A Terminal Guidance Model for Smart Projectiles
Employing a Semi-Active Laser Seeker

by Luke S. Strohm

]
ARL-TR-5654 August 2011

Approved for public release; distribution is unlimited.

NOTICES
Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-5654 August 2011

A Terminal Guidance Model for Smart Projectiles
Employing a Semi-Active Laser Seeker

Luke S. Strohm
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
August 2011 Final 1 January 2010-31 March 2011
4. TITLE AND SUBTITLE 5a, CONTRACT NUMBER

A Terminal Guidance Model for Smart Projectiles Employing a Semi-Active Laser

Seeker 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Luke S. Strohm AHS80

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

U.S. Army Research Laboratory REPORT NUMBER

ATTN: RDRL-WML-A ARL-TR-5654

Aberdeen Proving Ground, MD 21005-5066

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes the development of a semi-active laser terminal guidance model. The C++ class implementation of the model,
sSalSeeker, can be executed stand-alone or be embedded into a larger guided projectile model. It was validated using the NVLaserD model
written by the Night Vision and Electronic Sensors Directorate of the Communications-Electronics Research, Development, and Engineering
Center.

The first objective of the model is to determine the laser power distribution at the seeker, accomplished by calculating the laser beam’s
transmission path and power loss. The beam is modeled stochastically through a set of rays forming a solid cone of the given divergence.
Each ray’s transmission path and power loss is calculated and its power is summed with the other rays’ contributions at the seeker. Ray
tracing is used to determine the ray-transmission paths from designator to target and target to seeker. The Beer-Lambert Law is used to
compute power loss due to atmospheric attenuation. Lambert’s Cosine Law and designator-seeker-target geometry are used to determine the
portion of power that the seeker receives after it reflects off of the target. The second objective is to convert the seeker power distribution into
projectile guidance signals. Guidance signals are calculated by dividing the power received in the pitching and yawing directions by the total
power received by the seeker. The guidance signals are not considered reliable unless the seeker power is above a signal-to-noise threshold.

15. SUBJECT TERMS
semi-active laser, terminal guidance, smart projectile, C++, stochastic model

16. SECURITY CLASSIFICATION OF: 13FLLNS;¢;§)CNT 1861UP“1%EERS 19a. NAME OF RESPONSIBLE PERSON
Luke S. Strohm

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)

Unclassified Unclassified Unclassified uu 82 410-278-6104

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

il

Contents

List of Figures \
List of Tables vi
Acknowledgments vii
1. Introduction 1
2. Model Setup 3
2.1 Global Coordinate SYSIEML.......c.cecvieriieiieiieeiiieeie et eseeereesee et esseesbeesaeeeaeessaesseessneans 3

2.2 Bodies (Designator, Target, SEEKer)cocevieririiniiiiiiiiieeeeceesecee e 3
2.2.1 DESIZNALOT ..eutiiiiieiieeitietie ettt ettt ettt e et et e et e st e et e e s bee e bt e sstesabeennteenneennee 3

2,22 TAIZEL. ettt et et ettt e et e et eeabee e 3

2.2.3 SCOKET .eeiiiiieetie ettt et e et e e et e e e e e e e be e e e beeeebeeenanaeenns 4

2.3 Body-Fixed Coordinate SYSIEMcccccviirieriiieiiieeiierieeeieesieeeieesteeteesaeeeaeeseneeseesaneens 5
2.3.1 Designator APPlICAtION.......ccueeruieeiieriieeiierie et eeee et see e e siee e e eseaesreesaeeenseees 6

2.3.2 Target APPLICAtION.....ccuieiuiiiiieiieeiieiie et este et ettt eteesteeebeessaesnbeesneeenseennes 7

2.3.3 Seeker APPLICATIONeiiiiieiiiieeiiee ettt ree e bee e eeenbee e 7

3. Laser Transmission Model 8
3.1 Stage 1: AtmoSpheric TranSmMISSION.cc.eereureeriureerireerieeerieeesreeeereeessreesseeesseeesneens 9
3.1.1 Beam DIVEIZEINCEoeeeueiiieiieeciieeeiie ettt et te e ettt e e ssae e snaeeesnsee e nneeennes 9

3012 ATEEIUALION ..ttt ettt ettt e ebe e ettt e i en 10

3.2 Stage 2: Target Reflectionccceiiiiiiiiiiiiiieciieie e 13
3.2.1 Ray Projection onto Target..........ccceevueeiieniieniieiiieie et 13

3.2.2 Surface RefleCtioncccueeiiiiiiiiiiiiieeie et 16

3.3 Stages 3 and 4: Atmospheric Transmission and Seeker Reception...........ccccceeveuveennnee. 16
3.3.1 Ray Projection INto S€EKeT..........ccoviiiiiiiiiiiieeieeeeeeeee e 16

3.3.2 Power Received by SEEKETeiviiiiiiiiieiieeeeeeeeeeee e 18

4. Seeker Guidance Model 20
4.1 Target Encounter and DEtect..........cceeveviiiiiiiieiiiieeeiee ettt 20

4.2 GUIAANCE UPAALES....eoiuiiiiiieiiieiieeie ettt ettt et e sttt esaeebeesaaeenbeesnaeeneeas 21

il

5. C++ Implementation

T B £4Y o1 LA VA Vg 1) (<l PSR
5.2 INPUL PATamMELETSveiiiiiiiiiieeiee ettt et et e et e et e et e e e e nnns

TN B O 1115/)13 L PSR RP

6. Validation

0.1 P OW T 0SS ettt e

T € 17) 11113 o SRR
6.2.1 Projectile FIy-IN.......cccoiiiiiiiiiiiiiceeee et e
6.2.2 OFf-ANGIE TESE c.vieeiieiieeiieieeeee ettt ettt e ebeesaeeesbeessaeenbeenane e
6.2.3 Target RoOtation TeSt.......ccccciiiiieiiiiiieeiie ettt e ees

7. Path Forward

8. References

Appendix A. Sample Input and Output
Appendix B. sSalSeeker Code
Appendix C. Utilities Code

Distribution List

v

22
22
23
25

25
25

27
27
28
30

32

34

35

39

67

71

List of Figures

Figure 1. SAL terminal GUIAAnCE.cccuiiruiiiiieiieeiieeie ettt et e ae e aae b e e 1
Figure 2. Rectangular parallelepiped target.cecuuieriuieeiiiieeiiie et 4
Figure 3. Body-fiXed COOTAINALES.c.eeeeeuiieiiiieeiieeciie ettt tae e s sae e aae e eeeeveeenns 5
Figure 4. Modified vector in body-fixed coordinates.cceevveeeiiieeiieeeiiee et 6
Figure 5. Calculation of individual ray VECLOTS.cccuieiiiiiieiiieiieeieecie et 7
Figure 6. Pitch and yaw axes of the seeker plane.cccoovveeiiiiniiiiiiiniieeeee e 8
Figure 7. Laser tranSmiSSION STAZES.cccveerureerueerieeitieniieeteentreenseessteaseessresseessaeasseesseesnseesssessesnsns 9
Figure 8. Gaussian beam with 1/e> beam diameter.co.cco.ovuvveriveeeereeseesresessesses s 10
Figure 9. Solid angle.cooueiiiiiiiiiie e 11
Figure 10. Solid angle calculation at different sections of beam.cccccoceeveiiiniininiininenne. 12
Figure 11. Ray tracing (target-centric X-y plane).........ccceecueeriieriiiniienieeiieeieeieeeee e seeeevee e ens 15
Figure 12. Specular vs. Lambertian reflection.cccoeeviieiiieniiiiniiiiieeiee e 16
Figure 13. Ray intersection with SEEKer plane.ccoeevvieviieriieiiieiiieiee e 18
Figure 14. Integration of radiant intensity over a hemisphere.cccocceiiiiiiiiiiiniiniiiiee 19
Figure 15. Target knowledge 1adder.coouiiiiiiiiiii e 20
Figure 16. Four-quadrant 1aser deteCtOr.couiiiuieiiiiiieiieeieee e 21
Figure 17. Comparison of 2-6 and 1-0 diVETZENCE.ccceveviiieiiiieiieeiee e evee e 26
Figure 18. Projectile fly-1n teSt.coiiiiiiiiieiiee ettt et e sree e eeree e 28
Figure 19. Off-angle teSt.cooviiiiieeiie ettt et e et e e e e e ree e sseeesnneeenns 29
Figure 20. Target rotation tESt......cc.eiuirtiriieierieeieeteett ettt ettt sttt et eaees 31
Figure 21. Extending the guidance basket.coceviiiiiiiiniiniiiieecee e 32
Figure A-1. Sample IPut fIle.ccoiiiiiiiiiii s 36
Figure A-2. Sample output flle.oooviiiiiiiiiieee e 37
Figure B-1. Lookup tables for 1.06- and 1.536-pm 1aSers.ccceeeviieeriiieniieeieeeieeeee e 52

List of Tables

Table 1. INPUL VATTADIES.c.eiiiiiiiiiiie ettt ettt et te et e bt seesbeesbaeesbeessseensaennaeans 23
Table 2. INPUL PATAMETIETS. ..eeoveeeiiieeeiieeiiieesteeesteeeseeeestreeeteeeesaeesssaeeaseeessaeessseeessseeessseeessseeanes 24
Table 3. The S SALSEEKER output fUnCtion.ccceeuieeiiiieeiiieeiee et eeieeeeveeesvee e 25
Table 4. Energy drop comparison between sSalSeeker and NVLaserD...........ccccceeeevvviviieennnens 26

Vi

Acknowledgments

Several colleagues from the U.S. Army Research Laboratory’s Weapons and Materials Research
Directorate contributed to the work described in this report. Dr. William Oberle and Mr. Richard
Pearson provided guidance and inspiration to the project, as well as editorial recommendations to
the report. Mr. Robert Yager offered key insights about the physics of laser transmissions, and
his advice on C++ programming was very helpful. Dr. Chase Munson provided expertise on
beam profiles and divergence. Mr. Andrew Thompson made connections with outside
laboratories, particularly the Communications-Electronics Research, Development, and
Engineering Center’s Night Vision and Electronic Sensors Directorate, whose model was used to
validate ours.

vil

INTENTIONALLY LEFT BLANK.

viil

1. Introduction

This report describes the development of a semi-active laser (SAL) terminal guidance model.
SAL guidance typically consists of a scout illuminating a target with short, high-energy laser
pulses in a near-infrared (IR) wavelength (figure 1). Some of the energy from each pulse reflects
off of the target and into the seeker’s multi-section IR detector. By comparing the power
measured in each section of the IR detector, the seeker approximates the location of the reflected
power within its field of view (FOV).” Using this information, the seeker returns control signals
to the projectile’s maneuver system to steer towards the target.

Figure 1. SAL terminal guidance.

In this model, the seeker is assumed to be inside the nose of the projectile.

1

The first objective of the model is to determine the laser power distribution at the seeker. This is
accomplished by calculating the laser beam’s transmission path and power loss. The beam is
modeled stochastically through a set of rays that form a solid cone of the given divergence. Each
ray’s transmission path and power loss is calculated, and its power is summed with the other
rays’ contributions at the seeker. Ray tracing determines ray transmission paths from designator
to target, and target to seeker. The Beer-Lambert Law is used to compute power loss due to
atmospheric attenuation. Lambert’s Cosine Law and designator-seeker-target geometry are used
to determine the portion of the power that the seeker receives after it reflects off of the target.

The second objective of the model is to convert the seeker power distribution into projectile
guidance signals. The guidance signals are calculated by dividing the power received in the
pitching and yawing directions by the total power received by the seeker. The guidance signals
are not considered reliable unless the seeker power is above a signal-to-noise (S/N) threshold.

The following are the model’s primary simplifying assumptions:

» Flat Earth, Flat Terrain: At ranges typical for SAL guidance (<25 km), the curvature of the
earth does not significantly affect the model geometry. Flat terrain greatly simplified the
model development, although it is listed as a potential area for further development in
section 7 of this report (Path Forward).

» Linear Optics: Because semi-active designator lasers are typically of relatively low power,
nonlinear optical effects (e.g., thermal blooming) are not included in the model.

» Simplified Atmospheric Transmission: Atmospheric attenuation through absorption and
reflection is incorporated only as a gross power loss to the transmission. It is assumed that
the power reflected or reemitted from the transmission path to the seeker is negligible (i.e.
phenomena such as backscatter are not modeled).

» Lambertian Reflection: Lambertian reflection assumes perfectly diffuse (matte) reflective
surfaces. This is another suggested area for further development discussed in section 7.

The C++ class implementation of the model, sSalSeeker, can be executed stand-alone or be
embedded into a larger guided projectile model. The model was validated using the Night
Vision Laser Designator (NVLaserD) model written by the Night Vision and Electronic Sensors
Directorate (NVESD) of the Communications-Electronics Research, Development, and
Engineering Center (CERDEC).

The report is organized into the following sections: Section 2 describes the model coordinate
systems and major entities (bodies). Section 3 explains the underlying physics of the laser
transmission algorithm. Section 4 describes the seeker guidance algorithm. Section 5 discusses
the model’s C++ class implementation. Section 6 gives the results of the model’s validation, and
we conclude in section 7 with some recommendations for the use and further development of the
model.

2. Model Setup

2.1 Global Coordinate System

The global coordinate system is Cartesian and fixed to the earth’s surface, which is assumed to
be an infinite plane. The global coordinate system is defined by three orthogonal unit vectors:
%,9,and 2. The x-y plane forms the earth’s surface (ground plane), where z = 0. As z increases,
the height above the earth’s surface increases. Figure 1 showed the model set-up in global
coordinates.

The orientation of the x and y axes and the coordinate system origin are defined by the user with
the following conditions:

1. The x and y axes may be oriented in any direction on the ground plane, provided they
follow the right-hand rule (X X § = 2).

2. The origin of the global coordinate system may be situated anywhere on the ground plane.

The global coordinate system is the default system used throughout the model. If not specified,
one should assume these coordinates. A major purpose of the global coordinate system is to
define the relative positions and orientations of the model’s bodies, which is described in the
next section.

2.2 Bodies (Designator, Target, Seeker)

The bodies involved in SAL guidance are the designator, target, and seeker. The user is
responsible to input all body positions and orientations, with the exception of designator
orientation. From the orientations, the model calculates normalized pointing vectors (unit
vectors) for each body.

2.2.1 Designator

The designator is assumed to be a point-mass, whose coordinates are inputs to the model. The
designator pointing vector, d, points from the designator location toward the target’s geometric
center.

2.2.2 Target

The target is a rectangular parallelepiped, with dimensions of length, width, and height (figure
2). The target is assumed to always stay upright, meaning its top surface stays parallel to the
ground plane. The target pointing vector, £, points from the target’s geometric center toward the
center of the target’s front surface (shown in blue in the figure). The target’s right and left sides

*All unit vectors will be denoted by the * symbol.

Figure 2. Rectangular parallelepiped target.

are defined by the respective right- and left-handed directions when facing from the target’s
geometric center towards the front of the target.

The orientation of the target is specified by the user through a target rotation angle, t, which is
the angle between the global y axis and the projection of the vector pointing away from the

target’s front surface onto the x-y plane measured clockwise as seen from above (Bounds: 0 to
2r).

2.2.3 Seeker

The model’s SAL seeker is modeled as a four-quadrant IR detector mounted in the nose of a
projectile. It is modeled as a zero-thickness circular disc. The seeker pointing vector, §, aligns
with the long axis of the projectile and points from the center of the seeker normal to the seeker’s
plane and away from the projectile. The seeker’s FOV is the angular measure of the cone
centered about § in which the seeker receives radiation.

The user specifies § through azimuth and elevation angles:

* Azimuth (¢) — the angle between the global x axis and the projection of § onto the x-y
plane. Azimuth is positive in the counter-clockwise direction as seen from above. Bounds:
-wtoT.

» Elevation (0) — the angle between the global x-y plane and §. Elevation is positive when §
points above the x-y plane. Bounds: -n/2 to n/2.

The seeker is divided by yaw and pitch axes, which will be discussed in the next section.

2.3 Body-Fixed Coordinate System

A Cartesian body-fixed coordinate system (x', y’, ') is used to define vectors relative to a body
pointing vector, b (section 2.2). In this —prime” coordinate system used by Yager (1), the origin
is set at the geometric center of the local body (equation 1). The x' axis is aligned with the body
pointing vector, b. The y' axis points orthogonal to the left of b and parallel to the global x-y plane.
The 7' axis is formed orthogonal to the x" and y’ axes according to the right-hand rule (figure 3).

In equation form:

%' = b. (1)
9" = 2xb. ()
2= % %9 (3)

Figure 3. Body-fixed coordinates.

In the prime system, a vector, ¥', is defined. The methodologies to define ¥ are discussed in
sections 2.3.1-2.3.3 of this report. To transform ¥’ from the body-fixed system to the global
coordinate system, we translate to the location of the body in the global system and then rotate to
align the x’ axis with the body’s pointing vector, b. To accomplish this rotation, the model uses
a rotation matrix that is derived by Yager (1).” To find the vector in global coordinates (¥), the
rotation matrix, A, is multiplied by 7"

The rotation matrix is shown in a simplified form used for unit vectors.

5

D = AP, 4
where
bx _be _Vbxbz
A= by —ybx _)/bybz , (5)
1

b, 0 .

where b, , b, , and b, are the components of the body pointing vector, b, in global coordinates

and:

(6)

2.3.1 Designator Application

For the designator, body-fixed coordinates are used for two purposes:

1. Adjusting the designator pointing vector (d) for aim error. This new pointing vector is
called dajp.

2. Modeling the beam’s solid divergence cone that is centered on dgj,. This is done
stochastically by dividing the beam into a set of rays. Body-fixed coordinates are used to
calculate each individual ray vector, 4.

2.3.1.1 Aim Error. To model aim error, d is perturbed through horizontal and vertical perturbation
angles, o, and o,

Referring to figure 4, the perturbed vector is expressed in the body-fixed coordinate system by
adding the perturbations to the original pointing vector.

Figure 4. Modified vector in body-fixed coordinates.

>

v=1-%"+ tan(ayr)-)”/’ + tan(a,) - 2" (7)

To normalize the perturbed vector, ¥’ it is divided by its magnitude:

|| = /1 + (tan(ay,))? + (tan(a,))?. (8)
b =2 9)

Finally, we transform ¥’ into the global coordinate system using equation 4. This results in our
new designator pointing vector, dajpn.

2.3.1.2 Solid Beam Divergence Cone. To calculate the direction of each ray (#;,4) in the beam’s
solid divergence cone, we define a perturbed vector, ¥’, in the same way for aim error (equations
7-9, figure 5). The beam is assumed to be circular, so that a,» and a,+ vary over the same range.
The selection of a,,» and @, is done through random draws from a normal distribution, which is
discussed in section 3.1.1.

Figure 5. Calculation of individual ray vectors.

2.3.2 Target Application

Because of the target’s simplified geometry and rotations, the model does not currently use
body-fixed coordinates for the target. However, if the model were updated to include complex
target geometry or rotations, body-fixed coordinates could greatly simplify the characterization
of target surfaces.

2.3.3 Seeker Application

For the seeker, body-fixed coordinates are used to find the yaw and pitch axes in the seeker
plane. In the body-fixed coordinate system, the pitch axis is the y’ axis, and the yaw axis is the z’'
axis (figure 6).

Figure 6. Pitch and yaw axes of the secker plane.

Thus, to find the pitch and yaw axes in global coordinates, we first set the vector ' equal to each
axis in body-fixed coordinates:

Dpiten =y’ = (0,1,0). (10)
Dyaw =2' = (0,0,1). (11)

After rotating back to global coordinates using the rotation matrix (A), we have the pitch and
yaw axes in global coordinates.

3. Laser Transmission Model

The laser transmission algorithm follows four successive stages (figure 7). In each stage, the
model calculates the beam’s transmission path and power loss:

» Stage 1: Atmospheric Transmission (Designator to Target)
+ Stage 2: Target Reflection
» Stage 3: Atmospheric Transmission (Target to Seeker) \l Combined info one

stage in this report

+ Stage 4: Seeker Reception

Figure 7. Laser transmission stages.

3.1 Stage 1: Atmospheric Transmission

3.1.1 Beam Divergence

Prior to modeling the beam divergence, the beam’s centerline must first be defined. The
designator is assumed to always aim for the geometric center of the target, and this pointing
vector is perturbed in random horizontal and vertical directions to account for designator error,
as described in section 2.3.1. The perturbation angles are drawn from normal distributions with
standard deviations Oay, and Oq ;- This results in the vector dgjpy,.

As the beam emerges from the designator, it diverges along its transmission path. Assuming the
beam to have a Gaussian profile across its transverse axis, the divergence, 0, is commonly
defined to be the half angle corresponding to the location along the transverse axis where the
intensity” drops to 1/¢* times the intensity at the beam centerline (figure 8) (2). At any range
from the designator, the diameter of the cone swept out at this point on the transverse axis is

>kIntensity is power per unit solid angle, and it will be discussed in section 3.1.2.

9

referred to as the beam diameter.” This occurs at two standard deviations from the beam
centerline intensity, meaning that ~95% of the laser beam’s total power is within the cone of the
given divergence angle.

Figure 8. Gaussian beam with 1/e* beam diameter.

Next, the beam is divided stochastically into a set of rays, with each ray carrying its individual
portion of the total power. Each ray’s direction (#j,q) is determined using body-fixed

coordinates, as described in section 2.3.1. The perturbation angles, o, and o, are drawn from a
normal distribution with a standard deviation based on the beam divergence angle (g, , , = ds).
Yy .z

Recalling that the beam diameter corresponding to o is defined by 2Gansverse, Which varies
closely to 205, we solve for gg:T

5 = 205. (12)

R

0| &

Os

(13)

3.1.2 Attenuation

The first part of atmospheric transmission was determining the direction of the beam, which was
accomplished through a division into a set of rays, each with its own direction, 7;,4. The second
part of atmospheric transmission is determining the power loss for each ray on its path to the
target. The starting power for each ray ({ry) is determined by dividing the beam’s pulsed power
by the total number of rays (n), and multiplying by a designator efficiency coefficient
(defficiency):

*There are alternative methods for defining beam divergence. It is sometimes defined as the full cone angle of the beam,
instead of the half angle that we are assuming. In addition, the beam width is sometimes defined according to the full-width at
half maximum method (FWHM).

TThis is a small angle approximation, as the divergence by definition produces a normal distribution in distance across the
beam’s transverse axis (Gyransverse)> and not in the beam’s divergence angle. The tangent of the divergence angles, o, and a,, is
linked to the transverse distance. For small angles, tana = o, and the divergence angles approximately follow a normal
distribution.

10

q) ulse
q)ray = —pube. defficiency. (14)

n

Atmospheric attenuation is the exponential decrease in beam intensity as it transmits through the
atmosphere. The Beer-Lambert Law characterizes this attenuation:

[= Iye ", (15)
where:
I = Attenuated Intensity at distance X,
Iy = Initial Intensity,
k = Attenuation Coefficient, and
x = Path Length.

Beam intensity, also known as radiant intensity, is defined as the power (¢) per unit solid angle
(QQ) subtended by the beam. The solid angle is the surface area subtended on a sphere of radius r
(figure 9). It is measured in steradians (sr), where the sphere represents 4 sr.

Figure 9. Solid angle.

Thus, the solid angle is calculated by dividing the subtended surface area (S) by the square of the
sphere’s radius (1):

0= (16)

In the case of a laser beam, r is the range traversed by the beam measured along its centerline.
Because the model does not consider nonlinear optical phenomena, the beam divergence remains
constant throughout the transmission. This means that the solid angle also remains constant, and
therefore, in this case, we can generalize the Beer-Lambert Law for power (see figure 10 and
equations 17-20).

11

Figure 10. Solid angle calculation at different sections of beam.

For small J,
S;= m-(r;-8)?% S, = m-(ry - 8)% (17)
Sy m(ry-8)? _ Sy _m(r -8)? _
.Ql:rl_lz_ riZ = m-8°, Qz_rz_zz_ I'jz = m- 8. (18)
Thus,
Ql == Qz . (19)

Therefore, for a beam of constant divergence, we can generalize the Beer-Lambert Law for beam
power, ¢:

— P _ o -kx
1 n_aoe ,

b = dpoe™". (20)

Because of the complexity and variability of the earth’s atmosphere, the attenuation coefficient
(k) varies according to many factors, and it needs to be calculated for each scenario. Equation 21
approximates the attenuation coefficient by summing four major components:

k = kMolecularAbsorption + kMolecular Scattering + kAerosolAbsorption + kAerosolScattering~ (21)

Molecular, in the context of equation 21, refers to atmospheric particles larger than electrons but
smaller than A, the laser wavelength. Similarly, aerosol refers to particles that have a size
comparable to A (2). Given these four attenuating components, the model utilizes lookup tables
to determine the attenuation coefficient (3). The tables break up the atmosphere into one-
kilometer-deep altitude segments. The look-up tables require the following information:

12

e Start Height, End Height, Path Length — if the path traverses multiple altitudes, the
model breaks up the path and steps through each altitude segment

¢ Laser Type — characterized by the wavelength. The look-up tables currently handle two
laser types:
Nd:YAG laser (1.06" pm) — the most popular wavelength currently for range-finding
and designation, non-eye-safe.
Er:Glass laser (1.54 um) — an eye-safe wavelength of interest.

e Visibility — affecting aerosol absorption and scattering
Clear: 23 km
Hazy: 5 km

¢ Latitude — affecting molecular absorption and scattering
Tropics: 0° to 23.5° and 0° to —23.5°
Mid-Latitudes: 23.5° to 50° and —23.5° to —50°
Sub-Arctic: 50° to 70° and —50° to —70°

e Season — affecting molecular absorption and scattering
Summer: March 22 — September 21
Winter: September 22 — March 21

Thus, using equations 20 and 21, the model determines the attenuated power of the ray where it
intersects the target surface (Grarger). The distance from the designator to surface intersection

point in equation 20 (x), is determined by ray tracing in section 3.2.1.
3.2 Stage 2: Target Reflection

3.2.1 Ray Projection onto Target

The first element of target reflection is determining if and where each ray hits the target. To this
end, we employ ray tracing, which determines the first plane of interest that is intersected by the
ray and the intersection point on that plane. Wikipedia describes the intersection in matrix
notation (4):

t Xg— Xp X1— Xo Xz — Xo] lpxa— Xo
[ul = [ya —Yp YV1— Yo Y2— 3’0] [J’a - 3’0], (22)

v Zg— Zp Z1— Zo Zp — Zy Zg — Zy

*Nd:Glass, a laser of nearly identical wavelength to Nd:YAG, was substituted in the attenuation lookup tables.

13

where

P, (X0, Yo, zo) = reference point on plane,

Py (x1, y1,z1) = second point on plane (defining first direction in plane relative to P,),
P (X2, y2, z2) = third point on plane (defining second direction in plane relative to P,),
la (Xa, Ya, Za) = starting point of the ray,

I (Xb, Yb, Zb) = second point on ray, defining the direction,

t = distance between ray start point and the plane,

u = distance in plane from P to ray intersection in first direction, and

v = distance in plane from Py to ray intersection in second direction.

In the model, these elements are defined in global coordinates (figure 11):

Input

P, = center point of surface.

P, = center point of left edge of the surface.
P, = center point of top edge of the surface.
l, = designator location.

Iy - l,= individual ray vector from designator (¥;,4).

Output

t = distance between designator and surface intersected.

u = distance from center of surface to ray intersection in U direction.
v = distance from center of surface to ray intersection in ¥ direction.

lp = ray hit point on plane = Py + uli + vV.

14

Figure 11. Ray tracing (target-centric x-y plane).

To see if the ray intersects a finite surface, u and v are compared to the dimensions of the
surface. For the parallelepiped target, this is half of the target length, width, or height, depending
on the surface. If u and v are both less than one half of the dimension, there exists an
intersection, unless the ray intersects another surface first. Thus, the model implements the ray-
tracing routine for all seven surfaces, checking to see what surface(s) the plane intersects, and, of
those, choosing the one with the shortest ray length, t. The first five surfaces tested form a
rectangular parallelepiped target: Left Side, Front, Right Side, Back, and Top.” The sixth
surface is the ground plane. Ray intersection with the ground plane indicates underspill or
overspill. The final surface that the ray-tracing routine checks is the seeker itself. This tests the
rare situation in which the laser ray is pointing directly into the seeker from the designator.

“The target’s bottom surface is not tested in the ray tracing routine, although it could be added to the model in the future.
This capability could be useful if the target was in the air, and the projectile/seeker had the capability to fly upwards towards the
target.

15

3.2.2 Surface Reflection

Once the ray hits a surface, it will either be absorbed or reflected. To model the power lost at the

surface due to absorption, the model employs a simple —target reflectivity” multiplier (trefiectivity)s
which can be varied for each surface:

q)target,reﬂected = q)target,received ' treﬂectivity. (23)

Several studies have investigated the reflective properties of different targets, which are a result
of both surface composition and laser wavelength (35).

There are two primary types of reflection (figure 12):

1. Specular Reflection — mirror-like reflection, where the angle of incidence (6;)
equals the angle of reflection (O;).

2. Lambertian Reflection — diffuse reflection, where the reflected energy is scattered
in all directions regardless of angle of incidence.

Specular Reflection Lambertian Reflection
o, o 7
:\// A
| \ ﬂ
4 w [
L/ S~ -‘ / P 4
1 (- -‘\-\ Vi ’: =

Figure 12. Specular vs. Lambertian reflection.

Real-world scenarios generally have elements of both types of reflection, but Lambertian
reflection is closer to actual behavior, and it is used exclusively in the model. Thus, the model
assumes that the energy reflects off of the target in all directions in a 180° hemisphere normal to
the surface of reflection. This will be described later in section 3.3.2.

3.3 Stages 3 and 4: Atmospheric Transmission and Seeker Reception
3.3.1 Ray Projection Into Seeker
After target reflection, the model has calculated the following data for each ray:

* Coordinates of ray surface intersection (lp)

 Surface the ray intersects (Left Side, Front, Right Side, Back, Top, Ground,” Direct-to-
Seeker, or no surface hit)

“If the ray hits the ground, the model tests whether the ray is obscured from the seeker by the target.

16

. Ray Power (¢target,reﬂected)

Using these data, we can now find if and where the rays project into the seeker’s four-quadrant,
IR sensor. To find if a ray projects into the seeker, it must pass two tests (refer to figure 1):

1. Correction Angle (1) between seeker heading ($) and the vector from the seeker to the ray
hit point (St) must be less than or equal to the seeker FOV ().

2. Off-Angle (o) between the surface normal vector of ray hit () and the vector from the ray
hit point to the seeker (£s) must be less than 90°.

These angles are determined using the dot product of the two vectors:

— cne—1 (28t

U = cos (|§|-|§tl) < Bs. (24)
— ool (5 n

o = COS (IﬁI-IFSI) <3 (25)

If the ray does not pass both of these tests, it does not project into the seeker’s sensor.

If the ray passes both tests, the model determines which of the four seeker quadrants the ray
projects into. To do so, the model again uses ray tracing. In this instance, the ray originating at
the target intersection (lp) is pointed in the negative direction of §, and it is determined where it
intersects the seeker plane (figure 13). The pitch and yaw axes forming the seeker plane are

t
calculated using body-fixed coordinates (section 2.3.3). The ray tracing produces a [ul output
v

vector that locates the ray’s intersection point with the seeker:

t = ray distance to seeker plane.

u = distance from seeker center to ray intersection in the yaw direction.
v = distance from seeker center to ray intersection in the pitch direction.

A seeker intersection in the positive yaw direction (+u) indicates that the seeker must rotate
positively about the yaw axis (to the left in the FOV) to point at 1, (refer to figure 6). The
positive pitch direction (+v) is similarly linked to a positive rotation about the pitch axis (to the
top in the FOV). Because we already know that the ray projects into the seeker’s sensor, we only
need to know whether u and v are positive or negative to determine what quadrant the ray
projects into.

17

Figure 13. Ray intersection with seeker plane.

3.3.2 Power Received by Seeker

After recording what quadrant the ray projects into, the model determines the ray’s individual
power contribution to the quadrant. To determine the amount of power received by the seeker
for each ray, the model uses Lambert’s Cosine Law. The law states that the radiant intensity I
(power per steradian) received from a perfectly Lambertian surface is proportional to the cosine
of the angle, a, between the observer’s line of sight and the surface normal (figure 1, equation 25).

In reference 6, McCartney describes how to calculate the radiant flux ¢ (power) across a
hemisphere by integrating the radiant intensity, I (figure 14). In the hemisphere, a represents the
90° complement to elevation, and ® represents azimuth.” From the conservation of energy, we
know that the total power in the system passing through the hemisphere is equal to the total
power reflecting off of the target (neglecting attenuation losses, which will be factored in later).
Therefore, if we integrate over the hemisphere of intensity Iycac cosa, we get the total power
passing through the hemisphere, ¢ (equations 26-27). Because we know ¢ as the reflected
power off of the target, we can solve for the hemisphere’s peak radiant intensity, Iyca (equation
28). Finally, using Lambert’s Cosine Law, we determine the radiant intensity at the seeker’s
position on the hemisphere (equation 29).

*Note: o and o are different from the seeker azimuth (¢) and elevation (0). o and o characterize the hemisphere extending
from the designated surface and the seeker’s position on this hemisphere. ¢ and 0 describe the orientation of the seeker in the
global coordinate system.

18

Figure 14. Integration of radiant intensity over a hemisphere.

¢ = fon/z fozn Lyeqrcosa(sina)dwda. (26)

Substituting a double angle:

/2 27 1

¢ = Ipeakf j =sin(2a)dwda
0 0o 2
/2

¢ = n-Ipeakf sin(2a)da
0

p=m- Ipeak- (27)
Therefore, solving for the peak radiant intensity in the hemisphere:

I _ ¢target,reflected (28)

peak — T .

Using Lambert’s Cosine Law, we determine the radiant intensity at the seeker’s location on the
hemisphere:

Lseeker = peak * COS (.

¢target,reflected
Lseoker = — —-cosa (29)

To determine the power at the seeker (before factoring in other losses), we multiply Iseeker by the
solid angle subtended by the seeker on the hemisphere. In the model, the hemisphere extends
from the laser target intersection point normal to the surface of intersection. The radius of the
hemisphere, r, is the range from the laser-target intersection point to the geometric center of the
seeker. To approximate the number of steradians the seeker subtends on the hemisphere

19

(assuming rgeeker << 1), the seeker area, Sgceker, 1S divided by * and multiplied by the cosine of the
seeker correction angle, p (figure 1, equation 16):

~ Sseeker
Qseeker = 2 Ccosp (30)

Thus, including attenuation from target hit to seeker (Laen), and seeker efficiency (Sefficiency), the
laser power scattered from the target into the seeker per ray is

ODseeker = Iseerer * Lseeker * Latten * Sefficiency

_ Prargetrefiected * COS & * Sseeker * COSH* LattenSefficiency (3 1)

¢seeker TIr2

Equation 31 is calculated for each ray. The model sums the individual ray contributions for each
quadrant to find the total power received in all four seeker quadrants. The next section discusses
how the model uses these data to produce guidance signals.

4. Seeker Guidance Model

In the last section, the model calculated the beam’s transmission path and power loss, resulting in
a power distribution at the seeker. In this section, we discuss how the model interprets these data
to produce projectile guidance.

4.1 Target Encounter and Detect

There exists a progressive ladder in the target knowledge of a terminal seeker (figure 15).

Encounter Detect

Classify Identify

e| know it is a
legitimate

eTarget is within | see
my field of something

e| can put it into
a group, such
as vehicles,
buildings, or
natural
features

view (not standing out
directly from the
sensed) background

target

Figure 15. Target knowledge ladder.

For the SAL seeker, the knowledge ladder is modeled in the following way:

e FEncounter is determined in the model by calculating the angle the seeker needs to rotate
through to point at the target’s center. If the angle is less than or equal to the FOV, it
returns true. Encounter is internal to this model, as it is a geometric calculation and is not

20

sensed by a real projectile. It is a useful calculation, however, to determine the point in
the ballistic trajectory at which the seeker is pointing close enough to the target to
encounter, which is the first step toward detection.

e Detection occurs in the model when the laser power the seeker receives is above the S/N
threshold necessary to distinguish the signal. The noise is determined using a
background noise multiplier, which assumes that the seeker noise increases linearly with
seeker area and solid angle subtended by the FOV. This also assumes that the seeker
internal noise is insignificant compared to the external background noise, as internal
noise does not scale with seeker area or solid angle. The model’s default multiplier value
is based on a commercial seeker with minimum detectable signal irradiance (power per
unit seeker area) of 35nW/cm?, FOV half angle of 4.5°, and an assumed S/N ratio of 7

(7).

o Classify and Identify are combined in the final step, and occur when the SAL seeker
examines the signal’s pulse width and pulse frequency to weed out false signals. Because
the model does not contain a progressive time element, these effects are not modeled, but
could easily be added upon integration into a larger guided trajectory program.

4.2 Guidance Updates

After the seeker detects, it needs to process the information into guidance signals.” It does this
by comparing the signals in each of the four sections of the detector. Figure 16 shows the four-
quadrant detector used in the model.

Figure 16. Four-quadrant laser detector.

*While the model always computes guidance signals as a convenience to the user, they should not be considered reliable
unless also accompanied by a positive detect calculation.

21

If P, is the power received in quadrant 1, and likewise for the other quadrants, Hubbard describes
how the spots’ location can be approximated in the following form (8):

Ay _ (P1+P;)—(P3+Py)

- = — Pitch Guidance, (32)

r Ptotal

Ax o (PutPa)-(Potby) | Yaw Guidance (33)

ro Ptotal ’
WheTePtotal=P1+P2+P3+P4. (34)

The pitch and yaw guidance range in value from —1 to +1, which mean full maneuvers in the
negative and positive directions, respectively. In calculating guidance, the model assumes a
non-spun projectile, although spin could be accommodated in a fairly simple manner upon
integration into a larger, time-dependent model.

The model also returns a polar representation of where the power is received on the sensor:

e Angle (0): 0to2n rad, 0 =—Yaw direction, angle increases in the counter-clockwise
(CCW) direction.

e Magnitude: Oto 1.

The angle determines how to combine pitch and yaw commands and the magnitude determines
how much to maneuver in the prescribed direction. The polar output is currently a repackaged
version of the preceding pitch and yaw guidance, but could be a better representation to use in
the future for imaging sensors, in order to track multiple data points within a single FOV.

5. C++ Implementation

5.1 Input Variables

The input variables (table 1) usually change throughout an analysis, and are defined in the
main.cpp file.

22

Table 1. Input variables.

Locations Type ‘ Units ‘ Bounds ‘ Description
stru'c't .POIHBD _ Designator Location: Global Coordinates,
d geo Utilities class m z>=0 Point Mass
double
Target Location: Global Coordinates,
Geometric Center
. Due to flat terrain, the ground plane is located at
>= . .

t geo Point3D m z 0 z=0. Ifthe target is ground-based, its z
component must be given accordingly (z=0 +
1/2 target height).

5w Point3D m 2>=0 Seeker Location

Global Coordinates, Geometric Center

Orientations Units | Bounds Description

Seeker Orientation: Global Coordinates
X (Azimuth, ¢) — the angle between the x axis
and the projection of § onto the x-y plane.

Point2D
. . stru.c.t . oint Az:-mtom |Azimuth is positive in the counter-clockwise
s_orientation Utilities class rad S
— El: -m/2 to /2 |direction as seen from above.
double .
.Y (Elevation, 0) — the angle between the x-y
plane and $§. Elevation is positive when §
pointins above the x-y plane.
Target Rotation: Global Coordinates
7 = the angle between the +y axis and the
t rotation double rad 02 projection of the target headlng’ vector, t, onto
- the x-y plane measured clockwise as seen from
above. f points from the target geometric center
towards the center of the front face of the target.
Statistics Type Units | Bounds | Description
seed int — — Seed for random number generator

5.2 Input Parameters

The parameters (table 2) tune the analysis, but generally do not vary during a simulation. They
can be set in the main.cpp file, or through an input file (see appendices A and B, main.cpp #2).
If no change in a parameter is detected, the program uses the default parameter value, which is
automatically set using the internal function SetDefaults() when the class is first instantiated.

23

Table 2. Input parameters.

Weather ‘Type \ Units Bounds Default Description
.season
0 = summer (March 22 — September 21)
1 = winter (September 22 — March 21)
)) Jatitude
struct Seas.. 0-2 Seas.. 0 0 = tropics (0° to 23.5° +)
sal weather weather — Lat: 0-1 Lat: 1 o . o o
it Vis: 0-1 Vis: 0 1= m1d-1at1‘Fudes (23.5°t0 50°)
‘ ‘ 2 = sub-arctic (50° to 70° +)
.visibility
0 = clear (23 km)
1 =hazy (5 km)
Seeker ~ Type \ Units Bounds Default Description
s fov double rad 0-w/2 | 0.079 (4.5%) |Seeker field of view (half angle of cone)
s_a}perture double m >0 0.060 Seeker aperture diameter
_diameter
s_background double |Wm?Q'| >=0 0.010 Seeker background noise multiplier
s_signalnoise o Ratio of SAL signal to background noise to
fireshold double =0 70 Ie able to detect
s_efficiency double — 0-1 0.95 Seeker loss coefficient

Designator

Default

Description
0=1.06 um (Nd:Glass)

¢ FET7e9 int o 0-1 0 1 =1.536 pm (Er:Glass)
d_raycount int — =1 10000 No. of rays to divide laser pulse into
d divergence double rad >=0 3E-4 Divergence of laser beam (half angle)
d pulse energy double J >0 80E-3 Starting designator energy/pulse
d pulse frequency double Hz >0 10 No. of pulses/second
d_pulse duration double S >0 15E-9 Pulse length
d_efficiency double - 0-1 0.95 Designator loss coefficient
d h error double rad >=0 1E-4 Designator pointing error (horizontal, SD)
d v_error double rad >=0 1E-4 Designator pointing error (vertical, SD)
Target ~ Type | Units Bounds Default Description
Pf)t;llgtl) Tariget Dimensions
i g Utilities | m >0 | 642323 | X length
class Y = width
double .Z = height
Target Reflectivity
t_reflect array[int] — 0-1 0.4 for all |[0] = left side, [1] = front, [2] = right side

[3] = back, [4] = top, [S] = ground plane

24

5.3 Output

The user only needs to call one function, S SALSEEKER, which performs all necessary
calculations and outputs all results to a class-defined struct, —skoutputs” (see table 3).

Table 3. The S SALSEEKER output function.

S SALSEEKER
(d_geo, t _geo, s_geo,
s_orientation,

t rotation, seed)

Type

struct saloutputs

Units ‘

Description

Main calculation function
OUTPUT
.encounter (bool): target is within seeker field of view
.detect (bool): S/N above threshold
.sal_signals (struct): magnitude of peak laser power sensed
in each quadrant (W)
.q1 = Positive Pitch, Positive Yaw
.q2 = Positive Pitch, Negative Yaw
.q3 = Negative Pitch, Positive Yaw
.q4 = Negative Pitch, Negative Yaw
.actuator_signals (struct): lifting and turning guidance
based on sal_signals quadrant values
Pitch, .Yaw (-1 to 1)
-1 is full maneuver in negative direction (-yaw, -pitch)
+1 is full maneuver in the positive direction.
Partial maneuvers for numbers in between -1 and +1.
.Theta, .Mag (polar representation of signal in FOV)
.Theta = Polar direction of signal center (0-27x rad)
0 rad = - yaw direction, rotate CCW)
.Mag — Polar magnitude of direction vector (0-1)

6. Validation

All validation tests were run using the default parameters unless otherwise noted (default

parameters listed in section 5.2).

6.1 Power Loss

The NVLaserD model was used to validate the power drop of the laser across a given distance
(9) (see table 4). The beam divergence (8) was varied from 0 to 2.4 milliradians (mrad) and for
each divergence, the seeker angle from the target surface was tested at 0° and 45°. When &
equaled 0, the results agreed within 1%. As J increased, the results originally differed. This
disagreement is most likely explained by a difference in the way 9 is defined between models.

Recall equation 13 (g5 = §/2), which assumed a 6 corresponding to a beam radius of 2 ¢ from

the peak intensity. If 6 was instead assumed to correspond to a 1-c beam radius, the resulting

beam spread would be twice as great as the 2-c beam spread (figure 17).

25

Table 4. Energy drop comparison between sSalSeeker and NVLaserD.

TEST INPUTS ! TesT 1 ! TEST 2 TEST 3 TEST 4
Designator Pulsed Energy (mJ) 80 80 80 80 80 80 80 80
Designator Pulse Width (ns) 15 15 15 15 15 15 15 15
Designator Pulsed Power (Peak - MW) 53 53 53 53 53 53 53 53
Designator Error (mrad) 0 0 0 0 0 0 0 0
Target Rotation (°) 0 0 0 0 0 0 0 0
Range (Designator to Target, km) 2 2 2 2 2 2 2 2
Range (Seeker to Target, km) 5 5 5 5 5 5 5 5
k (attenuation coefficient) 0.0581 | 0.0581 | 0.0581 | 0.0581 | 0.0581 | 0.0581 | 0.0581 | 0.0581
6 (divergence - mrad) —s_SalSeeker 0 0 0.6 0.6 1.2 1.2 2.4 2.4
6 (divergence - mrad) — NVLaserD 0 0 0.3 0.3 0.6 0.6 1.2 1.2
o (seeker to target normal angle - deg) 0 45 0 45 0 45 0 45
SEEKER SIGNAL (X 10” W)

sSalSeeker 4.59 3.25 4.34 3.07 2.98 2.11 1.35 0.96
NVLaserD 4.62 3.26 4.36 3.08 3.03 2.14 1.39 0.98
Difference (%) -0.7 -0.3 —0.5 -0.3 -1.7 -14 -2.9 -2.1

Figure 17. Comparison of 2-c and 1-c divergence.

This theory is supported by the NVLaserD beam dimensions at the target, whose standard

deviations were twice those predicted by sSalSeeker. Therefore, to compare calculations with
the NVLaserD model, the sSalSeeker 6 values were made double those of NVLaserD. After
making this assumption, the models agreed within 3% for all comparisons.

26

6.2 Geometry

6.2.1 Projectile Fly-In

Initial Conditions
e Target Location (tge,) = (0,0,1.15)
e Designator Location (dge,) = (=2000,0,1.15)
e Seeker Location (Sgeo) = (—25000,0,25000)
e Seeker Azimuth (s_orientation.X) = 0°
e Seeker Elevation (s_orientation.Y) = —45°
e Target Rotation (t_rotation) = 0°
Variables
e Seeker Location (Sge0) = (X,0,z) — varied so that seeker is on a 45° descent towards target

e Visibility (sal_weather.visibility) = clear, hazy

Figure 18 shows the results of a virtual fly-in that tested how much the laser signal increased as
the range to target decreased. The projectile began approximately 35 km away from the target
(25 km horizontally and 25 km vertically), and closed in on the target at a 45° descent.
Designator, projectile, and target were all aligned along the x-axis (no side-to-side movement).
The green line in figure 18 represents the S/N threshold above which the seeker detects. For the
fly-in test, the seeker detected at a 21.5-km horizontal range for clear conditions and at 14.25-km
horizontal range for hazy conditions.

27

Projectile Fly-In
=—Signal (Clear) = ===Signal (Hazy) S/N Threshold

2.0E-02

1.5E-02
S
E
@
3
S5 1.0e-02
©
()
2
: /
()
o

5.0E-03

0-0E+OO r T T T T T T T T T !

-25000 -23000 -21000 -19000 -17000 -15000 -13000 -11000 -9000 -7000 -5000
Horizontal Distance from Target (m)

Figure 18. Projectile fly-in test.

6.2.2 Off-Angle Test
Initial Conditions
e Target Location (teeo) = (0,0,1.15)
e Designator Location (dge,) = (-2000,0,1.15)
e Seeker Location (Sgeo) = (—2000,0,1.15)
e Seeker Azimuth (s_orientation.X) = 0°
e Seeker Elevation (s_orientation.Y) = 0°
e Target Rotation (t_rotation) = 0°
Variables
e Seeker Location (sge,) = varied so that x and y are on circle with radius of 2000 m

e Seeker Azimuth (s_orientation.X) = varied so that seeker always points at the geometric
center of the target

28

The seeker was positioned at a series of points on a circle around the parallelepiped target,
always pointing at the target’s geometric center. The targets’ location was fixed and its rotation
was 0. The designator remained fixed, and aimed along the +x axis to designate the left side of
the target. As the seeker's y deviated from 0, the seeker's off-angle from the target surface
normal (a, see figure 1) increased from 0° to 90° in 3-degree increments, and the received power
decreased as the cosine of that angle (figure 19). At 90°, the seeker faced parallel to the
designated surface of the target, at the boundary of the hemisphere containing the reflected laser
power. Beyond 90°, the seeker moved outside of this hemisphere, and the received power

dropped to 0. Points along the graph’s horizontal axis are seeker positions where o was beyond
90°.

Received Power vs Seeker Location

5.00E-02
4.50E-02 L B L
4.00E-02 - "
3.50E-02 i 5

3.00E-02 = =
2.50E-02
2.00E-02 > =
1.50E-02
1.00E-02
5.00E-03
0.00E+00

-5000 -3000 -1000 1000 3000 5000

Received Power (mW)

Seeker Location (Y)

Figure 19. Off-angle test.

29

6.2.3 Target Rotation Test
Initial Conditions
e Target Location (tge,) = (0,0,1.15)
e Designator Location (dge,) = (=2000,0,1.15)
e Seeker Location (Sge0) = (—5000,0,1.15)
e Seeker Azimuth (s_orientation.X) = 0°
e Seeker Elevation (s_orientation.Y) = 0°
e Target Rotation (t_rotation) = 0°
Variables
e Target Rotation (t_rotation) = 0 to 360°
¢ Divergence (d_divergence) = 0.3, 0.6 mrad

While the designator and seeker stayed at a fixed distance from the target, the target rotation was
varied from 0° to 360°. Figure 20 shows how the power varied for different target rotation
angles, with the rectangular target (6.4 x 2.3 m) displaying wider variation than the square target
(2.3 x 2.3 m). For d =0.3 mrad, the rectangular target underperformed the square target at target
rotation angles such as 60°. This occurred when the rectangle’s long surface was the main side
receiving power, but at a very oblique off-angle (o) from the seeker. This observation poses an
interesting question for the designator aim point, whether it is best to point at the target center, or
at the side most normal to the beam. As beam divergence increased, the larger rectangular target
improved its performance relative to the square target, as the beam started to spill off of the sides
of the smaller square target (note the graph for 6 = 0.6 mrad, where the rectangular target
outperformed the square target at angles of 0° and 180°).

30

Percentage of times designated
in 360° rotation test

Received Power (mW)

Received Power (mW)

Main Surface Designated

6 =0.3mrad
50

M Rectangle
MW Square

40 -

30 +

20 -
10 +

O .
Front
Side

6 =0.3mrad

5.00E-02

Back

Back
Side

Front

= Rectangular Target ===Square Target

4.50E-02 -

4.00E-02

3.50E-02

3.00E-02

2.50E-02

2.00E-02

50 100 150 200 250 300 350 400

Target Rotation (degrees)

e Rectangular Target ===Square Target

5.00E-02

4.50E-02

4.00E-02 -

3.50E-02 -

3.00E-02

2.50E-02

\ J \/

2.00E-02

50 100 150 200 250 300 350 400

Target Rotation (degrees)

Figure 20. Target rotation test.

31

7. Path Forward

In summary, the model calculates the power distribution across a SAL seeker’s IR detector given
relevant geometry, laser characteristics, and atmospheric information. By analyzing this power
distribution, the model returns flight guidance information. The model’s C++ class
implementation, sSalSeeker, can be run stand-alone, and is also easily embeddable into larger
smart-weapon models.

Recently, researchers have investigated the ability of reduced-state guidance algorithms to
successfully guide a munition to the target (/0). Upon integration into a larger smart-weapon
model, this model could provide insight into another simplified guidance scenario: SAL-only
guidance, without input from a global-positioning system (GPS) or inertial measurement unit
(IMU). This requires the ability to shoot ballistically into a —guidance basket,” after which the
SAL seeker takes over (figure 21). The dimensions of the basket depend largely on the seeker’s
FOV, the rate at which the laser beam attenuates, and the maneuver authority of the projectile.

Figure 21. Extending the guidance basket.

32

The following are suggestions for further development of the model:

e Target geometry
Current — Rectangular parallelepiped
Future — Detailed target geometries including windows and tires would permit study of
whether there is an ideal location to designate for different targets.
Difficulty — Low

e Terrain
Current — Flat terrain, which makes for an unrealistically-favorable situation.
Future — Variable-height terrain, with vegetation and man-made features
Difficulty — Medium

e Target reflection
Current — Assumes perfect Lambertian surface reflection
Future — Combination of Lambertian and specular reflection, depending on the surface.
Reflection would then depend on the angle of incidence from the designator. For
example, as target geometries become more developed, windows may incorporate more
specular reflection than matte-finished doors.
Difficulty — Medium

e Background noise
Current — Input parameter
Future — Calculation of the background noise from the sun and earth entering the
seeker
Difficulty — Medium

33

8. References

1. Yager, R.J. 4 Plant Model For Smart Projectiles; ARL-TR-5520; U.S. Army Research
Laboratory: Aberdeen Proving Ground, MD, 2011.

2. Weichel, H. Laser Beam Propagation in the Atmosphere; SPIE: Bellingham, 1990.

3. McClatchey, R.A. Optical Properties of the Atmosphere (Revised); AFCRL-71-0279; Air
Force Cambridge Research Laboratories: L.G. Hanscom Field, Bedford, MA, 1971.

4. Line-Plane Intersection. http://en.wikipedia.org/wiki/Line-plane intersection (accessed
March 20, 2011).

5. Jones, R. F. Survey of Laser Reflectivity Measurements at 1.06 Microns; RE-72-17; U.S.
Army Missile Command: Redstone Arsenal, AL, 1972.

6. McCartney, E. Optics of the Atmosphere: Scattering by Molecules and Particles; John
Wiley and Sons: New York, 1976.

7. Selex Galileo. Laser Spot Tracker 2" Generation Specification Sheet. http://www.selex-
sas.com/EN/Common/files/SELEX_Galileo/Products/LST_gen2 dsh82.pdf (accessed July
13, 2011).

8. Hubbard, K. A. Characterization of Semi-Active Laser (SAL) Seekers for Affordable
Precision Guidance of Gun-Launched Munitions; ARL-TR-5233; U.S. Army Research
Laboratory: Aberdeen Proving Ground, MD, 2010.

9. NVLaserD, Night Vision Laser Designator Model, Version 1.0; Night Vision and Electronics
Sensors Directorate: Fort Belvoir, VA, 2006.

10. Fresconi, F. Guidance and Control of a Fin-Stabilized Projectile Based on Flight Dynamics
With Reduced Sensor and Actuator Requirements; ARL-TR-5458; U.S. Army Research
Laboratory: Aberdeen Proving Ground, MD, 2011.

34

Appendix A. Sample Input and OQutput

This appendix is in its original form, without editorial change.

35

Figure A-1. Sample input file.

36

Figure A-2. Sample output file.
37

INTENTIONALLY LEFT BLANK.

38

Appendix B. sSalSeeker Code

This appendix is in its original form, without editorial change.

39

s sal seeker class.h

/*

SAL Seeker Class .h

Luke Strohm, Army Research Laboratory
3-14-11

*/

/**/

#ifndef S _SAL SEEKER CLASS H

#define S SAL SEEKER CLASS H_
/**/
#include <iostream>

#include <iomanip>

#include <io.h>

#include <fstream>

#include <string>

#include <cstdlib>

#include <windows.h>

#include <cmath>
/**/

#include "utilities.h" //. . e e MKA Utility Library
#include "statistics.n" // .t e e e MKA Statistics Library
#include "y format namespace.h"™ //............ RJY Formatting Library

using namespace std;

using namespace yFormat;
/**/
// Define Structs

struct weather{

ANt SEASON; // e it e e e e e e e 0 = summer (3/22-9/21)
/22 1 = winter (9/22-3/21)

int latitude; // ..o e 0 = tropics (<23.5 deg +-)
L e e e e e e e e e e e e e e 1 = mid-latitudes (23.5-50 deg +-)

/2 2 = sub-arctic (50-70 deg +-)

ANt VASIDILAEY; // et e 0 = clear (23 km visibility)
/2 2 1 = hazy (5 km visibility)

b
struct rayhit({

Point3D hit; //..u .. X,Y,Z Coords of where ray intersects surface
AN SUTE S /e e i e e e e e e e e Surface point hits
AOUDLE POWET; /et e et e et e e e e e e e e e Power of ray

bool obscured; //.Check to see if ground hit is obscured from seeker by target
}i

struct quadsignal{ //...... Contains info on the four quads of quad-band detector
AoUble gl // e e e e e e Positive Pitch, Positive Yaw
AOUbLe Q27 // et e Positive Pitch, Negative Yaw
double g3 /e e e e Negative Pitch, Positive Yaw
AOUDLE G4 /e e et e e Negative Pitch, Negative Yaw
}i
struct guidancesignal{ //.......... Actuator guidance (-1/+1 is maximum maneuver)
double pitch; //.cou .. Pitching (Lifting+) Multiplier (-1 to 1)
double vaw; // ..t Yawing (Left Turn+) Multiplier (-1 to 1)
double theta; //.. .. Polar Direction of Signal Center
S e e e e e e e 0-2pi rad, 0 = -yaw dir, rotate CCW
double mag; // ...t Polar Magnitude of Direction Vector (0-1)

}i
struct saloutputs({
bool encounter;
bool detect;
quadsignal sal signals;
guidancesignal actuator signals;
}i
/**/

class sSalSeeker{

40

public- //************************___PUBLIC___*****k**k****k************************

//**k**k******k******************OUTSIDE CLASSES*******k**k************************

Utilities UTILITY; // ittt e e e eeeee e Instantiate Utility Class (MKA)

Statistics STAT; // .ttt eeeeeenn Instantiate Statistics Class (MKA)

//********************************OUTPUT**************************************

//O_FUNCTIONS ———

sSalSeeker () ;

saloutputs S SALSEEKER (Point3D d geo, Point3D t geo, //..Runs all calculations
Point3D s geo, Point2D s orientation,//.and outputs to struct
double t rotation, int seed);

saloutputs programoutput;

void PrintOutput (string filename = "", string format = ".txt"); // SummaryFile

//O_DISPLAY ———

bool printtoscreen;

bool printtofile;

int surface[8]; //.0 = Left Side, 1 = Front, 2 = Right Side, 3 = Back, 4 = Top

VAR 5 = Ground (underspill), 6 = DirectIntoSeeker, 7 = Miss
string s desc[8]; //.Create array of target surface names (ref above surfaces)
int mainhitsurface; // ... Surface that got hit the most

//******************************PARAMETERS************************************

/ /P SEEKE R— = = mm m o

double s fov; //. .. e deg (half angle of cone swept out)
double s _aperture diameter; //. m
double s background; //................... background noise multiplier W/m"2/sr
double s signalnoise threshold; //ratio of signal to noise necessary to detect
double s_efficiency; //........ efficiency factor accounting for various losses
//P_DESIGNATOR ——
int d lasertype; // ... e 0 =1.06 um (Nd:Glass)

/22 1 =1.536 um (Er:Glass)
int d raycount; //...... Number of rays to divide laser pulse into
double d diVergence; //. rad
double d Pulse energy; // ... e J
double d pulse frequUeNCY; // ...t e e e e Hz
double d pulse duration; //. e E
double d efficiency; //........ efficiency factor accounting for various losses
double d h error, d v error; //....designator error (hor and vert, rad, stdev)
//P_TARGET ——
Point3D t_size; //. .o e length, width, height: m

double t reflect[6]; // target reflectivity for each surface (ref surface des)
/)P OTHE R == === — = = - — o -

int seed; // . i e seed number for random number generator
weather sal_weather; //.................. struct containing weather information
double s _Noise; // .. W

/**/
prlvate://************************___PRIVATE___*********************************

//********************************VARIABLES***********************************
/*

Rotations use RIGHT-HANDED coordinate system

+z +y

\

\
I/
\

- - - - - - - 4x

XYZ Zero Points:

x = 0 - user-defined

y = 0 - user-defined

z = 0 - earth’s surface

41

Azimuth is angle between +x direction and
projection of flight body onto x-y plane
+ Azimuth = CCW rotation as seen from above

Elevation is angle between flight body and x-y plane
+ Elevation = Flight body above x-y plane

*/
Point3D d geo; //.... Designator location projected onto Earth-faced
S/ e x/y/z coords (m) (See further description above)
Point3D t geo; //. i e Target location projected " " (m)
Point3D s geo; // . e Target Location projected "™ " (m)
Point2D s_orientation; //................ Azimuth/Elevation of projectile (deq)
L e e e e e e e e e (See further description above)
double t rotation; //................. deg (0 degrees is the target maneuvering
[/ e e e in the +y direction, + deg rotates
L e e target clockwise as seen from above)

//**k**k**k******k**k**k**k**k**k**k**k**k**k**FUNCTIONS*****k**k****k************************

/E MR TN - === = m o

void SetDefaults(); //...cvoiiiiiion.. Sets default values of initial parameters
void LaserSpot //...... Populates p vector with power, hit points, and surfaces
(Point3D pl, Point3D p2, Point3D p3, Point2D s or, double tr);
L e e e e e e e e e e e pl = Designator Center (xX,vy,2z)
2 p2 = Target Center (x,y,z)
/2 p3 = Seeker Center (x,y,z)
L e e e e e e e e e e e e e e s_or = seeker orientation (azimuth, elevation)
P tr = Target Rotation
void SignalLoss(); //.ceeeiieienn. Calculates signal loss through attenuation,
[/ e reflection, and designator/receiver losses

//F_UTILITY ———

// Calculates attenuation through atmosphere via lookup table

double Attenuation (double currentsig,double traveldistance,double startheight,
double endheight, weather sal weather, int lasertype);

Point3D SpherCartConv (Point2D pl);// Converts azimuth/elevation to unit vector

// Creates unit vector pointing from pl to p2 (normalized by default)

Point3D VectorPointing (Point3D pl, Point3D p2, bool norm = true);

// Rotates vector by angle a (yaw) and b (pitch)

Point3D VectorRotation (Point3D pl, double a, double b, int vect = 0);

double VectorAngle (Point3D pl, Point3D p2); //....... Angle between two vectors

double DotProduct (Point3D pl, Point3D p2); //....... Dot product of two vectors

void InverseMatrix (double m[3][3],double mi[3][3],double &det);//Inversematrix

//‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*********CALCULATIONS****‘k*‘k*‘k*‘k***********************

//C_TARGET GEOMETRY === === == = o m o oo o

vector <Point3D> s, nN; // e s = Target surface coordinates

L e e e e e e n = Surface normal vectors
vector <rayvhit> r; //.... ... Struct containing ray hit information
//C_DIRECTION_VECTORS ———
Point3D d _heading vector; //............. i, Designator pointing vector
Point3D s_heading vector; //....... ... Seeker pointing vector
//C_ENERGY LOSS———————— o m oo oo~
double s_aperture area; //.ttt m"2

double s_t multiplier; //..Ratio of power reaching seeker aperture from target
//C SEEKER STGNAL———— == — o o o o o =

double s POWET; // i W
int s_hits[4]; //...ooiiiiiiiiii number of ray hits received in each quadrant
quadsignal s _signal; //................. Total signal received in each quadrant
quadsignal s _signalnoise; //.............. Signal/Noise Ratio for each quadrant
guidancesignal s_maneuver; //..Pitching and yawing maneuver guidance (-1 to 1)
//C DETECT == —————m— o
bool s_encounter; //..................... True if target is within seeker's FOV
bool s detect; //. .o True if laser S/N > threshold

}’-/**/

#endif

42

/**/

s sal seeker class.cpp

/*

SAL Seeker Class .cpp

Luke Strohm, Army Research Laboratory
3-14-11

*/

/**/

#include "s sal seeker class.h"
/**/
sSalSeeker::sSalSeeker () {

SetDefaults () ;
}/***/
voild sSalSeeker::SetDefaults () {

// Output Parameters

printtoscreen = false;

printtofile = false;

// Weather Parameters

sal weather.latitude = 1; //... 0 = tropics (<23.5 deg +-)
S e e 1 = mid-latitudes (23.5-50 deg +-)

L e e e e e e 2 = sub-arctic (50-70 deg +-)

sal weather.season = 0; //..... 0 = summer (3/22-9/21)
L e e e e e e e e e e e e e e 1 = winter (9/22-3/21)

sal weather.visibility = 0; //.............. 0 = clear (23 km), 1 = hazy (5 km)

// Seeker Parameters
s fov = 4.5; s fov *= UTILITY.DEG2RAD; //...deg (half angle of cone swept out)

s_aperture diameter = 60E-3; //..... ... m (based on 8lmm mortar)
s_background = 0.010; // ...ttt e e W/m"2/sr
s_signalnoise threshold = 7.0;
s efficiency = 0.95; //.......... efficiency factor encompassing various losses
// Designator (Scout) Parameters
d lasertype = 07 // i e 0 =1.06 um (Nd:Glass)
/22 1 =1.536 um (Er:Glass)
d raycount = 10000; //.... ..o number of rays in laser beam
d divergence = 3E=4; // .. rad
d pulse energy = 80E=3; // .. e J
d pulse frequency = 10.0; // ...ttt e Hz
d pulse duration = 15E=9; // ...ttt E
d efficiency = 0.95; //.......... efficiency factor encompassing various losses
d h error = 1E-4; //. ... horizontal designator error (rad, stdev)
d v error = 1E-4; //. ..o, vertical designator error (rad, stdev)
// Target Parameters
Losize.X = 6,47 /e m
ESizZe. Y = 2.3 /e m
L 81zl = 2.3 /e m
t reflect[0] = 0.4; // .o e left side
t reflect[l] = 0.4 // i e front
t reflect[2] = 0.4 // i e right side
t o reflect3] = 0.4 // e back
t reflect[4] = 0.4 // e top
t reflect[5] = 0.4 // e ground

}/***/

saloutputs sSalSeeker::S SALSEEKER (Point3D d geo, Point3D t geo, Point3D s_geo,
Point2D s_orientation, double t rotation, int seed) {
// Set class variables equal to function inputs
*this) .d geo = d _geo;

(

(*this) .t geo = t geo;

(*this) .s _geo = s _geo;

(*this) .s_orientation = s orientation;
(*this) .t rotation = t rotation;

// Initialize random number generator

43

STAT.MIRandGenInit (seed);

// Call Calculation Functions
LaserSpot (d geo, t geo, s geo, s orientation, t rotation);
Signalloss () ;

programoutput.encounter = s encounter;
programoutput.detect = s detect;
programoutput.sal signals = s _signal;
programoutput.actuator signals = s maneuver;

return programoutput;
}/**~k~k~k************************/

void sSalSeeker::LaserSpot
(Point3D pl, Point3D p2, Point3D p3, Point2D s or, double tr) {
// Define local variables
vector <Point3D> u(7), v(7); //..u and v (vectors from surface center to edge

)
[/ SIDES: u (length dir), v (height dir)
YA FRONT, BACK: u (width dir), v (height dir)
VAR TOP, BOTTOM: u (length dir), v (width dir)
Point3D r ind; //.............. individual ray vector from designator to target
double m[3][3], mi[3][3], d1[3], tuv([3];
double det = 0.0 // i e e determinant
double r mult = 0.0; //....... multiplier to get from designator to surface hit
int hitcount = 0; //...iuiiiinn.. the number of hits on the surface most hit
s desc[0] = "Left Side"; s desc[l] = "Front"; s desc[2] = "Right Side";
s _desc[3] = "Back"; s desc[4] = "Top"; s desc[5] = "Ground";
s desc[6] = "DirectToSeeker"; s desc[7] = "Miss";

// Resize vectors s, n, and r
s.resize(7); n.resize(7); r.resize(d raycount);

// Initialize surface hit counts to 0
surface[0] = surface[l] = surface[2] = surface[3] = surface[4]
= surface[5] = surface[6] = surfacel[7] 0;

// Target Rotation - only valid 0 to 2PI rad
if ((tr < 0) || (tr > 2*M PI)){
cerr << "Invalid target angle" << endl;
system ("PAUSE") ;
exit (1) ;

// DEFINE TARGET SURFACE COORDINATES AND VECTORS* * % % % & & ok o ko & o ok ok ok & ok ok ok ok ko ok ok

// Calculate Heading (Pointing) Vector for Seeker
s_heading vector = SpherCartConv(s_or);

// Target Surface Coordinates

// Side 0 (Left Side)

s[0].X = p2.X - (t_size.Y/2) * cos(tr);
s[0].Y = p2.Y + (t_size.Y/2) * sin(tr);
s[0].Z = p2.%Z;

// Side 1 (Front)

s[1l].X = p2.X + (t_size.X/2) * sin(tr);
s[1].Y = p2.Y + (t_size.X/2) * cos(tr);
s[1].2 = p2.2;

// Side 2 (Right Side)

s[2].X = p2.X + (t_size.Y/2) * cos(tr);
s[2].Y = p2.Y - (t_size.Y/2) * sin(tr);
s[2].2 = p2.2;

44

// Side 3 (Back)

s[3].X = p2.X - (t_size.X/2) * sin(tr);
s[3].Y = p2.Y - (t_size.X/2) * cos(tr);
s[31.2 = p2.7;

// Side 4 (Top)

s[4].X = p2.X;

s[4].Y = p2.Y;

s[4].2 = p2.2 + (t_size.Z/2);

// Side 5 (Ground)

s[5].X = p2.X;

s[5].Y = p2.Y;

s[5].Z2 = 0;

// Side 6 (DirectToSeeker)

s[6].X = p3.X;

s[6].Y = p3.Y;

s[6].2 = p3.%Z;

// Normal Vectors Pointing out of each surface
// Side 0 (Left Side)

n(0].X = -cos(tr);
n[0].Y = sin(tr);
n[0].zZ2 = 0;

// Side 1 (Front)
n{l].X = sin(tr);
n[l].Y = cos(tr);
n{l].z = 0;

// Side 2 (Right Side)
n[{2].X = cos(tr);
n[2].Y = -sin(tr);
n({2]1.z = 0;

// Side 3 (Back)
n[{3].X = -sin(tr);
n[3].Y = -cos(tr);
n({3].z2 =
// Side
n[d4].X =
nf4].Y =
n[d4].Z =
// Side
n[5].X =
n[5].Y =
n[5].2 =
// Side 6 (DirectToSeeker)
n[6].X = s heading vector.X;
n[6].Y = s heading vector.Y;
n[6].Z = s heading vector.Z;

~e

(Top)

~e

o o~

(Ground)

~.

~e

O O Ul OO O
~

~.

// Surface-defining vectors (u and v)
// Side 0 (Left Side)
ul[0].X = n[l].X * t _size.X/2;

ul0].Y = n[l].Y * t size.X/2;
ul0].Z = 0;

v[0].X = 0;

v[0].Y = 0;

v[0].Z = t _size.z/2;

// Side 1 (Front)

ul[l].X = n[2].X * t size.Y/2;
ull].Y = n[2].Y * t _size.Y/2;
ulll.z = 0;

v[1l].X = 0;

v[1l].Y = 0;

v[1l].Z = t _size.Z/2;

// Side 2 (Right Side)

45

uf[2].X = n[3].X * t_size.X/2;

uf2].Y = n[3].Y * t size.X/2;

ul2].z = 0;

v[2].X = 0;

v[2].Y = 0;

v[2].Z2 = t size.Z/2;

// Side 3 (Back)

uf[3].X = n[0].X * t size.Y/2;

ul[3].Y = n[0].Y * t size.Y/2;

ul3].z = 0;

v[3].X = 0;

v[3].Y = 0;

v[3].Z2 = t_size.z/2;

// Side 4 (Top)

ufl4].X = n[l].X * t size.X/2;

ul4].Y = n[l].Y * t size.X/2;

uld4]1.z = 0;

v[4].X = n[2].X * t _size.Y/2;

v[4].Y = n[2].Y * t_size.Y/2;

v[4].Z = 0;

// Side 5 (Ground)

ul[5].X = n[l].X * t size.X/2;

ul[5].Y = n[l].Y * t size.X/2;

ul[5]1.2 = 0;

v[5].X = n[2].X * t_size.Y/2;

v[5].Y = n[2].Y * t size.Y/2;

v([5].Z2 = 0;

// Side 6 (DirectToSeeker)

// Define vectors that characterize seeker pointing
Point3D vl = s heading vector;

Point3D v2 = VectorRotation(vl,0,0,1);
Point3D v3 = VectorRotation(vl,0,0,2);
u[6].X = v2.X * (s_aperture diameter / 2);
ul6].Y = v2.Y * (s _aperture diameter / 2);:
ul[6].Z = v2.Z * (s_aperture diameter / 2);
v[6].X = v3.X * (s_aperture diameter / 2);:
v[6].Y = v3.Y * (s_aperture diameter / 2);
v([6].Z = v3.Z * (s_aperture diameter / 2);:
// DIVIDE LASER BEAM INTO INDIVIDUAL RAYS************************************
// Calculate Pointing Vector for Designator (with Error)

d heading vector

for

/*

VectorRotation (VectorPointing(d geo, t geo),
STAT.Normal (0,d_h error),
STAT.Normal(O,d_v_error));

(int i=0;i<d_raycount;i++) {

Normally distribute rays according to divergence

Divergence for Gaussian beams assumed to be 2 st deviations

Beam edge when intensity drops to I

r ind

!/

r mult

Io/e”2 */

VectorRotation (d_heading vector,

STAT.Normal (0,d divergence/2),
STAT.Normal (0,d divergence/2));

Set default values
1E10;
int tempsurface

/7

............... Any hits should produce r mults under 1E10 m
Surface 7 means that ray did not hit anything

// FIND WHAT SURFACE RAY HITS**
for (int j=0;3<7;j++) {
// Calculate m

46

m[0] [0] = -r ind.X; m[0][1] = ul[j].X; m[O][=v[j].X;

m[1][0] = -r ind.Y; m[1][1] = u[j].¥; m = v[j].¥Y;

m[2][0] = -r ind.Z; m([2][1] = u[]j].Z; m[2][2] = v[]].Z;
t

// Calculate mi and determinan
InverseMatrix (m,mi,det);

// Calculate dl

dl[0] = pl.X - s[j].X;

dl[1] = pl.Y - s[§].Y;
dl[2] = pl.Z - s[3].2;

// Calculate TUV vector (T = multiplier, U = diml, V = dim2)

tuv[0] = mi[0][0]*d1[0] + mi[0][1]*d1l[1] + mi[0][2]*d1[2];

tuv([l] = mi[1][0]*d1[0] + mi[1][1]*d1l[1] + mi[l][2]*d1l[2];

tuv[2] = mi[2][0]1*d1[0] + mi[2][1]*d1[1] + mi[2][2]*d1[2];

// Determine if ray intersects plane

if ((fabs(det)<1E-20) || tuv[0] <= 1E-20) continue;

// Determine if ray intersects surface on plane

IE (3 1= 0 /e e e Ground plane is infinite
// Check intersection straight to seeker
if (3 == 6){

double dist = sqgrt(tuv[l]*tuv[l] + tuv[2]*tuv[2]);
double fov_check = VectorAngle (s heading vector,
VectorPointing (s geo, d geo));

if ((dist > s_aperture_diameter/Z) || (fov_check > s fov)) continue;
}
// Rectangular Target
else if ((tuv[l] < -1) |

(tuv[2] < -1) |

[(tuv[1l] > 1) I
| (tuv([2] > 1)) continue;
}
// Look for lowest r mult
if (tuv([0] < r mult)({
r mult = tuv[0];
tempsurface = j;
}
}

// RECORD HIT POINT AND SURFACE MOST HIT****%x%xkkkkkkkkhkhkkkkkkxxrhhkhkhkhkhkhkhkkk
// Add ray hit point to array of hit points (p)

if (tempsurface == 6){ // ... Ray goes directly into seeker
r{i].hit.X = p3.X;
r[{i].hit.Y = p3.Y;
r{i].hit.Z2 = p3.%;

}

else if (tempsurface == T7){ //. i Ray hits nothing
r[{i].hit.X = pl.X;

r{i].hit.Y = pl.Y;
r[{i].hit.2 = pl.Z;
}
Else{ /e e Ray reflecting off of surface
r[{i].hit.X = pl.X + r ind.X * r mult;
r[i].hit.¥ = pl.Y + r ind.Y * r mult;
r[{i].hit.2 = pl.Z2 + r ind.Z * r mult;
}

r[i].surf = tempsurface; //..... Record surface hit by ray
surface[tempsurfacel++; // ..o Tally hits on each surface

// Check ground hits to see if they are obscured from seeker by target
r[i].obscured = false;

if (tempsurface == 5)

{

Point3D obs = VectorPointing(r[i].hit, s _geo);

47

double obsc mult
int obsc surface

1E10;
5;

for (int k=0;k<7;k++){
// Calculate m

m[0][0] = -obs.X; m[0][1] = ulk].X; m[0][2] = vI[k].X;
m[1][0] = -obs.Y; m[1][1] = ulk].Y; m[1][2] = Vv LY;
m[2][0] = -obs.Z; m[2][1] = ulk].Z; m[2][2] = vI[k].Z;

// Calculate mi and determinant
InverseMatrix (m,mi, det) ;
// Calculate dl

dl[0] = r[i].hit.X - s[k].X;
dl[1l] = r[i].hit.Y - s[k].Y;
dl[2] = r[i].hit.Z - s[k].Z;
// Calculate TUV vector (T = multiplier, U = diml, V 2)

tuv[0] = mi[0][0]*d1[0] + mi[O0][1]*dl[1] + mi[O][2]*dl
]

=d
[21;
tuv[l] = mi[1][0]*d1[0] + mi[1][1]*d1[1] + mi[1][2]*d1[2]
(2]

tuv[2] = mi[2][0]*d1[0] + mi[2][1]*d1[1] + mi[2][2]*dl
// Determine if ray intersects plane
if ((fabs(det)<1E-20) || tuv[0] <= 1E-20) continue;
// Determine if ray intersects surface on plane
if ((tuv[l] < -1) || (tuv([l] > 1) ||
(tuv[2] < =1) || (tuv[2] > 1)) continue;

// Look for lowest obsc mult
if (tuv[0] < obsc mult) {
obsc mult = tuv[0];
obsc surface = k; }
}
// Determine if ray hit is obscured from seeker by target
if (obsc _surface < 5) r[i].obscured = true;

}

// Determine "mainhitsurface"
for (int 1=0;1<8;1++)
{
if (surface[l] > hitcount)
{
hitcount = surfacel[l];
mainhitsurface = 1;

}

}/‘k******************************/
void sSalSeeker::SignallLoss () {

// Initialize Quadrants

s _signal.ql = s signal.qg2 = s _signal.qg3 = s _signal.qg4 = 0;

s hits[0] = s _hits[1l] = s hits[2] = s hits[3] = 0;
// Initialize S Encounter and S Detect to False (Default)
s _encounter = s detect = false;

// Define vectors

Point3D d t vector; //.... Distance between des and target (km)
Point3D t_s vector; //......iiiiiiiiiii Vector from target dot to seeker
Point3D s _t vector; //......iiiiiiiiiiiii., Vector from seeker to target dot
Point3D t normal vector; //....Vector pointing out of the illum target surface

// Define Distances/Rotations/Angles
double d t distance; //...Straight-line distance between desig and target (km)
double s_t distance; //..Straight-line distance between seeker and target (km)

double s _t normal angle; //...... Angle betwn seeker pointing and target normal
double s_t correct _angle; //............. Angle that seeker is off from ray hit
double r correct angle; //................... Individual FOV check for each ray

// ~ENCOUNTER: Check to see if target is encountered by seeker
s t correct angle = VectorAngle (s heading vector,VectorPointing(s geo,t geo));
if (s_t correct angle <= s fov) s encounter = true;

// Loop through rays and record the ones seeker receives
for (int i=0;i<d raycount;i++) {

// Initialize p variables to miss values
r[i].power = 0.0;

// Throw out rays that miss or are obscured
if (r[i].surf == || r[i] .obscured == true) continue;

//*******************************GEOMETRY***********************************

/* Check if ray is within seeker's FOV (does not check reflection yet)
The reason an extra check is done to see if the ray is encounter
(vs. target) is because we may check instances where the designator
greatly misses the target, and then the seeker sees the overspill/
underspill, even though it is not looking at the target */

r correct angle = VectorAngle(s heading vector,
VectorPointing (s _geo,r[i].hit));
if (r correct angle > s fov) continue;

// Get Normal vector of surface
t normal vector = n[r[i].surf];
// Calculate Distances
d t distance = UTILITY.Distance3D(d geo, r[i].hit); //...... Desig-target (m)
s _t distance = UTILITY.Distance3D(s geo, r[i].hit); //..... Seeker-target (m)
// Calculate Unit vectors Between Seeker, Desig, and Target Locations
s t vector = VectorPointing(s geo, r[i].hit);
t s vector = VectorPointing(r[i].hit, s _geo);
d t vector = VectorPointing(d geo, r[i].hit);
// Calculate Angle between seeker and target surface normal
s t normal angle = VectorAngle(t s vector, t normal vector);
// Calculate Multiplier for Ratio of Reflected Radiation Received
s _aperture area = M PI * pow (s aperture diameter / 2, 2);
s t multiplier = (s_aperture area/(M PI * pow(s_t distance,2)))
* cos(s_t normal angle) * cos(r_correct angle);

// Break out of loop if mult negative (surface normal > 90 degrees off)
if (s_t multiplier <= 1E-20) continue;
//****************************POWER LOSS**‘k*‘k*‘k*‘k***************************
// Divide up total signal into individual rays
r[i].power = d pulse energy * d efficiency /

(d_raycount * d pulse duration);

if (r[il.surf == 6){ //.. Ray goes directly from desig into seeker
double d s distance = UTILITY.Distance3D(d geo, s geo);
r[i] .power = Attenuation(r[i].power, d s distance, d geo.Z,
r[i].hit.Z, sal weather, d lasertype);
}
else{ //......... Ray reflects off of target or ground before reaching seeker
// Attenuate (Designator to Target)
r[i] .power = Attenuation(r[i].power, d t distance, d geo.Z,
r[i].hit.Z, sal weather, d lasertype);
// Reflect off of Target
r[i] .power *= t reflect([r[i].surf];
// Attenuate (Target to Seeker)
r[i] .power = Attenuation(r[i].power, s t distance, r[i].hit.Z,
s geo.Zz, sal weather, d lasertype);
// Decrease by distance and angle from target normal

49

r[i].power *= s t multiplier;
}

r[i] .power *= s efficiency;

[/ FxFAFAF A XK AKX ADETERMINE SEEKER QUADRANT THAT RECEIVES RAY X *# k& k& dkkdkk k& khx

// Define matrices to find where ray intersects surface
double m[3][3];

double mi[3][3];

double d1[3];

double tuv([3];

double det = 0.0;

// Define vectors that characterize seeker pointing
Point3D vl = s heading vector;

Point3D v2 = VectorRotation(s_heading vector,0,0,1);
Point3D v3 = VectorRotation(s_heading vector,0,0,2);
// Calculate m

m[0][0] = vl1.X; m[0][1] = v2.X; m[0][2] = v3.X;
m[1][0] = v1.Y; m[1][1] v2.Y; m[1][2] v3.Y;
m[2][0] vl.Z; m[2][1] v2.72; m[2][2] = v3.Z;

// Calculate mi and determinant

InverseMatrix (m,mi,det);

// Calculate dl

if (r[i].surf == 6){
dl[0] = d geo.X - s geo.X;
dl[l] = d geo.Y - s geo.Y;
dl[2] = d geo.Z2 - s geo.Z;

}

else{
dl[0] = r[i].hit.X - s geo.X;
dl[1l] = r[i].hit.Y - s geo.Y;

dl[2]
}
// Calculate TUV vector (T = multiplier, U = pitch, V = yaw)
tuv[0] mi[0][0]*d1[0] + mi[O][1]*d1l[1] + mi[O]([2]*d1l[2];
tuv[l] = mi[1][0]*d1[0] + mi[1]([1]*d1[1l] + mi[l][2]*d1l[2];
tuv([2] mi[2][0]1*d1[0] + mi[2][1]*d1l[1] + mi[2]([2]*d1l[2];
// Determine what quadrant ray hits by pitch/yaw corrections
double length = tuv[0];
double yaw = tuv([l];
double pitch = tuv[2];

r[i].hit.Z - s geo.Z;

// Sum up energies in each quadrant and divide by pulse width to get power

if (length > 0){
if (pitch > 0){
1T (Yaw > 0) L /et e e e
s _hits[0]++;
s signal.qgl += r[i].power;
}
CLSe /e e e e e
s _hits[1l]++;
s signal.g2 += r[i].power;
}
}
else(
IE (Yaw > 0) { /et e e e e e e e
s _hits[2]++;
s signal.qg3 += r[i].power;
}
CLSe /e e e e e e
s hits[3]++;
s signal.g4 += r[i].power;

}

50

+ Yaw

- Yaw

+ Yaw

- Yaw

}/***/

//*******************DETERMINE DETECT (S/N ABOVE THRESHOLD)*******************
double gl = s signal.gl; double g2 = s signal.g2;

double g3 = s signal.g3; double g4 = s signal.qg4;

double s solidangle = 2 * M PI * (1 - cos(s_fov));

// Total seeker power is sum of quadrants
s power = gl + g2 + g3 + g4;
// Calculate seeker noise

s noise = s background * s aperture area * s solidangle;
// Calculate each quadrant's S/N

s signalnoise.ql = gl / (s _noise / 4);

s_signalnoise.q2 = g2 / (s_noise / 4);

s_signalnoise.q3 = g3 / (s_noise / 4);

s signalnoise.q4 = g4 / (s _noise / 4);

// Detects if at least one quadrant's S/N > threshold
if (s_signalnoise.qgl > s signalnoise threshold ||

s_signalnoise.qg2 > s signalnoise threshold ||

s signalnoise.g3 > s signalnoise threshold ||

s_signalnoise.g4 > s _signalnoise threshold)
s detect = true;
//***********************DETERMINE MANEUVER SIGNALS****xkkkxkkkkkkxkhkkkkkkxkkkkrk
if (s_power < 1E-25)({

s _maneuver.pitch = s maneuver.yaw = 0.0;
s maneuver.theta = s maneuver.mag = 0.0;

}

else{
s _maneuver.pitch = ((ql + g2) - (g3 + g4)) / s_power;
s maneuver.yaw = ((gl + g3) - (g2 + g4)) / s_power;
double p = s maneuver.pitch, y = s maneuver.yaw;

int quadcount = 0; double zerothresh = 1E-16;

if (p >= 0) s _maneuver.theta = fabs(atan2(p,-y)):
else s maneuver.theta = fabs(atan2(p,y)) + M PI;
if (gl < zerothresh) quadcount++;

if (g2 < zerothresh) quadcount++;

if (g3 < zerothresh) quadcount++;

if (g4 < zerothresh) quadcount++;

if (quadcount > 1) s maneuver.mag = 1.0;

else s maneuver.mag = sqrt((p*p + y*y) / 2);

}

}/***/
/**/
/**************************** UTILITY FUNCTIONS *******************************/
/**/
double sSalSeeker::Attenuation(double currentsig, double traveldistance,

double startheight, double endheight,

weather sal weather, int lasertype) {

// Weather

int 1 = sal weather.latitude; Y A, 0 = tropics (< 30 deg lat)
[/ 1 = mid-latitudes (30-60 deg lat)
) e e e e e e 2 = sub-arctic (> 60 deg lat)
int s = sal weather.season; //.........coiiiiiiiiian. 0 = summer (3/22-9/21)

51

L e e 1 = winter (9/22-3/21

)
int v = sal weather.visibility; //.......... 0 = clear (23 km), 1 = hazy (5 km)
int la = lasertype; A 0 = Nd:Glass (1.06um)

Y A 1 = Er:Glass (1.536um)

// Geometry and conversion to km
double td = traveldistance * .001;
double sh = startheight * .001;
double eh = endheight * .001;

double theta = asin((eh - sh) / td):

// Attenuation Coefficient and Attenuated Signal (Output of function)
double att = 0;
double attensig = currentsig;

Figure B-1. Lookup tables for 1.06- and 1.536-pm lasers.

// Lookup tables for Nd:Glass (1.06 um) and Er:Glass (1.536um) Lasers
static const double L[20][1l6] =
{

// kmt=1
// Atten Coefficient = Molecular Absorption + Molecular Scattering
// + Aerosol Absorption + Aerosol Scattering

// Rows 0-9 represent increasing altitudes (0 = 0-999m, 9 = 9000-9999m,
// heights >= 10km set to level 9)

// Nd:Glass (1.06um, Note: Molecular Absorption < le-6, recorded as 0)

/* mmmmm e Molecular Absorption---—--—--———=-—---= ——————————————————————
Molecular Scattering---------—-———--—- --Aerosol Abs-- —-—-—-Aerosol Scat---
0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Tr Summer Tr Winter ML Summer ML Winter SA Summer SA Winter Tr Summer Tr Winter ML
Summer ML Winter SA Summer SA Winter Clear Hazy Clear Hazy */

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000768, 0.000768,
0.000781, 0.000843, 0.000798, 0.000877, 0.0131, 0.0582, 0.0450, 0.200, // 0-1
km

0.000000, 0.000000, 0.000000, 0.0000CO0O0, 0.000000, 0.000000, 0.000699, 0.000699,
0.000706, 0.000752, 0.000721, 0.000770, 0.00571, 0.0213, 0.0196, 0.0731, // 1-2
km

52

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000633, 0.000633,
0.000638, 0.000670, 0.000850, 0.000682, 0.00243, 0.00778, 0.00836, 0.0267, //
km

0.000000, 0.000000, 0.000000, 0.000OCOO, 0.000000, 0.000000, 0.000572, 0.000572,
0.000577, 0.000599, 0.000584, 0.000606, 0.00115, 0.00284, 0.00394, 0.00976, //
km

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000519, 0.000519,
0.000521, 0.000537, 0.000524, 0.000540, 0.000723, 0.00104, 0.00249, 0.00356, //
km

0.000000, 0.000000, 0.000000, 0.000OCOO, 0.000000, 0.000000, 0.000459, 0.000459,
0.000469, 0.000480, 0.000471, 0.000482, 0.000527, 0.000527, 0.00181, 0.00181, //
km

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000422, 0.000422,
0.000421, 0.000427, 0.000423, 0.000429, 0.000427, 0.000427, 0.00147, 0.00147, //
km

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000380, 0.000380,
0.000378, 0.000380, 0.000379, 0.000381, 0.000418, 0.000418, 0.00144, 0.00144, //
km

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000341, 0.000341,
0.000338, 0.000336, 0.000338, 0.000334, 0.000415, 0.000415, 0.00143, 0.00143, //
km

0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000304, 0.000304,
0.000302, 0.000297, 0.000301, 0.000288, 0.000401, 0.000401, 0.00135, 0.00138, //
km

// Er:Glass (1.536um)

[* mm e Molecular Absorption-——-—--———————————-- —————————————————

Molecular Scattering----------——---—- -—-Aerosol Abs-- —-—-—-Aerosol Scat---
0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Tr Summer Tr Winter ML Summer ML Winter SA Summer SA Winter Tr Summer Tr Winter
Summer ML Winter SA Summer SA Winter Clear Hazy Clear Hazy */

0.000131, 0.000131, 0.000136, 0.000162, 0.000155, 0.000198, 0.000169, 0.000169,
0.000172, 0.000186, 0.000176, 0.000193, 0.0156, 0.0693, 0.0271, 0.120, //
km

0.000109, 0.000109, 0.000111, 0.000130, 0.000127, 0.000153, 0.000154, 0.000154,
0.000156, 0.000166, 0.000159, 0.000170, 0.00680, 0.0253, 0.0118, 0.0440, //
km

0.000090, 0.000090, 0.000092, 0.000104, 0.000104, 0.000120, 0.000140, 0.000140,
0.000141, 0.000148, 0.000143, 0.000150, 0.00290, 0.00927, 0.00503, 0.01l61, //
km

0.000075, 0.000075, 0.000076, 0.000084, 0.000085, 0.000096, 0.000126, 0.000126,
0.000127, 0.000132, 0.000129, 0.000134, 0.00136, 0.00338, 0.00237, 0.00588, //
km

0.000061, 0.000061, 0.000061, 0.000068, 0.000062, 0.000077, 0.000114, 0.000114,
0.000115, 0.000118, 0.000115, 0.000119, 0.000862, 0.00124, 0.00150, 0.00215, //
km

0.000051, 0.000051, 0.000051, 0.000055, 0.000057, 0.000062, 0.000103, 0.000103,
0.000104, 0.000106, 0.000104, 0.000106, 0.000623, 0.000828, 0.00109, 0.00100, //
km

0.000041, 0.000041, 0.000042, 0.000044, 0.000045, 0.000050, 0.000093, 0.000093,
0.000093, 0.000094, 0.000093, 0.000095, 0.000509, 0.000509, 0.000883, 0.000883,//
km

0.000034, 0.000034, 0.000034, 0.000035, 0.000037, 0.000039, 0.000084, 0.000084,
0.000084, 0.000084, 0.000084, 0.000084, 0.000498, 0.000498, 0.000865, 0.000865,//
km

0.000028, 0.000028, 0.000026, 0.000028, 0.000030, 0.000030, 0.000075, 0.000075,
0.000075, 0.000074, 0.000075, 0.000074, 0.000495, 0.000495, 0.000859, 0.000859,//
km

53

5-6

6-7

7-8

8-9

9-10

ML

0-1

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

0.000022, 0.000022, 0.000022, 0.000021, 0.000024, 0.000023, 0.000067, 0.000067,
0.000067, 0.000066, 0.000066, 0.000063, 0.000478, 0.000478, 0.000831, 0.000831 // 9-10
km

i

// LEVEL PATH
if (theta == 0) {
// Figure out what height laser is in
int row;
int n = 0;
do {
row = n;
n++;
} while (sh >= n);
if (row > 9) row = 9;

// Calculate attenuation coefficient for segment and attenuate the signal

// Molecular Absorption Molecular Scattering
att = L[row + 10*la][2*1 + s] + L[row + 10*lal[6 + 2*1 + s]
// Aerosol Absorption Aerosol Scattering

+ L[row + 10*1lal[l2 + v] + Llrow + 10*1all[l4 + v];
attensig *= exp(-att * td);
}

// ANGLED PATH

else{
// Initialize new variables
double segment, ipart; double extrasegment = 0;

int n, lowrow, highrow;

// Make sure start height is below end height
if (theta < 0){

double sh temp = sh;

double eh temp = eh;

sh = eh temp;

eh = sh temp;
}

// Find altitude row that signal starts in
n = 0;
do{
lowrow = n;
n++;
} while (sh >= n);
if (lowrow > 9) lowrow = 9;

// Find altitude row that signal ends in
n = 0;
do{
highrow = n;
n++;
} while (eh >= n);

if (highrow > 9){
extrasegment = fabs ((highrow - 9)/sin(theta));
highrow = 9;

}

// Loop through to attenuate signal through different altitudes
for (int row = lowrow; row < highrow + 1; row++) {
// Find out segment length
if (lowrow == highrow) segment = td;
else if (row == lowrow) segment = fabs((l1 - modf (sh, &ipart))/sin(theta));

54

else 1if (row == highrow)
segment = fabs (modf (eh, &ipart)/sin(theta)) + extrasegment;
else segment = fabs(l/sin(theta));

// Calculate attenuation coefficient for segment and attenuate the signal

// Molecular Absorption Molecular Scattering
att = L{row + 10*la][2*1 + s] + L[row + 10*la]l[6 + 2*1 + s]
// Aerosol Absorption Aerosol Scattering

+ L[row + 10*la][1l2 + v] + L[row + 10*1la]l([l4 + Vv];
attensig *= exp(-att * segment);
}
}
return attensig;
}/**k**k************k**k**k**k**k**********k**k**k**k**************k***********************/
Point3D sSalSeeker::VectorPointing (Point3D pl, Point3D p2, bool norm) {
// Create vector from pl to p2
Point3D p3;
double vec mag = UTILITY.Distance3D(pl , p2);
// Subtract to get vector (p3 = p2 - pl)
p3.X = (p2.X-pl.X);
p3.Y = (p2.Y¥Y-pl.Y);
p3.2 = (p2.Z2-pl.Z2);
// Normalize vector if norm = true
if (norm == true) {
p3.X /= vec mag;
p3.Y /= vec _mag;
p3.Z /= vec _mag;
}
return p3;
}/***/
Point3D sSalSeeker::SpherCartConv (Point2D pl) {
// Creates unit vector from azimuth/elevation angles
Point3D p3;
p3.X = cos(pl.Y) * cos(pl.X);
p3.Y = cos(pl.Y) * sin(pl.X);
p3.Z2 = sin(pl.Y);
return p3;
}/***/
Point3D sSalSeeker::VectorRotation (Point3D pl, double a, double b, int vect) {
Point3D p3;

[/ e e Assume unit vectors for both original and transformed vector
L e e e e e e e e pl = original vector, a = yaw, b = pitch
L e e e e p3 p = Perturbed vector in new prime coord system

double p3_pl[3], p3_p_mag;

switch (vect) {
case 0: // Arbitrary rotations (default case)
p3 pl0] = 1; p3 pl[l] = tan(a); p3 pl[2] = tan(b); break;
case 1: // 90 degree rotation to +y axis
p3 pl0] = 0; p3 pll] = 1; p3 p[2] = 0; break;
case 2: // 90 degree rotation to +z axis
p3 pl0] = 0; p3 pll] = 0; p3 p[2] = 1; break;
}

// Normalize p3 p[]
p3_p_mag = sqrt(p3_p[0]*p3_pl[0] + p3_pl[ll*p3_p[l] + p3_pl[2]1*p3_p(2]);
p3_pl[0] *= 1/p3_p mag; p3_p[l] *= 1/p3_p _mag; p3_pl[2] *= 1/p3_p_mag;

// Create rotation matrix to rotate back to original

// coordinate system using two consecutive Euler rotations
// Rotation matrix derived by Robert Yager in ARL-TR-5520
double R[3][3];

double gamma = 1/ (sqgrt(l-pl.Z*pl.Z));

55

0] (0]

R = pl.X; R[0][1] =
R[1][0]
R

pl.Y; R[1][1]
= pl.z; R[2][1] =

—gamma*pl.Y; R[O]
gamma*pl.X; R[1]
0; R[2]

p3.X
p3.Y
p3.2

R[0][0]*p3_p[0] + R[IO][1]*p3_p[1]
R[1][0]1*p3 p[0] + R[1][1]*p3 p[1]

return p3;

= —gamma*pl.X*pl.Z;
—gamma*pl.Y*pl.Z;
= 1/gamma;

———

NN

e e
I

+ R[0][2]*p3_p[2];
_ + R[1][2]*p3 pl[2];
R[2][0]*p3_pl[0] + R[2][1]*p3_p[l] + R[2][2]*p3_pl2];

}/***/

double sSalSeeker::VectorAngle (Point3D pl,

Point3D p2) {

p2.Y * p2.Y + p2.Z2 * p2.7);

// Returns angle between two vectors

double angle;

// Calculate vector magnitudes and dot product

double pl mag = sqrt(pl.X * pl.X + pl.Y * pl.Y + pl.Z * pl.Z);
double p2 mag = sqgrt(p2.X * p2.X +

double dotproduct = pl.X * p2.X + pl.Y * p2.Y + pl.Z * p2.7;
double division = dotproduct/(pl mag*p2 mag);

// Check boundary conditions

if (division > 1.0) division = 1.0;

if (division < -1.0) division = -1.0;

angle = acos(division);

return angle;

}/***/

double sSalSeeker::DotProduct (Point3D pl,

Point3D p2) {

return pl.X * p2.X + pl.Y * p2.Y + pl.Z * p2.Z;

}/***/

voild sSalSeeker::InverseMatrix (double m[3][3],

/*
Calculates inverse matrix
Compute inverse matrix

(mi) of matrix m
(3%3 specific)

-1 T
A= |ab c] A = 1 |A B C| 1
ld e f| === |ID E F| = -——-
lg h i] det (A) |G H I|
det = a(ei-fh) + b(fg-id) + c(dh-eq)
*/
double a, b, ¢, 4, e, £, g, h, i,
A, B, C, D, E, F, G, H, I;
a = m[0][0]; b = m[0][1]; ¢ = m[O][2];
d =m[1][0]; e = m[1][1]; £ = m([1][2];
g =m[2][0]; h =m[2][1]); i = m[2][2];
A = e*i-f*h; B = f*g-d*i; C = d*h-e*g;
D = c*h-b*i; E = a*i-c*g; F = b*g-a*h;
G = b*f-c*e; H = c*d-a*f; I = a*e-b*d;

det = a*(e*i-f*h) + b* (f*g-ix*d)

double mi[3][3], double &det) {

|A D G|
|B E H|

det (A) |[C F I

+ c* (d*h-e*g) ;

mi[0][0] = A/det; mi[0][1l] = D/det; mi[0][2] = G/det;
mi[1][0] = B/det; mi[1l][1l] = E/det; mi[1l][2] = H/det;
mi[2][0] = C/det; mi[2][1l] = F/det; mi[2][2] = I/det;

}/***/

void sSalSeeker::PrintOutput (string filename,
string lat, season, vis, laser, gl, g2, g3,
ofstream outfile;

//

56

string format) {
g4, summary;

User specifies filename here if not specified in function call

if (printtofile == true && filename == "") {
cout << "Please enter a filename: ";
cin >> filename;
cout << endl << endl;
filename = "Output\\" + filename + format;
}

else filename += format;

// Construct Quadsignal Percentages

if (s _signal.gl == 0.0) gl = "";
else gl = ToString(s_signal.gl/s _power * 100,"%9.2f") + "
if (s _signal.g2 == 0.0) g2 = "";
else g2 = ToString(s_signal.g2/s _power * 100,"%9.2f") + "
if (s_signal.g3 == 0.0) g3 = "";
else g3 = ToString(s signal.g3/s power * 100,"%9.2f") + "
if (s _signal.g4 == 0.0) g4 = "";

else g4 = ToString(s signal.g4/s power * 100,"%9.2f") + "

// Create description strings
switch(sal weather.latitude) {

case 0: lat = "Tropical\n"; break;
case 1: lat = "Mid-lat\n"; break;
case 2: lat = "Sub-arctic\n"; break;

}
switch(sal weather.season) {
case 0: season = "Summer\n"; break;
case 1l: season = "Winter\n"; break;
}
switch(sal weather.visibility) {
case 0: vis = "Clear\n"; break;
case 1: vis = "Hazy\n"; break;
}
switch(d lasertype) {
case 0: laser = "Nd:Glass\n"; break;
case 1: laser = "Er:Glass\n"; break;

}

// Construct Summary String
string fill = " ",
string fill2 = " "

summary = "\n" + Center ("SAL SEEKER CLASS IMPLEMENTATION",

+

Center ("developed for AWCB SWEEPM (LSS; 2011)",
Center (" INPUT PARAMETERS ", '-=-',"")
"xkk WEATHER\N"

"Latitude,

lat

"Season,

season

"Visibility,

vis + "\n"

"xxx SEEKER\n"

"Seeker FOV (Half Angle),

"Seeker Aperture Diameter,

"xx*x DESIGNATOR\n"
"Laser Type,

laser

"Laser Divergence,

"Ray Count,
ToString(d raycount, "%-i") + "\n"
"Designator Error (H),

e i S S T T e T T i

57

ToString(s_aperture diameter * 1000, "%-0.2f") +

" mm\n\nu

ToString(d_divergence * 1000, "%-0.2f") + " mrad\n"

l,ll")

,"ll)

+

"

ToString (UTILITY.RAD2DEG * s fov, "%$-0.2f") + " degrees\n"

"

vv\nu

B e ol e e S S S S e i i o s S S S S S T T T T T T T i e i T e S S S R S S

ToString(d h error * 1000, "%-0.2f") + " mrad\n"
"Designator Error (V), "
ToString(d v_error * 1000, "%-0.2f") + " mrad\n\n"

"kkk TARGET\n"

"Size (Length; Width; Height), "
ToString(t size.X, "%-0.1f") + ", "

ToString(t size.Y, "%-0.1f") + ", "

ToString(t size.Z, "%-0.1f") + "m\n"

"Reflectivity, \n"

"Left Side, "
ToString(t_reflect[0], "%0.2f") + "\n"
"Front,

ToString(t_reflect[1l], "%0.2f") + "\n"
"Right Side, "
ToString(t reflect[2], "%0.2f") + "\n"

"Back, "
ToString (t reflect[3], "%0.2f") + "\n"

"Top, "
ToString(t reflect[4], "%0.2f") + "\n"

"Ground, "
ToString (t reflect([5], "%0.2f") + "\n"

Center (" GEOMETRY ", '=',""™)

"Designator to Target Distance,
ToString (UTILITY.Distance3D(d geo, t geo) /1000, "%4.2f") + " km\n"
"Seeker to Target Distance, "

ToString (UTILITY.Distance3D(s_geo, t geo)/1000, "%4.2f") + " km\n\n"
"Seeker Location (XYZ - m), "
ToString(s_geo.X, "%-0.0f") + ", "
ToString(s geo.Y, "%-0.0£f") + ", "
ToString(s_geo.Z, "%-0.0f") + "\n"
"Designator Location,

ToString(d geo.X, "%-0.0f") + ", "

ToString(d_geo.Y, "%-0.0f") + ", "
ToString(d_geo.Z, "%-0.0f") + "\n"

"Target Location, "
ToString(t_geo.X, "%-0.0f") + ", "

ToString(t geo.Y, "%-0.0£") + ", "

ToString(t_geo.Z, "%-0.0f") + "\n\n"

"Seeker Heading, <m

ToString(s_heading vector.X, "%-0.2f") + ", "
ToString(s_heading vector.Y, "%-0.2f") + ", "
ToString(s_heading vector.z, "%-0.2f") + ">\n"

"Designator Heading, <"

ToString(d _heading vector.X, "%-0.2f") + ", "
ToString(d _heading vector.Y, "%-0.2f") + ", "
ToString(d _heading vector.z, "%-0.2f") + ">\n"

"Target Rotation,
ToString (UTILITY.RAD2DEG * t rotation, "%-0.0f") + " degrees\n"
"Seeker Azimuth,
ToString (UTILITY.RAD2DEG * s orientation.X, "%-0.0f") + " degrees\n"
"Seeker Elevation,
ToString (UTILITY.RAD2DEG * s orientation.Y, "%-0.0f") + " degrees\n\n"
Center (" SURFACE HITS ", '=-',"")

"Surface Most Hit, "
s_desc[mainhitsurface] + "\n"

"Left Side, "

ToString (surface[0], "%-5i") + ", ("

ToString ((double)surface[0]*100 / d raycount, "%-0.0f") + "%)\n"
"Front,

ToString(surface[l], "%-5i") + ", ("
ToString ((double)surface[1]*100 / d_raycount, "%-0.0f") + "%)\n"
"Right Side, "
ToString (surface[2], "%-5i") + ", ("

58

ToString ((double)surface[2]*
"Back,

ToString(surface[3], "%-51i")
ToString ((double) surface[3]*
"Top,

ToString (surface[4], "%-5i")
ToString ((double)surface[4]*
"Ground,
ToString(surface[5], "%-51i")
ToString ((double) surfacel[5]*
"DirectIntoSeeker,

ToString (surface[6], "%$-51i")
ToString ((double)surfacel[6]*
"Miss,

ToString (surface[7], "%$-5i")
ToString ((double)surfacel[7]*
Center ("
"0l (+ Pitch; + Yaw),
ToString(s hits[0], "%-i")
"Q2 (+ Pitch; - Yaw),
ToString(s hits[1], "%-i")
"QO3 (- Pitch; + Yaw),
ToString(s hits[2], "%-i")
"Q4 (- Pitch; - Yaw)
ToString(s _hits[3], "%-
Center (" POWER LOSS ,
"Designator Laser Signal,

+
+
+

+

i")
' TN
14

"Seeker Laser Signal,
ToString(s_power, "%-0.2e")
"Background Noise,
ToString(s_noise,
"S/N Threshold,

"%-0.2e")

"S/N 01,
ToString(s_signalnoise.ql,
"S/N Q2,
ToString(s_signalnoise.q2,
"S/N Q3,
ToString(s_signalnoise.g3,
"S/N 04,
ToString(s_signalnoise.g4,
"S/N Total,
ToString(s_power / s noise,
Center (" ENCOUNTER/DETECT ",
"0 = No; 1 Yes\n"
"Target Encountered,
ToString(s_encounter,
"Target Detected,
ToString (s _detect, "%$-1i")
Center (" QUADRANT SIGNALS
fill + Center("+ Pitch™,' ',
fill + Center("",'-"',"",40);
for (int n=0;n<3;n++)
summary += fill + Align("Q1
summary += fill + Center("|",'
summary += fill + Align(gl + "
for (int n=0;n<3;n++)
summary += £ill2

+ "+ Yaw
for (int n=0;n<3;n++)
summary += fill + Align("Q3
summary += fill + Center("|",'

"%—i")

+

"
I4

B o S i S T T T i o e i S S S S S S N T T i T T T T T T e T T i S SR

SEEKER QUADRANT HITS

ToString(d pulse energy / d pulse duration,
+
+

ToString(s_signalnoise threshold,

summary += fill + Center ("|",'
\

summary += fill + Center ("|",'

summary += fill + Center (

100 / d_raycount, L0f™)

"

+ 4
100 /

(n

d raycount, L0f™)

+ "
100 /

(u

d raycount, L0E™)

"

+ 4
100 /

(n

d raycount, L0f™)

+ "
100 /

(l’
d raycount, L0E™)

+ ("
100 / d_raycount,

" T o nun
4 4)

L.0f™)

”\1’1"
”\1’1"
”\1’1"

”\1’1\1’1"
n)

"$-0.2e") + w\n"

" W\n"

" W\n"

no
o

-0.2£") + "\n"

o
°

—O.Zf") ll\n"

.2f") u\nn
.2f") n\n"
.2f") n\n"

"%-0.2£")

l_l,ll")

+ vv\n\nn

+ ll\n"

"\H\H"

l_l,ll")

40)

+ ll\n"

nn
’

LI, 40)
| 02", ' |',20,"|",40);
LI, 40)

" +g2,'1',20,"|",40);
L, 40)

- Yaw\n";
eyt M, 40)
\ 4", "|',20,"[",40);
'y, 40)

59

summary += fill + Align(g3 + " | "+ g4,']',20,"|",40);

for (int n=0;n<3;n++) summary += fill + Center("|",' ',"|",40);
summary += fill + Center("",'-',"",40)
+ fill + Center("- Pitch"™,' ',"",40)
+ "\n\n"
+ Center (" MANEUVER GUIDANCE ", '-=',"") 4+ "\n"
+ "Pitch Command, "
+ ToString(s _maneuver.pitch, "%-0.2f") + "\n"
+ "Yaw Command, "
+ ToString(s_maneuver.yaw, "%-0.2f") + "\n"
+ "Signal Center: Theta, "
+ ToString (UTILITY.RAD2DEG * s maneuver.theta, "%-0.2f") + "\n"
+ "Signal Center: Magnitude, "
+ ToString (s maneuver.mag, "%$-0.2f") + "\n\n"
+ Center(""’_l_l,l’") + H\n"

if (printtoscreen == true) cout << summary << endl;

if (printtofile == true) {

outfile.open(filename.c_str());

outfile << summary << endl;
outfile.close();

}
}/***/
main.cpp #1 (Embeddable)

/*

SAL Seeker Class Basic Implementation (main.cpp)
Luke Strohm, Army Research Laboratory

3-14-11

*/

/**/

#include <s sal seeker class.h>
/**/

int main ()

{
sSalSeeker RUN;

//********************DEFINE INPUT/OUTPUT VARIABLES*************************//
/) TN PU T — = —— —m — o o o

Point3D d geo, t geo, s geo; //.. ... Designator, Target, Seeker
Point2D s _orientation; //....... Azimuth, Elevation (degrees)
double t rotation; //......... degrees (0 is target traveling in the +y direct)

[/ eeeonn.. rotation is clockwise as seen from above target
1INt S // i it e e e e e Seed for random number generator
/] OU T PU T == — — m — o o

// Mega-struct contains encounter, detect, quad signals, and maneuver guidance
saloutputs results;

//*******************************SET INPUTS*********************************//

s _geo.X = -5000; s geo.Y = 0; s geo.Z = 1.15;

d geo.X = -2000; d geo.Y = 0; d geo.Z = 1.15;

t geo.X =0 ; £ geo.Y = 0; t geo.Z = 1.15;

s _orientation.X = 0; s orientation.Y = 0; t rotation = 0;
seed = 0;

//******************************RUN PROGRAM*********************************//

// Convert inputs (degrees to radians)
s_orientation.X *= RUN.UTILITY.DEG2RAD;
s _orientation.Y *= RUN.UTILITY.DEG2RAD;

60

t rotation *= RUN.UTILITY.DEG2RAD;

// Run main calculation function
results = RUN.S SALSEEKER(d geo,t geo,s geo,s orientation,t rotation,seed);

RUN.printtoscreen = true;
RUN.printtofile = false;
RUN.PrintOutput ("", ".txt");

system ("PAUSE") ;
return O;

}

main.cpp #2 (Stand-Alone)

/ *

SAL Seeker Class implementation (main.cpp)
Luke Strohm, Army Research Laboratory
3-14-11

*/

/**/

#include <s sal seeker class.h>
/**/
int main ()
{

sSalSeeker RUN;
/**/

// Run Options

bool batchrun = false;

bool testinputs = false;

RUN.printtoscreen = true;

RUN.printtofile = false;

string oformat = ".txt";

/************************DEFINE INPUT/OUTPUT VARIABLES***********************/
/TN PU T = = = = = o o o

Point3D d geo, t geo, s geo; //.... i Designator, Target, Seeker
Point2D s _orientation; //....... Azimuth, Elevation (degrees)
double t rotation; //......... degrees (0 is target traveling in the +y direct)

[/ eeeonn.. rotation is clockwise as seen from above target
1INt S // i i e e e e e Seed for random number generator
// OU T Pl T = — = = = = m — — m

// Mega-struct contains encounter, detect, quad signals, and maneuver guidance
saloutputs results;

/*‘k*‘k***‘k******************RUN PROGRAM(SINGLE/BATCH) ‘k*‘k*‘k*‘k******************/
// Initialize list of file names and find first txt file in folder

_finddata t filenamelist; //....... _finddata t is a Windows-specific structure
ANt L1 /et e e e first file
string ifile, ofile, ofile summary, outputstring; //................. i/o files
ofile summary = "Output\\OutputSummary.csv";

// Set input folder and output summary file
if (batchrun == true) hfile = findfirst("Input*.txt", &filenamelist);
else hfile = findfirst("*.txt", &filenamelist);

// Open output summary file

ofstream FileToWrite;
FileToWrite.open(ofile summary.c str());
int counter = 1;

do{
//SET UP I/0 FILES———— = oo oo o

// Define input and output folder locations
if (batchrun == true) {

ifile = "Input\\";

ifile = ifile + filenamelist.name;
}
else ifile = filenamelist.name;
// Open next input file in the folder
ifstream FileToRead;
FileToRead.open(ifile.c_str());
// If can't open input file, terminate with error
if (!FileToRead) {

cout << "Unable to open file\n";

system ("PAUSE") ;

exit (1) ;
}

/**************************GET DATA FROM INPUT FILE************************/

// Inputs are delimited by (;)
for (int 1=0;i<44;i++) {
getline (FileToRead, outputstring, ';');
if (outputstring == ""){
getline (FileToRead, outputstring);
continue;

}

switch (i) {
case 1: s geo.X = atof(outputstring.c_str()); break;
case 2: s _geo.Y = atof (outputstring.c str()); break;
case 3: s _geo.Z = atof (outputstring.c_str()); break;
case 4: d geo.X = atof (outputstring.c str()); break;
case 5: d geo.Y = atof(outputstring.c_str()); break;
case 6: d geo.Z = atof (outputstring.c str()); break;
case 7: t geo.X = atof(outputstring.c_str()); break;
case 8: t geo.Y = atof (outputstring.c str()); break;
case 9: t geo.Z = atof (outputstring.c_str()); break;
case 10: t rotation = atof (outputstring.c str()); break;
case 1l1l: s orientation.X = atof (outputstring.c str()); break;
case 12: s _orientation.Y = atof (outputstring.c str()); break;
case 13: seed = atoi (outputstring.c_str()); break;
case 14: break; // .o e e input file line break
case 15: RUN.sal weather.latitude = atoi (outputstring.c str()); break;
case 16: RUN.sal weather.season = atoi (outputstring.c str()); break;
case 17: RUN.sal weather.visibility = atoi (outputstring.c str()); break;
case 18: break; // . e e e e input file line break
case 19: RUN.s fov = atof (outputstring.c str()) * RUN.UTILITY.DEG2RAD;

break;

case 20: RUN.s aperture diameter = atof (outputstring.c str()); break;
case 21: RUN.s background = atof (outputstring.c_str()); break;
case 22: RUN.s signalnoise threshold = atof (outputstring.c str());break;
case 23: RUN.s efficiency = atof (outputstring.c_str()); break;
case 24: break; // . e e input file line break
case 25: RUN.d lasertype = atoi(outputstring.c str()); break;
case 26: RUN.d raycount = atoi(outputstring.c str()); break;

case 27: RUN.d divergence = atof (outputstring.c str()); break;

case 28: RUN.d pulse energy = atof (outputstring.c str()); break;
case 29: RUN.d pulse frequency = atof (outputstring.c str()); break;
case 30: RUN.d pulse duration = atof (outputstring.c str()); break;
case 31: RUN.d efficiency = atof (outputstring.c_str()); break;

case 32: RUN.d h error = atof (outputstring.c str()); break;
case 33: RUN.d v error = atof (outputstring.c str()); break;
case 34: break; // . e e input file line break

case 35: RUN.t size.X = atof (outputstring.c str()); break;
case 36: RUN.t size.Y = atof (outputstring.c str()); break;
case 37: RUN.t size.Z = atof (outputstring.c str()); break;

62

case 38: RUN.t reflect[0] = atof (outputstring.c str()); break;
case 39: RUN.t reflect[l] = atof (outputstring.c str()); break;
case 40: RUN.t reflect[2] = atof (outputstring.c str()); break;
case 41: RUN.t reflect[3] = atof (outputstring.c str()); break;
case 42: RUN.t reflect[4] = atof (outputstring.c str()); break;
case 43: RUN.t reflect[5] = atof (outputstring.c str()); break;

}
getline (FileToRead, outputstring);

}

/**********************DISPLAY UPDATED INPUTS ON SCREEN********************/

if (testinputs == true) {
cout << "S GEO X = " << s geo.X << endl
<< "S GEO Y = " << s _geo.Y << endl
<< "S GEO Z = " << s geo.Z << endl
<< "D GEO X = " << d geo.X << endl
<< "D GEO Y = " << d geo.Y << endl
<< "D GEO 7Z = " << d _geo.Z << endl
<< "T GEO X = " << t geo.X << endl
<< "T GEO Y = " << t geo.Y << endl
<< "T GEO zZ = " << t geo.Z << endl
<< "T Rotation = " << t rotation << endl
<< "Azimuth = " << s orientation.X << endl
<< "Elevation = " << s orientation.Y¥ << endl
<< "Random # Seed = " << seed << endl
<< "Latitude = " << RUN.sal weather.latitude << endl
<< "Season = " << RUN.sal weather.season << endl
<< "Visibility = " << RUN.sal weather.visibility << endl
<< "FOV = " << RUN.s fov * RUN.UTILITY.RAD2DEG << endl
<< "Aperture = " << RUN.s aperture diameter << endl
<< "Seeker Background Noise Multiplier = " << RUN.s background << endl
<< "S/N Threshold = " << RUN.s_signalnoise threshold << endl
<< "Seeker Efficiency = " << RUN.s efficiency << endl
<< "Laser Type = " << RUN.d lasertype << endl
<< "Ray Count = " << RUN.d raycount << endl
<< "Divergence = " << RUN.d divergence << endl
<< "Pulsed Energy = " << RUN.d pulse energy << endl
<< "Pulse Frequency = " << RUN.d pulse frequency << endl
<< "Pulse Duration = " << RUN.d pulse duration << endl
<< "Designator Efficiency = " << RUN.d efficiency << endl
<< "D H Error = " << RUN.d h error << endl
<< "D V Error = " << RUN.d v error << endl
<< "TSize X = " << RUN.t_size.X << endl
<< "TSize Y = " << RUN.t size.Y << endl
<< "TSize 7Z = " << RUN.t_size.Z << endl
<< "TReflect[0] = " << RUN.t reflect[0] << endl
<< "TReflect[1l] = " << RUN.t reflect[l] << endl
<< "TReflect[2] = " << RUN.t reflect[2] << endl
<< "TReflect[3] = " << RUN.t reflect[3] << endl
<< "TReflect[4] = " << RUN.t reflect[4] << endl
<< "TReflect[5] = " << RUN.t reflect[5] << endl << endl;

system ("PAUSE") ;

}
// Close input file
FileToRead.close();

//CONVERT FROM DEGREES TO RADIANS————— == === oo
s _orientation.X *= RUN.UTILITY.DEG2RAD;

s_orientation.Y *= RUN.UTILITY.DEG2RAD;

t rotation *= RUN.UTILITY.DEG2RAD;

/*******************************CALCULATIONS*******************************/

// Run main calculation function

63

results = RUN.S SALSEEKER(d geo,t geo,s geo,s orientation,t rotation,seed);

/**********************************OUTPUT**********************************/

// Create output file name

ofile = "Output\\Seek(" + ToString(s geo.X, "%-0.0f") + " "
ToString(s_geo.Y, "%-0.0f") + "_"

ToString(s_geo.Z, "%-0.0f") + ")"

"Desig (" + ToString(d_geo.X, "%$-0.0f") + " "

ToString(d_geo.Y, "%-0.0f") + "_ "

ToString(d_geo.z, "%-0.0f") + ")"

"Az" + ToString(s_orientation.X * RUN.UTILITY.RAD2DEG, "%-0.0f")

won

"EL1M 4 ToString(s_orientation.Y * RUN.UTILITY.RAD2DEG, "%-0.0f")

wnon

"TR" + ToString(t rotation * RUN.UTILITY.RAD2DEG, "%-0.0f");

+ o+ o+ o+

// Output File Options
if (RUN.printtoscreen == true || RUN.printtofile == true)
RUN.PrintOutput (ofile, oformat);

// Write output to general summary file
double totalsig = results.sal signals.ql
+ results.sal signals.qg2
+ results.sal signals.g3
+ results.sal signals.g4;
double totalSN = totalsig/RUN.s noise;
if (counter == 1) {
FileToWrite << "OUTPUT SUMMARY"
<< endl << endl << endl

<< Memmmm Seeker—------- P Rttt Designator----- rree”
<< Memmmm o Hit Locations------- "
<< endl

<< "X,Y,%2,X,Y¥,%2,Az,El1,TR,DHe, DVe, MAIN HIT,"

<< "FS,F,BS,B,T,G,DirS,Miss,Enc,Det,"

<< "Q1,02,03,04,TotSig, TotS/N,Pitch, Yaw, Theta, r"
<< endl;

}

FileToWrite << s geo.X << "," << s geo.Y << "," << s geo.Z << ", "
<< d:geo.X << ", KL d:geo.Y << ", KL d:geo.Z << o,
<< s _orientation.X * RUN.UTILITY.RAD2DEG << ",6"
<< s_orientation.Y * RUN.UTILITY.RAD2DEG << ", "
<< t rotation * RUN.UTILITY.RAD2DEG << ", "
<< RUN.d h error * 1000 << ", "
<< RUN.d v_error * 1000 << ", "
<< RUN.s desc[RUN.mainhitsurface] << ","
<< RUN.surface[0] << "," << RUN.surface[l] << ", "
<< RUN.surface[2] << "," << RUN.surface[3] << ", "
<< RUN.surface[4] << "," << RUN.surface[5] << ", "
<< RUN.surface[6] << "," << RUN.surface[7] << ", "
<< results.encounter << ", "
<< results.detect << ", "

<< results.sal signals.gl * 1000 << ", "
<< results.sal signals.g2 * 1000 << ", "
<< results.sal signals.g3 * 1000 << ", "
<< results.sal signals.g4 * 1000 << ", "

<< totalsig * 1000 << ", "

<< totalSN << ", "

<< results.actuator signals.pitch << ", "

<< results.actuator signals.yaw << ", "

<< results.actuator_ signals.theta * RUN.UTILITY.RAD2DEG << ", 6"
<< results.actuator signals.mag << ","

<< endl;

64

counter++;

}
while (_findnext (hfile,&filenamelist) == 0); //....... Loop through input files

//**//
// Close I/0 files
_findclose (hfile); //. i e Close the search handle
FileToWrite.Close ()i // ettt e e e e e e e e e e e et eeeeen Close run summary file
//**//
if (RUN.printtoscreen == true) system("PAUSE");

return O;
}//***//

65

INTENTIONALLY LEFT BLANK.

66

Appendix C. Utilities Code

Utilities Class

Written by Mary Arthur of the U.S. Army Research Laboratory.
Structs: Point2D, Point3D

Functions: Distance3D, DEG2RAD, RAD2DEG

Statistics Class

Written by Mary Arthur of the U.S. Army Research Laboratory. An implementation of the
routines found in

Saucier, R. Computer Generation of Statistical Distributions, ARL-TR-2168. U.S. Army
Research Laboratory: Aberdeen Proving Ground, MD, March 2000.

Functions:
* Normal — returns a random draw based on a normal distribution
Y_Format Namespace

Written by Robert Yager of the U.S. Army Research Laboratory. Y format makes it easy to
create an elegant output display, and it was used in the RrintOutput” function of sSalSeeker.

y_format_namespace.h

/**
KA R A AR A AR AR A A A A AR AR A A A I A AR AR A A I A AR AR A A A A I A AR AR A A I A AR AR A A A A AR AR A A A AR A R Ak hk K

* kK * Kk K

67

i STRING FORMATTING FUNCTIONS i

i version 1.00 (01-23-2011) * *
*x -Rob Yager *x
* Kk x * K *

KA AR A A A A AR A AR A A A A A A A A A A A A AR A A A A A A A A AR A A A A A A AR A AR IR A AR AR A A A A A A A A A AR A A AR A A AR A kKK

**/

#ifndef Y FORMAT NAMESPACE H
#define Y FORMAT NAMESPACE H
/**/
#include <string>
using std::string;
/**/
namespace yFormat({
string Center (string s,char fill=' ', string border=" #",int width=80);
string Align(string s,char center,int n,string border=" #",int width=80);
string Align2 (string s,char center,int n,string s2,int n2,string border=" #");
string ToString (double number,string format="%$f");
string ToString (int number,string format="%d");
string ToString(string text,string format="%s");
};/**/

#endif/**/

y_format_namespace.cc
#define CRT SECURE NO WARNINGS//.................. disables deprecation warnings
#include "y format namespace.h"
/**/
string yFormat::Center (string s,char c,string border, int width) {

//reverse the order of characters in border and copy to rborder

string rborder;

for (int i=0;i< (int)border.size () ;++1) {

rborder+=border [border.size()-i-1];

}

//calculate the amount of white space

double white space=(width-s.size()-2*border.size())/2.0;

//create the centered string

string out;

out+=border;

for (int i=0;i<(int)white space;++i) out+=c;

out+=s;

for (int i=0;i<(int) (white space+0.501);++1i) out+=c;

out+=rborder+"\n";

return out;
}/***/
string yFormat::Align(string s,char c,int n,string border,int width) {

int count=0;

for (count=0; count<(int)s.size () &&s[count] !=c;++count);// if(s[i]==c) count=i;
string out=border;

for (int i=0;i<n-count-(int)border.size()-1;++i) out+=' ';

out+=s;

int whitespace=width- (int)out.size () - (int)border.size();

for (int i=0;i<whitespace;++i) out+=' ';

//reverse the order of characters in border and copy to rborder

string rborder;

for(int i=0;i<(int)border.size () ;++1i) {

rborder+=border [border.size()-i-11];

}

out+=rborder+"\n";

return out;
}/***/
string yFormat::Align2(string s,char c,int n,string s2,int n2,string border) {

int count=0;

for (count=0; count<(int)s.size () &&s[count] !=c;++count);// if(s[i]==c) count=i;
string out=border;
for (int i=0;i<n-count-(int)border.size()-1;++i) out+=' ';

68

out+=s;

int whitespace=n2-(int)out.size();

for (int i=0;i<whitespace;++i) out+=' ';
out+=s2;
whitespace=80- (int)out.size()- (int)border.size();

//reverse the order of characters in border and copy to rborder

string rborder;

for (int i=0;i< (int)border.size () ;++1) {

rborder+=border [border.size()-i-1];

}

out+=rborder+"\n";

return out;
}/***/
string yFormat::ToString(double number,string format) {

char out[50];

sprintf (out, format.c str(),number);

string string out=out;

return string out;
}/***/
string yFormat::ToString(int number,string format) {

char out[50];

sprintf(out,format.c_str(),number);

string string out=out;

return string out;
}/***/
string yFormat::ToString(string text,string format) {

char out[2001];

sprintf(out,format.c_str(),text.c_str());

string string out=out;

return string out;
}/***/

69

NO. OF

COPIES ORGANIZATION

1
(PDF
only)

DEFENSE TECHNICAL
INFORMATION CTR

DTIC OCA

8725 JOHN J KINGMAN RD
STE 0944

FORT BELVOIR VA 22060-6218

DIRECTOR

US ARMY RESEARCH LAB
IMNE ALC HRR

2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIRECTOR

US ARMY RESEARCH LAB
RDRL CIO LL

2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIRECTOR

US ARMY RESEARCH LAB
RDRL CIO MT

2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIRECTOR

US ARMY RESEARCH LAB
RDRL D

2800 POWDER MILL RD
ADELPHI MD 20783-1197

70

NO. OF
COPIES ORGANIZATION

ABERDEEN PROVING GROUND

37 DIR USARL
(35 HC RDRL WM
2CD) P PLOSTINS
M ZOLTOSKI
RDRL WML
JNEWILL
E SCHMIDT
T VONG
P WEINACHT
RDRL WML A
M ARTHUR
B BREECH
C MUNSON
W OBERLE (CD ONLY)
C PATTERSON
R PEARSON
L STROHM (1 HC, 1 CD)
A THOMPSON
P WYANT
R YAGER
RDRL WML B
J MORRIS
RDRL WML C
B ROOS
RDRL WML D
R BEYER
RDRL WML E
I CELMINS
F FRESCONI
S SILTON
RDRL WML F
RHALL
D HEPNER
K HUBBARD
P HUFNAL
M ILG
G KATULKA
D LYON
D PETRICK
B TOPPER
RDRL WML G
T G BROWN
RDRL WML H
B SORENSEN
RDRL WMM
JBEATTY
RDRL WMP
P BAKER
RDRL WMS
T ROSENBERGER

INTENTIONALLY LEFT BLANK.

72

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	1. Introduction
	2. Model Setup
	2.1 Global Coordinate System
	2.2 Bodies (Designator, Target, Seeker)
	2.2.1 Designator
	2.2.2 Target
	2.2.3 Seeker

	2.3 Body-Fixed Coordinate System
	2.3.1 Designator Application
	2.3.1.1 Aim Error. To model aim error, ,𝑑. is perturbed through horizontal and vertical perturbation angles, y′ and z′.

	2.3.2 Target Application
	2.3.3 Seeker Application

	3. Laser Transmission Model
	3.1 Stage 1: Atmospheric Transmission
	3.1.1 Beam Divergence
	3.1.2 Attenuation

	3.2 Stage 2: Target Reflection
	3.2.1 Ray Projection onto Target
	3.2.2 Surface Reflection

	3.3 Stages 3 and 4: Atmospheric Transmission and Seeker Reception
	3.3.1 Ray Projection Into Seeker
	3.3.2 Power Received by Seeker

	4. Seeker Guidance Model
	4.1 Target Encounter and Detect
	4.2 Guidance Updates

	5. C++ Implementation
	5.1 Input Variables
	5.2 Input Parameters
	5.3 Output

	6. Validation
	6.1 Power Loss
	6.2 Geometry
	6.2.1 Projectile Fly-In
	6.2.2 Off-Angle Test
	6.2.3 Target Rotation Test

	7. Path Forward
	8. References
	Appendix A. Sample Input and Output(
	Appendix B. sSalSeeker Code(
	Appendix C. Utilities Code

