Feedbacks between Climate and Fire Emissions

Christine Wiedinmyer
National Center for Atmospheric Research

SERDP Partners in Environmental Technology
Technical Symposium & Workshop
November 29, 2011

Tech Session 1A:
Role of Fire in the Carbon Cycle under Climate Change
Feedbacks between Climate and Fire Emissions

Fires emit significant amounts of trace gases and particulate matter to the atmosphere. These emissions include greenhouse gases, such as CO2 and methane, reactive gases that include a suite of non-methane organic compounds, and various particulate species, including black and organic carbon. Quantifying these emissions and constraining our understanding of their impacts on the atmosphere continues to be an on-going challenge. Recent advances in measurement techniques, remote sensing observations and modeling tools have enabled much better constraints on these processes, yet, large uncertainties remain. There are feedbacks between the fire and climate systems that can control the emissions from fires. Further, once in the atmosphere, fire emissions not only impact atmospheric composition and air quality, but can also influence the climate system in various ways. For example, particulate matter emitted to the atmosphere from fires can have direct radiative effects that can influence local meteorology, as well as processes that control atmospheric chemistry. This talk will address the various emissions from fires to the atmosphere and their controls, including climatic controls. The impacts of fires on the climate system will also be highlighted and the results from recent studies presented.
FEEDBACKS BETWEEN CLIMATE AND FIRE EMISSIONS

DR. CHRISTINE WIEDINMYER
National Center for Atmospheric Research
3090 Center Green Drive
Boulder, CO 80301
(303) 497-1414
cristin@ucar.edu

Fires emit significant amounts of trace gases and particulate matter to the atmosphere. These emissions include greenhouse gases, such as CO$_2$ and methane, reactive gases that include a suite of non-methane organic compounds, and various particulate species, including black and organic carbon. Quantifying these emissions and constraining our understanding of their impacts on the atmosphere continues to be an on-going challenge. Recent advances in measurement techniques, remote sensing observations and modeling tools have enabled much better constraints on these processes, yet, large uncertainties remain. There are feedbacks between the fire and climate systems that can control the emissions from fires. Further, once in the atmosphere, fire emissions not only impact atmospheric composition and air quality, but can also influence the climate system in various ways. For example, particulate matter emitted to the atmosphere from fires can have direct radiative effects that can influence local meteorology, as well as processes that control atmospheric chemistry. This talk will address the various emissions from fires to the atmosphere and their controls, including climatic controls. The impacts of fires on the climate system will also be highlighted and the results from recent studies presented.
Radiative Forcing of Climate

1. Long-lived GHG emissions
2. Short-lived climate forcers: particles
3. Ozone production
4. Change in surface properties
Fires Impacts on the Climate System

1. Emission of long lived greenhouse gases
 - CO$_2$
 ~ 6-7 Pg CO$_2$ annually released to atmosphere from open burning
 - N$_2$O
 - CH$_4$
2007 Global CO₂ emissions

Total: 38 Pg CO₂

Carbon dioxide emissions are those stemming from the burning of fossil fuels and the manufacture of cement

Source: Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, Tennessee, U.S.
CO₂ Emissions from open fires across the U.S.

Note: temporal & spatial variability

Wiedinmyer and Neff, *CBM, 2007*

Black lines represent monthly CO₂ emissions from fossil fuel combustion (U.S. Energy Information Administration)
Fires Impacts on the Climate System

1. Emission of long lived greenhouse gases
 - CO$_2$
 - ~ 6-7 Pg CO$_2$ annually released to atmosphere from open burning
 - N$_2$O
 - CH$_4$

2. Direct emission of short-lived climate forcers
 - Black Carbon
 - Particulate organic matter

3. Production of tropospheric ozone and secondary organic particulate matter
<table>
<thead>
<tr>
<th>Emissions from Fires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Dioxide (CO₂)</td>
</tr>
<tr>
<td>Methane (CH₄)</td>
</tr>
<tr>
<td>Nitrous Oxide (N₂O)</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
</tr>
<tr>
<td>Acetylene (C₂H₂)</td>
</tr>
<tr>
<td>Ethylene (C₂H₄)</td>
</tr>
<tr>
<td>Ethane (C₂H₆)</td>
</tr>
<tr>
<td>Propadiene (C₃H₄)</td>
</tr>
<tr>
<td>Propylene (C₃H₆)</td>
</tr>
<tr>
<td>Propyne (C₃H₄)</td>
</tr>
<tr>
<td>Propane (C₃H₈)</td>
</tr>
<tr>
<td>n-Butane (C₄H₁₀)</td>
</tr>
<tr>
<td>1-Butene (C₄H₈)</td>
</tr>
<tr>
<td>1,3-Butadiene (C₄H₆)</td>
</tr>
<tr>
<td>n-Pentane (C₅H₁₂)</td>
</tr>
<tr>
<td>3-Methyl-1-Butene (C₅H₁₀)</td>
</tr>
<tr>
<td>Isoprene (C₅H₈)</td>
</tr>
<tr>
<td>Cyclopentane (C₅H₁₀)</td>
</tr>
<tr>
<td>n-Hexane (C₆H₁₄)</td>
</tr>
<tr>
<td>Heptane (C₇H₁₆)</td>
</tr>
<tr>
<td>Benzene (C₆H₆)</td>
</tr>
<tr>
<td>Toluene (C₆H₅CH₃)</td>
</tr>
<tr>
<td>Xylenes (C₇H₈)</td>
</tr>
<tr>
<td>Ethylbenzene (C₈H₁₀)</td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzene (C₉H₁₂)</td>
</tr>
<tr>
<td>α-Pinene (C₁₀H₁₈)</td>
</tr>
<tr>
<td>Ethanol (CH₃CH₂OH)</td>
</tr>
<tr>
<td>Methanol (CH₃OH)</td>
</tr>
<tr>
<td>Phenol (C₆H₅OH)</td>
</tr>
<tr>
<td>Formaldehyde (HCHO)</td>
</tr>
<tr>
<td>Glycolaldehyde (C₂H₄O₂)</td>
</tr>
<tr>
<td>Acetaldehyde (CH₃CHO)</td>
</tr>
<tr>
<td>Acrolein (C₃H₄O)</td>
</tr>
<tr>
<td>Furaldehydes</td>
</tr>
<tr>
<td>Propanal (C₃H₆O)</td>
</tr>
<tr>
<td>Acetone (C₃H₆O)</td>
</tr>
<tr>
<td>Methyl Vinyl Ether (C₃H₆O)</td>
</tr>
<tr>
<td>Methacrolein (C₄H₆O)</td>
</tr>
<tr>
<td>Crotonaldehyde (C₄H₆O)</td>
</tr>
<tr>
<td>2,3-Butanedione (C₄H₈O₂)</td>
</tr>
<tr>
<td>Furan (C₄H₄O)</td>
</tr>
<tr>
<td>3-Methylfuran (C₅H₆O)</td>
</tr>
<tr>
<td>Formic Acid (HCOOH)</td>
</tr>
<tr>
<td>Acetic Acid (CH₃COOH)</td>
</tr>
<tr>
<td>Methyl Bromide (CH₃Br)</td>
</tr>
<tr>
<td>Methyl Iodide (CH₃I)</td>
</tr>
<tr>
<td>Trichloromethane (CHCl₃)</td>
</tr>
<tr>
<td>Hydrogen Cyanide (HCN)</td>
</tr>
<tr>
<td>Methyl Nitrate (CH₃ONO₂)</td>
</tr>
<tr>
<td>Ethyl Nitrate (C₂H₅NO₃)</td>
</tr>
<tr>
<td>Ammonia (NH₃)</td>
</tr>
<tr>
<td>Hydrogen (H₂)</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
</tr>
<tr>
<td>Nitrous Acid (HONO)</td>
</tr>
<tr>
<td>Nitrogen Oxides (NOₓ as NO)</td>
</tr>
<tr>
<td>Total Particulate Carbon</td>
</tr>
<tr>
<td>Total Suspended Particulate (TSP)</td>
</tr>
<tr>
<td>PM₂.₅</td>
</tr>
<tr>
<td>PM₁₀</td>
</tr>
<tr>
<td>Black Carbon (BC)</td>
</tr>
<tr>
<td>Organic Carbon (OC)</td>
</tr>
<tr>
<td>Oxylate (C₂O₄)</td>
</tr>
<tr>
<td>Nitrate (NO₃)</td>
</tr>
<tr>
<td>Phosphate (PO₄)</td>
</tr>
<tr>
<td>Sulfate (SO₄)</td>
</tr>
<tr>
<td>Ammonium (NH₄)</td>
</tr>
<tr>
<td>Cl</td>
</tr>
<tr>
<td>Ca</td>
</tr>
<tr>
<td>Mg</td>
</tr>
<tr>
<td>Na</td>
</tr>
<tr>
<td>K</td>
</tr>
</tbody>
</table>
Global Trace Gas Emissions Estimates

NO₂

NMOC

CO

EDGARFT2000
Yan et al, GBC, 2005
Guenther et al., 1995; 2006; pers. comm.
GFEDv2 (van der Werf et al., 2006)
Andreae and Merlet, GBC, 2001

Yokelson et al., ACP, 2008
Global Particulate Matter Emissions

Andreae and Rosenfeld, *Earth Science Reviews*, 2008
Fine Particulate Matter (PM$_{2.5}$) Emissions from Fires in Western U.S.

Annual Anthropogenic PM$_{2.5}$ emissions for 2005
Atmospheric Impacts of Emissions

Trace Gases

Ozone
Violations in O$_3$ health standards in rural areas happened three times more likely because of pollution from the wildfires.
Particles:
- Black Carbon
- Organic Carbon
- Radiation
- Secondary Organic Particles

IN CCN

Precipitation

Particulate Matter

Particles:
- Black Carbon
- Organic Carbon

Trace Gases

Ozone
Radiative Forcing of Particulate Carbon

Total Black Carbon and Particulate Organic Matter Top of the Atmosphere (TOA) forcing

Bond et al., ACP, 2011
Regional Climate Feedbacks from Fires

Equatorial Asia

- Reduced Precipitation
 - Black Carbon Absorption →
 (a) Tropospheric Heating
 (b) Reduced latent heating
 - Biomass Burning Particulate Emissions
 - Reductions in Net Shortwave Radiation →
 (a) SST cooling
 (b) Land surface cooling

Tosca et al., ACP, 2010

During El Nino- drought and increased fire emissions
Regional Climate Feedbacks from Fires

INHIBIT PRECIPITATION

INCREASE # CLOUD DROPS

DECREASE IN DROP SIZE

INCREASE CCN

SMOKE

(e.g., Andreae et al., 2004; Rosenfeld 1999)
Use coupled weather-chemistry model to investigate the feedbacks between the fire emissions, weather, and chemistry.

Jiang, Wiedinmyer and Carlton, *in preparation*
Regional feedbacks to weather and chemistry

- Inclusion of fire particulate emissions:
 - Reduction in shortwave radiation
 - Reduction in surface temperature
 - Change in PBL height
 - Decreases in atmospheric water vapor mixing ratio
 - Change ozone concentrations

Fire emissions have regional climate impacts:
- Meteorology and chemistry
- Local and regional effects
- Short-lived impacts

Jiang, Wiedinmyer, and Carlton, in preparation
Fires Impacts on the Climate System

1. Emission of long lived greenhouse gases
 - CO_2
 - $\sim 6-7 \text{ Pg CO}_2$ annually released to atmosphere from open burning
 - N_2O
 - CH_4

2. Emission of short-lived climate forcers
 - Black Carbon
 - Particulate organic matter

3. Production of tropospheric ozone and secondary organic particulate matter

4. Changes in land surface properties
 - Black carbon on snow
 - Albedo
Radiative Forcing of Black Carbon on Snow

Bond et al., ACP, 2011
Fire impacts on climate: Land Cover Change

Post Fire Impacts:
- Surface temperature
- Vegetation production
- Albedo

Impact of fire disturbance on land surface energy and carbon balances. In the summer of 2002, the Biscuit Fire in Oregon destroyed 2000 km² of temperate evergreen forests (left). A Moderate Resolution Imaging Spectroradiometer (MODIS) satellite image taken on 28 July 2003 (middle) shows land surface radiometric temperatures of 46° to 50°C in the area burned the summer before, whereas temperatures in the adjacent unburned forests range from 27° to 32°C. Annual vegetation production measured from MODIS (4) (right) was 20 to 60% lower in the burned area in 2003 to 2004 than before the wildfire.

Concluding Remarks

- Emissions from open biomass burning are substantial – at global and regional scales

- Fires can have many impacts on the regional and global climate system
 - Highly non-linear
 - Impacts occur on various time scales

- Our range in understanding of the emissions and their feedbacks remains large
Acknowledgements

Bob Yokelson, Sheryl Akagi (University of Montana)
Gavin McMeeking (Colorado State University)
Matthew Hurteau (Penn State University)
Anthony Westerling (Univ. of California-Merced)
Annmarie Carlton (Rutgers University)
Xiaoyan Jiang (Los Alamos National Lab/NCAR)
Louisa Emmons, Gabi Pfister (NCAR)
Jason Neff (University of Colorado)
Carbon Emissions from fire

Source: Andreae and Merlet, GBC, 2001; IPCC, 2007; Bond et al., ACP, 2011
Aerosol effects

Scattering & absorption of radiation

Top of the atmosphere

Direct effects

Increased CDNC (constant LWC) (Twomey, 1974)

Drizzle suppression. Increased LWC

Indirect effect on ice clouds and contrails

Increased cloud height (Pincus & Baker, 1994)

Increased cloud lifetime (Albrecht, 1989)

Indirect effect

Increased cloud albedo effect

Surface

Increased cloud lifetime effect/2nd indirect effect/Albrecht effect

Cloud albedo effect/1st indirect effect/Twomey effect

Surface

Heating causes cloud burn-off (Ackerman et al., 2000)

Semi-direct effect

Figure 2.10. Schematic diagram showing the various radiative mechanisms associated with cloud effects that have been identified as significant in relation to aerosols (modified from Haywood and Boucher, 2000). The small black dots represent aerosol particles; the larger open circles cloud droplets. Straight lines represent the incident and reflected solar radiation, and wavy lines represent terrestrial radiation. The filled white circles indicate cloud droplet number concentration (CDNC). The unperturbed cloud contains larger cloud drops as only natural aerosols are available as cloud condensation nuclei, while the perturbed cloud contains a greater number of smaller cloud drops as both natural and anthropogenic aerosols are available as cloud condensation nuclei (CCN). The vertical grey dashes represent rainfall, and LWC refers to the liquid water content.
Radiative Forcing of Climate

Estimated contribution of fire associated with deforestation to changes in radiative forcing

Bowman et al., *Science*, 2009
Emissions from Fires: Global Warming Potential

Andreae and Merlet, GBC, 2001; IPCC, 2007; Bond et al., ACP, 2011
Models to Predict Emissions from Fires

• Fire-Specific Models
 – Biscuit Fire (Campbell et al., 2007)

• Regional Models
 – North America (Wiedinmyer et al., AE, 2006)
 – Asia (Song et al., ERL, 2010)
 – Western Africa (Liousse et al., 2010)
 – Western U.S. (Urbanski, ACPD, 2011)

• Global Models
 – GFED (van der Werf et al., AC&P, 2010)
 – FINN (Wiedinmyer et al., GMD, 2011)
Estimating Emissions from Fires

\[\text{Emission}_i = f(e f_i, \text{Biomass Burned}) \]

Emission Factor
- Vegetation
 - Type
 - Condition
- Fire
 - Intensity

Biomass Burned
- Vegetation
 - Type
 - Condition
 - Density
 - Loading
- Fire
 - Intensity
 - Duration
Global Emissions from Open Biomass Burning

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO_2</td>
<td>7590</td>
<td>7723</td>
<td>7275</td>
<td>6433</td>
<td>6886</td>
</tr>
<tr>
<td>CH_4</td>
<td>18</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>CO</td>
<td>375</td>
<td>400</td>
<td>372</td>
<td>330</td>
<td>347</td>
</tr>
<tr>
<td>NMOC</td>
<td>81</td>
<td>92</td>
<td>81</td>
<td>71</td>
<td>75</td>
</tr>
<tr>
<td>NO</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>SO_2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>OC</td>
<td>23</td>
<td>24</td>
<td>23</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>BC</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

* Emissions in Tg year$^{-1}$

Wiedinmyer et al., *GMD*, 2011