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1. Introduction

In 1880 Pierre and Jacques Curie experimentally demonstrated the direct piezoelectricity effect in
which a mechanical load generates an electric charge. In 1881 Lippman (1), based on
thermodynamic considerations, postulated the inverse effect, where an electric field generates a
mechanical response. His prediction was subsequently confirmed by the Curies. Voigt presented
the first general thermodynamic theory of piezoelectricity during the 1890–1894 time frame (2).
Since then, various theories of linear piezoelectricity have arisen based upon assumptions
concerning both deformation and the material constitutive response. The majority of these
theories begin with linear elasticity and the assumption of a symmetric stress tensor (3). Some
researchers have tried to reformulate the governing equations in terms of a Cosserat continuum
(4). Additional simplifying assumptions are subsequently used to develop equations relevant for
plates, shells, and beams (5–7).

The behavior of piezoelectric materials in non-structural applications has been investigated
extensively. However, these investigations almost exclusively employ linear constitutive
relations. For example, piezoelectricity is undergoing a resurgence in both fundamental research
and technical applications (8–12). However, investigations in the nonlinear basic theory for
piezoelectricity have been limited. Nelson (13), Toupin (14), and Tiersten (15, 16) studied the
nonlinear theory of dielectrics. Norwood et al. (17) and Kulkami and Hanagud (18) used a
Neo-Hookean constitutive relation to model the response of piezoelectric ceramics. Pai et al.
(19) considered the dependence of the piezoelectric strain parameters upon the strain in
formulating a plate theory of piezoelectric laminates. Joshi (20) considered the nonlinear
constitutive relations for piezoelectric materials, where a concise expression was given. Tiersten
(21) investigated the nonlinear problems of thin plates subjected to large driving voltages.
Recently, Patel et al. used finite element techniques to solve a particular form of the nonlinear
piezoelectric equations with a nonlinear stress-strain relationship but linear electrostatics (22).
However, they assume that the effects of the nonlinear constitutive can be neglected and only
include nonlinear strain effects. Based on the theory of invariants, from invariant polynomial
constitutive relations, Yang and Batra (23) investigated the second-order theory for piezoelectric
materials with symmetry class 6mm and class mm2. Feng et al. (24), using results from Kiral
and Eringen (25), developed the relations for symmetry classes 6mm and 3m including both
nonlinear stress-strain and electrostatic constitutive relations.
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In this report, we present the Feng et al. (24) equations in a form suitable for numerical solution.
These equations are then specialized for one dimensional (1-D) use. Numerical solutions are
verified by comparison with exact solutions of the linear piezoelectric equations obtained using
Laplace transform techniques. Finally, the response of the full nonlinear equations to both step
pressure and step voltage boundary conditions are examined.

2. Finite Deformation Piezoelectricity

The aforementioned theories are typically obtained by formulating the equations of
piezoelectricity starting with principles from continuum mechanics. This approach provides a
general formulation with a clearer understanding of the restrictions on deformation and material
constitutive response imposed upon the resulting governing equations. The equations of motion,
in the current (Eulerian) configuration, can be written as (26)

Tkl,k + ρbl = ρül , (1)

where ρ is the material density, bl is the body force, ül is the particle acceleration, and Tkl is the
total stress. Lowercase Latin subscripts indicate quantities that refer to the current configuration
while uppercase Latin subscripts indicate quantities that refer to the reference configuration with
subscripts ranging from 1–3. Partial differentiation is denoted by a comma before the index. In
equation 1, symmetry of the stress tensor is not required although we include it in the following.
Additionally, there are no assumptions concerning the form of the constitutive relationships.
Including mechanical and electromagnetic forces, the total stress, Tkl, can be written as (23)

Tkl = TC
kl + ϵ0ÊkÊl −

1

2
ϵ0ÊmÊmδkl . (2)

TC is the Cauchy stress and the remaining terms are the Maxwell stress expressed in the current
configuration (27), where ϵ0 is the electric permittivity of free space, Ê is the electric field, and δkl

is the Kronecker delta.

The equations of motion in the reference (Lagrangian) configuration are obtained from equation
1. The equivalence of the divergence in different reference frames is given by

(Gkl),k =
1

J
(JF−1

KkGkl),K , (3)

where G is an arbitrary second rank tensor, FkK ≡ xk,K is the deformation gradient, and
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J = det(F ). Cauchy stress, TC
kl , is written in terms of the second Piola-Kirchoff stress, TKL as

TC
kl =

1

J
xk,KTKLxl,L =

1

J
FkKTKLFlL . (4)

The electric field and electric displacement transformations are given by (28)

Êk = XK,kEK = F−1
KkEK (5)

D̂k =
1

J
xk,KDK =

1

J
FkKDK (6)

where E and D are the electric field and the electric displacement in the reference configuration,
respectively, and Ê and D̂ are the fields in the current configuration.

The appropriate transformation for the polarization, P̂k, has been the subject of debate (29, 30).
Several commonly used transformation are shown in table 1. Yang and Batra (31) used a set of
transformations that are very different from the traditionally accepted forms, including the
transformation for the electric field. Dorfmann and Ogden (29) used a form that is more
commonly accepted. Their rationale for the form of the transformation for the polarization is that
the form can be selected so as to simplify mathematical manipulation of the equations. Clayton
(30) selected a form of the transformation for the polarization based on this premise. As shown
by Lax and Nelson (28), the forms of the transformations for all the field variables, including
polarization, are not arbitrary. The appropriate transformation for the polarization is determined
by consideration of conservation of charge, which leads to

P̂k =
1

J
xk,KΠK =

1

J
FkKΠK (7)

where P̂ and Π are the polarization in the current and reference configurations, respectively.

Table 1. Transformation relations.

Author Electric Electric Polarization
Displacement Field

Yang/Batra (31) DA = JF−1
Aa D̂a EA = JF−1

Aa Êa ΠA = JF−1
Aa P̂a

Dorfmann/Ogden (29) DA = JF−1
Aa D̂a EA = FaAÊa ΠA = JF−1

Aa P̂a

Clayton (30) DA = JF−1
Aa D̂a EA = FaAÊa ΠA = FaAP̂a

Lax/Nelson (28) DA = JF−1
Aa D̂a EA = FaAÊa ΠA = JF−1

Aa P̂a

3



Using the relations F−1
Kk ≡ XK,k, Jρ = ρ0, where ρ0 is the density referred to the reference

configuration with equations 3–7, the equation of motion in the Lagrangrian frame can finally be
written

(TKLxl,L),K + (JF−1
Kk(ϵ0F

−1
MkF

−1
Nl −

1

2
ϵ0F

−1
MmF

−1
Nmδkl)EMEN),K + ρ0bl = ρ0ül . (8)

Equation 8 represents the balance of forces acting on a volume of material. There are 12
unknowns, 6 stress components, 3 electric field components, and 3 displacements. The
additional equations required for a consistent formulation are obtained from the governing
equations relating the electric field components and the piezoelectric constitutive laws.

The governing equations relating the electric field components are obtained by starting with
Gauss’s law with no free charges,

(D̂k),k = 0 , (9)

where D̂ is the electric displacement. Then, using the constitutive relationship D̂k = ϵ0Êk + P̂k,
equation 9 becomes

(ϵ0JF
−1
KkF

−1
MkEM +ΠK),K = 0 . (10)

The Euler-Piola-Jacobi identity (32), (JF−1
Kk),K = 0, is used to simplify equation 10 to

(ΠK),K + ϵ0JF
−1
Kk(F

−1
MkEM),K = 0 . (11)

Equations 8 and 11 are the equations of motion and Gauss’s law in the reference configuration.
Closed-form solutions to the full equations given by equations 8 and 11 do not appear feasible.

A standard approach for solving these equations is the use of numerical methods. For instance,
the Galerkin method is often applied in finite element methods. Another approach is to reduce
the equations to one dimension and seek exact solutions. As shown below, we will illustrate both
of the approaches. Accordingly, we first express the governing equations, 8 and 11, in their
corresponding weak forms. Then, we reduce the equations to their 1-D representations. Finally,
we can also obtain solutions to these equations in one dimension using Laplace transform
techniques, assuming that the displacements are infinitesimal and that the piezoelectric
constitutive relations are linear. We then can compare solutions to the full equations expressed in
the weak form with the 1-D exact solutions.
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3. Weak Form Expressions

The weak form of the governing equations is obtained using Galerkin’s method (33). Applying
this technique to equations 8 and 11 leads to (34)

−
∫
Ω0

(TKLxl,L + (JF−1
Kk(ϵ0F

−1
MkF

−1
Nl −

1

2
ϵ0F

−1
MmF

−1
Nmδkl)EMEN))vl,KdΩ0 +

∫
Ω0

ρ0blvldΩ0

−
∫
Ω0

ρ0ülvldΩ0 +

∫
Γ0

(TKLxl,L + (JF−1
Kk(ϵ0F

−1
MkF

−1
Nl −

1

2
ϵ0F

−1
MmF

−1
Nmδkl)EMEN))nKvldΓ0

−
∫
Ω0

(ΠK + ϵ0JF
−1
Kk(F

−1
MkEM))Φ,KdΩ0 +

∫
Γ0

(ΠK + ϵ0JF
−1
Kk(F

−1
MkEM))nKΦdΓ0 = 0 (12)

where vl and Φ are arbitrary displacement and scalar electric potential test functions, respectively,
Ω0 is the domain of the reference configuration with boundary Γ0, and nK is the outward normal
on the boundary. Assuming the response is magnetostatic, the electric field, E, can be expressed
as the gradient of Φ

E = −∇Φ . (13)

The variational statement can therefore be written

−
∫
Ω0

(TKLxl,L + (JF−1
Kk(ϵ0F

−1
MkF

−1
Nl −

1

2
ϵ0F

−1
MmF

−1
Nmδkl)Φ,MΦ,N))vl,KdΩ0 +

∫
Ω0

ρ0blvldΩ0

−
∫
Ω0

ρ0ülvldΩ0 +

∫
Γ0

(TKLxl,L + (JF−1
Kk(ϵ0F

−1
MkF

−1
Nl −

1

2
ϵ0F

−1
MmF

−1
Nmδkl)Φ,MΦ,N))nKvldΓ0

−
∫
Ω0

(ΠK − ϵ0JF
−1
Kk(F

−1
MkΦ,M))Φ,KdΩ0 +

∫
Γ0

(ΠK − ϵ0JF
−1
Kk(F

−1
MkΦ,M))nKΦdΓ0 = 0 .

(14)

For small electric fields, equation 14 reduces to

−
∫
Ω0

TKLxl,Lvl,KdΩ0 +

∫
Ω0

ρ0blvldΩ0 −
∫
Ω0

ρ0ülvldΩ0 −
∫
Ω0

ΠKΦ,KdΩ0

+

∫
Γ0

TKLxl,LnKvldΓ0 +

∫
Γ0

ΠKnKΦdΓ0 = 0 . (15)

The solution of these equations is obtained by minimizing each equation with respect to each test
function.
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To complete the equations, TKL and ΠK are related to the strains and the electric field by
appropriate constitutive relations. These relations are obtained from

TKL =
∂Σ

∂ΓKL

(16)

ΠK =
∂Σ

∂EK

. (17)

where Σ is the free energy density function. Expressions for Σ are lengthy. Feng et al. (35),
and Kiral and Eringen (25) provide explicit expressions. In one dimension, these expressions
reduce to

T = cEΓ− eE +
1

2
CΓ2 − 1

2
QE2 − gΓE , (18)

Π = eΓ + ϵE +
1

2
gΓ2 +

1

2
ηE2 +QΓE (19)

where cE is the second-order elastic stiffness coefficient, e is the piezoelectric coupling
coefficient, ϵ is the dielectric permittivity, C is the third-order elastic coefficient, Q is
electrostrictive coefficient, g is the third-order piezoelectric coupling coefficient, and η is the
third-order dielectric permittivity. Γ is the finite strain measure. The components of Γ are given
by

ΓIJ =
1

2
(
∂uI

∂XJ

+
∂uJ

∂XI

+
∂uK

∂XI

∂uK

∂XJ

) , (20)

which in one dimension reduces to

Γ =
∂u

∂Z
+

1

2
(
∂u

∂Z
)2 . (21)

Consequently, with deformation restricted to one dimension and neglecting the Maxwell stress
and body force terms, the final weak form expression is given by∫ l

0

(−T (1 + u,Z )v,Z −ΠΦ,Z +ρ0üv)dX +Tx,Z v |l0 +ΠΦ |l0 = 0 . (22)

Numerical solutions of equation 22 were obtained using the COMSOL Multiphysics analysis
software (36). The generalized α method was employed as the time dependent solver. As this
solver is only A-stable, it exhibits spurious high frequency ringing when subjected to a step
loading (37). To address this issue, artificial Rayleigh damping was incorporated by adding an
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additional weak term in the form (38)

dR = −
∫

νRc
E ∂v

∂x
[
∂

∂t

∂u

∂x
]dX (23)

to the left-hand side of equation 22, where νR is an adjustable parameter used to minimize the
oscillations in the solution.

4. Laplace Transform Solutions

Solutions of equation 22 can be verified by comparison with solutions to the strong form of the
equations that are either exact solutions or solutions obtained by a different numerical technique.
When considering the deformations in equations 8 and 11 to be infinitesimal and the electric
fields to be small, and neglecting body forces, it is possible to obtain solutions that can be
considered exact for all practical purposes using Laplace transform techniques. With the
assumptions given, equation 8 reduces to the standard wave equation

ρ
d2u

dt2
=

dσx

dx
(24)

In equation 24 and the following, we express all equations in the more commonly found partial
derivative forms rather than indicial notation. The 1-D constitutive equations for a linear
piezoelectric material can be written as (39)

σx = cD
du

dx
− hDx, (25)

Ex = −h
du

dx
+Dx/ε, (26)

where σx is the stress in newtons/m2, cD is Young’s modulus (at constant electric displacement) in
newtons/m2, u is the particle displacement in meters, Dx is the electric flux density in the
x-direction in coul/m2, ε is the permittivity in farads/m, h is a piezoelectric constant in V/m, and
Ex is the x-component of the electric field in V/m (N/coul). This form of the constitutive
relationship is more amenable to analytic solutions than other equivalent forms of the
piezoelectric constitutive relationships. However, the use of different constitutive relations
requires determination of the appropriate transformations relating the constitutive coefficients. In
equations 25 and 26, cD = cE + eh and h = e/ϵ. These transformations are discussed in
appendix B.

7



Substitution of equation 25 into equation 24 gives,

d2u

dt2
=

cD

ρ

d2u

dx2
− hρ

dDx

dx
. (27)

Assuming plane wave propagation, and that there is no free charge inside the piezoelectric
medium, Gauss’s Law, given by equation 9, reduces to

dDx

dx
= 0, (28)

Consequently, equation 27 again reduces to the 1-D wave equation for isotropic elastic
(nonpiezoelectric) media and can be written as

d2u

dt2
=

cD

ρ

d2u

dx2
. (29)

4.1 1-D Plane Wave Solutions

In this section, we find solutions to equation 29 with linear constitutive equations given by
equations 25 and 26 for the boundary conditions listed in table 2. Figure 1 depicts the location
and orientation of the boundary conditions. The solutions are obtained by assuming the
displacements u in the piezoelectric medium can be expressed as D’Alembert functions, e.g.,

u(x, t) = F2(t− x/c) + F1(t+ x/c) (30)

where c =
√
cD/ρ.

Table 2. Boundary conditions.

Location Step Voltage Resonance Step Pressure

x = 0 ϕ = H(t), T = 0 ϕ = 0, T = sin(ωt) ϕ = 0, T = T0H(t)

x = l ϕ = 0, T = 0 ϕ = 0, T = 0 ϕ = 0, u = 0

Using the fact that L[f(t− τ)H(t− τ)] = e−sτF (s) t > 0, Laplace transform of equation 30
gives

L[u(x, t)] = ū(x, s) = e
−sx
c F̄2(s) + e

sx
c F̄1(s) . (31)

8



Figure 1. 1-D boundary value problem.

Substitution of the spatial derivative of equation 30 into equation 25 yields,

σx + hDx =
cD

c
[−F ′

2(t− x/c) + F ′
1(t+ x/c)] . (32)

To find the potential across a plate of thickness, l, integrate equation 26:

V (t) =

l∫
0

Ex(x, t)dx, (33)

or
V (t) = −h[u(l)− u(0)] + lDx(t)/ε, (34)

where the quantity u(l)− u(0) represents the relative motion of the plate surfaces. Letting
σx = σ(x, t), Dx(t) = D(t) and taking the Laplace transform of equation 32 gives

σ̄(x, s) + hD̄ =
cD

c
[−se

−sx
c F̄2(s) + se

sx
c F̄1(s)]. (35)

Laplace transform of the stress-free boundary at 0, σ̄(0, s) = 0 results in

hD̄ =
cD

c
[−sF̄2(s) + sF̄1(s)] (36)

and of the stress-free boundary at l, σ̄(l, s) = 0 results in

hD̄ =
cD

c
[−se

−sl
c F̄2(s) + se

sl
c F̄1(s)]. (37)

9



Simultaneous solution of equations 36 and 37 gives

F̄2(s) = −e
sl
c F̄1(s). (38)

Taking the Laplace transform of equation 34 and substitution of equation 31 gives

V̄ (s) = −h[e
−sl
c F̄2(s) + e

sl
c F̄1(s)− F̄2(s)− F̄1(s)] + lD̄/ε, (39)

or
V̄ (s) = h[F̄2(s)(1− e

−sl
c ) + F̄1(s)(1− e

sl
c )] + lD̄/ε. (40)

Substitution of equation 38 into equation 36 yields

F2(s) =
−chD̄e

sl
c

cDs(1 + e
sl
c )

, (41)

or

F1(s) =
chD̄

cDs(1 + e
sl
c )

(42)

Substitution of equations 41 and 42 into equation 40 results in an expression for the Laplace
transformed potential:

V̄ (s) = D̄

(
l

ϵ
−

2ch2 tanh
(
sl
2c

)
Ms

)
(43)

For a step voltage input applied to a stress free plate, V (t) = V0H(t) and V̄ (s) = V0/s. Also
I(t) = dQ(t)/dt = dD(t)/dt, so Ī = sQ̄ = sD̄. The Laplace transformed current can be written
as

Ī(s) = sQ̄(s) = sD̄(s) =
scDϵV0

cDsl − 2ch2ϵ tanh
(
ls
2c

) (44)

Also, from equation 35, we have on rearrangement

σ̄(x, s) =
cD

c
[−se

−sx
c F̄2(s) + se

sx
c F̄1(s)]− hD̄. (45)

Substitution of equations 41 through 43 into equation 45 results in the Laplace transformed
stresses:

σ̄(x, s) =
2hcDϵ sinh

(
s(l−x)

2c

)
sinh

(
sx
2c

)
V0

2ch2ϵ sinh
(
ls
2c

)
− cDsl cosh

(
ls
2c

) . (46)

The time domain solutions are found by numerical inversion of the Laplace transform using the
Dubner-Abate-Crump (DAC) algorithm described by Crump (40). The effects of Gibbs’
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phenomena are mitigated using the so-called Lanczos σ-factors with 2048 terms and a tolerance
equal to 10−4 (43). Following similar procedures, the Laplace transformed stresses for the
response to a sinusoidal voltage and a step pressure are given by

σ̄(x, s) =
(2sωhcDϵV0sinh(

s(l−x)
(2c)

)sinh( sx
(2c)

))

(s2 + ω2)(−lcDscosh( ls
(2c)

)) + (2ch2ϵsinh( ls
(2c)

))
(47)

and

σ̄(x, s) =
(lcDscosh( sx

c
)− ch2ϵsinh( ls

c
))P0

lcDs2cosh( ls
c
)− ch2sϵsinh( ls

c
)

(48)

4.2 Plane Waves in a Free-free Bi-material Plate

Finally, we can also obtain solutions for a bi-material plate (figure 2) using Laplace transforms.
Assuming that the displacements in materials 1 and 2 are given by u1 and u2, respectively, we can
write

u1(x, t) = F2(t− x/c1) + F1(t+ x/c1)

u2(x, t) = F4(t− x/c2) + F3(t+ x/c2).

(49)

Figure 2. Two-layer boundary value problem.
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Substitution of the spatial derivatives of equation 49 into equation 25 yields,

σ1(x, t) = cD1
du1

dx
− h1D1 =

cD1
c1
[−F ′

2(t− x/c1] + F ′
1(t+ x/c1]− h1D1

σ2(x, t) = cD2
du2

dx
− h2D2 =

cD2
c2
[−F ′

4(t− x/c2] + F ′
3(t+ x/c2]− h2D2.

(50)

Taking Laplace transforms of the stress and displacement boundary conditions with reference to
the coordinate system shown in figure 2, together with the assumption that there are no free
charges in the dielectrics, i.e.,

(
D⃗1 − D⃗2

)
· n̂ = 0, and D1(s) = D2(s) = D(s), permits

determination of the unknown functions F1, F2, F3, and F4, in equations 49 via

σ̄1(l1, s) = σ̄2(l1, s)

ū1(l1, s) = ū2(l1, s)

σ̄1(0, s) = 0

σ̄2(l, s) = 0,

(51)

or

cD1
c1
[−se

−l1
c1 F̄2(s) + se

l1
c1 F̄1(s)]− h1D̄(s) =

cD2
c2
[−se

−l1
c2 F̄4(s) + se

l1
c2 F̄3(s)]− h2D̄(s)

e
−l1
c1 F̄2(s) + e

l1
c1 F̄1(s) = e

−l1
c2 F̄4(s) + e

l1
c2 F̄3(s)

cD1
c1
[−sF̄2(s) + sF̄1(s)]− h1D̄(s) = 0

cD2
c2
[−se

−l
c2 F̄4(s) + se

l
c2 F̄3(s)]− h2D̄(s) = 0 .

(52)

Since the piezoelectric layers are arranged in series, the total potential can be written as that for
capacitors in series via V (t) = V1(t) + V2(t), where,

V1(t) =
l1∫
0

Ex(x, t)dx

V2(t) =
l∫

l1

Ex(x, t)dx .

(53)

Substitution of equation 26 into equations 53, integrating and then Laplace transforming the
result, allows determination of the unknown time-varying function D(t), which appears in

12



equations 50 as was done in equation 44. Prescribing a voltage boundary condition V (t) allows
determination of the voltages via

V̄1(s) = −h1[e
−l1
c1 F̄2(s) + e

l1
c1 F̄1(s)− F̄2(s)− F̄1(s)] + l1D̄(s)/ε1

V̄2(s) = −h2[e
−l
c2 F̄4(s) + e

l
c2 F̄3(s)− e

−l1
c2 F̄4(s)− e

−l1
c2 F̄3(s)] + lD̄(s)/ε2 − l1D̄(s)/ε2 .

(54)

Finally, the expressions for F1, F2, F3, F4 and D(s) can be used to obtain the solutions for
σ1(x, s) and σ2(x, s). These solutions are provided in appendix A, equations A-1 and A-2.

5. Material Properties

From equations 18 and 19, it is seen that eight material properties are required for the nonlinear
constitutive law. Three of these coefficients are the typical elastic moduli, a; piezoelectric
coupling term, e; and the dielectric constant, ϵ. Extensive literature can be found documenting
these material properties. For example, values for alpha-quartz at low temperatures have even
been measured (41), although the authors do note that even in the case of quartz, inconsistent
values for the elastic and piezoelectric constants are often reported.

The remaining five coefficients are less readily available with even more uncertainty concerning
the accuracy of reported values. Davison and Graham (42) present third-order elastic coefficients
for several materials. However, they only have third-order piezoelectric constants for lithium
niobate, and quartz. These constants can also be estimated, with appropriate assumptions, using
pressure derivatives as discussed by Clayton (30), if such data are available. While this approach
could be used, for the purposes of this report, it is sufficient to recognize that when the response is
restricted to one dimension that the distinction between different crystal classes is not relevant.
Accordingly, the coefficients of X-cut quartz for which these properties have been experimentally
determined have been used. The properties are shown in table 3. The linear values are also
shown. Both quartz and lead zirconate titanate (PZT) were used in verifying the numerical
implementation by comparing the predicted response with exact solutions to the linear equations.
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Table 3. Material properties for quartz and PZT.

Material Name Quartz(42) PZT(36)

Present D&G Value

Elastic stiffness (GPa) cE CE
33 86.736 115.41

Piezoelectric coupling (C/m2) e e33 0.171 15.08

Dielectric constant (ε0) ε εη33 4.40 663.2

Third-order elastic (GPa) C CE
333 −300.0

Third-order piezoelectric (ε0 m/V) g 1
2eijklm −1.31

Electrostrictive (ε0 F/m) Q f333 −4.40

Third-order dielectric (F/V) η εη333 O(−3.5× 10−17)

Density (kg/m3) ρ 2651 7500

6. Results

The solution of equation 22 was verified by comparing with exact solutions obtained by using a
modified DAC algorithm for numerically inverting the Laplace transform (43) of the linear
piezoelectric equations for a simple disk of unit cross-sectional area and unit thickness.

Chen and Davison presented results for the nonlinear response of a piezoelectric material (44).
They present results where the material properties remains elastic and nonconducting.
Consequently, the nonlinearity they discuss is one of finite deformation, not material nonlinearity.

In this report, we present exact transient solutions (in the sense of a Laplace transform solution)
for linear elastic piezoelectric media. Yang presents results for a similar problem but restricted to
harmonic response (45). Redwood also solves for the transient response using Laplace transform
techniques, though the discussion is mostly limited to qualitative results (46).

The poling direction was aligned with the axial direction of the disk. In the first verification, a
short circuit solution was obtained for a step voltage with the boundary conditions listed in table
2. The voltage drop was 1 V across the thickness, t. In the second verification, an oscillatory
pressure boundary condition was applied. The frequency, ω, was chosen to be close to the axial
resonance frequency of the disk.
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Figures 3 and 4 show COMSOL numerical results to a step voltage for PZT-4 and quartz,
respectively. Figure 3 shows the stress response at the location x = L/2 for PZT-4. It is seen
that the analytic solution obtained via the modified DAC techniques and the weak form solution
compare very favorably. Also, the response shown agrees qualitatively with experimental results
obtained by Stuetzer (47) for PZT-4. The effect of adding artificial damping is clearly evident as
the Rayleigh damping completely eliminates the spurious oscillations. Similarly, the modified
DAC algorithm and COMSOL numerical results for the response of a quartz disk subjected to a
unit step voltage are in excellent agreement (figure 4). In the case of quartz, however, the
numerical oscillations due to the solver response to step loadings is more pronounced. While the
inclusion of the numerical damping completely eliminates these oscillations, there is a loss of
accuracy at the step transitions as a larger value of the damping parameter νR was required to
fully damp the solver oscillations.
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Figure 3. Transient stress history (at x=2.15 mm) in a
4.3-mm-thick PZT-4 disk subjected to a Heaviside step
voltage.
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Figure 4. Transient stress history (at x=2.15 mm) in a
4.3-mm-thick quartz disk subjected to a Heaviside step
voltage.

The numerical solution was also verified by comparing the resonance response (figure 5). As
sinusoidal loading is reasonably smooth, solver oscillations are not induced. It is seen that the
numerical and analytical solutions are again in excellent agreement. The effect of the numerical
damping is also clearly seen in the reduction in the peak stresses of each loading cycle. Finally,
the computed response of a bi-layered piezoelectric media was compared with the Laplace
transform solution. The solution was compared at two locations, l/4 (figure 6) and 3l/4 (figure
7), which correspond to the midpoints of the PZT and quartz layers, respectively. It is seen that
the response is much more complicated due to internal wave reflections due to the impedance
mismatch between the materials. As a consequence, the numerical solution exhibits pronounced
ringing effects. It is not possible to reduce this ringing behavior without significant loss of
accuracy in the overall response.
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Figure 5. Resonance response (at x=2.15 mm) in a 4.3-mm-thick
quartz disk subjected to an harmonic voltage. ω = 666
kHz.
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Figure 6. PZT response (x=L/4) in a unit thick PZT-quartz disk
subjected to a step voltage.
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Figure 7. Quartz response (x=3L/4) in a unit thick PZT-quartz
disk subjected to a step voltage.

With the numerical solution technique verified by comparison with solutions obtained with the
modified DAC algorithm solutions, several cases were studied corresponding to a step pressure
load applied at the x = 0 endpoint location. The boundary conditions are given the third column
of table 2. Results are shown in figure 8. The stress response is normalized in order to highlight
the effect of pressure on the response. The 1-GPa linear curve represents the exact solution of the
linear piezoelectricity equations to a 1-GPa step pressure. The numerical solution of the
nonlinear equations is indistinguishable for this load and is therefore not shown in figure 8. It is
seen that the 5-GPa compression result is also almost the same as the 1-GPa linear result. The
principal differences are that the normalized peak stress is approximately −2.25 compared with
the peak value of −2.0 for the linear result. The wave speed is nearly the same for these loads as
indicated by the coincidence of the step changes in the response as the stress wave reflects from
the boundaries. Similarly, the 5-GPa tension and 10-GPa compression curves also retain the
same basic form as the linear response. However, the wave speed for these two cases, while
different from the linear response, are the same. This indicates that the wave speed is not
symmetric with respect to the loading level. Furthermore, the wave speed is slower for the
10-GPa compressive load than the linear response. This is in contrast with the linear theory,
which predicts that the wave speed should increase with increasing compression load level. An
expression for the effective wave speed, c, can be obtained by substituting equations 18, 19, and
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21 into the 1-D form of equation of motion, equation 8. This leads to

c2 =
(cE + CΓ− gE)(1 + u,Z )2 + (aΓ− eE + 1

2
CΓ2 − 1

2
QE2 − gΓE)

ρ0
. (55)

If terms arising in equation 55 related to nonlinear affects are dropped, then the expression for c2

agrees with classical results (39). Figure 9 plots c2 normalized by the linear elastic bar velocity
versus the finite strain measure Γ. At Γ = 0, the wave speed is the same as classical elasticity.
For slightly compressive strains, Γ < −2.67%, the wave speed increases. However, for higher
strain levels, the wave speed decreases. Also, for large finite strains, in either compression or
tension, the wave speed is imaginary, which could represent the transition to standing waves.
Whether this is correct or simply represents a constraint on the range of validity of the theory is
currently being investigated.
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Figure 9. Normalized wave speed squared c2ρ/cE vs. finite
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7. Conclusions

A second-order theory for the behavior of piezoelectric materials has been presented. It has been
shown that the presented theory reduces to the same results as linear piezoelectricity for small
strains. The effects of the nonlinear terms have been shown by computing the response of quartz
to various levels of pressure, which are realistic for shock loading. In these cases, the theory
predicts that for large enough compressive or tensile pressures that the wave speed will decrease.
This is in contrast to linear piezoelectricity where the wave speed always increases with
increasing compressive stresses. Finally, the second-order theory predicts that governing
equations will change behavior at large absolute values of the finite strain. Whether this
represents a real phenomena or is simply a restriction on the range of applicability of the theory is
currently being investigated.
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Appendix A. Bi-material Solution

The Laplace transform solutions for the stresses in each layer of the bi-material slab are given by

σ1(x, s) = −
2ε1ε2M1M2V0A7e

− sx
c1

(
c2M1

(
h1A1A2A8 − h2e

s
2c1A6

2A9

)
− c1h1M2A3A10

)
A15 + A16 − A17 + A18

(A-1)

σ2(x, s) =
2ε1ε2M1M2V0A11e

− s(x+1)
c2

(
c2h2M1e

s
c2A4A12 + c1M2e

s
2c2

(
h1A2

2A13 − h2A5A6A14

))
A15 + A16 − A17 + A18

(A-2)
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where
A1 =

(
e

s
c2 + 1

)
A2 =

(
e

s
2c1 − 1

)
A3 =

(
e

s
c2 − 1

)
A4 =

(
e

s
c1 − 1

)
A5 =

(
e

s
c1 + 1

)
A6 =

(
e

s
2c2 − 1

)
A7 =

(
e

sx
c1 − 1

)
A8 =

(
e

sx
c1 − e

s
2c1

)
A9 =

(
e

sx
c1 + 1

)
A10 =

(
e

s
c1 − e

sx
c1

)
A11 =

(
e

s
c2 − e

sx
c2

)
A12 =

(
e

sx
c2 − 1

)
A13 =

(
e

sx
c2 + e

s
c2

)
A14 =

(
e

s
2c2 − e

sx
c2

)
A15 = 2c22ε1ε2h

2
2M

2
1A3A4

A16 = c2M2M1

(
4c1ε1ε2

(
h2
2A5A6

2 − h1h2A2
2A6

2 + h2
1A1A2

2
))

A17 = (ε1 + ε2)M1sA1A4)

A18 = c1M
2
2A3 (2c1ε1ε2h

2
1A4 − (ε1 + ε2)M1sA5)

(A-3)
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Appendix B. Linear Piezoelectric Constitutive Relations

The following forms of linear piezoelectric constitutive relationships are given by the IEEE

Standard on Peizoelectricity (48). There are four standard forms of the linear piezoelectric
constitutive laws. Written in tensor notation, these forms are

Tij = cEijklSkl − ekijEk

Di = eiklSkl + ϵSikEk

(B-1)

Tij = cDijklSkl − hkijDk

Ei = −hiklSkl + βS
ikDk

(B-2)

Sij = sEijklTkl − dkijEk

Di = diklTkl + ϵTikEk

(B-3)

Sij = sDijklTkl + gkijDk

Ei = −giklTkl + βT
ikDk

(B-4)

Using Voigt notation, the above relationships can be written as

Tp = cEpqSq − ekpEk

Di = eiqSq + ϵSikEk

(B-5)

Tp = cDpqSq − hkpDk

Ei = −hiqSq + βS
ikDk

(B-6)

Sp = sEpqTq − dkpEk

Di = diqTq + ϵTikEk

(B-7)

Sp = sDpqTq + gkpDk

Ei = −giqTq + βT
ikDk

(B-8)

where the ranges on the subscripts are i, k = 1, 2, 3 and p, q = 1, 2, 3, 4, 5, 6.

The relationship between the coefficients is found using equations B-5–B-8. In our results, the
relationship that is required is between the coefficients of the Stress-Charge form, equation B-5,
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and the Stress-Voltage form, equation B-6.

cDpq = cEpq + ekphkp

ekp = hipϵki
(B-9)

In one dimension, this reduces to
cD = cE + eh

h = e
ϵ

(B-10)
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ADELPHI MD 20783-1197

1 DIRECTOR
US ARMY RESEARCH LAB
RDRL D
2800 POWDER MILL RD
ADELPHI MD 20783-1197
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2 NSF
S MCKNIGHT
G PAULINO
4201 WILSON BLVD, STE 545
ARLINGTON, VA, 22230-0002

2 DARPA
W COBLENZ
J GOLDWASSER
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

1 DIRECTOR
US ARMY ARDEC
AMSRD AAR AEE W
E BAKER
BLDG 3022
PICATINNY ARSENAL NJ
07806-5000

2 US ARMY TARDEC
AMSTRA TR R MS 263
K BISHNOI
D TEMPLETON MS 263
WARREN MI 48397-5000

CD COMMANDER
US ARMY RSRCH OFC
RDRL ROI M
J LAVERY
PO BOX 12211
RESEARCH TRIANGLE PARK NC
27709-2211

1 COMMANDER
US ARMY RSRCH OFC
RDRL ROE M
D STEPP
PO BOX 12211
RESEARCH TRIANGLE PARK NC
27709-2211

6 NAVAL RESEARCH LAB
E R FRANCHI CODE 7100
M H ORR CODE 7120
J A BUCARO CODE 7130
G J ORRIS 7140
J S PERKINS CODE 7140
S A CHIN BING CODE 7180
4555 OVERLOOK AVE SW
WASHINGTON DC 20375

1 DTRA
M GILTRUD
8725 JOHN J KINGMAN RD
FORT BELVOIR VA 22060

1 ERDC
US ARMY CORPS OF ENGINEERS
USACEGSL
P PAPADOS
7701 TELEGRAPH RD
ALEXANDRIA VA 22315

1 AFOSR/NL
875 NORTH RANDOLPH ST
SUITE 325, RM 3112
F FAHROO
ARLINGTON VA 22203

1 CLEMSON UNIV
DEPT MECH ENGINEERS
M GRUJICIC
241 ENGRG INNOVATION BLDG
CLEMSON SC 29634-0921

1 UNIV OF CALIFORNIA
CTR OF EXCELLENCE FOR
ADV MATLS
S NEMAT NASSER
SAN DIEGO CA 92093-0416

3 DIRECTOR
LANL
P MAUDLIN
A ZUREK
F ADDESSIO
PO BOX 1663
LOS ALAMOS NM 87545

7 DIRECTOR
SANDIA NATL LABS
J BISHOP MS 0346
E S HERTEL JR MS 0382
W REINHART MS 1181
T VOGLER MS 1181
L CHHABILDAS MS 1811
M FURNISH MS 1168
M KIPP MS 0378
PO BOX 5800
ALBUQUERQUE NM 87185-0307
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1 DIRECTOR
LLNL
M J MURPHY
PO BOX 808
LIVERMORE CA 94550

3 CALTECH
M ORTIZ MS 105 50
G RAVICHANDRAN
T J AHRENS MS 252 21
1201 E CALIFORNIA BLVD
PASADENA CA 91125

5 SOUTHWEST RSRCH INST
C ANDERSON
K DANNEMANN
T HOLMQUIST
G JOHNSON
J WALKER
PO DRAWER 28510
SAN ANTONIO TX 78284

1 TEXAS A&M UNIV
DEPT OF MATHEMATICS
J WALTON
COLLEGE STATION TX 77843

1 UNIVERSITY OF MISSISSIPPI
DEPT OF MECH ENGRG
A M RAJENDRAN
201-B CARRIER HALL
UNIVERSITY, MS 38677

2 SRI INTERNATIONAL
D CURRAN
D SHOCKEY
333 RAVENSWOOD AVE
MENLO PARK CA 94025

1 VIRGINIA POLYTECHNIC INST
COLLEGE OF ENGRG
R BATRA
BLACKSBURG VA 24061-0219

7 UNIV OF NEBRASKA
DEPT OF ENGRG MECH
F BOBARU
Y DZENIS
G GOGOS
M NEGAHBAN
R FENG
J TURNER
Z ZHANG
LINCOLN NE 68588

1 JOHNS HOPKINS UNIV
DEPT OF MECH ENGRG
K T RAMESH
LATROBE 122
BALTIMORE MD 21218

1 WORCESTER POLYTECHNIC INST
MATHEMATICAL SCI
K LURIE
WORCESTER MA 01609

4 UNIV OF UTAH
DEPT OF MATH
A CHERKAEV
E CHERKAEV
E S FOLIAS
R BRANNON
SALT LAKE CITY UT 84112

1 PENN STATE UNIV
DEPT OF ENGRG SCI & MECH
F COSTANZO
UNIVERSITY PARK PA 168023

4 UNIV OF DELAWARE
DEPT OF MECH ENGRG
T BUCHANAN
T W CHOU
A KARLSSON
M SANTARE
126 SPENCER LAB
NEWARK DE 19716

1 UNIV OF DELAWARE
CTR FOR COMPST MATRLS
J GILLESPIE
NEWARK DE 19716

1 COMPUTATIONAL MECH
CONSULTANTS
J A ZUKAS
PO BOX 11314
BALTIMORE MD 21239-0314

1 LOUISIANA STATE UNIV
R LIPTON
304 LOCKETT HALL
BATON ROUGE LA 70803-4918

1 INST OF ADVANCED TECH
UNIV OF TX AUSTIN
S BLESS
3925 W BRAKER LN STE 400
AUSTIN TX 78759-5316
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1 APPLIED RSCH ASSOCIATES
D E GRADY
4300 SAN MATEO BLVD NE
STE A220
ALBUQUERQUE NM 87110

1 INTERNATIONAL RSRCH
ASSOC INC
D L ORPHAL
4450 BLACK AVE
PLEASANTON CA 94566

2 WASHINGTON ST UNIV
INST OF SHOCK PHYSICS
Y M GUPTA
J ASAY
PULLMAN WA 99164-2814

1 NORTHWESTERN UNIV
DEPT OF CIVIL & ENVIRON ENGRG
Z BAZANT
2145 SHERIDAN RD A135
EVANSTON IL 60208-3109

1 UNIV OF DAYTON
RSRCH INST
N S BRAR
300 COLLEGE PARK
MS SPC 1911
DAYTON OH 45469

2 TEXAS A&M UNIV
DEPT OF GEOPHYSICS MS 3115
F CHESTER
T GANGI
COLLEGE STATION TX 778431

1 UNIV OF SAN DIEGO
DEPT OF MATH & CMPTR SCI
A VELO
5998 ALCALA PARK
SAN DIEGO CA 92110

1 NATIONAL INST OF
STANDARDS & TECHLGY
BLDG & FIRE RSRCH LAB
J MAIN
100 BUREAU DR MS 8611
GAITHERSBURG MD 20899-8611

1 MIT
DEPT ARNTCS ASTRNTCS
R RADOVITZKY
77 MASSACHUSETTS AVE
CAMBRIDGE MA 02139

1 UNIV OF DELAWARE
DEPT ELECTRICAL & CMPTR ENGRG
D WEILE
NEWARK DE 19716

1 T W WRIGHT
4906 WILMSLOW RD
BALTIMORE MD 21210

1 UNIV OF TEXAS-PAN AMERICAN
COLLEGE OF ENGRG
& COMPUTER SCI
D H ALLEN
1201 WEST UNIVERSITY DR
EDINBURG, TX 78539-2999

3 RDRL D
C CHABALOWSKI
J CHANG
R SKAGGS
BLDG 205
2800 POWDER MILL RD
ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

85 DIR USARL
RDRL CIH C

J CAZAMIAS
P CHUNG
D GROVE
J KNAP

RDRL WM
B FORCH
S KARNA
J MCCAULEY
P PLOSTINS
M ZOLTOSKI

RDRL WML
D LYONS
J NEWILL

RDRL WML B
I BATYREV
S IZVYEKOV
B RICE
N WEINGARTEN

RDRL WML D
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P CONROY
M NUSCA

RDRL WML G
M BERMAN
W DRYSDALE

RDRL WML H
D SCHEFFLER
S SCHRAML
B SCHUSTER

RDRL WMM
J BEATTY
R DOWDING
J ZABINSKI

RDRL WMM A
J TZENG
E WETZEL

RDRL WMM B
T BOGETTI
B CHEESEMAN
C FOUNTZOULAS
G GAZONAS
D HOPKINS
P MOY
B POWERS
C RANDOW
T SANO
M VANLANDINGHAM
R WILDMAN
C F YEN

RDRL WMM C
J LA SCALA

RDRL WMM D
E CHIN
K CHO

RDRL WMM E
J ADAMS
M COLE
T JESSEN
J LASALVIA
P PATEL
J SANDS
J SINGH

RDRL WMM F
L KECSKES
H MAUPIN

RDRL WML G
J ANDZELM
A RAWLETT

RDRL WMP
P BAKER
S SCHOENFELD

RDRL WMP B
R BECKER
S BILYK
D CASEM
J CLAYTON
M GREENFIELD
C HOPPEL
R KRAFT
B LEAVY
M RAFTENBERG
S SATAPATHY
M SCHEIDLER
T WEERASOORIYA

RDRL WMP C
T BJERKE
S SEGLETES

RDRL WMP D
R DONEY
D KLEPONIS
J RUNYEON
B SCOTT
H MEYER

RDRL WMP E
M BURKINS
B LOVE

RDRL WMP F
M CHOWDHURY
A FRYDMAN
N GNIAZDOWSKI
R GUPTA

RDRL WMP G
N ELDREDGE
D KOOKER
S KUKUCK
G R PEHRSON
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