers by a collision with a

single surface asperity under plane strain conditions. In a real test, the slipper bounces

and slides across numerous asperities. In order to account for the multiple asperities,

a scaling factor was developed. This scaling factor was determined by comparing
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the calculated single asperity wear rates with the wear rate models developed by

Archard [2–4]. Applying the scaling factor allows the HHSTT wear problem to be

simplified to a simulation with a single asperity. The bouncing of the slipper was

included in the calculation of total wear by multiplying the percentage of contact

between the slipper and rail during a test run. The amount of slipper-rail contact, was

determined from the DADS data. Additionally, a coefficient was applied to represent

a semi-spherical surface asperity in the plane strain simulation. The Archard scaling

factor, contact coefficient, and semi-spherical coefficient are described in greater detail

in Sections 3.3 and 3.4.

In 2010, Meador [28] used a hydrocode to investigate the wear phenomenon.

This model was also used to estimate the wear of a hypothetical HHSTT test run.

However, Meador attempted to predict slipper wear of the fourth sled reaching a

maximum velocity of 3,000 m/s. For this research, the velocity profile was identical

to the third stage up to the point of max velocity and then accelerates to 3,000 m/s.

Similar to Hale, a plane strain model was used to evaluate failure criterion due to the

collision with a surface asperity.

Meador used the estimated wear rates to determine the total wear of an HHSTT

slipper for an entire test run. The total wear calculation is described in greater detail

in Section 3.4. The results of this calculation were compared to Hale’s results and

experimental data from the 2008 test mission. Figure 1.13 shows the total wear

volume removed for a sliding distance of 5,186 meters, which is the length of the

January 2008 test mission. Meador’s predicted total wear was greater than Hale’s,

but was approximately 46% of the total measured wear from the 2008 test mission.

In 2010, Lodygowski [27] conducted research evaluating the temperature of two

metals sliding relative to each other. The FEA model, shown in Figure 1.14 forces

a plate made of VascoMax 300 to slide between two AISI 1080 steel surfaces. The

temperatures of the material were calculated over a velocity range from 1 m/s to 200

m/s.
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Figure 1.13: Total Wear Predicted by Meador [31]

Figure 1.14: Finite Element Model Used by Lodygowski [27]
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Lodygowski’s research provided two conclusions relevant to this thesis. The first

conclusion states that the temperature of the VascoMax 300 plate does not change

with sliding velocity. This is due to the fact that the entire VascoMax 300 plate is

not in contact with the AISI 1080 steel throughout the whole simulation. However,

the interfacing region of the AISI 1080 steel is in contact with the VascoMax 300 for

the entire simulation, and the temperature of the AISI 1080 steel is affected by the

sliding velocity. The model developed in this thesis maintains contact between the two

materials during the entire simulation. As such, it is expected that the temperature of

the materials will be affected by the sliding velocity. The second conclusion discusses

the relationship between material temperature at the interface and sliding velocity.

Figure 1.15 shows the average temperature of the AISI 1080 steel along the interface

for a given sliding velocity. Lodygowski states that the relationship is not linear, but

rather a logarithmic increase to a particular value.

Figure 1.15: Variation of Temperature with Sliding Velocity [27]
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1.5 Direction For Current Research

In order to quantify wear of HHSTT slippers, it is necessary to investigate

the mechanics of impact that lead pressure wave propagation through the material.

There has been much consideration of impact under uniaxial strain conditions and

the associated pressure waves that result [29, 37]. The goal here is to extend these

understandings to plane strain scenarios to develop a model that represents HHSTT

environments, but to stress the effect of wave mechanics in an associated wear envi-

ronment. This is discussed further in Section 2.5.2.

The goal of this research is to create a model that will accurately predict

mechancial wear of VascoMax 300 slippers colliding with a of 6 µm radius semicircular

surface asperity made of AISI 1080 steel. Thus, the characteristics of wave mechanics

play a formidable part of the analysis. A hydrocode, called CTH, discussed in Sec-

tion 2.8, is used to simulate this scenario. The analysis is similar to the micro-scale

model developed by Chmiel [14], and used by both Hale [20] and Meador [28]. Since

a numerical model is used to evaluate field variables, such as pressure, stress, strain

rate, etc. there are several failure criteria that could be used. Section 2.9 discusses

the various failure criteria that are used for this research.
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II. Theoretical Background

This chapter discusses the theoretical background required to develop the nu-

merical models described in Chapter III and interpret the results presented in Chap-

ter IV. A description of the various wear mechanisms are presented, along with a

discussion of the coefficient of friction between sliding metals. This chapter will also

discuss the use of a hydrocode, including the considerations of conservation equations,

constitutive equations, and an equation of state. Various failure criteria used to quan-

tify material damage related to wear is presented in this chapter. Fundamentals of

wave mechanics, previously defined under uniaxial conditions are extended for appli-

cation in a plane strain scenario. This chapter presents derived equations defining

the onset of plasticity and elastic wave speed through a material under plane strain

conditions.

2.1 Wear Rate

The model developed for this research is used to predict mechanical wear rates

defined by Equation 2.1 due to a collision with a surface asperity, where W is the

wear rate, Vw is the volume of worn material, and dslide is the sliding distance into

the asperity. Wear rate is simply defined as the volume of material worn per distance

slid. Developing a model to predict wear rates, allows multiple scenarios to be run and

compared. Specifically, the sliding velocity and boundary conditions can be changed.

It was found by Hale [20] that the wear rate from a mechanical point of view is not

history oriented. This suggests that the wear rate from an individual simulation is

independent of wear at a previous simulation.

W =
Vw

dslide
(2.1)

It is important to note that wear is a system response influenced by both mate-

rial properties and event conditions. These event conditions consist of the geometry
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and material topography, the relative motion and contact, the loading scenario, and

any environmental conditions including lubrication [6]. The onset of wear is a result

of collisions between surface irregularities, such as those shown in Figure 2.1.

Figure 2.1: Irregularities in Metal Surface Profile [9]

2.2 Wear Mechanisms

As mentioned earlier, there are several ways to define wear. In order to avoid

confusion, for the purpose of this research, wear is defined in the simplest form as “the

removal of material volume through some mechanical process between two surfaces”

[31]. Furthermore, there are several mechanical processes that can lead to wear.

Bayer [8] defines three ways to classify wear. In no significant order, the first is

in terms of the appearance of wear. The surface may be described as scratched,

polished, pitted, etc. The second classification is the physical mechanism leading to

surface damage. Terms related to this classification are adhesion, abrasion, melting,

and oxidation. The third classification describes the situation of the event including,

dry sliding wear, lubricated wear, rolling wear, and metal-to-metal sliding wear.
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As discussed in Section 1.3, Lim and Ashby [26] developed wear mechanism maps

based on loading scenario and material properties. The wear rates were normalized,

W̃ , and plotted against the normalized pressure, F̃ , and normalized velocity, ṽ. The

wear rate, pressure, and velocity were normalized using Equations (2.2, 2.3, and 2.4)

respectively.

Figure 2.2: Wear Mechanism Map [26]

W̃ =
W

An

(2.2)

F̃ =
F

AnH
(2.3)
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ṽ =
vr0
α

(2.4)

In these equations,W represents the wear rate, An represents the normal contact

area, F represents the applied load, H represents the material hardness, v represents

the sliding velocity, r0 represents the radius of the pin used for the experiment, and

α represents the thermal diffusivity of the material. The normalization equations are

used to relate to studies using different size and shape specimens. Research into the

various wear mechanisms has yielded two scenarios of interest for this thesis; abrasive

wear and adhesive wear, both of which fall into the classification of mechanical wear.

All research presented herein is only considering the phenomenon of mechanical wear.

Other wear mechanisms, such as melt wear and oxidation are not considered in this

thesis.

2.2.1 Abrasive Wear. Abrasive wear occurs when asperities along the inter-

face of the sliding bodies collide. The tangential force is large enough to cause plastic

deformation and eventually remove the asperity. Figure 2.3A represents an abrasive

wear scenario. Material from the asperity is being removed by the triangular shaped

abrasive particle.

2.2.2 Adhesive Wear. Adhesive wear occurs when two surfaces contact at

an asperity and bond together. As the sliding motion continues, and if the bond

is strong enough, asperities from the softer material will shear off and adhere to

the harder material. The adhered fragments later break free forming worn material.

Figure 2.3B depicts the adhesive wear event.

2.3 Coefficient of Friction

As two bodies slide relative to each other, they are inhibited by friction. Friction

is a phenomenon resulting from tangential motion between the two sliding bodies,

and conventionally is thought of as the force required to initiate or to sustain the
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Figure 2.3: Abrasive Wear and Adhesive Wear [7]

tangential motion [28]. It is important to consider the frictional forces between the

rail and slipper, as wear is dominated by the interface of the two materials. The

wear mechanisms; abrasive wear, and adhesive wear, discussed in Section 2.2, are

relative to the friction in the sliding bodies. Furthermore, the local temperatures of

the materials are affected by frictional heating as the sliding motion occurs.

Establishing a coefficient of friction is a common way to represent the frictional

forces between two surfaces. The coefficient of friction, µ, relates the frictional force

to the normal force applied between the two surfaces. Equation 2.5 is used to solve for

the coefficient of friction, where Ff is the frictional force and F is the normal contact

force. The equation assumes that the coefficient is independent of the contact area

and proportional to the normal load.

µ =
Ff

F
(2.5)
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The assumptions listed for Equation 2.5 are generally accepted for mild slid-

ing, or low velocity motion. However, the contact area begins to make a significant

contribution to wear as the sliding velocity and loading increases. Research by Mont-

gomery [30], presented in Section 1.3, discusses the relationship between coefficient

of friction and Pv. Experimental results show at low Pv values, the coefficient of

friction was higher for steel-on-steel sliding. As the Pv value increased, the coefficient

of friction decreased exponentially to an asymptotic value. Hale [20] applied a curve

fit to the tabulated data from Montgomery for steel sliding on steel. This curve is

used to represent the coefficient of friction for the VascoMax 300 slipper sliding along

the AISI 1080 steel rail as a function of the Pv term. Figure 2.4 shows the data and

curve fit. Equation 2.6 is the exponential curve fit. It is important to note that the

curve fit was generated using Pv data with units of MPa · mm/s. Any use of the

curve fit requires the same units.

Figure 2.4: Montgomery Data with Curve Fit [20]
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µ(Pv) =







0.2696e−3.409×107Pv + 0.304e−6.08×10−9Pv : 0 < Pv < 4.45× 108

0.02 : Pv ≥ 4.45× 108







(2.6)

2.4 Johnson-Cook Viscoplasticity Model

In 1983, Johnson and Cook [23] studied metals subjected to large strains, high

strain rates, and high temperatures. Test data for the model was obtained using

torsion tests and dynamic Hopkinson bar tensile tests over a range of temperatures.

The elevated temperatures were obtained by surrounding the specimen with an oven

for several minutes prior to testing. Adiabatic heating resulting from high strains

complicated the results because the elevated temperatures showed a reduction in the

material strength. Adiabatic heating occurs when the pressure of a material increases

due to the motion of surrounding particles. In this case, high strains caused the

temperature of the material to increase without adding heat. Johnson and Cook

developed Equation 2.7, a constitutive model to solve for the flow stress, σ.

σ = [A+ Bεnp ][1 + C ln(ε̇∗p)][1− T ∗m] (2.7)

This equation is a product of three terms. The first term is the static yield

strength and a modification for strain. The second term introduces strain rate de-

pendency and the final term includes temperature effects [20]. A, B, C, m, and n are

material constants, εp is the equivalent plastic strain, ε̇∗ is the dimensionless plastic

strain rate for s−1.

Equation 2.7 is used to represent yielding from the effective stress, von Mises

stress. The stress indicates the yield surface when it reaches the Johnson-Cook equa-

tion, Equation 2.7. At that point a corresponding plastic strain rate is determined.

Since the process is time integrated, the incremental step time of a simulation, ∆t, is

incorporated in the calculation for the incremental strain. This incremental step time
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is discussed in Section 3.2. The Bodner-Partom relationship is then used to update

stress [35]. This method allows subsequent stress-strain relations to be developed.

The homologous temperature, T ∗, is defined by Equation 2.8.

T ∗ =
T − T0

Tmelt − T0

(2.8)

Where T is the material temperature, T0 is the ambient temperature, and Tmelt

is the material melting temperature. The homologous temperature must be defined

in order to create strain rate dependent stress-strain curves. Due to the high strain

rate deformation applied for this research, the deformation work is considered adi-

abatic. This implies that the deformation work is transformed into heat with the

rise in temperature of the material. This temperature rise is observed in stress-strain

curves as thermal softening, a behavior which constitutive equations must account

for. Meyers [29] defines the adiabatic temperature rise in a material subjected to high

plastic strain rate due to plastic strain energy as Equation 2.9.

∆T =
β

ρCp

∫ εp
f

0

σdε (2.9)

where β is the inelastic heat fraction, ρ is density, Cp is the specific heat ratio, and

εpf is the final plastic strain. The inelastic heat fraction is set as 0.9 in the analysis

based on results from ductile materials [29]. Equation 2.10 is given by replacing the

stress term in Equation 2.9 with the Johnson-Cook constitutive equation, Equation

2.7, and assuming the strain rate is constant.

∫ T ∗

f

T ∗

0

dT ∗

1− T ∗m
=

β(1 + C ln(ε̇∗p))

ρCp(Tmelt − Tref )

∫ εp
f

0

(A+ B(εp)n)dεp (2.10)

where T ∗

0 and T ∗

f are the initial and final homologous temperatures. Even though

m is a material constant, m = 0.8 for VascoMax 300 [15, 16], Meyers proposes an

approximation of m ≅ 1 to the left hand integral in Equation 2.10. Applying Meyers’

approximation, the homologous temperature reduces to Equation 2.11.
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T ∗ = 1− exp

[

−
β(1 + C ln(ε̇p∗))

ρCp(Tmelt − Tref )

(

Aεp +
B(εp)n+1

n+ 1

)]

(2.11)

The true stress-strain curves can now be generated by substituting Equation

2.11 for the homologous temperature in Equation 2.7. Figure 2.5 shows the true

stress-strain curves for VascoMax 300 with increasing strain rates. The Johnson and

Cook constitutive model uses variables commonly found in computational software

which makes it easy to use for simulation.
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Figure 2.5: True Stress-Strain Curves for VascoMax 300 with
Johnson-Cook Constitutive Equation [20]

2.5 Wave Propagation

The research presented in this thesis is an investigation in the wear of VascoMax

300 due to the collision with a surface asperity made of AISI 1080 steel. The goal
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is to characterize mechanical wear at high velocities. Analysis of a high velocity

collision requires some background information about wave mechanics, specifically

the formulation of a shock wave within a solid medium. The next few sub-sections

present important information pertaining to the mechanics of wave propagation.

2.5.1 Uniaxial Strain. Common analysis of wave propagation through solid

media has been studied while considering uniaxial strain [29]. The yield point for

uniaxial strain is referred to as the Hugoniot Elastic Limit, written as σHEL. This

is the maximum elastic stress for one-dimensional elastic wave propagation in plate

geometries [37]. The Hugoniot Elastic Limit represents the onset of plasticity in

a material under uniaxial conditions. Due to the strain limitations, the onset of

plasticity is greater than the yield stress, Yo, defined for uniaxial stress conditions.

The Hugoniot Elastic Limit is given by Equation 2.12, where ν is the poisson ratio.

σHEL = Yo

(

1− ν

1− 2ν

)

(2.12)

It is important to determine the Hugoniot Elastic Limit, because if the stress

in the material exceeds this limit, two waves are created. First, an elastic wave will

move through the material at the elastic speed, cE, defined by Equation 2.13, where

E is the elastic modulus, and ρo is the initial density of the material. Following the

elastic wave, a plastic wave will move through the material at the plastic wave speed,

cP , speed defined by Equation 2.14. It is important to note that cp is a function of

the slope of the stress-strain curve at a given point. This means that multiple waves

can exist in the material, each with a speed defined by Equation 2.14.

cE =

√

E(1− ν)

ρo(1− 2ν)(1 + ν)
(2.13)

cp =

√

1

ρo

dσ

dε
(2.14)
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Figure 2.6 shows the transition of a pressure wave to a shock wave with in-

creasing time. Point A represents a low pressure region in the wave moving at a low

velocity. Points B and C have higher pressures and therefore move at a greater veloc-

ity. The four steps in the figure show the pressure wave approaching, and ultimately

reaching, a vertical line which represents the onset of a shock within the material. Be-

fore the shock is formed, the material properties across the pressure wave are smooth

and easily defined. As the shock wave propagates, the material movement becomes

discontinuous in front of, and behind the shock. An equation of state, EOS, is used

to estimate the pressure and internal energy of the material. Equations of state are

discussed in greater detail in Section 2.8.2.

Figure 2.6: Increasing Pressure Wave with Time [37]

2.5.2 2D Plane Strain. The analysis in this thesis considers plane strain

conditions. The approach used to characterize pressure waves under uniaxial condi-

tions is modified to include strain in two dimensions. In making these modifications,

an assumption was made that the strain component can be represented by the sum-

mation of the two principal strains. The equivalent Hugoniot Elastic Limit for plane

strain conditions, σHEL,PS, is given by Equation 2.15. This equation represents the

onset of plasticity in a material under plane strain conditions. Appendix A includes

the full derivation of the equations presented in this chapter.
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σHEL,PS = Yo

[

3

8− 16ν
+

1

2

]

(2.15)

This scenario does restrict strain in the third principal axis (z-direction), while

allowing strain in the other dimensions. Therefore, the value of σHEL,PS should be

less than σHEL but greater than the yield stress, Yo. Table 2.1 shows the uniaxial

yield stress, Hugoniot elastic limit, and equivalent plane strain Hugoniot elastic limit

for VascoMax 300 with a Poisson’s ratio (ν = 0.283). The values for yield stress and

poisson ratio for VascoMax 300 are taken from Cinnamon [15].

Table 2.1: VascoMax 300 Hugoniot Limits
Yo (GPa) σHEL (GPa) σHEL,PS (GPa)

2.1 3.4692 2.8664

The speed of an elastic wave under the plane strain condition, cE,PS is given by

Equation 2.16. The speed of the plastic wave under plane strain conditions is still

defined by the slope of the stress-strain curve at a point. Multiple plastic waves are

still produced in plane strain, each defined by Equation 2.14.

cE,PS =

√

4

3

(1− ν)

ρo(1− 2ν)(1 + ν)
E (2.16)

2.6 FEA and Hydrocodes

Recent research at AFIT has relied on the use of two codes to model the wear of

HHSTT slippers. One is an FEA code called ABAQUS and the other is a hydrocode

called CTH. Both codes can be used to create 2-dimensional or 3-dimensional geome-

try, to represent a wide variety of simulations, and both codes make use of a mesh to

solve the numerical analysis. There is one fundamental difference between the FEA

approach and the hydrocode approach. The difference stems from the meshes used

and frames of reference established in each code.
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The FEA method uses a Lagrangian mesh which attaches the mesh to the mate-

rial. This means the mesh will deform with the material during the analysis, and the

frame of reference moves with each successive iteration. This method is an attractive

approach for many simulations because the equations are simple to solve. However,

if the scenario involves large deformations leading to excessive material displacement,

the FEA method begins to fall apart. With large deformations, numerical singulari-

ties in the finite element equations can result due to the mesh cell geometry. In some

cases, the element can invert under large distortions, resulting in negative volume and

negative mass [37]. This gives rise to numerical errors.

Hydrocodes use an Eulerian mesh which fixes the mesh in free space and allows

the material to flow through it. The frame of reference does not move during the

analysis. Figure 2.7 is a simple depiction of the slipper-rail scenario with a Lagrangian

mesh (left) and an Eulerian mesh (right). The Eulerian mesh is commonly referred

to as a finite area mesh.

Figure 2.7: Graphical Comparisson of Lagrangian and Eule-
rian Meshes [28]
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2.7 ABAQUS

Previous research at AFIT used the Lagrangian FEA approach to model a

VascoMax 300 slipper colliding with a AISI 1080 steel surface asperity. Initial work

by Chmiel [14] used ABAQUS to evaluate Lagrangian codes as a way to model the

wear of HHSTT slippers. The slipper was modeled using 4-node plane strain elements

and the rail used 3-node plane strain elements. Chmiel’s model is shown in Figure 2.8.

The analysis showed material damage as a result of the collision with the asperity.

This proved that the FEA method could be used to predict mechanical wear of the

HHSTT slippers. However, it has been deemed impractical to run the simulation

the entire length of the steel rails at Holloman AFB. Chmiel suggested simulations

of single asperity collisions over a range of velocities, and calculating the total wear

from these runs.

Figure 2.8: Finite Element Model Used by Chmiel [14]

Hale [20] continued the research of HHSTT slipper wear using ABAQUS to

implement Chmiel’s suggestion. The asperity collision event is best described as a

3-dimensional event, so a 3-dimensional model was considered. However, complica-
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tions arose when evaluating a 3-D model. A plane strain model was used to calculate

the wear. A 3-dimensional conversion method and scaling factor based on equations

developed by Archard were used to extend the plane strain results to a 3-dimensional

value. The 3-dimensional conversion method and Archard scaling factor are described

in greater detail in Section 3.4. Hale’s model, shown in Figure 2.9, used a combina-

tion of 3-node linear plane strain triangular elements and 4-node bilinear reduced

integration elements to model the slipper and rail.

Figure 2.9: Finite Element Model Used by Hale [20]

2.8 CTH

CTH is a Lagrangian-Eulerian hydrocode developed by Sandia National Lab-

oratories. Hydrocodes can be very useful when evaluating scenarios involving high

velocity impact resulting in wave propagation and the possiblity of a shock. The pro-

cess in solving a hydrocode solution is less straight-forward than the FEA method.

However, there are detailed descriptions of CTH features published by Sandia Na-

tional Laboratories [18] and Palazotto and Meador [31]. Additionally, Zukas [37] and

Meyers [29] each wrote books providing descriptions of hydrocodes. The following sec-
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tions use information taken from these sources to describe in detail the key features

of the code, and how it is used to model the HHSTT wear problem.

2.8.1 Lagrangian Step and Eulerian Remap. The conservation equations of

mass, momentum, and energy are satisfied using a two step process in CTH [18,28,31].

First, the Lagrangian step, is used to evaluate the equations across the time step and

the mesh deforms with the material. This is followed by an Eulerian remapping

step which redefines the mesh to the original Eulerian coordinates. Equations (2.17,

2.18, and 2.19) are the Lagrangian conservation equations for mass, momentum, and

energy, respectively, where ρ is the material density,
−→
V is velocity, P is pressure, σ is

stress, E is energy, and Q represents additive heat as a function of velocity and wave

speed, cs [18]. These equations are a by-product of the Eulerian expression in which

the substantial derivative is applied.

dρ

dt
= −ρ∇ ·

−→v (2.17)

ρ
d−→v

dt
= −∇P −∇ · [σ +Q(−→v , cs)] (2.18)

ρ
dE

dt
= −P∇ ·

−→v − [σ +Q(−→v , cs)] · ∇
−→v (2.19)

Since the mesh deforms initially, the conservation of mass is trivially satisfied,

because no mass flow occurs across the cell boundaries. The momentum and energy

integrals are solved using their explicit finite volume representations [28,31]. Thermal

energy of the material must be considered. The conservation of energy equation

includes both mechanical and thermal energies, and thus another equation relationship

that couples the energies together is needed. This is where an equation of state is

used. The conservation equations and equation of state are solved in conjunction

with a constitutive model. CTH decomposes the total stress tensor into a spherical
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part, solved for using an equation of state, and a deviatoric part, solved for using a

constitutive model.

After the conservation equations have been satisfied and the constitutive equa-

tion has been applied, the Eulerian remap step is used to return the distorted mesh

to the original Eulerian mesh. An interface tracking algorithm internal to CTH is

utilized to track locations of material interfaces within mixed cells containing mul-

tiple materials. The change in mass is calculated by the geometry of the deformed

material compared to the previous step. The mass and internal energy are mapped to

the fixed mesh. The results from the interface tracking algorithm are used to map the

momentum and kinetic energies to the material in the Eulerian mesh. The equation

of state is used to update the pressure, temperature, and density of the cells.

2.8.2 Equation of State. The equation of state is used to relate the inter-

nal energy, and pressure, of a material to the density and temperature. There are

several equations of state that can be used within CTH. For the purpose of model-

ing the collision of two solid bodies, CTH provides two separate EOS models, the

semi-empirical Mie-Grüneisen EOS, and the tabular Sesame EOS. Vanderhyde’s [34]

research provides insight to the two EOS models internal to CTH. Much of the infor-

mation presented in the following sections use information taken from this source.

2.8.2.1 Mie-Grüneisen EOS. The Mie-Grüneisen equation of state is

typically used for high velocities ranging from 500 m/s to 2,000 m/s [37]. No phase

change is allowed with the Mie-Gruniesen equation of state, which makes it useful for

this research. Equation 2.20 is the Mie-Grüneisen equation used by CTH, where Pref

and Eref are reference pressure and energy, usually taken from the Hugoniot relations

or by assuming a zero-Kelvin isotherm, V is volume, and Γ is the Grüneisen constant

defined by Equation 2.21, where K is the bulk modulus, v is the specific volume, α is

the thermal coefficient of expansion, and Cv is the specific heat.
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P − Pref =
Γ

V
(E − Eref ) (2.20)

Γ =
3Kvα

Cv

(2.21)

2.8.2.2 Sesame EOS. CTH also provides the Sesame equation of state.

The Sesame EOS is a set of tabular data collected through experimentation at Sandia

National Laboratories primarily using flyer plate impact experiments [15]. When the

Sesame EOS is used, CTH interpolates between the tabulated data, or extrapolates

outside of the provided data set to estimate the internal energy and pressure within

the material.

2.8.3 Boundary Conditions. Boundary conditions are determined using

finite volume approximations based on the surrounding cells. However, the cells along

the boundary have at least one side with no neighboring cell. Boundary conditions

need to be established in order to solve the finite volume problem when using a

hydrocode. These conditions are based upon the concepts of sound waves, which is a

primary relationship in this research, and thus the boundary conditions must be able

to control mass, momentum, and energy fluxes across the boundary. There are four

possible boundary conditions in CTH: a symmetrical boundary condition (Type 0),

a sound speed based absorbing boundary condition (Type 1), an outflow boundary

condition (Type 2), and an extrapolation boundary condition (Type 3). The boundary

conditions create additional cells just outside the internal mesh defined in the problem

setup.

The Type 0 boundary condition sets parameters of the adjacent cells equal to

the cells along the boundary of the internal mesh. The velocity between the two

adjacent cells is set to zero and kinetic energy is converted to internal energy. Also,

mass flux is restricted across the boundary. The Type 1 boundary condition allows

mass to enter the internal mesh, and is used to approximate semi-infinite bodies. The
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Type 2 boundary condition sets empty cells on the boundary of the internal mesh

with user specified pressure. Mass can exit the internal mesh, but no mass is allowed

to enter. The Type 3 boundary condition places cells on the boundary of the internal

mesh and linearly extrapolates a boundary pressure. No restrictions on mass flux are

present in this boundary condition. Previous work by Meador [28] used the type 1

boundary condition. The analysis presented in this thesis used a combination of type

1 and 2.

2.8.4 Data Collection. There are two methods of recording data during

a CTH simulation. One method uses locations attached to the stationary mesh to

record data as the material deforms through it. The other method uses tracer points

that travel with the material during the simulation. For the purpose of this research,

the second method is used. Utilizing this method requires the use of a tracer input set

defined within the CTH input deck. The tracer input set defines the initial locations of

each data point. As the simulation occurs, the tracer points move with the material.

This method keeps track of failed material, representing wear, through the entire

simulation. If the data were collected at the stationary mesh locations, one cell

could be considered damaged, or failed, at a previous time step, when new material

has entered the cell. As a result, this new material will not be qualified as damaged,

because that cell has previously been defined as damaged. This results in unreasonably

low wear predictions.

2.9 Failure Criteria

Properly assessing wear requires established failure criteria to quantify material

damage. Meador [28] outlines four failure criteria to determine wear: average strain

rate, point-wise strain rate, Johnson-Cook plasticity, and plastic strain. The Johnson-

Cook constitutive equation is used to define the plastic strain failure criterion, and

was selected to evaluate wear in the model developed for this research. A second
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failure criterion was established based upon a critical stress value. The Johnson-Cook

fracture model [24, 33] was also evaluated as a failure criterion.

2.9.1 Plastic Strain at Max Stress Failure Criteria. This method evaluates

the plastic strain at maximum stress for a given strain rate from the true stress-strain

curves, as given in Figure 2.5. These curves were developed using the Johnson-Cook

constitutive equation, Equation 2.7, with Meyer’s approximation for the homologous

temperature [29], presented in Section 2.4. Each curve on the plot represents the true

stress-strain relationship for VascoMax 300 with a given constant strain rate. The

critical stress, σcrit, is defined as the maximum stress of each curve. Similarly, the

critical plastic strain, εpcrit, is defined as the strain at maximum stress for each curve.

The critical strain can be determined as a function of the strain rate by plotting

εpcrit against the strain rate and applying a curve fit through the data. The curve fit

provides a closed form solution for the critical strain, Equation 2.22.

εcrit(x, y, t) = APS ε̇(x, y, t)
BPS + CPS (2.22)

The constants APS, BPS, CPS are given in Table 2.2. Where the ‘PS’ subscript

is used to identify plastic strain constants. Figure 2.10 shows the plastic strain curve

fit for VascoMax 300.

Table 2.2: Coefficients of Plastic Strain
Coefficient Value Units
APS 2.247× 10−2 MPa
BPS −5.516× 10−2 unitless
CPS 6.044× 10−3 MPa

CTH calculates and records the plastic strain at each tracer point during the

simulation. A MATLAB post-processing code, written to compare the recorded plastic

strain against the critical plastic strain from Equation 2.22, is discussed in greater

detail in Appendix C.
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Figure 2.10: Critical Plastic Strain Curve Fit [28]
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2.9.2 Von Mises Stress Failure Criteria. CTH can be used to calculate the

von Mises stress of the material during the simulation. Therefore, a failure criterion

can be established based on a critical stress value. This method would allow CTH to

do all the calculations in determining material failure. Hale [20] provides maximum

stress values for VascoMax 300 based on a dominant strain rate. Table 2.3 shows

the dominant strain rates and associated maximum stress from the Johnson-Cook

constitutive equation for a range of sliding velocities from the January 2008 test

mission. Although the stress levels change from 2,900 MPa to 3,130 MPa, the critical

stress value for the von Mises stress failure criterion was chosen to be 3,000 MPa.

This means that if the von Mises stress exceeds 3,000 MPa during the simulation, it

has failed.

Table 2.3: VascoMax 300 Maximum Stress Based on Dominant Strain
[20]

Velocity Range (m/s) Dominant Strain Rate Maximum Stress (MPa)
10 - 200 1× 105 2,900
300 - 622 1× 106 3,000
750 - 1,530 1× 107 3,130

2.9.3 Johnson-Cook Fracture Model. CTH allows the use of the Johnson-

Cook fracture model for evaluating failed material. “It uses a failure criterion based

on equivalent plastic strain, taking into account the pressure, temperature, and strain

rate along the loading path for each material particle. The model uses one scalar

damage variable” [33]. Equation 2.23 defines the plastic strain at failure.

εpf (p, Y, T, ε̇) = [D1 +D
(−D3p

Y )
2 ][1 +D4 ln(max(1, ε̇))][1 +D5T

∗] (2.23)

Where p is pressure, Y is the material yield stress, T is temperature, ε̇ is the

plastic strain rate, D1, D2, D3, D4, and D5, are material constants derived from ex-

perimentation, and T ∗ is the homologous temperature previously defined by Equation
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2.8. The Johnson-Cook scalar damage variable, D, is defined by Equation 2.24. Ini-

tially, undamaged material has a D value equal to 0. As the simulation occurs, the

material accumulates damage, and the scalar variable, D, increases. When D equals

1, the material is damaged.

D =

∫

dεp

εpf (p, Y, T, ε̇)
(2.24)

2.10 Summary of Theoretical Background

The information presented in this chapter has been crucial in understanding the

wear phenomenon. The relations presented will be used to develop a numerical model

to predict mechanical wear rates of HHSTT slippers. Previous work by Hale [20] and

Meador [28] has made use of a plane strain scenario to model the slipper-rail sliding

event. These models allow a VascoMax 300 slipper to collide with a 6 µm surface

asperity made of AISI 1080 steel. Damage was recorded per sliding distance to give

wear rates. Wave action in a plane strain scenario was also evaluated.

The fundamental approaches to characterizing the onset of plasticity in the uni-

axial strain case, σHEL, were presented. Steps were taken to extend the characteristics

to the case of plane strain. This resulted in an equivalent Hugoniot elastic limit for

plane strain, σHEL,PS, given by Equation 2.15. Due to the limitations of strain in

the uniaxial strain case and the plane strain case, it was expected that yield stress,

Yo, would be less than both σHEL,PS and σHEL. Also, that σHEL,PS would be less

than σHEL. The assumption was validated when the equations derived and solved for

VascoMax 300 in Table 2.1. Equation 2.16 was given in this chapter as a method to

solve for the speed of an elastic wave through a solid material under plane strain con-

ditions. Appendix A includes the full derivation of the equations used to determine

the equivalent Hugoniot elastic limit and plane strain elastic wave speed.

Most of the previous work used a finite element code to simulate the problem.

Meador used CTH, a hydrocode discussed in Section 2.8, to model the wear of HHSTT
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slippers. This research uses the same code used by Meador, with some modifications

mentioned in Chapter III. This chapter discussed in detail the benefits of using a

hydrocode as opposed to a finite element code. A primary benefit includes the use of

an Eulerian-Lagrangian coordinate system to avoid large mesh distortions, and allow

for high velocity impact scenarios.

Hale [20] conducted metallurgical studies on both used and unused test slippers

from the HHSTT. The study suggested that mechanical wear results from plastic

deformation. This, along with the fact that the micro-level simulation technique,

first proposed by Chmiel, is a time-dependent process requires the use of a viscoplas-

tic constitutive model. The Johnson-Cook model, Equation 2.7 was chosen for this

research, because it includes considerations of large strains, high strain rates, and ele-

vated temperatures. Furthermore, the equation was intended for use in computational

software.

Although wear involves the removal of material, developing a model to remove

material during simulation would be complicated. Therefore, a qualitative measure,

based on material damage, has been adopted. The Johnson-Cook constitutive model

was used to develop failure criteria, discussed in Section 2.9. The failure criterion

is used to evaluate material as damaged or undamaged. The amount of damage

material for each simulation is computed and divided by the distance slid to give a

wear rate. Previous work by Hale and Meador have made use of models developed by

Archard [4] to relate the two-dimensional plane strain single asperity collision event

to a three dimensional wear scenario.
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III. Numerical Model

Developing a numerical model to simulate entire HHSTT missions is an imprac-

tical approach to the wear phenomenon, in terms of run-time and simulation cost.

However, previous research by Chmiel [14], Burton [10], Hale [20], Meador [28], and

Lodygowski [27] has shown results using a simplified plane-strain model. The models

in previous research have made use of the DADS data provided by the HHSTT. This

chapter will discuss the DADS system and how the recorded data is used to character-

ize the slipper-rail sliding event. This chapter will also present the hydrocode model

used for this research, discussing the input parameters including initial velocity, the

viscoplasticity model, and equation of state. The method used to calculate plane

strain mechanical wear rates, and total mechanical wear will also be presented.

3.1 DADS Data

Properly characterizing the slipper dynamics as it slides along the rail is neces-

sary to create an accurate model. The HHSTT provides data using a program called

Dynamic Analysis and Design System (DADS). DADS is a commercial-off-the-shelf

software developed by Computer Aided Design Software, Inc. The HHSTT uses the

software to simulate a rocket sled run and predict vertical forces of each slipper, ver-

tical velocity of the sled, and horizontal velocities of the slippers, as a function of

time.

A model has been developed to represent the HHSTT sled and rail as a com-

plicated system of masses, springs, and dampers, while the sled forward velocity and

rail undulations are supplied as inputs to the system [21]. The simulations have been

validated using accelerometers attached to test sleds [22]. Given the complexity of

the model, and the validation by HHSTT engineers, the DADS model is assumed to

be valid within the context of this research [28].

The geometry of the sled influences the dynamics of the sled and slipper as it

slides along the steel rail. According to the HHSTT Design Manual [1], the nominal
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slipper gap is 0.125 inches. This corresponds to the nominal max clearance between

the slipper and rail. The slipper gap allows the slipper to bounce along the rail

during the test missions. Due to this gap and bouncing effect, the slipper is not in

total contact with the rail for the entire run. The bouncing effect is included in the

calulation of total mechanical wear in Section 3.4.

3.2 Plane Strain Simulation Using a Hydrocode

The plane strain simulations for this thesis used CTH, a hydrocode discussed in

Section 2.8. The model simulates the collision of VascoMax 300 with a 6 µm radius

hemispherical surface asperity made of AISI 1080 steel, as shown in Figure 3.1. In this

figure, the slipper (yellow) moves to the right at a given input velocity and collides

with the green asperity and rail. Several inputs must be defined to run the two-

dimensional analysis. These inputs include sliding velocities, simulation time, mesh

and domain sizing, boundary conditions, and geometry. This research made use of an

existing CTH code developed by Meador [28] with some modifications.

The sliding distance was chosen to be 110% of the 6 µm radius to allow the

leading edge of the slipper to go past the maximum height of the asperity. The

simulation time is found as a function of the input sliding velocity, vslide, and asperity

radius, ra. Equation 3.1 was used to determine the simulation time for each run. The

simulation times are shown in Table 3.1.

tsim =
(1.1)(ra)

vslide
(3.1)

The size of the domain and slipper were selected to reduce boundary effects and

pressure wave interactions along the edges. Since the simulation time is known for

each case, and the velocity of the elastic pressure wave and plastic pressure waves are

given by Equations (2.13) and (2.14), the distance traveled by a pressure wave can be

found. Meador determined that a domain size of 850 µm by 850 µm, and a slipper size

of approximately 700 µm by 125 µm were sufficient. However, for his research, Meador
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Figure 3.1: Slipper-Asperity Interface of Current Model
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Table 3.1: Simulation Time for Given Velocity
Based on Equation 3.1

Horizontal Velocity (m/s) Simulation Time (s)
100 6.60× 10−8

200 3.30× 10−8

300 2.20× 10−8

400 1.65× 10−8

500 1.32× 10−8

600 1.10× 10−8

700 9.43× 10−9

800 8.25× 10−9

900 7.33× 10−9

1,000 6.60× 10−9

1,100 6.00× 10−9

1,200 5.50× 10−9

1,300 5.08× 10−9

1,400 4.71× 10−9

1,500 4.40× 10−9

considered velocities ranging from 750 m/s to 3,000 m/s. This research considers a

velocity range from 200 m/s to 1,500 m/s, corresponding with the velocity profile

of the third sled from the January 2008 test mission (1.12). Decreasing the sliding

velocity increases the simulation time, Equation 3.1, which increases the distance

traveled by the stress waves. This means at velocities less than 750 m/s, the stress

waves may reach the boundaries of the slipper or domain.

To reduce the wave interactions along the boundary of the domain, the boundary

conditions were modified. A combination of Type 1 and Type 2 boundary conditions

were used to simulate a semi-infinite boundary (Type 1 and 2) and allow material to

flow out of the domain (Type 2 only). Figure 3.2 shows the domain created with the

materials defined and boundary conditions selected.

Additional consideration was given to the leading edge of the slipper, specifically

at the point of contact with the surface asperity. The concern was that the corner

would result in a singularity. Previous research by Cameron [13], Hale [20], and

Meador [28] alleviated this issue by replacing the corner with a 2 µm radius fillet.
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Figure 3.2: Entire Domain of Current Model
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This research uses the filleted edge to stay consistent with the previous work. The

mesh was selected to create a grid of cells with size 1 µm by 1 µm throughout the

entire domain. Figure 3.3 shows the mesh used for the simulations.

Figure 3.3: Eulerian Mesh Applied to Current Model

The tracer points, discussed in Section 2.8.4 are attached to the material through-

out the entire simulation. This method of data collection allows each cell to be affected

by the previous iteration, meaning if a cell has failed at one time step it will remained

failed for the rest of the simulation. The tracer points are initially placed at the center

of each cell, so the area allocated to each tracer is the same as the cell area. MATLAB

was used to create a post-processing code to compute the wear rates from each CTH

run. The post-processing code is provided with explanation in Appendix C.

3.2.1 Material Interface Conditions. The model developed in this thesis

allows one material to slide along another surface. Therefore, friction along the inter-

face must be considered. However, CTH does not allow an input coefficient of friction.
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There are two interface conditions that can be defined in the model to represent fric-

tion in the surface. The first is called a “slide line” condition which sets the shear

stress along the interface to zero. This condition is used to simulate a frictionless

surface. The second condition is called “no slide”. This condition will not allow the

material to move until a user defined pressure is reached. This user defined pressure is

the fracture pressure defined in the fracture input set of the CTH code in Appendix B.

The CTH code was run with these two conditions representing two extremes in terms

of friction; one being a frictionless surface, and the other representing a semi-infinite

coefficient of friction.

3.2.2 Input Velocity. Since the simulation is evaluating a two-dimensional

scenario, velocity can be defined in two directions: horizontal and vertical. The

horizontal component of velocity is determined by the sliding velocity. Values are

chosen from 200 m/s to 1,500 m/s to represent the increasing velocity of the slipper

along the rail. The vertical velocity component can be determined using the DADS

data. The vertical velocity is positive going up and negative going down. Therefore,

the negative represents the slipper moving toward the rail. Figure 3.4 plots the

vertical velocity of the third stage aft right slipper from the 2008 mission against

the horizontal velocity of the sled. The figure shows that the maximum vertical

velocity of the slipper into the rail is approximately -3.45 m/s. The horizontal velocity

component is always much larger than the vertical component. This means that

vertical velocity has very little effect on the velocity vector. All simulations have a

constant vertical velocity of -0.5 m/s, which helps to keep the slipper in contact with

the rail throughout the simulation. The idea of creating a more realistic simulation of

the HHSTT environment is continued with the addition of a dead load to represent

the effective mass of the slipper as it slides along the rail at increasing velocity. The

addition of the dead load is discussed in detail in Section 4.1.

3.2.3 Viscoplasticity Model. The Johnson-Cook constitutive equation, dis-

cussed in Section 2.4, is used as the viscoplasticity model for this research. The model
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Figure 3.4: Slipper Vertical Velocity from DADS

was developed to handle large strains, high strain rates, and high temperatures. The

material constants need to be defined for the VascoMax 300 slipper and AISI 1080

steel rail in order to use the Johnson-Cook model. Cinnamon [15–17] determined

these constants, shown in Table 3.2, using flyer plate experiments. It is also necessary

to define the initial temperature of the materials because the Johnson-Cook model

carries the homologous temperature term, Equation 2.8.

Table 3.2: Johnson-Cook Coefficients for VascoMax 300 and AISI 1080 Steel
Coefficient VascoMax 300 AISI 1080 Steel
A (GPa) 2.1 0.7
B (GPa) 0.124 3.6
C (Unitless) 0.03 0.17
m (Unitless) 0.8 0.25
n (Unitless) 0.3737 0.6
Tmelt (K) 1,685 1,630

3.2.4 Equation of State. Hydrocodes make use of an equation of state to

relate internal energy and pressure of a material to the density and temperature. It

serves as an additional equation to relate the conservation equations to the consti-

tutive equation. The equation of state is also useful when a shock is present within
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the material. The shock creates discontinuities and an EOS can be used to solve for

material properties.

The Mie-Grüneisen EOS, presented in Section 2.8.2.1, was initially considered

for use in this research. This EOS model is typically used for high velocities ranging

from 500 m/s to 2,000 m/s [37]. Therefore, some issues arose when modeling at the

lower sliding velocities. These errors included numerical inconsistencies in calculated

mechanical wear rates and pressure wave propagation. These low velocity issues and

a modified approach are discussed in greater detail in Section 4.5.

Due to the inconsistent results using the Mie-Grüneisen equation of state at low

velocities, the Sesame EOS is used for this research. The Sesame EOS is a tabular set

of experimental data. The experiments are typically a high velocity impact scenario

under uniaxial strain conditions. VascoMax 300 is defined in the Sesame tables and is

used to represent the slipper for this research. However, AISI 1080 steel is not defined

in the Sesame tables, so iron is used to represent the rail. The two materials have

similar properties as shown in Table 3.3.

Table 3.3: Iron and AISI 1080 Steel Properties
Property Iron AISI 1080 Steel
Density (g/cm3) 7.28 7.85
Yield Stress (MPa) 50 585
Elastic Modulus (GPa) 200 205
Melt Temperature (K) 1,181 1,630
Poisson’s Ratio 0.28 0.25

3.3 Mechanical Wear Rate Calculation

The post-processing code uses CTH output to determine the wear rate per unit

width, Wuw, given by Equation 3.2, where Ad is the damage area computed from the

plane strain simulation based on the failure criteria used, and the distance slid is the

product of sliding velocity, vslide, and simulation time, tsim.
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Wuw =
Ad

vslidetsim
(3.2)

The plane strain simulation, along with this equation gives wear rates in units

of area of damaged, or worn, material per distance slid. Since wear is defined as the

volume of material worn per distance slid, it is best represented as a three-dimensional

problem. As such, a conversion factor must be established to represent a three-

dimensional hemispherical surface asperity using the two-dimensional semi-circular

asperity in plane strain.

3.3.1 Semi-spherical Coefficient. Hale [20] determined the semi-spherical

coefficient by running plane strain simulations with 2 µm, 4 µm, and 6 µm asperities

and integrating across the width to determine a volume of damaged material per

distance slid. Figure 3.5 shows how the plane strain models are related to the three-

dimensional analysis. The red areas in Figure 3.5(b) represent the damaged material

due to the collision with the various asperities. For a given sliding velocity, the area

of damaged material increases as the size of the asperity increases.

The 2 µm and 4 µm asperity collisions are related to the 6 µm asperity by

assuming an off-center collision. Since the analysis is under plane strain conditions

and the z-axis is eliminated, the actual height of the asperity does not affect the

simulation. Equation 3.3 is used to determine the location of the 2 µm and 4 µm

asperity along the z-axis in the three-dimensional hemispherical asperity, where r is

the 6 µm asperity radius.

z =
√

r2 − y2 (3.3)

This places the 2 µm and 4 µm asperities at z-locations of 4.47 µm and 5.66

µm, respectively. These locations are illustrated by the dashed line in Figure 3.5(a).

The single asperity wear rate, Wsa, is determined by Equation 3.4, where the integral

is multiplied by two to represent the symmetrical asperity.
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Figure 3.5: Plane Strain Representation of a Semi-Spherical
Surface Asperity [20]

52



Wsa = 2

∫ r

0

Wuw(z)dz (3.4)

Equation 3.4 gives the plane strain wear rate for a collision with a single semi-

spherical asperity. Hale solved this equation for a range of sliding velocities, and then

divided the single asperity wear rates by their respective plane strain wear rates to get

an average effective width, weff , of 8.29 µm. Equation 3.5 uses this average effective

width to calculate the single asperity wear rates, as opposed to using the integral in

Equation 3.4.

Wsa = weffWuw (3.5)

3.3.2 Archard Scaling Factor. The plane strain models developed by Hale

[20] and Meador [28] make use of a scaling factor to account for collisions with multiple

asperities as the slipper sides along the rail. This equation is derived by relating wear

rates to Archard’s wear model at low velocities [2–4]. Equation 3.6 is used to relate

Archard’s wear rate, WA, to the single asperity wear rate.

WA =
kAF

H
= NWsa (3.6)

where kA is Archard’s wear coefficient, F is the applied load, H is the material hard-

ness, and N is the scaling factor. The applied load in Archard’s equation relates to

the force applied by the pin in a pin-on-disk experiment. The scaling factor is found

by Equation 3.7. Hale [20] solved for N = 11.77, at a sliding velocity of 10 m/s, with

kA equal to 4.45× 10−5, and with F given from the DADS data.

N =
kAF

WsaH
(3.7)
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3.4 Total Mechanical Wear Calculation

Calculating total wear of the HHSTT slippers allows for a comparison to be

made between experimental data and simulation results. The experimental data for

this research is a used slipper retrieved from the January 2008 test mission at Hollo-

man AFB. To evaluate total wear, the single asperity wear rates are integrated with

respect to sliding distance. The DADS data is used to determine at what distance

along the track the slipper reaches a certain velocity. The wear rates are then plot-

ted as a function of sliding distance. Before the values are integrated, an additional

scaling factor must be included.

This scaling factor represents the amount of time the slipper and rail are in

contact. The CTH simulations assume the slipper and rail are in contact throughout

the entire simulation. The percentage of contact, dpc, is set to 0.3. That assumes

that the slipper and rail are in contact for 30% of the test run. This assumption, first

used by Hale [20], comes from the comparison of test data between the January 2008

mission and a simulation designated by the HHSTT as 80X-A1. DADS data for the

80X-A1 simulation was supplied to Cameron [13] for his research in 2007.

Equation 3.8 calculates total mechanical wear, WTOTAL, where dmax is the to-

tal sliding distance. This equation includes the single asperity wear rate, Wsa from

Equation 3.5, the Archard scaling factor, N , from Equation 3.7, and the percentage

of contact coefficient, dpc.

WTOTAL = Ndpc

∫ dmax

0

Wsa(s)ds (3.8)

3.5 Summary of Numerical Modeling

This chapter discussed the dynamic data, DADS, used to characterize position,

velocity, and forces of the rocket sled system. This dynamic data, along with the

theoretical background presented in Chapter II, was used to create a hydrocode model

capable of estimating mechanical wear of HHSTT slippers. Equations were given in
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this chapter to represent multiple semi-spherical asperity collisions with a single semi-

circular asperity in plane strain. The model developed in this thesis evaluates pressure

and internal energy of a material due to this collision. The next chapter will discuss

the results of the simulation, calculated mechanical wear rates, total mechanical wear,

and compare these to the experimental data.
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IV. Results and Discussion

This chapter will present the results of the numerical model discussed in Chap-

ter III. First, the equivalent plane strain Hugoniot elastic limit, discussed in Sec-

tion 2.5.2, will be compared against CTH simulations. The calculated wear rates will

be presented for various failure criteria and interface conditions. Finally, the results

of the total wear calculation will be presented and compared against experimental

wear from the HHSTT January 2008 test mission.

4.1 Dead Load

In order to develop a model that represents the HHSTT environment, a variable

vertical force was considered. Since the concept of a hydrocode is to include kinetic

energy as a basic function, it was felt that at least an investigation of the vertical

movement should be included. This is considered by characterizing a vertical force.

This variable force represents the vertical force of the slipper as it bounces along the

rail. Figure 4.1 is a plot of the vertical force of the aft right slipper from the third

sled during the January 2008 test from the DADS data. When the force is zero, the

slipper is not in contact with the rail.

CTH does not allow a force input. However, the force can be represented with

an appropriate dead load fixed to the top of the slipper. DADS does not provide data

representing vertical acceleration of the slipper as it travels down the rail. Therefore,

a modified force equation, Equation 4.1, was developed to represent the effective dead

load as a function of vertical velocity and vertical force using Newton’s second law,

F=ma.

m =
Favg∆t

∆v
(4.1)

where ∆v is the maximum change in vertical velocity within a window enclosing the

desired horizontal velocity, ∆t is the size of the window, and Favg is the average
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Figure 4.1: HHSTT Third Stage Vertical Force, January 2008
Test Mission

slipper force during the window. The velocity profile of the third stage from the

HHSTT January 2008 test mission, Figure 4.2, is used to determine the time at

which a desired velocity is reached. Figures 4.3 and 4.4 show the method of applying

windows surrounding a time representing a target sled velocity of 500 m/s enclosing

the vertical force and vertical velocity.

The size of the window, ∆t, is the time between two peaks enclosing the desired

velocity. These two peaks are shown in Figure 4.3 with red circles. The black circle

represents the time at which the sled reaches the desired velocity. The average force,

Favg, is the average of the two peaks in Figure 4.3. The same window applied to

the vertical force plot is applied to the vertical velocity. A maximum and minimum

velocity is found in this window and shown on Figure 4.4 with two red circles. The

maximum change in velocity, ∆v is the change in velocity between these two points.

The dead load is calculated with respect to sliding velocity and plotted in Fig-

ure 4.5. It is important to note that there are many sudden changes in vertical velocity

and vertical force of the slipper as it travels along the rail. The scattered data results
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Figure 4.3: Windowed Vertical Force Data at 500 m/s
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Figure 4.4: Windowed Vertical Velocity Data at 500 m/s

in a scattered function of dead load with respect to sliding velocity. Also, there is

an outlying maximum dead load at 1,000 m/s. This is probably due to the increased

acceleration down the track due to the firing of the third rocket sled.

The model developed in this thesis is a local submodel of the slipper colliding

with a surface asperity. As such, the entire slipper is not represented in the model.

Therefore, a mass fraction, δM , was found that related the mass of the actual slipper

to the mass of the slipper in the CTH model. This mass fraction is applied to the

calculated dead load when added to the CTH input deck. Data from Holloman AFB

states that the weight of the aft right slipper is 19 pounds. This is converted to grams,

assuming gravity, g, = 9.81 m/s2 using Equation 4.2. This equation gives a slipper

mass of approximately 8,615 grams. The mass of the CTH slipper is given by the

product of its density, 8.091 g/cm3 and volume, 8.63×10−4 cm3, to be approximately

7.02×10−3 grams. Therefore, the mass fraction, δM , is 8.15× 10−7.

Massgrams = Weightlbf
4.448N

lbf

kg ·m

N · s2
1

9.81m/s2
1000g

1kg
(4.2)
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Figure 4.5: Change in Dead Load with Respect to Velocity

To add the calculated dead load to the CTH model, a block of platinum was

fixed to the top of the VascoMax 300 slipper. Platinum was selected, because it is

the most dense material in CTH. Since the dead load sits atop the entire slipper, the

dead load dimension along the X-axis is known. Because a plane strain model was

developed, the thickness is also known. Since the mass of any material is given by

the product of its density and volume, the height of the platinum dead load is found

using Equation 4.3, where h is the dead load height, m is the dead load mass, ρ is

the dead load density, w is the width of the dead load along the X-axis, and t is the

thickness of the dead load in the z-axis.

h =
mδM
ρwt

(4.3)

The investigation of the dead load effect was carried out by running two sim-

ulations with the dead load at 800 m/s and 1,200 m/s with a “no slide” boundary

condition. The results of these simulations, shown in Table 4.1, are identical to the

simulations without the dead load. This is probably due to the fact that the con-

tact area between the slipper and asperity is so small that the added mass does not
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have a siginificant effect. The dead load was dropped from the simulation, and is not

considered in any more simulations.

Table 4.1: Dead Load Wear Rates
Horizontal Sliding Velocity (m/s) 800 1,200
Dead Load Height (cm) 4.30×10−2 3.04×10−2

Dead Load Strain at Max Stress (mm3/mm) 2.66×10−4 2.86×10−4

Dead Load Critical Von Mises Stress (mm3/mm) 3.54×10−4 3.73×10−4

No Dead Load Strain at Max Stress (mm3/mm) 2.66×10−4 2.86×10−4

No Dead Load Critical Von Mises Stress (mm3/mm) 3.54×10−4 3.73×10−4

4.2 Failure Criteria Selection

Three failure Criteria were presented in Section 2.9, plastic strain at max stress,

critical von Mises stress, and the Johnson-Cook fracture model. The plastic strain at

max stress criteria, developed by Meador [28], has provided reliable results in previous

research and is considered a valid failure criteria. The critical von Mises stress criteria

is a modified approach used by Hale [20] and Meador. The benefit of this criteria is in

the fact that the von Mises stress can be calculated from the CTH simulation. This

removes the need for the curve fit, Equation 2.22. The number of cells exceeding the

critical von Mises stress value is used to determine the amount of material damage

for this criteria. A critical stress value of 3,000 MPa was selected based upon Hale’s

strain rate analysis [20].

Preliminary evaluation of the Johnson-Cook fracture model suggest that it does

not work well with the plane strain collision studied in this research. This method

produced zero wear in most cases. Recall that the Johnson-Cook fracture model is

dependent upon an integral given by Equation 4.4. As damage accumulates in the

material, the integral goes to 1. When the integral is equal to 1, the material is said to

have failed. For most cases, the model developed for this research does not allow the

integral to reach the critical value of 1. However, some cells do reach the critical value

resulting in some wear. This number tends to be two to three orders of magnitude

less than the other models.
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D =

∫

dεp

εpf (p, Y, T, ε̇)
(4.4)

One seemingly obvious reason for the poor results of the model is the fact that

the coefficients of the Johnson-Cook fracture model for VascoMax 300 and AISI 1080

steel are not defined in CTH. Several steels are defined in CTH. For the purposes

of this research, Iron was used to represent the AISI 1080 steel rail, and AISI 4340

steel was used to represent the VascoMax 300 slipper. The Johnson-Cook fracture

coefficients used are given in Table 4.2. Previous work by Lee [25] has shown the utility

of the Johnson-Cook fracture model in CTH. If the coefficients for the materials were

defined in CTH, the model may produce satisfactory results.

Table 4.2: Johnson-Cook Fracture Coefficients for
Iron and AISI 4340 Steel Defined in CTH [24]

Coefficient Iron AISI 4340 Steel
D1 -2.2 -0.8
D2 5.43 2.1
D3 -0.47 -0.5
D4 0.016 0.002
D5 0.63 0.61
Tmelt (eV) 0.1581885 0.1566566

4.3 Validation of Plane Strain Hugoniot Limit

Table 2.1 provides the predicted equivalent plane strain Hugoniot elastic limit

for VascoMax 300 as 2.8664 GPa. This value can be validated by checking for an

equivalent Hugoniot limit from the CTH simulation. This is done by plotting the

evolution of pressure through time at a point in the VascoMax 300 slipper. Cinnamon

[15] did this under uniaxial strain conditions using a flyer plate test. The experiment

fired VascoMax 300 projectiles at a target at high velocites. Stress was measured

using a stress gauge attached to the projectile approximately 2 mm from the leading

edge. Since the experiment represented uniaxial strain, the pressure was set to the

measured stress. The pressure was plotted against time to check for the Hugoniot
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elastic limit. Cinnamon also created a CTH simulation of the impact event. To

keep in line with the experiment, the pressure from Cinnamon’s CTH simulation was

recorded 2 mm from the interface of the projectile and target. The dimensions of

the slipper-rail simulation created for this thesis are much smaller than Cinnamon’s

model. Therefore, the pressure is recorded from the CTH simulation at 2 µm vertically

from the interface of the slipper and rail, and 2 µm horizontally from the interface of

the slipper and asperity. The black dot in Figure 4.6 shows the point in the model

where the pressure data is recorded to locate the equivalent plane strain Hugoniot

elastic limit. Figure 4.7 shows the increase of pressure, in a slipper sliding at 1,000

m/s, to a value in which the pressure drops and increases to a max value. The value

at which the pressure stops increasing is referred to as the equivalent plane strain

Hugoniot elastic limit. When loading exceeds this value, deformation is no longer

purely elastic. Multiple plastic waves are produced when the loading exceeds the

limit, which explains the cyclic behavior at max pressure after the equivalent plane

strain Hugoniot limit is reached.

It should be noted that the equivalent plane strain Hugoniot limit from Fig-

ure 4.7 does not equal the calculated value (2.8664 GPa) exactly. However, the value

from the simulation is close to the predicted value. Figures 4.8 and 4.9 show the pres-

sure evolution in the VascoMax 300 slipper at 1,200 m/s and 1,500 m/s, respectively.

Although the simulation implies that equivalent plane strain Hugoniot elastic limit

is influenced by sliding velocity, an implication that is easily accepted, the predicted

value of 2.8664 GPa is an approximate value representing this limit.

4.4 Validation of Plane Strain Elastic Wave Speed

An equation to determine the elastic wave speed through a solid material under

plane strain conditions was provided in Section 2.5.2. Equation 4.5, derived from

equations presented by Zukas [37] and Saada [32], is a function of Poisson’s ratio, ν

and elastic modulus, E.
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Figure 4.6: Location in Model Where Pressure Data is
Recorded
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Figure 4.9: Pressure Evolution in VascoMax 300 Slipper at
1,500 m/s Sliding Velocity

cE,PS =

√

4

3

(1− ν)

ρo(1− 2ν)(1 + ν)
E (4.5)

Solving the equation for VascoMax 300, with Poisson’s ratio equal to 0.283 and

elastic modulus of 180.7 GPa, gives an elastic wave speed under plane strain conditions

approximately 6,230 m/s. This can be validated by tracing a pressure wave through

the material with respect to distance and time. This is done by plotting the pressure

along a diagonal from the point of impact with respect to distance at each time step.

A MATLAB code was created to do this. Before the MATLAB code is used, the CTH

input deck needed to be modified. This modification and MATLAB code is discussed

in Appendix D. The MATLAB code calculates and plots the change in pressure at a

point along the three diagonals with respect to time.

Figure 4.10 shows the change in pressure in the VascoMax 300 slipper with

respect to time on a 45◦ diagonal at 30 µm from the point of impact with a sliding

velocity of 1,000 m/s. Figure 4.11 shows a similar plot along the 45◦ diagonal at
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60 µm. These two plots can be used to determine the speed of the elastic-plastic

wave generated during the CTH simulation. The speed of the wave is determined

by dividing the difference in distance along the diagonals by the difference in time

at which a constant value of pressure is achieved in the two figures. In this case,

the speed of a wave with a constant pressure of -5 GPa was selected. The change

in distance along the diagonal is 30 µm, and the change in time is approximately

4.90× 10−9 seconds. This gives an elastic-plastic wave speed of 6,120 m/s.
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Figure 4.10: Pressure at 30 µm on a 45◦ diagonal at 1,000
m/s Sliding Velocity

The predicted elastic speed wave through VascoMax 300 under plane strain

conditions, given by Equation 4.5, is 6,230 m/s. This is the speed of a purely elastic

wave. The wave speed calculated from the CTH simulations represents an elastic-

plastic wave. Introducing plasticity reduces the speed of the wave. Therefore, an

elastic-plastic wave speed through the VascoMax 300 slipper of 6,120 m/s suggests

that Equation 4.5 is a valid approach to calculating the speed of an elastic wave

through a solid material.
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4.5 Equation of State at Low Velocities

Section 3.2.4 discussed modeling issues when using an equation of state in low

velocity impact problems. Numerical inconsistencies were observed when solving for

the mechanical wear rates at 50 m/s and 100 m/s. These wear rate values were two to

three times greater than simulations at higher velocities. The low velocity simulations

also produced an inconsistent state of pressure in the materials. When the slipper

collides with the asperity, a pressure wave is created. Figure 4.12 shows a pressure

wave generated by the collision of the VasocoMax 300 slipper sliding at 1,500 m/s into

the surface asperity. This pressure wave extends into both the VascoMax 300 slipper

and the AISI 1080 steel rail. Figure 4.13 shows the inconsistent state of pressure at

sliding velocity of 50 m/s. Since the equation of state is used to solve for pressure, it

can be assumed that the inconsistencies are a result of an improper EOS model.

An EOS must be defined for each material in CTH. Zukas [37] suggests a mod-

ification to the Mie-Grüneisen for low velocity impact. This modification, shown in

Equation 4.6), sets the pressure to a product of the bulk modulus, K, and plastic
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Figure 4.12: Pressure Wave Generated by 1,500 m/s Collision

Figure 4.13: Inconsistent State of Pressure at 50 m/s Sliding
Velocity
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strain, µ. It is reasonable to expect that a low velocity impact will produce less de-

formation in the material. The proposed equation is used to ensure that a state of

zero pressure is achieved with zero compression.

P = Kµ (4.6)

Based on a review of the CTH user’s manual [18] and discussions with the

author, an approach was developed to use the modified Mie-Grüneisen EOS by altering

user input variables for the existing CTH Mie-Grüneisen model. A user defined Mie-

Grüneisen EOS in CTH must define the material density, ρ0, sound speed through

the material, cs, a linear coefficient in the Hugoniot fit, S, the Grüneisen constant,

Γ, and the specific heat, cv. The material density and sound speed do not change

for the proposed modification. However, if the S value is set to a small value, but

not zero, the sound speed dependence on pressure is removed. Also, if the Grüneisen

constant is set to a small number, but not zero, and the specific heat is set to a

large number, the material should be prevented from changing temperature during

compression or expansion. This results in a model that should allow the material to

respond elastically with respect to its bulk modulus and remove the thermal portion

of the EOS. This attempt at implementing the modified Mie-Grüneisen EOS did not

remove the numerical inconsistencies at low velocities.

It was decided that the Mie-Grüneisen EOS is not adequate for the model devel-

oped in this research. The Sesame equation of state, discussed in Section 2.8.2.2 was

selected for use in this research because the model uses experimental data. It should

be noted that the Sesame EOS interpolates data between experimental data when

the sliding velocity falls within two points. When the sliding velocity is outside the

range of experimental data, the Sesame EOS extrapolates using experimental data.

The accuracy of the model at varying velocity is dependent on the amount of exper-

imental data. The lower velocities are certainly extrapolated from the experimental
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data, and therefore some error may be introduced when running simulations outside

of the experimental range.

4.6 Wolfson Data

As discussed in Section 1.3, Wolfson [36] ran experiments to study the wear of

materials in high speed track applications. Of the sixty tests, the results of two can

be used to compare against the model presented in this thesis. The two tests both use

specimens made of stainless steel, and a bare steel track with welded joints. This is a

close representation of the VascoMax 300 on AISI 1080 steel sliding scenario studied

in this research. Table 4.3 shows the results of the two experiments. The experimental

average wear rates are given in units of in/ft. This was measured on specimens with

a constant contact area, An, of 1 square inch (645.16 mm2). Equation 4.7 is used to

convert the experimental average wear rates to units of mm3/mm.

W̄ = WwolfsonAn (4.7)

Table 4.3: Data From Wolfson’s Experiments [36]
Sliding Average Average
Velocity Wear Rate Wear Rate
(ft/s) (in/ft) (mm3/mm)
825 9.50× 10−6 5.11× 10−4

2,500 7.50× 10−6 4.03× 10−4

It is important to note that Wolfson’s experiments produce three dimensional

wear rates. Therefore, a conversion method must be applied to better represent a

plane strain environment. To do this, Archard’s equation [3,4], Equation 4.8 is used,

which solves for the volume of worn material at low velocities, WA. In this equation,

P is the applied normal pressure, An is the contact area, kA is the dimensionless

Archard wear coefficient, and H is the material hardness. An Archard wear coefficient

of 4.40×10−5 is used for low speed wear, and the VascoMax 300 material hardness is

0.5×103 Pa.
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WA =
kAPAn

H
(4.8)

When solving for Equation 4.8 using data from Wolfson’s experiments, which

applied a constant normal pressure of 300 psi, using a pin with a constant contact

area of 1 square inch, a wear rate value of 1.17×10−4 mm2 is found. Results from

Hale’s dissertation [20] at 10 m/s give an area of worn material equal to 2.65×10−5

mm2. Dividing Wolfson’s worn area by Hale’s provides a constant, Nwolfson, which

is used to relate Wolfson’s experimental data [36] to the plane strain model using

Equation 4.9.

WPS,wolfson =
W̄

Nwolfson

(4.9)

where WPS,wolfson is the plane strain equivalent of Wolfson’s experimental data and

W̄ is the Wolfson’s experimental wear data converted from English to metric units.

The two experiments were run at different velocities (252 m/s and 762 m/s). This

provides two data points representing Wolfson’s experiments converted to plane strain

wear. These two data points are provided in Table 4.4 and will be plotted along with

estimated wear rates from the CTH simulation in Section 4.7.

Table 4.4: Wolfson Plane Strain Wear Rates
Sliding Velocity Mechanical Wear Rate

(m/s) (mm3/mm)
252 1.16× 10−4

762 9.13× 10−5

4.7 Mechanical Wear Rate Results

Mechanical wear rates are calculated by passing output data from CTH into

the MATLAB code described in Appendix C. Figure 4.14 is a plot of the calculated

mechanical wear rates due to the collision with a single semi-circular surface asperity

in plane strain conditions. The figure shows four lines representing the two failure
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criteria, strain at max stress and critical von Mises stress, with a ”slide” line interface

condition, and a “no slide” condition. The Wolfson data [36], converted to the plane

strain scenario in Section 4.6, is included in Figure 4.14 along with the wear rate

results from Hale’s FEA model [20]. Including the Wolfson data provides a validation

to the simulation results because it shows the calculated values are on the same order

of magnitude as an experimental set of data. The wear rate data are given in Table 4.5.

There are two failure criteria and two interface boundary conditions evaluated in

this thesis. The boundary condition has an obvious effect on the calculated wear rates.

The “slide line” condition simulates a frictionless surface by setting the shear stress

along the surface to zero, whereas the “no slide” condition represents a surface with

a semi-infinite coefficient of friction. The “no slide” boundary condition estimates a

higher wear rate than the “slide line” condition for both failure criteria. This is due to

the fact that the “no slide” condition requires pressure along the interface to reach a

threshold before the material can move. Some of this additional pressure is captured

within the data collection and adds damaged material to the calculation resulting in

a higher wear rate.

Regardless of the interface boundary condition, the critical von Mises stress

criteria tends to result in a higher calculated mechanical wear rate than the strain at

max stress criteria. The critical von Mises stress failure criteria causes the wear rate

to increase with sliding velocity up to 1,300 m/s, then a slight decrease is observed.

Wear rates calculated using the strain at max stress failure criteria appear to level off

at velocities above 1,200 m/s. Both failure criteria follow a similar curve provided by

Hale until the wear rate calculated by the FEA approach decreases with increasing

velocity above 600 m/s. Although each curve provides a different estimation for

mechanical wear rates based on velocity, they all are on the same order of magnitude.

The total mechanical wear, presented in Section 4.8, provides a better overall analysis

of the models presented in this thesis.
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Figure 4.14: Plane Strain Mechanical Wear Rates

Table 4.5: Tabulated Wear Rates
Horizontal No Slide Slide Line No Slide Slide Line
Sliding Strain at Strain at Critical Von Critical Von
Velocity Max Stress Max Stress Mises Stress Mises Stress
(m/s) (mm3/mm) (mm3/mm) (mm3/mm) (mm3/mm)
200 1.51× 10−4 7.49× 10−5 1.26× 10−4 3.71× 10−5

300 1.76× 10−4 8.34× 10−5 1.97× 10−4 6.16× 10−5

400 1.93× 10−4 1.05× 10−4 2.55× 10−4 1.09× 10−4

500 2.23× 10−4 1.45× 10−4 3.19× 10−4 1.70× 10−4

600 2.43× 10−4 1.70× 10−4 3.49× 10−4 2.04× 10−4

700 2.61× 10−4 1.86× 10−4 3.52× 10−4 2.42× 10−4

800 2.66× 10−4 2.06× 10−4 3.54× 10−4 2.79× 10−4

900 2.71× 10−4 2.20× 10−4 3.57× 10−4 3.03× 10−4

1,000 2.76× 10−4 2.32× 10−4 3.66× 10−4 3.21× 10−4

1,100 2.79× 10−4 2.44× 10−4 3.72× 10−4 3.33× 10−4

1,200 2.86× 10−4 2.58× 10−4 3.73× 10−4 3.44× 10−4

1,300 2.91× 10−4 2.62× 10−4 3.80× 10−4 3.63× 10−4

1,400 2.89× 10−4 2.64× 10−4 3.77× 10−4 3.61× 10−4

1,500 2.88× 10−4 2.67× 10−4 3.67× 10−4 3.45× 10−4
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4.8 Total Mechanical Wear Results

As mentioned in Section 3.4, the total mechanical wear of an HHSTT slipper

can be determined by plotting the wear rates as a function of distance along the

track and integrating with respect to distance. Figure 4.15 shows the estimated

total mechanical wear for the four cases presented in Section 4.7 as well as the total

experimental wear from the January 2008 test mission. The experimental wear was

determined by measuring the thickness of the slipper at the end of the test compared

to the design nominal thickness. There are two things to consider when using this

experimental value. The first is that the third sled reaches a maximum velocity close

to 1,500 m/s and then decelerates to approximately 600 m/s (1,342 miles per hour)

at the end of the track, at which point the sled and slippers leave the track, bouncing

along the ground. It is not unreasonable to assume that some wear occurs during this

time. The second thing to consider is that the slippers are not measured prior to the

test. The initial thickness of the slippers is assumed to be the nominal thickness from

the HHSTT design manual [1]. Since the total volume of worn material is determined

as units of mm3, a slight deviation from the nominal thickness can have an effect on

the experimental wear value. Hale [20] gives the total wear volume from the aft right

slipper on the third stage sled from the January 2008 test mission as 10,516 mm3. The

total volume of worn material and percentage of experimental wear for each criteria

is given in Table 4.6.

Table 4.6: Estimated Total Mechanical Wear
Failure Criteria Volume of Worn Percentage of

Material (mm3) Experimental Wear
No Slide Strain at Max Stress 6,418 61.03
Slide Line Strain at Max Stress 5,186 49.31

No Slide Critical Von Mises Stress 8,504 80.87
Slide Line Critical Von Mises Stress 6,857 65.20

Hale FEA method [20] 4,298 40.87
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Figure 4.15: Total Mechanical Wear
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4.9 Summary of Results

This chapter discussed the addition of a dead load to the plane strain model

to represent the variable vertical force of the slipper as it slides along the rail. The

addition of the dead load produced wear rates identical to simulations without the

dead load. Therefore, the dead load was dropped from the model and not included

in the analysis. It is possible that the dead load is not adequately represented in the

submodel developed for this thesis. It may produce results if a larger-scale model was

developed with an entire slipper and dead load attached to the top.

The equivalent plane strain Hugoniot elastic limit, derived in Section 2.5.2, was

evaluated and compared to values obtained from CTH simulations. The equation used

to determine σHEL,PS, Equation 2.15, assumes it is independent of sliding velocity,

and gives a value of 2.8664 GPa for VascoMax 300. The CTH simulations suggest that

the onset of plasticity is influenced by the sliding velocity of the slipper. However,

2.8664 GPa appears to be a good approximation for VascoMax 300 σHEL,PS. This

chapter also presented a validation of the plane strain elastic wave speed, Equation

2.16, derived in Section 2.5.2.

This chapter included a discussion of issues encountered during low velocity

simulations. It is believed that these issues are a result of the use of an improper

equation of state. A modified EOS was attempted based on suggestions by Zukas [37].

However, this modified EOS did not provide a substantial improvement over the

existing models. Hydrocodes are typically used to model high energy problems, such

as explosives or high velocity impact problems. Therefore, the low velocity issues

were not a significant surprise. The simulations ran with no errors over a velocity

range from 200 m/s to 1,500 m/s. Simulations with a sliding velocity below 200 m/s

resulted in numerical inconsistencies described in Section 4.5.

This chapter also presented the results of the CTH simulation for four scenarios;

“No slide” strain at max stress, “slide line” strain at max stress, “no slide” critical

von Mises stress, and “slide line” critical von Mises stress. The mechanical wear rate
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results are presented in Figure 4.14 and the total mechanical wear can be found in

Figure 4.15. The wear rate data are given in Table 4.5.
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V. Summary and Conclusions

The chapter is a summation of the material presented in this thesis. The lit-

erature search and theoretical background will be discussed first, followed by a brief

description of the hydrocode model developed and the results obtained. Finally, con-

clusions will be presented on the results of the thesis, and suggestions for future work

will be presented.

5.1 Summary

Research into the onset of wear of sliding bodies has produced low-velocity

models capable of estimating worn material. One model in particular, the Archard

Wear model [2–4], has been used to establish relationships between wear in plane

strain to three-dimensional wear. Previous work by Hale [20] and Meador [28] has

made use of a plane strain scenario to model the slipper-rail sliding event.

Based on the previous research, a hydrocode model was developed using CTH to

estimate plane strain mechanical wear rates. The model allows a VascoMax 300 slipper

to collide with a 6 µm radius surface asperity made of AISI 1080 steel. Damage was

recorded per sliding distance to give wear rates. Two failure criteria were evaluated

(Section 2.9): critical von Mises stress and strain at max stress. These failure criteria

were established by the Johnson-Cook viscoplasticity model presented in Section 2.4.

The model also has two distinctly different interface boundary conditions between

the slipper and rail. One boundary condition, “slide line”, simulates a frictionless

surface by setting the shear stress along the surface to zero. The second boundary

condition, “no slide”, simulates a surface with a semi-infinite coefficient of friction

by establishing a pressure threshold that must be exceeded for the material to move.

These two boundary conditions represent two extremes along the surface in terms of

friction.

Since the model developed in this thesis simulates a collision between two metals

at high velocities, and establishes failure criteria based on the material response due
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to the collision, fundamentals of wave mechanics were researched. Previous research

of high velocity impact has considered uniaxial strain conditions. As such, equations

exist that are used to estimate the onset of plasticity in the material, called the Hugo-

niot elastic limit, and to calculate the speed of pressure waves propagating through

a solid material under uniaxial strain conditions. However, the scenario of interest

for this research is plane strain. Therefore, equations were derived in Chapter II to

evaluate the plane strain elastic wave speed through a solid, Equation(2.16), and the

equivalent plane strain Hugoniot elastic limit, Equation 2.15.

The CTH model was run at velocities ranging from 200 m/s to 1,500 m/s. The

results of the simulations were presented in Chapter IV. The estimated mechanical

wear rates were used to determine the total mechanical wear of the aft right slipper

from the third sled of the January 2008 test mission.

5.2 Conclusions

The plane strain derivations presented in Chapter II were validated in Chap-

ter III using results obtained from CTH simulations. The derived equations imply

they are independent of sliding velocity. However, the CTH simulations suggest that

onset of plasticity and elastic wave speed through the slipper are effected by the slid-

ing velocity. This effect appears to be minimal, and the derived equations present an

adequate estimation of these values.

The addition of a dead load to represent the vertical force of the slipper into

the rail was presented in Section 4.1. The dead load was added to provide a more

accurate representation of the HHSTT environment. CTH does not allow a force

input. Therefore, Equation 4.1 was used to calculate the effective mass representing

the vertical force from the DADS data. The simulations with the dead load produced

mechanical wear rates that were identical to simulations without. One possible rea-

son for these results is the fact that a submodel of the slipper was developed, only

representing a small part of the slipper in the simulation. It may be necessary to

develop a full model of the slipper with an attached dead load to get an accurate
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respresentation of the vertical force. Such a model was not developed for this thesis,

because the simulation time would drastically increase.

The mechanical wear rates obtained from the CTH simulation appear to be

an accurate estimation of the HHSTT slipper-rail sliding event. Data from Wolfson

[36] was converted to the plane strain scenario in Section 4.6 and plotted with the

estimated mechanical wear rates in Figure 4.14. The two data points are of the same

order of magnitude as the estimated values from the CTH simulation. The total

mechanical wear was calculated and plotted in Figure 4.15. The total experimental

wear from the January 2008 test mission was determined by Hale [20] to be 10,516

mm3. The results of the total mechanical wear predict between 49.31% and 80.87%

of the experimental wear. However, due to the uncertainty of the true experimental

wear, discussed in Section 4.8, the results of the simulation are acceptable. The results

of the simulation and total wear calculation suggest that the model developed is an

adequate method to model mechanical wear.

5.3 Future Work Suggestions

The model presented in this thesis has been developed and modified based on

previous research. There are however, simplifications made to allow the plane strain

model to represent a three-dimensional scenario. One significant simplification to

this research is the absence of a thermal model. Previous work by Meador [28] has

shown that melt wear plays an important role in the slipper - rail sliding event. Mrs.

Gracie Paek, as part of her PhD dissertation is developing a thermodynamic model

to represent melt wear of HHSTT slippers.

The Johnson-Cook fracture model, discussed in Section 2.9.3, can be used to

model material damage. This failure criteria was evaulated for use in the current

model. However, the simulations estimated zero wear when this criteria was used.

The fracture model requires five coefficients to be defined for each material. These

fracture coefficients are not known for VascoMax 300 or AISI 1080 steel. AISI 4340

steel and iron were used to represent the VascoMax 300 slipper and AISI 1080 steel
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rail, respectively. With properly defined fracture coefficients, obtained through ex-

perimentation, the Johnson-Cook fracture model may yield worn material.
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Appendix A. Plane Strain Derivations of Hugoniot Elastic Limit and

Elastic Wave Speed

An approach for considering the uniaxial Hugoniot elastic limit is outlined in Meyers

[29] and Zukas [37]. A similar process is applied, but in this process a Hugoniot

elastic limit is determined considering plane strain conditions. The speed of the

elastic-plastic wave generated due to plane strain collision is also determined. The

following equations show the derivation of Equations (2.15) and (2.16).

A.1 Equivalent Hugoniot Elastic Limit for Plane Strain

Since plane strain is considered, one can say

ε1 = εe1 + εp1 (A.1)

ε2 = εe2 + εp2 (A.2)

ε3 = εe3 + εp3 = 0 (A.3)

εe3 = −εp3 (A.4)

where εei = elastic strain and εpi = plastic strain. The next step is to consider the

plastic portion to be incompressible, thus

εp1 + εp2 + εp3 = 0 (A.5)

εp1 + εp2 = εp3 (A.6)

If Equations (A.1) through (A.6) are combined, the result is an equation for the

summation of principal strains ε1 and ε2.
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εp1 + εp2 = εe3 = ε1 − εe1 + ε2 − εe2 (A.7)

(ε1 + ε2) = εe1 + εe2 + εe3 (A.8)

Saada [32] provides constitutive equations for plane strain.

εe1 =
1 + ν

E
[(1− ν)σ1 − νσ2] (A.9)

εe2 =
1 + ν

E
[(1− ν)σ2 − νσ1] (A.10)

εe3 = 0 (A.11)

The Tresca yield theory is used to get σ2 = f(σ1, Yo) [32].

Yo = σ1 − σ2 (A.12)

σ2 = σ1 − Yo (A.13)

where Yo is the yield stress for a uniaxial elastic - perfectly plastic material. The

constiutive equations along with Tresca yield theory are used to reduce Equation A.8

to a form for σ1.

σ1 =
(ε1 + ε2)E

(1 + ν)(1− 2ν)2
+

Yo

2
(A.14)

The next step is to consider loading of an elastic - perfectly plastic material,

starting with the pressure.
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P =
σ1 + σ2 + σ3

3
(A.15)

P =
σ1 + σ2 + ν(σ1 + σ2)

3
(A.16)

where ν is the Poisson’s ratio, and σ3 = ν(σ1 + σ2) in a plane strain scenario. If one

solves again for σ1,

σ1 =
3

2

P

(1 + ν)
+

Yo

2
(A.17)

σ1 becomes the stress of importance for the analysis as it is in a uniaxial strain

situation. When pressure, P, equals zero

σ1 =
Yo

2
(A.18)

Figure A.1 shows the loading of an elastic-perfectly plastic material. For the

case of zero pressure

α =
Yo

2
(A.19)

For our purposes, we assume β = 4
3
µ, as related to a uniaxial stress situation [32],

where µ = E
2(1+ν)

. The summation of principal strain term ε1 + ε2, is evaluated in

terms of α and β to get

(ε1 + ε2) =
3Yo

4E
(1 + ν) (A.20)

Equations (A.14) and (A.20) are combined to solve for the equivalent Hugoniot

elastic limit for the case of plane strain.
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Figure A.1: Loading of an Elastic-Perfectly Plastic Material

σHEL,PS = Yo

[

3

8− 16ν
+

1

2

]

(A.21)

A.2 Plane Strain Elastic Wave Speed

Combining equations (A.13) and (A.20), the result for (ε1 + ε2) is

(ε1 + ε2) =
3(1 + ν)

4E
(σ1 + σ2) (A.22)

and

σ2 =
ν

1− ν
σ (A.23)

Combining equations (A.22) and(A.23), and solving for σ1, the following is

obtained
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σ1 =
4(1− ν)

3(1 + ν)(1− 2ν)
(ε1 + ε2)E (A.24)

The speed of sound through any medium can be represented as the square root

of pressure divided by density. Through a solid media, the pressure term is replaced

by the elastic modulus. For the case of plane strain, the elastic modulus carries an

added term representing the summation of strain, (ε1 + ε2). The elastic wave speed

for the case of plane strain is given by Equation A.25

cE,PS =

√

4

3

(1− ν)

ρo(1− 2ν)(1 + ν)
E (A.25)
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Appendix B. CTH Input Deck

B.1 Discussion of CTH Input

The sample CTH input deck provided in this appendix is used to estimate the

wear rate of VascoMax 300 sliding at 1,000 m/s into a 6 µm radius surface asperity

made of AISI 1080 steel. This input deck can be altered to represent an event with a

different sliding velocity. To do this, the total simulation time,“tstop”, and intermedi-

ate step time need to be updated. The “tstop” variable is found on line 36 of the input

deck. There are nine variables in the input deck that use the intermediate step time,

and all nine must be updated for each run. The variables are: “dt”, “dtfrequency”,

“PlotTime”, “SaveTime”, and “HisTime”. The “dt” variable is listed four times on

lines 244, 247, 318, and 322. The “dtfrequency” variable is listed twice on lines 250

and 253. The “PlotTime” variable is found on line 330, the “SaveTime” variable is

found on line 331, and the “HisTime” variable is found on line 406.

The initial velocity also needs to be updated when changing the sliding velocity

of the VascoMax 300 slipper. The initial velocity vector is found in the diatom

input set, starting on line 124. Since the VascoMax 300 slipper is the only moving

body for this analysis, it is the only velocity that needs to be changed. The initial

velocity input for the VascoMax 300 slipper is found on line 152 of the input deck.

The initial velocities of the other materials should remain at zero for all simulations.

It is important to note that the base unit of length in CTH is cm. This means

that all velocities and distances must be input having dimensions of cm/s and cm,

respectively. This is seen on line 152 of the included input deck, the initial velocity

is given as 100,000 cm/s which gives 1,000 m/s.

In CTH, the units of pressure and stress are expressed as dynes/cm2 and tem-

perature in electron volts, eV . This is accounted for in the post-processing code

provided in Appendix C. However, the implementation of the Johnson-Cook vis-

coplastic model requires the conversion of a couple material constants. Pressure and

stress is converted to GPa from dynes/cm2 using Equation (B.1), and temperature
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is converted from K to eV using Equation (B.2) [23]. Table B.1 shows the material

constants in units compatible with CTH.

Pdynes/cm2 = PGPa × 1010 (B.1)

TeV = TK/11604.505 (B.2)

Table B.1: Johnson-Cook Coefficients for VascoMax
300 and AISI 1080 Steel in CTH Units [15, 20, 28]

Coefficient VascoMax 300 AISI 1080 Steel
A (dynes/cm2) 2.1× 1010 0.7× 1010

B (dynes/cm2) 0.124× 1010 3.6× 1010

C (Unitless) 0.03 0.17
m (Unitless) 0.8 0.25
n (Unitless) 0.3737 0.6

B.2 Example CTH Input Deck

1 **********************************************

*eor* cthin

**********************************************

*

* cthin input with Spymaster graphics for slipper wear simulation

6 *

* filename: slipperwear.in

*

* 1. File modified by Steve Meador (MS -10M)

* 2. File converted to CTH v8.1 by Maj Chad Hale , PhD -09S, Aug ...

2008

11 * 3. new format based on CTH Course (4-7 Aug 08) in Albuquerque , ...

NM

* 4. modifies Cameron ’s 393 m/s, No Coating , Asperity , T=297 input...

file

*

* ________________

* | -----> |

16 * | | |

* | v /

* ------------------------------

*

*
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21 * vx=varies , vy=-1 m/s V300 Steel Slider , 1080 Steel Rail , No ...

Atm.

* No Slide line. mix=1 frac=1 Rounded corner.

* Added mass on top to simulate sled mass

**********************************************

26 * title record set

**********************************************

Horizontal Velocity = 1000 m/s, Vertical Velocity = -0.50 m/s

31 **********************************************

* control input set

**********************************************

control

mmp3 * enable multiple material temperatures and...

pressures in each cell

36 tstop = 6.60e-9 * stopping criteria for time level - this ...

is total simulation time

nscycle = 100000 * maximum number of cycles to be run

* rdumpf = 3600. * time for back -ups of restart file ...

updates

tbad = 1e30 * maximum number of thermodynamics warnings

* dtcourant = 0.6 * Courant condition multiplier

41 ygravity = -980 * Acceleration due to gravity = -9.80 m/s^2

endcontrol

**********************************************

* mesh input set

46 **********************************************

* geom=2DR(rectangular x,y)

* geom=2DC(cylindrical x=radius , y=axis)

* geom=3DR(rectangular x,y,z)

* type=e (Eulerian) now the default (CTHv8 .1)

51 * x#= coordinate range for plot

* y#= coordinate range for plot

* dxf=width of first cell in the region

* dxl=width of last cell in the region

* n=number of cells added in this region

56 * w=total width of this region in centimeters

* r=ratio of adjacent cell widths

**********************************************

mesh

61 block 1 geom=2dr * coordinates for 2D rectangular ...

Eulerian mesh

x0 = 0.0000

x1 w = 850e-4 dxf = 1.0e-4 dxl = 1.0e-4

endx

66 y0 = 0.0000

y1 w = 850e-4 dyf = 1.0e-4 dyl = 1.0e-4
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endy

endblock

endmesh

71

**********************************************

* EOS input set

**********************************************

eos

76 material1 ses grepxy1 * epoxy rail coating (Cinnamon/...

Cameron)

material2 ses iron * 1080 steel rail

* MAT3 MGRUN=user R0 =8.13 CS =3.63 e5 S1=1e-3 G0=1e-3 CV=1e15 * ...

modified Mei -Gruneisen for VM300 slipper

material3 ses steel_v300 * VascoMax 300 slipper

material4 mgr platinum * platinum for simulated sled mass

81 endeos

**********************************************

* elastic -plastic input set

**********************************************

86 epdata

vpsave * cell yield stress and plastic strain rate data ...

is saved

lstrain * compute and save Lagrangian strain tensor ...

components

mix = 3 * volume averaged yield strength normalized by sum...

of volume fractions

91 matep = 1 *Epoxy Glider Coating

poisson 0.46

yield 1.0e8

matep = 2 * 1080 Steel rail

96 JO USER

AJO 0.7 e10 * A

BJO 3.6 e10 * B

CJO 0.17 * C

MJO 0.25 * m

101 NJO 0.6 * n

TJO 0.14391 * Melting temperature

poisson 0.27

matep = 3 * VascoMax 300 slipper

106 JO USER

AJO = 2.1 e10 * A

BJO = 0.124 e10 * B

CJO = 0.03 * C

MJO = 0.8 * m

111 NJO = 0.3737 * n

TJO = 0.145202 * Melting temperature

poisson 0.283
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matep = 4 * platinum simulated sled mass

116 poisson 0.2

yield 10e10

* SLI 2 3

121 endepdata

**********************************************

* diatom input set

**********************************************

126 diatom

block 1

package ’1080 steel rail’

material 2

131 numsub 100

temperature = 2.55935e-2 * eV = 74.93F = 297 K

velocity 0.0, 0.0

insert box

p1 0 0

136 p2 850e-4 200e-4

endinsert

delete circle

center 700e-4 200e-4

radius 6e-4

141 enddelete

insert circle

center 700e-4 200e-4

radius 6e-4

endinsert

146 endpackage

package ’slipper ’

material 3

numsub 100

151 temperature = 0.0184558

velocity = 1000e2 , -0.50e2

insert box

p1 0.0 200e-4

p2 694e-4 325e-4

156 endinsert

delete box

p1 692e-4 200e-4

p2 694e-4 202e-4

enddelete

161 delete circle

center 692e-4 202e-4

radius 2e-4

enddelete

insert circle

166 center 692e-4 202e-4
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radius 2e-4

endinsert

endpackage

171 endblock

enddiatom

**********************************************

* tracer input set

176 **********************************************

tracer

add 0.06755 , 0.01905 to 0.07115 , 0.01905 n=37

add 0.06755 , 0.01915 to 0.07115 , 0.01915 n=37

add 0.06755 , 0.01925 to 0.07115 , 0.01925 n=37

181 add 0.06755 , 0.01935 to 0.07115 , 0.01935 n=37

add 0.06755 , 0.01945 to 0.07115 , 0.01945 n=37

add 0.06755 , 0.01955 to 0.07115 , 0.01955 n=37

add 0.06755 , 0.01965 to 0.07115 , 0.01965 n=37

add 0.06755 , 0.01975 to 0.07115 , 0.01975 n=37

186 add 0.06755 , 0.01985 to 0.07115 , 0.01985 n=37

add 0.06755 , 0.01995 to 0.07115 , 0.01995 n=37

add 0.06755 , 0.02005 to 0.07115 , 0.02005 n=37

add 0.06755 , 0.02015 to 0.07115 , 0.02015 n=37

add 0.06755 , 0.02025 to 0.07115 , 0.02025 n=37

191 add 0.06755 , 0.02035 to 0.07115 , 0.02035 n=37

add 0.06755 , 0.02045 to 0.07115 , 0.02045 n=37

add 0.06755 , 0.02055 to 0.07115 , 0.02055 n=37

add 0.06755 , 0.02065 to 0.07115 , 0.02065 n=37

add 0.06755 , 0.02075 to 0.07115 , 0.02075 n=37

196 add 0.06755 , 0.02085 to 0.07115 , 0.02085 n=37

add 0.06755 , 0.02095 to 0.07115 , 0.02095 n=37

add 0.06755 , 0.02105 to 0.07115 , 0.02105 n=37

add 0.06755 , 0.02115 to 0.07115 , 0.02115 n=37

add 0.06755 , 0.02125 to 0.07115 , 0.02125 n=37

201 add 0.06755 , 0.02135 to 0.07115 , 0.02135 n=37

add 0.06755 , 0.02145 to 0.07115 , 0.02145 n=37

add 0.06755 , 0.02155 to 0.07115 , 0.02155 n=37

add 0.06755 , 0.02165 to 0.07115 , 0.02165 n=37

add 0.06755 , 0.02175 to 0.07115 , 0.02175 n=37

206 add 0.06755 , 0.02185 to 0.07115 , 0.02185 n=37

add 0.06755 , 0.02195 to 0.07115 , 0.02195 n=37

add 0.06755 , 0.02205 to 0.07115 , 0.02205 n=37

add 0.06755 , 0.02215 to 0.07115 , 0.02215 n=37

add 0.06755 , 0.02225 to 0.07115 , 0.02225 n=37

211 add 0.06755 , 0.02235 to 0.07115 , 0.02235 n=37

add 0.06755 , 0.02245 to 0.07115 , 0.02245 n=37

endtracer

216 **********************************************

* convection control input set

**********************************************
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Convct * enable convection of internal energy

convection = 1 * use slope of internal energy and mass ...

density , discard KE residual

221 interface = smyra * scheme for interface tracker

endconvct

**********************************************

226 * fracture input set

**********************************************

Fracts * enable fracture data (dynes/cm^2)

pressure

pfrac1 = -1.0e8 * fracture stress or pressure for nth ...

material

231 pfrac2 = -2.0e10

pfrac3 = -7.45e10

pfrac4 = -1.2e10

pfmix = -1.20e10 * fracture stress or pressure in a cell ...

with no void present

pfvoid = -1.20e10 * fracture stress or pressure in a cell ...

with a void present

236 endfracts

**********************************************

* edits input set

**********************************************

241 edit

exact

shortta * short edits based on time

time = 0.0 , dt = 6.60e-11

ends

246 longt * long edits based on time

time = 0.0e0 , dt = 6.60e-11

endl

plott * plot dumps based on time

time 0.0e-6 dtfrequency 6.60e-11

251 endp

histt * tracer history based on time

time 0.0e-6 dtfrequency 6.60e-11

htracer all

endhistt

256 ende

**********************************************

* boundary condition input set

**********************************************

261 * 0= symmetry

* 1= sound speed based absorbing

* 2= extrapolated pressure with no mass allowed to enter

* 3= extrapolated pressure but mass is allowed to enter

**********************************************

266
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boundary * enable boundary condition data

bhydro * enable hydrodynamic boundary ...

conditions

block 1

bxbot = 1 , bxtop = 2

271 bybot = 1 , bytop = 2

endb

endh

endb

276 * CSH: cleaned up to here ...

*heatconduction * enable heat conduction

* MAT1 TABLE = 3 * conductivity tables defined in ...

DEFTABLE list below

281 * MAT2 TABLE = 1

* MAT3 TABLE = 2

*endh

* DEFTABLE =1 * 1080 STEEL

286 *T(eV) k(erg/s/eV/cm)

* 1.4684e-3 4.7700 e10

* 1.0377e-2 4.8100 e10

* 1.9090e-2 4.5200 e10

* 2.7900e-2 4.1300 e10

291 * 3.6711e-2 3.8100 e10

* 4.5521e-2 3.5100 e10

* 5.4332e-2 3.2700 e10

* 6.3142e-2 3.0100 e10

* 7.1953e-2 2.4400 e10

296 * 8.9574e-2 2.6800 e10

* 1.1111e-1 3.0100 e10

* endd

* DEFTABLE =2 * VascoMax 300 Steel

301 *T(eV) k(erg/s/eV/cm)

* 3.6711e-3 2.4715 e10

* 1.4684e-2 2.7424 e10

* 2.9369e-2 2.9794 e10

* 3.9158e-2 3.0132 e10

306 * endd

* DEFTABLE =3 * Epoxy

*T(eV) k(erg/s/eV/cm)

* 3.6711e-3 6.5e8

311 * 1.4684e-2 6.5e8

* 2.9369e-2 6.5e8

* 3.9158e-2 6.5e8

* endd

316

95



*mindt * minimum allowable time step in mesh

* time = 0.0 dt = 6.60e-11

*endm

321 maxdt * maximum allowable time step in mesh

time = 0.0 dt = 6.60e-11

endm

326 * CSH: Attempt to get data for Spymaster

spy

PlotTime (0.0, 6.60e-11);

331 SaveTime (0.0, 6.60e-11);

Save("VOID ,VOLM ,M,P,XXDEV ,YYDEV ,XYDEV ,VX ,VY ,T,TK ,PM ,TM ,YLD ,Q3 ,J2P...

");

define main()

{

336 % pprintf (" PLOT: Cycle=%d, Time=%e\n",CYCLE ,TIME);

% XLimits (400e-4,725e-4);

% YLimits (175e-4,300e-4);

% Image (" Materials ");

% Window (0,0,0.75,1);

341 % Label(sprintf (" Materials at %6.2e seconds", TIME));

% Plot2DMats (0.3);

% ULabel ("Test: (cm)");

% Draw2DMesh (); % toggle on/off mesh

% MatColors(RED ,GREEN ,YELLOW ,NO_COLOR);

346 % MatNames (" Epoxy Coating " ,"1080 Steel Rail","VascoMax 300 ...

Slipper ","");

% DrawMatLegend ("" ,0.71 ,0.2 ,0.99 ,0.9);

% EndImage;

XLimits (650e-4,750e-4);

351 YLimits (150e-4,250e-4);

Image (" VonMisesStress ");

Window (0,0,0.75,1);

ColorMapRange (0 ,4000);

ColorMapClipping (OFF ,OFF);

356 Label(sprintf ("von Mises Stress at %6.2e seconds", TIME));

Plot2D ("J2P");

Draw2DMatContour ;

DrawColorMap (" vonMises Stress (MPa)", 0.7 ,0.4 ,0.9 ,0.9);

EndImage;

361

% XLimits (650e-4,750e-4);

% YLimits (150e-4,250e-4);

% Image (" PlasticStrainRate ");

% Window (0,0,0.75,1);

366 % ColorMapRange (1e6 ,1e15 ,LOG_MAP);
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% ColorMapClipping (OFF ,OFF);

% Label(sprintf (" Plastic Strain Rate at %6.2e seconds", TIME));

% Plot2D ("PSR");

% Draw2DMatContour ;

371 % DrawColorMap (" Plastic Strain Rate (1/ sec)", 0.7 ,0.4 ,0.9 ,0.9);

% EndImage;

XLimits (685e-4,715e-4);

YLimits (190e-4,215e-4);

376 Image (" Materials_small ");

Window (0,0,0.75,1);

Label(sprintf (" Materials at %6.2e seconds", TIME));

Plot2DMats (0.3);

Label( "Test Label: Distance (cm)" );

381 % Draw2DMesh (); % toggle on/off mesh

MatColors(NO_COLOR ,GREEN ,YELLOW ,NO_COLOR);

MatNames ("" ,"1080 Steel Rail","VascoMax 300 Slipper ","");

DrawMatLegend ("" ,0.71 ,0.2 ,0.99 ,0.9);

EndImage;

386

XLimits (650e-4,750e-4);

YLimits (150e-4,250e-4);

Image (" Pressure ");

Window (0,0,0.75,1);

391 ColorMapRange (1e6 ,2e11 ,LOG_MAP);

ColorMapClipping (OFF ,OFF);

Label(sprintf (" Pressure at %6.2e seconds", TIME));

Plot2D ("P");

Draw2DMatContour ;

396 DrawColorMap (" Pressure (dyne/cm^2)", 0.7 ,0.4 ,0.9 ,0.9);

EndImage;

}

401 SaveHis ("POSITION ,YLD ,Q3,PSR ,VOLM+3,P,XXDEV ,YYDEV ,XYDEV ,J2P");

% SaveHis ("POSITION ,YLD ,VOLM+3,P,XXDEV ,YYDEV ,XYDEV ");

% SaveHis ("POSITION ,Q3 ,PSR ,VOLM +3");

% SaveHis ("POSITION ,VOLM+3,DMG3");

SaveTracer(ALL);

406 HisTime (0 ,6.60e-11);

define spyhis_main ()

{

HisLoad (1," hscth");

411 Label("EFP Velocity (Tracer 1)");

TPlot("VY.1",1, AUTOSCALE);

}

endspy
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Appendix C. MATLAB Post Processing Code

C.1 CTH Data Extraction

Output data from CTH are stored a text file called ”hscth.” The output file is

comma-delimited, and is easily opened and converted to tab-delimited using Excel.

The ”hscth” file includes data pertaining to the CTH cycle number and current step

time. This is found in the second and third column. This data needs to be removed

before passing the file through the MATLAB post-processing file. The first three rows

of the ”hscth” file needs to be removed as well. These header rows give the titles for

each column and are unnecessary.

After the two columns and three rows are removed, the data set should consist

of columns containg data in this order: time, x-position, y-position, von Mises stress,

z-position, xy-stress deviator, yy-stress deviator, xx-stress deviator, material pressure

(hydrostatic stress), volume fraction of the slipper, plastic strain rate, and plastic

strain of the slipper. The default filename for this code is ”cthData.txt” but this can

be modified.

C.2 MATLAB Post Processing Code

%% CTH DATA POST PROCESS - PLANE STRAIN EVALUATION

% Stephen Meador - AFIT/GAE/ENY /10M-16

4 % Master ’s Student

% CTH Slipper Wear Post Process Code

% Written Sept 2009-Mar 2010

clear all; close all; clc

9

% HOW TO USE THIS POST -PROCESS FILE:

%{

This file is divided into several cells. The first cell clears ...

the

workspace and closes any open windows. This cell also has two ...

variables

14 that must be defined by the user: "aspRad" and "velocity ." aspRad...

is the

plane strain asperity radius with units of micrometers , and ...

velocity is the

collision velocity in meters per second.
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The second cell defines the poisson ’s ratio of the slipper ...

material and the

19 mesh size used for CTH simulations defined with units of ...

centimeters

squared. This code assumes a uniform CTH cell arrangement where ...

the cells

are all squares of equal size. This is important for calculating ...

damage

area later in the code. Additionally , the directory containing ...

the CTH

data is defined based on the simulation asperity radius and ...

slipper

24 velocity defined in the first cell.

The third cell imports the CTH data , and the fourth cell ...

categorizes as

individual arrays and matrices. The data should be organized such...

that

each row represents the data extracted for a given time step of ...

the CTH

29 simulation , and the columns are the data extracted from the CTH ...

tracer

points. The user should note the order in which the variables are...

arranged

by the xxxLoc variables in cell four.

Cell five calculates the sliding distance for a given simulation. ...

This

34 distance is assumed to be 110% of the asperity radius and is ...

calculated

based on the velocity and simulation time. The sixth cell ...

calculates the

ZZ -deviatoric stress based on the other deviatoric stresses output...

from

CTH. The seventh cell then converts all stress components to ...

Pascals.

39 The eighth cell evaluates the strain rates at every tracer point ...

during

the simulation. The Johnson -Cook constitutive model defines the ...

minimum

strain rate as 0.002 1/s, so any strain rate below this value is ...

reset.

Also , if any strain rate exceeds 10^17 1/s then the code ...

terminates

because the stress and strain curve fits have not been evaluated ...

for data

44 above this level.

Cells nine and ten evaluate the stress tensor components and ...

calculate the
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von Mises stresses , respectively. Cells eleven through fourteen ...

evaluate

the various failure criteria. And , finally , cell fifteen saves ...

the wear

49 rate data to text files.

%}

aspRad = 6; % microns

54 velocity = 700; % meters per second

VMcrit = 3.00e9;

Yo = 1.897e9;

SigHEL = 2.8664 e9;

59

tic

%% POISSON ’S RATIO , MESH SIZE ,

64 nu = 0.283; % Poisson ’s ratio of material

meshSize = 1.0e -4*1.0e-4; % Area of a single mesh cell in cm...

^2

if velocity < 100

69 newDirectory = [’Data /00’ num2str(velocity) ...

’mps/0’ num2str(aspRad) ’micron ’];

elseif velocity <1000

newDirectory = [’Data/0’ num2str(velocity) ...

’mps/0’ num2str(aspRad) ’micron ’];

74 else

newDirectory = [’Data/’ num2str(velocity) ...

’mps/0’ num2str(aspRad) ’micron ’];

end

79 cd(newDirectory)

disp(’ ’)

%% IMPORT DATA

84

dataFile = ’cthData.txt’;

data = load(dataFile);

89 disp(’Data Imported ...’)

%% CATEGORIZE DATA

time = data (:,1);

94

numCycles = length(time);
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numPoints = (size(data ,2) -1)/12;

xPoints = zeros(numCycles ,numPoints);

99 yPoints = zeros(numCycles ,numPoints);

pressureData = zeros(numCycles ,numPoints);

vonMisesData = zeros(numCycles ,numPoints);

xxdevData = zeros(numCycles ,numPoints);

yydevData = zeros(numCycles ,numPoints);

104 xydevData = zeros(numCycles ,numPoints);

vfData = zeros(numCycles ,numPoints);

srData = zeros(numCycles ,numPoints);

strainData = zeros(numCycles ,numPoints);

jcpData = zeros(numCycles ,numPoints);

109

xLoc = 2;

yLoc = 3;

vmLoc = 5;

xyLoc = 6;

114 yyLoc = 7;

xxLoc = 8;

pLoc = 9;

vfLoc = 10;

srLoc = 11;

119 sLoc = 12;

jcpLoc = 13;

for iter = 1: numPoints

xPoints(:,iter) = data(:,xLoc);

124 yPoints(:,iter) = data(:,yLoc);

pressureData (:,iter) = data(:,pLoc);

vonMisesData (:,iter) = data(:,vmLoc);

xxdevData(:,iter) = data(:,xxLoc);

yydevData(:,iter) = data(:,yyLoc);

129 xydevData(:,iter) = data(:,xyLoc);

vfData(:,iter) = data(:,vfLoc);

srData(:,iter) = data(:,srLoc);

strainData(:,iter) = data(:,sLoc);

jcpData(:,iter) = data(:,jcpLoc);

134

xLoc = xLoc + 12;

yLoc = yLoc + 12;

vmLoc = vmLoc + 12;

xyLoc = xyLoc + 12;

139 yyLoc = yyLoc + 12;

xxLoc = xxLoc + 12;

pLoc = pLoc + 12;

vfLoc = vfLoc + 12;

srLoc = srLoc + 12;

144 sLoc = sLoc + 12;

jcpLoc = jcpLoc + 12;

end
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disp(’Data Categorized ...’)

149

%% CALCULATE DISTANCE SLID

distanceSlid = velocity*time(end)*1000; % mm

154 disp(’Distance Slid Calculated ...’)

%% CALCULATE ZZDEV (GIVEN XXDEV , YYDEV , AND POISSON ’S RATIO)

zzdevData = (xxdevData+yydevData)*nu;

159

disp(’ZZ Deviator Calculated ...’)

%% CONVERT DATA TO Pa

164 pressureData = pressureData /10;

xxdevData = xxdevData /10;

yydevData = yydevData /10;

xydevData = xydevData /10;

zzdevData = zzdevData /10;

169 jcpData = jcpData /10;

vonMisesData = vonMisesData /10;

%% EVALUATE STRAIN RATES FOR ZEROS

174 for r = 1:size(srData ,1)

for c = 1:size(srData ,2)

if srData(r,c) <.002

srData(r,c) = .002;

end

179

if srData(r,c) >10e17

disp(’Temp:’),disp(temp)

disp(’H Vel:’),disp(velocity)

disp(’V Vel:’),disp(vVel)

184 disp(’Row:’),disp(r)

disp(’Col:’),disp(c)

disp(’Strain Rate’),disp(srData(r,c))

error(’Strain Rate Out of Range’)

end

189 end

end

%% EVALUATE STRAIN AT MAX STRESS FAILURE AREA

194

failureSMS = zeros(numCycles ,numPoints);

failureSumSMS = zeros(numCycles ,1);

199 A = 2.24700e-2;
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B = -5.5160e-2;

C = 6.04400e-3;

failureCritSMS = A*( srData .^B) + C;

204

for row =1:r

for col =1:c

if row >1 && failureSMS(row -1,col)==1

209 failureSMS(row ,col)=1;

end

if strainData(row ,col) >=failureCritSMS (row ,col)

214

failureSMS(row ,col)=1;

end

end

219 end

failureSMS = failureSMS .* vfData;

for iter = 1: length(failureSumSMS)

224 failureSumSMS(iter ,1) = sum(failureSMS(iter ,:));

end

damAreaSMS = failureSumSMS*meshSize;

229 WR_SMS = 100* damAreaSMS(end)/distanceSlid;

disp(’Strain at Max Stress Failure Mechanism Evaluated ...’)

%% Evaluate CTH J2P data

234

failureSumVMS = zeros(numCycles ,1);

VONMISESDATA = zeros(numCycles ,numPoints);

239 for row =1:r

for col =1:c

if row >1 && VONMISESDATA(row -1,col)==1

VONMISESDATA(row ,col)=1;

244

end

if row >1 && vonMisesData(row -1,col) >=VMcrit

249 VONMISESDATA(row ,col)=1;

end

end
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end

254 VonMisesFracData = VONMISESDATA .* vfData;

for iter = 1: length(failureSumVMS)

failureSumVMS(iter ,1) = sum(VonMisesFracData (iter ,:));

end

259

damAreaVMS = failureSumVMS*meshSize;

WR_VMS = 100* damAreaVMS(end)/distanceSlid;

264 disp(’VonMises Stress Failure Mechanism Evaluated ...’)

%% SAVE WEAR RATES TO .txt FILE

if velocity < 100

269 fileName = [’WearRates_00 ’ num2str(velocity) ...

’mps_0 ’ num2str(aspRad) ’micron.txt’];

elseif velocity <1000

fileName = [’WearRates_0 ’ num2str(velocity) ...

’mps_0 ’ num2str(aspRad) ’micron.txt’];

274 else

fileName = [’WearRates_ ’ num2str(velocity) ...

’mps_0 ’ num2str(aspRad) ’micron.txt’];

end

279 fid=fopen(fileName ,’wt’);

fprintf(fid ,’%6.5e\t%6.5e\t%6.5e\t%6.5e\t’ ,...

WR_SMS *8.29e-3,...

WR_VMS *8.29e-3);

fclose(fid);

284

disp(’Failure Data Saved ...’)

%% END PROGRAM

289 disp(’PROGRAM COMPLETE ...’)

toc

%% Plot Pressure Time Data for points @ (x,y) = (0.0692 ,0.0204)

294

Pressure (1: numCycles ,1) = pressureData (1:101 ,424) -pressureData...

(1 ,424);

figure

299 plot(time ,Pressure (1: numCycles ,1))

xlabel(’time (s)’)

ylabel(’Pressure (GPa)’)

title(’Pressure at (x,y) = (0.0692 ,0.0202) ’)
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grid on

105



Appendix D. MATLAB Code for Pressure Along a Diagonal

The MATLAB code presented in this appendix is used to plot the pressure along a

30◦ 45◦ and 60◦ diagonal from the point of contact between the slipper and asperity

with respect to the horizontal rail. The CTH input deck must be modified before the

MATLAB code can be used. The tracer input set, line 177 to line 213 of the example

CTH input deck in Appendix B, defines the initial locations of the data points. This

section must be modified to only include data points along the diagonals. Replacing

lines 177 to 213 with the following lines records data along the 30◦ diagonal. This

input deck must be run three times to record the data, with each run capturing one

diagonal. The asterisks at the begining of a line comments that line out of the input

deck. To capture data along the 45◦ diagonal, an asterisk needs to be added to line

2 to comment the 30◦ out, and the asterisk on line 6 should be removed. Removing

the asterisk on line 9 captures the data along the 60◦ diagonal.

D.1 Modified Tracer Input Set

tracer

* 30 degrees

add 693.4e-4, 200.6e-4 to 578.45e-4, 266.64e-4 n=500

4

* 45 degrees

* add 693.4e-4, 200.6e-4 to 600e-4, 294e-4 n=500

* 60 degrees

9 * add 693.4e-4, 200.6e-4 to 627.36e-4, 315.53e-4 n=500

endtracer

When the three simulations are finished, the first two columns and first three

rows need to be removed in Excel using the process outlined in Appendix C. The

MATLAB code plots the change in pressure along the three diagonals with respect

to distance for each time step. These images are used to determine the elastic-plastic

wave speed through the VascoMax 300 slipper in Section 4.4.

D.2 MATLAB Post Processing Code

clear all; close all; clc

%% VELOCITY TO PLOT
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5 velocity = 500;

angle = 45;

%% LOAD DATA

10

if velocity <100

datafile = [’00’ num2str(velocity) ’mps30degData.txt’];

elseif velocity <1000

datafile = [’0’ num2str(velocity) ’mps30degData.txt’];

15 else

datafile = [num2str(velocity) ’mps30degData.txt’];

end

data30 = load(datafile);

20

if velocity <100

datafile = [’00’ num2str(velocity) ’mps45degData.txt’];

elseif velocity <1000

datafile = [’0’ num2str(velocity) ’mps45degData.txt’];

25 else

datafile = [num2str(velocity) ’mps45degData.txt’];

end

data45 = load(datafile);

30

if velocity <100

datafile = [’00’ num2str(velocity) ’mps60degData.txt’];

elseif velocity <1000

datafile = [’0’ num2str(velocity) ’mps60degData.txt’];

35 else

datafile = [num2str(velocity) ’mps60degData.txt’];

end

data60 = load(datafile);

40

%% ORGANIZE 30 DEGREE DATA

time30 = data30 (:,1);

45 nCycles30 = size(data30 ,1);

nPoints30 = (size(data30 ,2) -1)/4;

xPos30 = 2;

yPos30 = 3;

50 zPos30 = 4;

pPos30 = 5;

xData30 = zeros(nCycles30 ,nPoints30);

yData30 = zeros(nCycles30 ,nPoints30);

55 zData30 = zeros(nCycles30 ,nPoints30);
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pData30 = zeros(nCycles30 ,nPoints30);

for iter = 1: nPoints30

xData30(:,iter) = data30(:,xPos30);

60 yData30(:,iter) = data30(:,yPos30);

zData30(:,iter) = data30(:,zPos30);

pData30(:,iter) = data30(:,pPos30);

xPos30 = xPos30 + 4;

65 yPos30 = yPos30 + 4;

zPos30 = zPos30 + 4;

pPos30 = pPos30 + 4;

end

70 %% ORGANIZE 45 DEGREE DATA

time45 = data45 (:,1);

nCycles45 = size(data45 ,1);

75 nPoints45 = (size(data45 ,2) -1)/4;

xPos45 = 2;

yPos45 = 3;

zPos45 = 4;

80 pPos45 = 5;

xData45 = zeros(nCycles45 ,nPoints45);

yData45 = zeros(nCycles45 ,nPoints45);

zData45 = zeros(nCycles45 ,nPoints45);

85 pData45 = zeros(nCycles45 ,nPoints45);

for iter = 1: nPoints45

xData45(:,iter) = data45(:,xPos45);

yData45(:,iter) = data45(:,yPos45);

90 zData45(:,iter) = data45(:,zPos45);

pData45(:,iter) = data45(:,pPos45);

xPos45 = xPos45 + 4;

yPos45 = yPos45 + 4;

95 zPos45 = zPos45 + 4;

pPos45 = pPos45 + 4;

end

%% ORGANIZE 60 DEGREE DATA

100

time60 = data60 (:,1);

nCycles60 = size(data60 ,1);

nPoints60 = (size(data60 ,2) -1)/4;

105

xPos60 = 2;

yPos60 = 3;
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zPos60 = 4;

pPos60 = 5;

110

xData60 = zeros(nCycles60 ,nPoints60);

yData60 = zeros(nCycles60 ,nPoints60);

zData60 = zeros(nCycles60 ,nPoints60);

pData60 = zeros(nCycles60 ,nPoints60);
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for iter = 1: nPoints60

xData60(:,iter) = data60(:,xPos60);

yData60(:,iter) = data60(:,yPos60);

zData60(:,iter) = data60(:,zPos60);

120 pData60(:,iter) = data60(:,pPos60);

xPos60 = xPos60 + 4;

yPos60 = yPos60 + 4;

zPos60 = zPos60 + 4;

125 pPos60 = pPos60 + 4;

end

%% CONVERT UNITS

130 pInt30 = mean(pData30 (1,:)); % Initial Pressure

pData30 = pData30 -pInt30; % Pressure Change

pData30 = pData30 /10; % Pa

135 pData30 = pData30 /10^9; % GPa

xData30 = xData30 *10^4; % microns

yData30 = yData30 *10^4; % microns

140 pInt45 = mean(pData45 (1,:)); % Initial Pressure

pData45 = pData45 -pInt45; % Pressure Change

pData45 = pData45 /10; % Pa

145 pData45 = pData45 /10^9; % GPa

xData45 = xData45 *10^4; % microns

yData45 = yData45 *10^4; % microns

150 pInt60 = mean(pData60 (1,:)); % Initial Pressure

pData60 = pData60 -pInt60; % Pressure Change

pData60 = pData60 /10; % Pa

155 pData60 = pData60 /10^9; % GPa

xData60 = xData60 *10^4; % microns

yData60 = yData60 *10^4; % microns
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160 %% DEFINE LENGTH

minX30 = min(xData30 (1,:));

maxX30 = max(xData30 (1,:));

minY30 = min(yData30 (1,:));

165 maxY30 = max(yData30 (1,:));

deltaX30 = maxX30 - minX30;

deltaY30 = maxY30 - minY30;

170 length30 = sqrt(deltaX30 ^2 + deltaY30 ^2);

tracerPoints30 = linspace (0,length30 ,nPoints30);

minX45 = min(xData45 (1,:));

175 maxX45 = max(xData45 (1,:));

minY45 = min(yData45 (1,:));

maxY45 = max(yData45 (1,:));

deltaX45 = maxX45 - minX45;

180 deltaY45 = maxY45 - minY45;

length45 = sqrt(deltaX45 ^2 + deltaY45 ^2);

tracerPoints45 = linspace (0,length45 ,nPoints45);

185

minX60 = min(xData60 (1,:));

maxX60 = max(xData60 (1,:));

minY60 = min(yData60 (1,:));

maxY60 = max(yData60 (1,:));

190

deltaX60 = maxX60 - minX60;

deltaY60 = maxY60 - minY60;

length60 = sqrt(deltaX60 ^2 + deltaY60 ^2);

195

tracerPoints60 = linspace (0,length60 ,nPoints60);

%% PLOT

200

figNum = 0;

plotTracers = 0;

205 if plotTracers

for index = 1%:100: nCycles

x = [500 693.4];

y30 = [200* tand (30) +200.6 200.6];

210 y45 = [200* tand (45) +200.6 200.6];

y60 = [200* tand (60) +200.6 200.6];
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testX = xData30(index ,:);

testY = yData30(index ,:);

215 testP = pData30(index ,:);

figNum = figNum + 1;

figure(figNum)

hold on

220 plot(testX ,testY ,’d’)

plot(x,y30 ,’k’)

plot(x,y45 ,’k’)

plot(x,y60 ,’k’)

axis(’square ’)

225 xLim ([500 700])

yLim ([200 400])

end

end

230

plotPressures = 1;

if plotPressures

for index = 1:1: min([ nCycles30 nCycles45 nCycles60 ])

235 titleText = sprintf(’%4.0f m/s | Pressure Change Along ...

Diagonal at %1.2e seconds ’,velocity ,time30(index));

p30 = pData30(index ,:);

p45 = pData45(index ,:);

p60 = pData60(index ,:);

240

figNum = figNum + 1;

figure(figNum)

subplot (1,7,[3 7])

hold on

245 plot(tracerPoints30 ,p30 ,’r’,’LineWidth ’ ,2)

plot(tracerPoints45 ,p45 ,’k’,’LineWidth ’ ,2)

plot(tracerPoints60 ,p60 ,’b’,’LineWidth ’ ,2)

% plot ([6 6],[-10 15],’r--’,’LineWidth ’,2)

xlim([min(min([ tracerPoints30 ; tracerPoints45 ; ...

tracerPoints60 ])) max(max([ tracerPoints30 ; ...

tracerPoints45 ; tracerPoints60 ]))])

250 ylim ([-15 15])

% title ({[ num2str(velocity) ’ m/s | Pressure Change Along ...

Diagonal at Time ’ num2str(time30(index)) ’ seconds ’]})

title(titleText)

xlabel(’Distance Along Diagonal (\mum)’)

ylabel(’\DeltaP (GPa)’)

255 grid on

legend(’30 deg’,’45 deg’,’60 deg’,’Location ’,’NorthEast ’)

subplot (1,7,1)

bar((index -1)/(min([ nCycles30 nCycles45 nCycles60 ]) -1)...

*100,’k’,’BarWidth ’ ,1)
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ylim ([0 100])

260 ylabel(’Percentage of Simulation Time Completed ’)

if index <10

if velocity <100

saveas(gcf ,[’00’ num2str(velocity) ’mps00’ num2str...

(index) ’.bmp’])

265 elseif velocity <1000

saveas(gcf ,[’0’ num2str(velocity) ’mps00 ’ num2str(...

index) ’.bmp’])

else

saveas(gcf ,[’0’ num2str(velocity) ’mps00 ’ num2str(...

index) ’.bmp’])

end

270 elseif index <100

if velocity <100

saveas(gcf ,[’00’ num2str(velocity) ’mps0’ num2str(...

index) ’.bmp’])

elseif velocity <1000

saveas(gcf ,[’0’ num2str(velocity) ’mps0’ num2str(...

index) ’.bmp’])

275 else

saveas(gcf ,[’0’ num2str(velocity) ’mps0’ num2str(...

index) ’.bmp’])

end

else

if velocity <100

280 saveas(gcf ,[’00’ num2str(velocity) ’mps’ num2str(...

index) ’.bmp’])

elseif velocity <1000

saveas(gcf ,[’0’ num2str(velocity) ’mps’ num2str(...

index) ’.bmp’])

else

saveas(gcf ,[’0’ num2str(velocity) ’mps’ num2str(...

index) ’.bmp’])

285 end

end

close(gcf)

290 end

end

figNum = figNum + 1;

figure(figNum)

295 plot(time30 ,pData30 (: ,114),’k’,’LineWidth ’ ,2)

xlim ([0 max(time30)])

ylim ([-15 15])

title(’Pressure at 30 \mum Along 30^{\ circ} Diagonal ’)

xlabel(’Time (s)’)

300 ylabel(’\DeltaP (GPa)’)
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figNum = figNum + 1;

figure(figNum)

plot(time30 ,pData30 (: ,227),’k’,’LineWidth ’ ,2)

305 xlim ([0 max(time30)])

ylim ([-15 15])

title(’Pressure at 60 \mum Along 30^{\ circ} Diagonal ’)

xlabel(’Time (s)’)

ylabel(’\DeltaP (GPa)’)

310

figNum = figNum + 1;

figure(figNum)

plot(time45 ,pData45 (: ,115),’k’,’LineWidth ’ ,2)

xlim ([0 max(time45)])

315 ylim ([-15 15])

title(’Pressure at 30 \mum Along 45^{\ circ} Diagonal ’)

xlabel(’Time (s)’)

ylabel(’\DeltaP (GPa)’)

320 figNum = figNum + 1;

figure(figNum)

plot(time45 ,pData45 (: ,229),’k’,’LineWidth ’ ,2)

xlim ([0 max(time45)])

ylim ([-15 15])

325 title(’Pressure at 60 \mum Along 45^{\ circ} Diagonal ’)

xlabel(’Time (s)’)

ylabel(’\DeltaP (GPa)’)

figNum = figNum + 1;

330 figure(figNum)

plot(time60 ,pData60 (: ,114),’k’,’LineWidth ’ ,2)

xlim ([0 max(time60)])

ylim ([-15 15])

title(’Pressure at 30 \mum Along 60^{\ circ} Diagonal ’)

335 xlabel(’Time (s)’)

ylabel(’\DeltaP (GPa)’)

figNum = figNum + 1;

figure(figNum)

340 plot(time60 ,pData60 (: ,227),’k’,’LineWidth ’ ,2)

xlim ([0 max(time60)])

ylim ([-15 15])

title(’Pressure at 60 \mum Along 60^{\ circ} Diagonal ’)

xlabel(’Time (s)’)

345 ylabel(’\DeltaP (GPa)’)
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