REPORT DOCUMENTATION PAGE

1. REPORT DATE
11-30-2011

2. REPORT TYPE
Final Technical

3. DATES COVERED (From - To)
11-19-2010 to 11-30-2011

4. TITLE AND SUBTITLE
Final Technical Status Report for DOTC-10-01-INIT524; Prototype Reactive Armor Fabrication (David Earl Cain Consulting)

5a. CONTRACT NUMBER
2011-304

5b. GRANT NUMBER
na

5c. PROGRAM ELEMENT NUMBER
na

5d. PROJECT NUMBER
na

5e. TASK NUMBER
All

5f. WORK UNIT NUMBER
na

6. AUTHOR(S)
David Cain

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
David Earl Cain Consulting

8. PERFORMING ORGANIZATION REPORT NUMBER
11302011

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DOTC Representatives: Erinn McCarthy & Josiah Fay
RDAR-MEM-L
Building 65 South,
Picatinny Arsenal, NJ 07806
josia.w.fay@army.mil
973 724 4074

10. SPONSOR/MONITOR'S ACRONYM(S)
DOTC

11. SPONSOR/MONITOR'S REPORT NUMBER(S)
na

12. DISTRIBUTION / AVAILABILITY STATEMENT
No limit on distribution. Contact Josiah Fay.

13. SUPPLEMENTARY NOTES
none

14. ABSTRACT
Development of mfg technology, materials, and production of composite armor, including: (6) C Kits, (1) B Kit, (1) upper and lower objective set was successfully complete.

15. SUBJECT TERMS
Armor

16. SECURITY CLASSIFICATION OF:
U

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
6

19. NAME OF RESPONSIBLE PERSON
Josiah Fay

20. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18
Final Technical Status Report

for

DOTC-10-01-INIT524; Prototype Reactive Armor Fabrication (David Earl Cain Consulting)

Initiative No. 2011-304

Reporting Period: 11 19 2010 – 11 30 2011

Ordnance Technology Initiative Team

NWEC CMF Representative:

Mica R. Dolan, Sr. Contracts Manager

Initiative Team Technical POC

DOTC Representatives:

Agreements Officer Representative (AOR):
Erinn McCarthy
RDAR-MEM-L
Building 65 South
Picatinny Arsenal, NJ 07806
Phone: (973) 724-2709
Email: erinn.h.mccarthy@us.army.mil

Alternate AOR:
Josiah Fay
RDAR-MEM-L
Building 65 South
Picatinny Arsenal, NJ 07806
Phone: (973) 724-4074
Email: Josiah.w.fay@us.army.mil

Ordnance Technology Initiative Recipient’s Representatives:

Technical & Contractual Representative:
David Cain
2228 Cotton Blvd.
New Braunfels Texas 78130
Phone: (281) 787-0269
Email: dcain71@yahoo.com

Submitted: 11 30 2011
1. Comments on Technical/Cost/Schedule Performance
Development of mfg technology, materials, and production of composite armor, including: (6) C Kits, (1) B Kit, (1) upper and lower objective set was successfully complete.

Objective Amor Upper and Lower Units

Production of half rails and (180) dummy cassettes was completed.

Production of LORA and Tile Housing Weldments was completed.
Initiative Quad Chart

DOTC-10-01-INIT524; Prototype Reactive Armor Fabrication

<table>
<thead>
<tr>
<th>Goals & Objectives</th>
<th>Initiative Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milestones: 1a.1, 1a.2, 1b.1, 1b.2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 13a, 14, 15a, 15b, 16, 17, 18, 19a, 20 are complete</td>
<td>Initiative Lead: David Cain</td>
</tr>
<tr>
<td>All Reports</td>
<td>Team Members: David Cain</td>
</tr>
</tbody>
</table>

Period of Performance: Start to 12 30 2011

Funding: $548,206

<table>
<thead>
<tr>
<th>Milestones & Technical Achievements</th>
<th>Implementation & Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 2010: Kickoff Meeting</td>
<td>Schedule: 12 30 2011</td>
</tr>
<tr>
<td>Jan 2011: Manufacturing Methods & Material Supplier Documentation</td>
<td>Status: On schedule</td>
</tr>
<tr>
<td>Feb 2011 Fabrication method for tiles</td>
<td>Testing of Spectra Shield based Armor Tiles</td>
</tr>
<tr>
<td>Mar-Nov 2011 Manufacturing</td>
<td></td>
</tr>
</tbody>
</table>

Current Status Legend:
- Green = Good/On Budget
- Yellow = Minor Weakness/Known Risk
- Red = Major Weakness/Critical
- Delta: ▲ = upgrade from last assessment; ▼ = downgrade from last assessment; ◊ = no change

Supplemental Information

3.1 Technical Achievements

Spectra-shield based composite armor and metallic fabrications are complete. No technical issues.
Milestone Status:

<table>
<thead>
<tr>
<th>MS #</th>
<th>Deliverable</th>
<th>Due Date</th>
<th>Received</th>
<th>% Complete</th>
<th>Cumulative % Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a.1</td>
<td>Phase 1: Tile Prototype Hardware manufacturing method panel</td>
<td>15-Feb-11</td>
<td>21-Mar-11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1a.2</td>
<td>Phase 1: Tile Prototype hardware</td>
<td>30-Mar-11</td>
<td>21-Mar-11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1b.1</td>
<td>Phase 2: Tile prototype hardware based on changes required on outcome from milestone 1a.2</td>
<td>30-Apr-11</td>
<td>11-Apr-11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1b.2</td>
<td>Phase 2: Tile prototype hardware based on changes required on outcome from milestone 1a.2</td>
<td>31-May-11</td>
<td>11-Apr-11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Technical Interchange Meeting (TIM)</td>
<td>15-Dec-11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Monthly Report</td>
<td>20-Jan-11</td>
<td>21-Mar-11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>Task 2 Technical Report</td>
<td>31-May-11</td>
<td>11-Apr-11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>Monthly Report</td>
<td>20-Feb-11</td>
<td>21-Mar-11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>TIM</td>
<td>15-Dec-11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Task 3 Final Technical Report Summary for Phase 1</td>
<td>15-Dec-11</td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>Quarterly Technical and Business Status Report</td>
<td>20-Mar-11</td>
<td>21-Mar-11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>Quarterly Technical and Business Status Report</td>
<td>20-Jun-11</td>
<td>21-Jun-11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>Monthly Report</td>
<td>25-May-11</td>
<td>30-Jun-11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>Phase 3: Task 1: Identify material and sources</td>
<td>15-Dec-11</td>
<td>22-Nov-11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>13</td>
<td>Phase 3: Amor component Prototype manufacturing method sample</td>
<td>15-Jun-11</td>
<td>29-Jun-11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>13A</td>
<td>Phase 3: Amor component Prototype manufacturing method sample</td>
<td>15-Dec-11</td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>14</td>
<td>Phase 3: prototype Armor component based on changes required on outcome from milestone 8a.2</td>
<td>30-Jun-11</td>
<td>29-Jun-11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>15a</td>
<td>Phase 3: prototype Armor components based on changes required on outcome from milestone 8a.3</td>
<td>15-Jul-11</td>
<td>17-Aug-11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>15b</td>
<td>Phase 3: prototype Armor components based on changes required on outcome from milestone 8a.3</td>
<td>15-Dec-11</td>
<td>22-Nov-11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>16</td>
<td>Monthly Report</td>
<td>25-Jul-11</td>
<td>29-Aug-11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>17</td>
<td>Phase 3: prototype Armor components based on changes required on outcome from milestone 8a.3</td>
<td>30-Jul-11</td>
<td>29-Jun-11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>18</td>
<td>Monthly Report</td>
<td>25-Aug-11</td>
<td>29-Aug-11</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>19a</td>
<td>Phase 3: prototype Armor components based on changes required on outcome from milestone 8b.2 – Part 1</td>
<td>15-Dec-11</td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>19b</td>
<td>Phase 3: prototype Armor components based on changes required on outcome from milestone 8b.2 – Part 2</td>
<td>15-Dec-11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Quarterly Technical and Business Status Report</td>
<td>20-Sep-11</td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>Final Technical and Business Status Report</td>
<td>30-Dec-11</td>
<td>22-Nov-11</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Technical Readiness Level Status:

Current Technology Readiness Level (TRL) is (8)

<table>
<thead>
<tr>
<th>Technology Readiness Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Basic principles observed and reported</td>
<td>Lowest level of technology readiness. Scientific research begins to be translated into applied research and development. Example might include paper studies of a technology's basic properties.</td>
</tr>
<tr>
<td>2. Technology concept and/or application formulated</td>
<td>Invention begins. Once basic principles are observed, practical applications can be invented. The application is speculative and there is no proof or detailed analysis to support the assumption. Examples are still limited to paper studies.</td>
</tr>
<tr>
<td>3. Analytical and experimental critical function and/or characteristic proof of concept</td>
<td>Active research and development is initiated. This includes analytical studies and laboratory studies to physically validate analytical predictions of separate elements of the technology. Examples include components that are not yet integrated or representative.</td>
</tr>
<tr>
<td>4. Component and/or breadboard validation in laboratory environment</td>
<td>Basic technological components are integrated to establish that the pieces will work together. This is "low fidelity" compared to the eventual system. Examples include integration of 'ad hoc' hardware in a laboratory.</td>
</tr>
<tr>
<td>5. Component and/or breadboard validation in relevant environment</td>
<td>Fidelity of breadboard technology increases significantly. The basic technological components are integrated with reasonably realistic supporting elements so that the technology can be tested in a simulated environment. Examples include 'high fidelity' laboratory integration of components.</td>
</tr>
<tr>
<td>6. System/subsystem model or prototype demonstration in a relevant environment</td>
<td>Representative model or prototype system, which is well beyond the breadboard tested for TRL 5, is tested in a relevant environment. Represents a major step up in a technology's demonstrated readiness. Examples include testing a prototype in a high fidelity laboratory environment or in simulated operational environment.</td>
</tr>
<tr>
<td>7. System prototype demonstration in an operational environment</td>
<td>Prototype near or at planned operational system. Represents a major step up from TRL 6, requiring the demonstration of an actual system prototype in an operational environment, such as in an aircraft, vehicle or space. Examples include testing the prototype in a test bed aircraft.</td>
</tr>
<tr>
<td>8. Actual system completed and 'flight qualified' through test and demonstration</td>
<td>Technology has been proven to work in its final form and under expected conditions. In almost all cases, this TRL represents the end of true system development. Examples include developmental test and evaluation of the system in its intended weapon system to determine if it meets design specifications.</td>
</tr>
</tbody>
</table>

3.2 Problems Encountered and Action Taken

- Changes to the initiative objective or schedule. none
- Technical problems and approach to correct. Epoxy bonding of tiles at elevated temperature may cause tile deformation, room temperature bonding has been qualified with 24 hour cure required.
- Schedule problems and approach to correct. none
- Risks identified and mitigation plans. Water-jet cutting method is limited to either edge cutting or cutting that starts from a predrilled hole. The predrilled hole must be cut with a coring type drill, intended for paper cutting. Traditional drilling creates a separation of the tile composite sheets. Water-jet plunge cutting also creates separation of the tile composite sheets. Actual material slips some at Honeywell during press operations and some edge waste is created.

3.3 Technology Transfer
- none

3.4 Plans for Next Quarter
- Complete

Thank you

David Cain, DEC Consulting,