
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

SEARCH PLANNING UNDER
INCOMPLETE INFORMATION USING

STOCHASTIC OPTIMIZATION AND REGRESSION

by

Sofia I. Miranda

September 2011

Thesis Co-Advisors: Johannes O. Royset
Carlos F. Borges

Second Reader: R. Tyrrell Rockafellar

Approved for public release; distribution is unlimited



THIS PAGE INTENTIONALLY LEFT BLANK



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send

comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden,

to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204,

Arlington, Va 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

6. AUTHOR

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT(maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF
PAGES

16. PRICE CODE

17. SECURITY CLASSIFI-
CATION OF REPORT

18. SECURITY CLASSIFI-
CATION OF THIS PAGE

19. SECURITY CLASSIFI-
CATION OF ABSTRACT

20. LIMITATION
OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

September 2011 Master’s Thesis

Search Planning under Incomplete Information Using Stochastic
Optimization and Regression

Sofia I. Miranda

Naval Postgraduate School
Monterey CA 93943-5000

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number N.A.

Approved for public release; distribution is unlimited

This thesis deals with a type of stochastic optimization problem where the decision maker does not have
complete information concerning the objective function. Specifically, we consider a discrete time-and-space
search optimization problem where we seek to find a moving target in an area of operations. There are
two sources of uncertainty: the target location and the sensor performance. We formulate the objective
function for this problem in terms of a risk measure of a parameterized random variable and consider three
cases involving various degrees of knowledge about the sensor performance. In all cases, we consider both
the expectation and superquantile risk measures. While the expectation results in an objective function
representing the probability of missing the target, the superquantile gives rise to more conservative search
plans that perform reasonably well even under exceptional circumstances. In the case of incomplete in-
formation about the distribution of the sensor performance, we approximate the random variable using a
nonstandard regression that minimizes the error induced in some sense. We examine the cases in a series
of numerical examples.

Search planning, Stochastic optimization, Risk-tuned regression models,
Uncertainty, Risk measure, Superquantile 64

Unclassified Unclassified Unclassified UU

i



THIS PAGE INTENTIONALLY LEFT BLANK

ii



Approved for public release; distribution is unlimited

SEARCH PLANNING UNDER INCOMPLETE INFORMATION
USING STOCHASTIC OPTIMIZATION AND REGRESSION

Sofia I. Miranda
Lieutenant, Portuguese Navy

B.S., Portuguese Naval Academy, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH
AND

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
September 2011

Author:
Sofia I. Miranda

Approved by:
Johannes O. Royset
Thesis Co-Advisor

Carlos F. Borges
Thesis Co-Advisor

R. Tyrrell Rockafellar
Second Reader

Robert F. Dell
Chair, Department of Operations Research

Carlos F. Borges
Chair, Department of Applied Mathematics

iii



THIS PAGE INTENTIONALLY LEFT BLANK

iv



ABSTRACT

This thesis deals with a type of stochastic optimization problem where the decision

maker does not have complete information concerning the objective function. Specif-

ically, we consider a discrete time-and-space search optimization problem where we

seek to find a moving target in an area of operations. There are two sources of uncer-

tainty: the target location and the sensor performance. We formulate the objective

function for this problem in terms of a risk measure of a parameterized random vari-

able and consider three cases involving various degrees of knowledge about the sensor

performance. In all cases, we consider both the expectation and superquantile risk

measures. While the expectation results in an objective function representing the

probability of missing the target, the superquantile gives rise to more conservative

search plans that perform reasonably well even under exceptional circumstances. In

the case of incomplete information about the distribution of the sensor performance,

we approximate the random variable using a nonstandard regression that minimizes

the error induced in some sense. We examine the cases in a series of numerical

examples.
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EXECUTIVE SUMMARY

In this thesis, we discuss a type of stochastic optimization problem where the de-

cision maker does not have complete information concerning the objective function.

Specifically, we consider a discrete time-and-space search optimization problem (SP)

of routing search assets in order to detect a moving target, such as a drug smuggler,

in an area of operations.

We assume that each searcher is equipped with one imperfect sensor, which

is not subject to false-positive detections. The searchers are all alike, equipped with

the same type of sensor, and they are allowed to divide their effort across multiple

cells in arbitrarily small portions. The goal is to determine a search plan such that

the probability of missing the target is minimized, without having the full knowledge

of the two sources of uncertainty: the target location and the sensor performance.

We assume that the target paths are probabilistically known via intelligence reports;

for example from data acquired by AIS (Automatic Identification System). We use

a Markov chain model to generate the paths with three stationary probabilities. We

assume that the sensor performance depends on environmental conditions, and we

use visibility to represent these conditions.

We formulate the objective function of SP in terms of a risk measure of a

parameterized random variable and consider three cases involving various degrees of

knowledge about the sensor performance. In all cases, we consider both the expecta-

tion and superquantile risk measures. While the expectation results in an objective

function representing the probability of missing the target, the superquantile gives

rise to more conservative search plans that perform reasonably well even under ex-

ceptional circumstances.

In the first two cases, we consider a random detection rate for the sensor per-

formance with known probability distribution. In the third case, the distribution of

the sensor performance is unknown and we approximate the corresponding random

xv



variables by a linear combination of well-known factors using a nonstandard regres-

sion. Based on a table of observed sensor performances, that regression minimizes

the error induced by the approximation in some sense. We compare the obtained

regression coefficients with the ones resulting from a least-squares linear regression

model. Using the approximations in the objective function of SP, we obtain an ap-

proximate problem that we solve for situations involving stochastic information about

the factors in the regression model.

We examine the cases in a series of numerical examples. In all cases, the

numerical results show that the plans obtained using superquantile as the risk measure

spread the searchers over the area of operations, covering a larger area with smaller

searcher fractions than when using expectation. These plans handle exceptional target

paths more effectively. If the goal is to make sure that the probability of missing the

target does not exceed a relatively high threshold, then the decision maker should

rely on the superquantile at probability level α as the risk measure. One example

shows that if the goal is to avoid probabilities of missing the target of 70% or higher,

then the decision maker should use superquantile with α = 0.90. In that situation

there is a 92% chance of obtaining better mission outcomes than the goal, while there

is only 81% chance of getting better than the goal when using the expectation. This

difference might be critical when choosing a search plan and it even is more significant

for faster moving targets.
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I. INTRODUCTION

A. MOTIVATION AND BACKGROUND

Stochastic optimization problems arise in a diverse spectrum of real-life sit-

uations, but they can be challenging to formulate and solve since they involve un-

certainty and unknown parameters (see for example Shapiro et al., 2009; Wallace &

Ziemba, 2005).

One application area is engineering design, where the goal is to minimize the

cost of a design, which might involve a simple objective function and complicated

chance constraints. For example, the design must be able to resist future unknown

loads, material properties, and environmental conditions; see Arora and Wang (2005),

Royset et al. (2006), and Rockafellar and Royset (2010) for formulations and Luedtke

and Ahmed(2008), and Shapiro et al. (2009) for algorithms and properties of these

constraints. Another area of application is financial engineering where studies show

the importance of selecting a suitable risk measure (Artzner et al., 1999) in portfolio

management. A particular risk measure is the superquantile (also called conditional

value-at-risk), which is coherent (Rockafellar & Uryasev, 2002), and therefore may be

suitable for use in many applications.

In military operations, it is common for leaders to make decisions without

the full knowledge of future events such as enemy actions, environmental conditions,

and asset availability. We refer to a combination of future events as a scenario. Due

to advanced coordination and planning that may involve numerous operational and

logistical units, leaders may have to ignore the possibility of changing their decision

in the middle of the action. Hence, recourse may not be available after a scenario is

revealed.

In this thesis, we focus on search for a target in an area of operations where

uncertainty is prevalent. Specifically, we consider two types of uncertainty: sensor

performance and target location. The sensor performance depends on several aspects,

1



e.g., operator experience, environmental conditions such as visibility, and target char-

acteristics. Search problems of this kind arise in military operations as well as search

and rescue operations.

While some stochastic problems involve simple objective functions and com-

plicated chance constraints, our search problem has an objective function that is more

complex since it is defined by a risk measure of a parametrized random variable. A

risk measure maps a random variable to the extended real numbers. We focus on the

superquantile as the risk measure and compare the resulting search plans with the

ones obtained using the expectation. We are particularly interested in cases where

the probability distribution of the parametrized random variable is unknown, but a

table of realizations is available.

B. CONTRIBUTIONS

This thesis is the first to consider superquantile as a risk measure in the con-

text of search planning. Existing approaches focus exclusively on expectation. Since

the superquantile is averse as explained below, it allows the analyst to plan for rare

and undesirable events. We also consider search problems with incomplete informa-

tion about sensor performance and we construct function approximations based on

nonstandard regression models for use in subsequent optimization problems.

C. THESIS ORGANIZATION

Chapter II defines the search problem we are interested in and formulates a

model that will be used for theoretical and numerical studies. The chapter describes

three distinct cases and scenarios defined by the sensor detection rates and target

paths used in numerical studies.

Chapter III presents two of the cases where the probability distribution of

the detection rate is known. We solve and compare these cases for expectation and

superquantile risk measures.

2



Chapter IV discusses the third case, where the probability distribution of the

detection rate is unknown and the decision maker only has a table of realizations of

detection rates, collected for a certain time period in the past, for a certain visibil-

ity condition. We use a nonstandard regression model, and the obtained regression

coefficients are then used in the search problem as an approximation.

Chapter V summarizes the theoretical and numerical results, and recommends

further research.

3
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II. MODEL FORMULATION AND RISK

MEASURE

This chapter describes a search problem whose solutions we compare in the

following chapters under various assumptions.

A. PROBLEM DEFINITION

In this thesis, we study a search-optimization problem (SP) where we consider

an Area Of Interest (AOI) defined by a finite set of cells C = {1, 2, ..., C}, and we let

time also be discrete, described as a finite set of time periods T0 = {0} ∪ T , where

T = {1, 2, ..., T}.

We want to route search assets in this AOI in order to detect a target such as

a drug smuggler who is trying to cross it. The AOI includes a given number of bases,

located in specific cells, with different logistical capabilities. Each one of these bases

is able to accommodate a given number of search assets.

Based on Royset and Sato (2010), we consider a single target, but an arbitrary

number of searchers. Both target and searchers have their own initial positions in the

AOI. The initial positions for the searchers correspond to bases they are allocated

to at time 0 or other cells in the AOI representing some area from which they start

their missions, accounting for situations where some assets might have already been

allocated for another low priority mission. We assume that the searchers divide their

effort across multiple cells in arbitrarily small portions. This assumption allows for

continuous variables in the model formulation. Many of the results in this thesis,

however, generalize straightforwardly to the integer case.

At each time period t ∈ T , searchers and target either occupy a cell c or are

transiting between cells. When in cell c, they are allowed to move to any cell which

is adjacent to c as defined by S(c) ⊆ C.

We assume that each searcher is equipped with one imperfect sensor, which

5



is not subject to false-positive detections. We also assume that the searchers are all

alike, equipped with the same type of sensor. At each time period t ∈ T during which

a searcher is in cell c, its sensor takes one glimpse to see if the target is present in

the cell. We define Rc,t as the corresponding nonnegative detection rate, in cell c and

time period t, of the sensor. The increased noise caused by the searcher movements

between cells affects the sensor performance. Therefore we assume that the sensor is

inactive during transit between cells. Furthermore its performance is uncertain due

to unknown environmental conditions and target characteristics.

In the AOI there is one target whose initial position is obtained from intel-

ligence reports. The target moves conditionally deterministic and a possible target

path is denoted by ω = (ω1, ω2, ..., ωT ) ∈ Ω ⊂ CT , where ωt ∈ C is the target’s cell at

time period t on path ω, with a corresponding probability δ(ω) of the target actually

taking the path ω, where Ω is the set of all possible paths. We let Pc,t be a Bernoulli

random variable, taking the value 1 if the target is in cell c at time period t. We define

γ(v) as the probability of a particular scenario v occurring, where v is a realization

of V = (Vc,t)c∈C,t∈T = ((Pc,t, Rc,t)
>)c∈C,t∈T , a vector representing the random target

path and random detection rates.

Our goal is to determine a plan that routes the available search assets over

the AOI such that the probability of missing the target is minimized, without the

full knowledge of future environmental conditions that might affect the sensor per-

formance.

B. MODEL FORMULATION

We formulate the search problem as a convex nonlinear program, similar to

Royset and Sato (2010), but we generalize it by using R(·) to denote a risk measure

as defined in the following section. The model SP takes the following form:

6



Model SP:

Indices

c, c′ cells (c, c′ ∈ C = {1, . . . , C}).

t time periods (t ∈ T0 = {0} ∪ T , T = {1, ..., T}).

Set

S(c) ⊆ C allowable search moves the searchers can carry out

starting from cell c.

Parameters

dc,c′ number of time periods needed for a searcher to

move directly from cell c to cell c′ and search c′.

xc,0 number of searchers positioned at cell c in

time period 0.

Random Variables

Pc,t 1 if target is in cell c in time period t, otherwise 0;

probability distribution of Pc,t defined by δ(ω)

through Prob(Pc,t = 1) = Prob(ωt = c).

Rc,t nonnegative detection rate in cell c at time t.

V vector of random variables V = (Vc,t)c∈C,t∈T =

= ((Pc,t, Rc,t)
>)c∈C,t∈T , with realization v =

= (vc,t)c∈C,t∈T = ((pc,t, rc,t)
>)c∈C,t∈T and

Prob(V = v) = γ(v).

7



Decision Variables

xc,c′,t number of searchers that occupy cell c at time t

and move to cell c′ next, with x = (xc,c′,t)c,c′∈C,t∈T .

Function

F (x, v) probability of missing the target given search plan

x and realization v of V, where

F (x, v) = exp

{
−
∑

c,c′,t∈T

pc,trc,txc,c′,t

}
. (II.1)

Formulation

min
x
R(F (x, V )) (II.2)

s.t.
∑
c′∈S(c)

xc′,c,t−dc′,c =
∑
c′∈S(c)

xc,c′,t ∀ c, t ∈ T (II.3)

∑
c′∈S(c)

xc,c′,0 = xc,0 ∀ c (II.4)

xc,c′,t ≥ 0 ∀ c, c′, t (II.5)

We adopt the same function as in Royset and Sato (2010) for the probability

of missing the target given a search plan x and a realization v, as seen in (II.1).

The constraint (II.3) defines the allowable moves the searchers may take and the

corresponding duration in time periods, avoiding jumps between non-adjacent cells,

and the constraint (II.4) establishes the searcher initial positions. We discuss the

numerical results of the model SP for different assumptions about the distribution of

Rc,t and risk measures in Chapters III and IV.
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C. RISK MEASURE

One approach to SP is to choose a particular scenario v, and then minimize

F (x, v) subject to (II.3)-(II.5). This means that the variability of the future is not

taken into account and there is no guarantee that the obtained search plan x is

optimal for F (x, v′), where v′ 6= v is the observed scenario during the mission. The

searchers might not be prepared for a scenario that deviates from the one chosen.

Another alternative is to consider the worst-case scenario and minimize supv F (x, v)

subject to (II.3)-(II.5). The resulting solution may be highly conservative. Others

prefer to rely on the expected value of the objective function, which corresponds to

the probability of missing the target. On average they do well, but the resulting

search plan might be quite poor in a given scenario. We compare different choices

of this kind, which correspond to different risk measures R(·), and see how well the

resulting search plans perform in some sense.

As seen in Rockafellar et al. (2008), we say that a risk measure is coherent if

the following axioms hold:

(i) R(C) = C for a constant C.

(ii) R(λX) = λR(X) when λ > 0 (positive homogeneity).

(iii) R(X +X ′) ≤ R(X) +R(X ′) (subadditivity).

(iv) R(X) ≤ R(X ′) when X ≤ X ′ (monotonicity).

We here assume that the random variable X, to which R(·) is applied is ori-

ented such that large values are undesirable. In SP the random variable is F (x, V ). If

R(X) > E[X], for a nonconstant random variable X, then R(·) is averse. Obviously,

the expectation is not averse.

Based on Rockafellar and Uryasev (2000), we focus on the α-superquantile risk

measure

R(X) = q̄α(X), (II.6)

9



which is coherent and averse for α > 0, where q̄α(X) is the α-superquantile of X

defined by

q̄α(X) = E[X | X ≥ qα(X)], (II.7)

with qα(X) being the α-quantile of X, and α ∈ [0, 1] being a probability level. We

note that for a probability level of α = 0, we obtain that E[X] = q̄0(X), and for a

probability level of α = 1, we get supX = q̄1(X), i.e., it is equivalent to analyzing

the worst-case scenario. We let SP-E denote SP with R(·) = E[·] and SP-Sα denote

SP with R(·) = q̄α(·).

By Rockafellar and Uryasev (2000),

q̄α(F (x, V )) = min
z

z +
1

1− α
E[max{F (x, V )− z, 0}]. (II.8)

Hence SP-Sα involves optimizing over x and the auxiliary variable z, and the objective

function

z +
1

1− α
E [max{F (x, V )− z, 0}] . (II.9)

SP-Sα can be reformulated as a large-scale convex smooth nonlinear program (Rock-

afellar & Uryasev, 2000). However, we implement SP-Sα with the exponential smooth-

ing technique (Kort & Bertsekas, 1972) and obtain the following approximate objec-

tive function

z +
1

1− α
E [Gp(x, z, V )] , (II.10)

where

Gp(x, z, v) =
1

p
ln(exp {p (F (x, v)− z)}+ 1) (II.11)

and p > 0, which is a smoothing parameter. Gp(·, ·, v) is a continuously differentiable

function for all v. With some mathematical manipulations, we can see that

0 ≤ Gp(x, z, v)−G(x, z, v) ≤ ln 2

p
(II.12)

for all x, z, v, and p > 0, where

G(x, z, v) = max{F (x, v)− z, 0}, (II.13)

see, e.g., Pee and Royset (2011).
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D. SCENARIO AND TARGET PATHS

We consider an AOI represented by a grid of eleven by eleven cells, numbered

from right to left, from top to bottom, as shown in Figure 1.

Figure 1. AOI represented by a grid of 11 by 11 cells.

The searcher initial position is cell 61. According to information gathered

via intelligence describing the target position in cell 66 ten time periods prior to the

mission start, we define three distributions for the target initial location as shown in

Figures 3, 4, and 5. We obtain these target initial distributions using a Markov chain

target model for different stationary probabilities, denoted by ρ, which represent the

probability of the target staying in the same cell for the following time period. Figure

2 represents the allowable movements denoted by S(c). The sum of the probabilities

Figure 2. Example of target set of allowable movements for ρ = 0.4: a) in the middle
of the AOI; b) at the boundary of the AOI; c) at the corner of the AOI.
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of the target moving to the adjacent cells is 1− ρ, and all these allowable cells have

equally likely probabilities.

We consider three different target stationary probabilities ρ and obtain three

corresponding initial target distributions, the first for ρ = 0.6, the second for ρ = 0.4,

and the last for ρ = 0.2; see Figures 3, 4, and 5, respectively. The numbers in the

Figure 3. Searcher (S) initial position and target initial distribution for ρ = 0.6.

cells on Figures 3, 4, and 5, correspond to the probability of the target being in that

particular cell at time period 1, given the target stationary probability ρ. The more

red the cell is, the higher the probability of the target being in that cell. A larger ρ

implies a faster target.

For this thesis, we randomly generate 100,000 independent target paths from

the Markov chain induced by ρ and S(c), for the three distinct values of ρ. We here

use a Markov chain for simplicity in implementation. Any target motion model can

be used. In reality these paths could arrive via intelligence prior to the mission start,
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Figure 4. Searcher (S) initial position and target initial distribution for ρ = 0.4.

Figure 5. Searcher (S) initial position and target initial distribution for ρ = 0.2.
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e.g., data acquired by AIS (Automatic Identification System), a tracking system used

on board ships.

E. CASES

In the next two chapters, we consider three different cases of SP. In Case A

we assume that the detection rates (Rc,t)c∈C,t∈T are deterministic, where in Case B

the detection rates are random with a known probability distribution. We discuss

Cases A and B in detail in Chapter III. In Case C, the probability distribution of the

detection rate is unknown. We use regression techniques to approximate the detection

rate by a linear combination of well-known factors. We consider Case C in Chapter

IV.
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III. SEARCH PLANS UNDER

DETERMINISTIC AND RANDOM

DETECTION RATE

This chapter considers Cases A and B, as described in Section II.E. We use

the expectation and the superquantile as the risk measures of the random objective

function, and we compare their corresponding results.

A. DETERMINISTIC DETECTION RATE

In this section, we are interested in situations where the random detection rate

(Rc,t)c∈C,t∈T takes on deterministic values. We use the expectation and superquantile,

models SP-E and SP-Sα, respectively, as explained in Section II.C. We first consider

the situation where the detection rate is constant over all cells and time periods.

Using the information contained in USCG (2009) as a reference, and for il-

lustration purposes we define visibility conditions as poor, fair, or good and the

corresponding visual ranges in nautical miles (nm) are given in Table 1. In poor, fair,

Visibility Visual Range Deterministic
(nm) Detection Rate rc,t

Poor 1 1.1824

Fair 5 1.8237

Good 10 2.8715

Table 1. Deterministic detection rate (Rc,t)c∈C,t∈T for poor, fair and good visibility.

and good visibility, we set the probability of detecting a target in a cell during one

time period, given that the target and a searcher are present, to values that when

used in the numerical examples return optimal objective function values. We refer

to this probability as the glimpse detection probability gc,t. The detection rate rc,t

then follows using the relationship rc,t = − ln(1 − gc,t); see Royset and Sato (2010).
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Table 1 gives the resulting detection rates. These chosen detection rates allow us to

compare results from this chapter with results obtained in Chapter IV, but are not

representative of real search sensor performances.

We are also interested in situations where the detection rate (Rc,t)c∈C,t∈T is de-

terministic, but varies between cells and time periods. So we construct three problem

instances with such detection rates by independently sampling from three lognormal

distributions with parameters µ = ln(mi)− σ2/2, where mi, i = 1, 2, 3, are the detec-

tion rates of Table 1 and σ = 0.1 such that the lognormal distributions have means

corresponding to those in Table 1. We independently generate one detection rate per

cell and time period and we refer to Table 2 for the sample statistics summary.

Visibility Sample Mean Sample Variance

Poor 1.1846 0.0138

Fair 1.8259 0.0335

Good 2.8784 0.0829

Table 2. Summary of the sampled detection rates for the given visibility conditions.

This results in 1,210 sampled detection rates, with smoothed density plots given in

Figure 6.

B. RANDOM DETECTION RATE WITH KNOWN DIS-
TRIBUTION

We now discuss Case B where the detection rate (Rc,t)c∈C,t∈T is random with

a known probability distribution. The detection rate is constant for all cells and time

periods, but that constant is random.

For Case B, we also consider the same three visibility conditions, and we

construct three random variables with lognormal distributions having the same pa-

rameters as for Case A, describing the detection rate for the three different visibility

conditions, in order to compare the results of Cases A and B. Here we generate 10
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Figure 6. Sampled detection rate density plots for poor, fair, and good visibility.

lognormal detection rates per visibility condition; see Table 3 for the sample statistics

summary.

Visibility Sample Mean Sample Variance

Poor 1.2261 0.0128

Fair 1.7281 0.0334

Good 2.9425 0.1267

Table 3. Summary of the 10 sampled detection rates for poor, fair, and good visibility.

During the next section we discuss and analyze the results obtained for Cases

A and B, considering different risk measures and probability levels.

C. NUMERICAL RESULTS

We implement SP in the programming language General Algebraic Model-

ing System (GAMS) on a personal computer with 8.00 GB of RAM and 2.80 GHz
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processor running Windows 7. SP is solved using the MINOS solver with default

options.

We let T = 10, and fix p = 500 for the exponential smoothing technique

described in Section II.C. The corresponding smoothing error is bounded by 0.001386,

which is insignificant in our context.

1. Case A - Deterministic Detection Rate

Table 4 shows the obtained results for Case A where we have a constant detec-

tion rate equal for all cells and time periods, for various target stationary probabilities

ρ, visibility conditions, and probability levels α. Although we do not show the results

for α = 0, the corresponding probabilities of missing the target are exactly the same

as the ones obtained using SP-E.

SP-Sα

ρ Visibility SP-E α = 0.25 α = 0.50 α = 0.75 α = 0.90

0.6 Poor 0.6517 0.7399 0.8016 0.8577 0.8912

0.6 Fair 0.5492 0.6402 0.7161 0.7903 0.8369

0.6 Good 0.4303 0.5171 0.6018 0.6939 0.7564

0.4 Poor 0.7212 0.8059 0.8557 0.8940 0.9142

0.4 Fair 0.6302 0.7241 0.7884 0.8413 0.8699

0.4 Good 0.5197 0.6152 0.6932 0.7634 0.8032

0.2 Poor 0.7619 0.8406 0.8813 0.9101 0.9245

0.2 Fair 0.6788 0.7693 0.8238 0.8646 0.8848

0.2 Good 0.5742 0.6710 0.7401 0.7962 0.8244

Table 4. Case A - Optimal objective function values for models SP-E and SP-Sα,
with α = 0.25, 0.50, 0.75 and 0.90, for a constant detection rate equal for all cells
and time periods, where the objective function is the risk measure of the probability
of missing the target.

From Table 4 we observe that the better the visibility conditions the smaller

the probabilities of missing the target, as we would expect. For larger values of ρ,
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we obtain the same result. Thus for better visibility and a slower moving target,

the searchers have a better chance of detecting the target. We also observe that

the difference between the objective function values for different probability levels

α decreases with the stationary probability ρ, e.g., for poor visibility, the difference

between the results obtained for α = 0.75, and α = 0.90 is smaller for ρ = 0.2 than

for ρ = 0.6 (0.8912− 0.8577 > 0.9245− 0.9101).

Figure 7. Case A - Cumulative distribution functions for the probability of missing the
target given optimal search plan x and deterministic detection rate (good visibility,
ρ = 0.6).

In Figures 7, 8, and 9, we compare the cumulative distribution functions for

F (x, V ) for the corresponding optimal search plans, when the visibility condition is

good, with ρ = 0.6, ρ = 0.4, and ρ = 0.2, respectively. There is a notable distinction

between using expectation and the superquantile with different probability levels α.

If the decision maker wants to make sure that the probability of missing the target

does not exceed a certain threshold, then the best approach is to rely on the outcome
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Figure 8. Case A - Cumulative distribution functions for the probability of missing the
target given optimal search plan x and deterministic detection rate (good visibility,
ρ = 0.4).

of the model SP-Sα for higher probability levels α. Using Figure 7 as an example, if

the goal is to prevent getting probabilities of missing the target of 70% or higher, then

the decision maker should rely on the superquantile with probability level α = 0.90,

among the four risk measures that we present. With that choice there is a 92%

chance of obtaining better mission outcomes than the goal, as indicated by the blue

horizontal dashed line in Figure 7, while there is only an 81% chance of doing better

than the goal when using the expectation; see the red dashed line. This difference

might be critical when choosing a search plan. As we see in Figures 8 and 9, this

difference is even more significant for smaller values of the stationary probability ρ,

i.e., the faster the target moves, the more beneficial in some sense it is to use the

model SP-Sα with higher probability levels α.

We also consider the situation where the detection rates vary between cells

and time periods, and we obtain the results of Table 5, for distinct target stationary
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Figure 9. Case A - Cumulative distribution functions for the probability of missing the
target given optimal search plan x and deterministic detection rate (good visibility,
ρ = 0.2).

probabilities ρ, visibility conditions, and probability levels α.

The fact that almost all the obtained results in Table 5 are smaller than the

ones from Table 4 is due to the fact that the detection rate changes over the AOI and

time and allows the searcher to choose cells that for a given time period have better

detection rates. Therefore we obtain smaller objective function values. With this

example, we note the importance of good intelligence on visibility conditions since we

obtain more accurate detection rates and consequently more precise objective function

values.

Besides the probabilities of missing the target, it is useful to compare the

corresponding search plans. Figures 10 and 11 illustrate the optimal search plans

in Case A for good visibility conditions and target stationary probability ρ = 0.6,

using SP-E and SP-S0.75, respectively. The horizontal axes show the cells in the AOI

displayed by number and the time periods considered during the mission. The vertical
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SP-Sα

ρ Visibility SP-E α = 0.25 α = 0.50 α = 0.75 α = 0.90

0.6 Poor 0.6451 0.7346 0.8004 0.8563 0.8904

0.6 Fair 0.5427 0.6363 0.7149 0.7913 0.8385

0.6 Good 0.4226 0.5122 0.6013 0.6947 0.7584

0.4 Poor 0.7159 0.8037 0.8543 0.8932 0.9135

0.4 Fair 0.6239 0.7214 0.7894 0.8430 0.8715

0.4 Good 0.5124 0.6127 0.6928 0.7646 0.8054

0.2 Poor 0.7572 0.8387 0.8803 0.9095 0.9242

0.2 Fair 0.6734 0.7686 0.8256 0.8661 0.8860

0.2 Good 0.5679 0.6687 0.7401 0.7974 0.8263

Table 5. Case A - Optimal objective function values for models SP-E and SP-Sα,
with α = 0.25, 0.50, 0.75 and 0.90, for a detection rate varying between cells and
time periods, where the objective function is the risk measure of the probability of
missing the target.

axis is the fraction of searchers in cell c at time period t. The color red turning into

black represents the time evolution.

Comparing Figures 10 and 11, we realize that the model SP-S0.75 spreads the

searchers over the AOI, covering a larger area with smaller searcher fractions. Hence,

the plan more effectively handles exceptional target paths.

2. Case B - Random Detection Rate With Known Dis-
tribution

Table 6 shows the obtained results for Case B where we have a constant de-

tection rate equal for all cells and time periods, whose value is random, for various

target stationary probabilities ρ, and probability levels α, when we have good visibil-

ity. Since the numerical results are similar to the ones of Case A, we do not present

the results for poor and fair visibility. From Table 6 we observe that the obtained

optimal objective function values increase with the value of α, similar to Case A.
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Figure 10. Case A - Optimal search plan for the model SP-E, with ρ = 0.6, for a
detection rate constant for all cells and time periods.

Figure 11. Case A - Optimal search plan for the model SP - Sα = 0.75, with ρ = 0.6,
for a detection rate constant for all cells and time periods.
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SP-Sα

ρ Visibility SP-E α = 0.25 α = 0.50 α = 0.75 α = 0.90

0.6 0.4142 0.5027 0.5906 0.6887 0.7602
0.4 Good 0.5041 0.6013 0.6830 0.7539 0.8131
0.2 0.5593 0.6579 0.7309 0.7949 0.8399

Table 6. Case B - Optimal objective function values for models SP-E and SP-Sα,
with α = 0.25, 0.50, 0.75 and 0.90, for a detection rate constant over all cells and
time periods, where the objective function is the risk measure of the probability of
missing the target.

In Figure 12 we compare the cumulative distribution functions of F (x, V ) for the

corresponding optimal search plans for good visibility conditions, with ρ = 0.4. We

notice a clear distinction between the four risk measures. In this example, the goal

Figure 12. Case B - Cumulative distribution functions for the probability of missing
the target given optimal search plan x and random detection rate constant over all
cells and time periods (good visibility, ρ = 0.4).
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is to establish a threshold for F (x, V ) and consider the worst 20% of scenarios. In

Figure 12, a horizontal dashed line marks the 80% of scenarios. The vertical dashed

lines mark the corresponding thresholds for the four risk measures. The horizontal

dashed line crosses each risk measure cumulative distribution function and gives cor-

responding probabilities of missing the target on the horizontal axis, as indicated by

the colored vertical dashed line. In this particular example, we note that the worst

20% of scenarios involve a probability of missing the target greater than 84% for the

expectation, where as only 65% for the superquantile with α = 0.50. Hence, the

decision maker should rely on the superquantile with α = 0.50 and therefore avoid

higher probabilities of missing the target.

Figure 13. Case B - Cumulative distribution functions for the probability of missing
the target given optimal search plan x and random detection rate constant over all
cells and time periods (good visibility, ρ = 0.6).

Figure 13 shows a final example for Case B. In this situation we assume that the

decision maker is concerned with what risk measure to use in the objective function
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for a given threshold. Once the threshold is established, we note which cumulative

distribution function has larger value. Here we check which interval between vertical

dashed lines the threshold is in, and the color of the smallest of the two lines indicates

which risk measure the decision maker should rely on. For example, if the threshold

is 65%, then the decision maker should rely on the superquantile with α = 0.75, as

shown by the green dashed line. Similarly, if the threshold is 80%, then the probability

level should be α = 0.90. We note that we should rely on expectation only if the

threshold is smaller than 46% for the probability of missing the target.
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IV. SEARCH PLANS UNDER UNKNOWN

DETECTION RATE

This chapter considers Case C, as described in Section II.E. We assume that

the probability distribution of the detection rate is unknown, however the decision

maker has a table of realizations available.

The detection rate performance of the sensor equipped on board a searcher

is usually complicated to determine. We assume that there exist some factors that

describe the detection rate in some sense and whose probability distributions we know

and are easy to handle. These factors could be environmental conditions and target

characteristics. We next discuss how to approximate the detection rates using these

factors.

A. APPROXIMATION OF RANDOMDETECTION RATE

Suppose that we adopt the approximation

Rc,t ≈ R̂c,t = R̂c,t(β
0
c,t, β

>
c,t) = β0

c,t + β>c,tY, c ∈ C, t ∈ T , (IV.1)

where Y is a vector of factors with known joint distribution and β0
c,t and βc,t are re-

gression coefficients. Then the approximate probability of missing the target becomes

F (x, V ) ≈ F (x, V̂ ) = exp

{
−
∑

c,c′,t∈T

pc,t(β
0
c,t + β>c,tY )xc,c′,t

}
. (IV.2)

Since we approximate the random variable (Rc,t)c∈C,t∈T by a linear combination of

different factors, we need to ensure that the difference between the risk measure

of the true random objective function and the risk measure of the approximated

one, R(F (x, V )) − R(F (x, V̂ )), is bounded in some sense, giving us a reasonable

approximation to use in SP. The following theorem proves such bounds.
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Theorem IV.1. For a risk measure R(·) that satisfies the axioms stated in section

II.C, if we have R̂c,t ≥ 0 almost surely for all c ∈ C and t ∈ T , then for any x ≥ 0

−
∑

c,c′,t∈T

xc,c′,tR
(

max
{

0, Rc,t − R̂c,t

})
≤ R (F (x, V ))−R(F (x, V̂ ))

≤
∑

c,c′,t∈T

xc,c′,tR
(

max
{

0, R̂c,t −Rc,t

})
. (IV.3)

Proof.

For any x ≥ 0 and realizations v = ((pc,t, rc,t)
>)c∈C,t∈T and v̂ = ((pc,t, r̂c,t)

>)c∈C,t∈T of

V and V̂ , respectively, we have that

F (x, v)−F (x, v̂) = exp

{
−
∑

c,c′,t∈T

pc,trc,txc,c′,t

}
−exp

{
−
∑

c,c′,t∈T

pc,tr̂c,txc,c′,t

}
. (IV.4)

Thus,

|F (x, v)− F (x, v̂)| ≤

∣∣∣∣∣ ∑
c,c′,t∈T

pc,trc,txc,c′,t −
∑

c,c′,t∈T

pc,tr̂c,txc,c′,t

∣∣∣∣∣ , (IV.5)

where we use the fact that the exponential function is Lipschitz continuous with con-

stant 1, provided that we are dealing almost surely with non-positive exponents. Since

r̂c,t ≥ 0 and pc,t ≥ 0, for the cases where
∑

c,c′,t∈T pc,tr̂c,txc,c′,t ≥
∑

c,c′,t∈T pc,trc,txc,c′,t,

we obtain that

F (x, v)− F (x, v̂) = exp

{
−
∑

c,c′,t∈T

pc,trc,txc,c′,t

}
− exp

{
−
∑

c,c′,t∈T

pc,tr̂c,txc,c′,t

}
≤

∑
c,c′,t∈T

pc,txc,c′,tr̂c,t −
∑

c,c′,t∈T

pc,txc,c′,trc,t. (IV.6)

On the other hand, for the cases where
∑

c,c′,t∈T pc,tr̂c,txc,c′,t ≤
∑

c,c′,t∈T pc,trc,txc,c′,t,

we get

F (x, v)− F (x, v̂) = exp

{
−
∑

c,c′,t∈T

pc,trc,txc,c′,t

}
− exp

{
−
∑

c,c′,t∈T

pc,tr̂c,txc,c′,t

}
≤ 0.

(IV.7)
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Hence, for any r̂c,t ≥ 0, combining both inequalities (IV.6) and (IV.7), and since

pc,t ≥ 0

F (x, v)− F (x, v̂) = exp

{
−
∑

c,c′,t∈T

pc,trc,txc,c′,t

}
− exp

{
−
∑

c,c′,t∈T

pc,tr̂c,txc,c′,t

}

≤ max

{
0,
∑

c,c′,t∈T

pc,txc,c′,tr̂c,t −
∑

c,c′,t∈T

pc,txc,c′,trc,t

}

= max

{
0,
∑

c,c′,t∈T

pc,txc,c′,t(r̂c,t − rc,t)

}
≤

∑
c,c′,t∈T

pc,txc,c′,t max {0, r̂c,t − rc,t}

≤
∑

c,c′,t∈T

xc,c′,t max {0, r̂c,t − rc,t} . (IV.8)

We therefore obtain that

F (x, v) ≤ F (x, v̂) +
∑

c,c′,t∈T

xc,c′,t max {0, r̂c,t − rc,t} . (IV.9)

The result holds if we take the risk measures on both sides, based on the

axioms stated in section II.C,

R (F (x, V )) ≤ R

(
F (x, V̂ ) +

∑
c,c′,t∈T

xc,c′,t max
{

0, R̂c,t −Rc,t

})

≤ R(F (x, V̂ )) +R

( ∑
c,c′,t∈T

xc,c′,t max
{

0, R̂c,t −Rc,t

})
≤ R(F (x, V̂ )) +

∑
c,c′,t∈T

xc,c′,tR
(

max
{

0, R̂c,t −Rc,t

})
. (IV.10)

And we obtain the upper bound

R (F (x, V ))−R(F (x, V̂ )) ≤
∑

c,c′,t∈T

xc,c′,tR
(

max
{

0, R̂c,t −Rc,t

})
. (IV.11)

In order to obtain a lower bound, we use the same approach as for the up-

per bound. Now for the cases where
∑

c,c′,t∈T pc,tr̂c,txc,c′,t ≥
∑

c,c′,t∈T pc,trc,txc,c′,t, we
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obtain the inequality

F (x, v̂)− F (x, v) = exp

{
−
∑

c,c′,t∈T

pc,tr̂c,txc,c′,t

}
− exp

{
−
∑

c,c′,t∈T

pc,trc,txc,c′,t

}
≤ 0.

(IV.12)

And whenever
∑

c,c′,t∈T pc,tr̂c,txc,c′,t ≤
∑

c,c′,t∈T pc,trc,txc,c′,t, we get

F (x, v̂)− F (x, v) = exp

{
−
∑

c,c′,t∈T

pc,tr̂c,txc,c′,t

}
− exp

{
−
∑

c,c′,t∈T

pc,trc,txc,c′,t

}
≤

∑
c,c′,t∈T

pc,txc,c′,trc,t −
∑

c,c′,t∈T

pc,txc,c′,tr̂c,t. (IV.13)

Hence, for any r̂c,t ≥ 0, combining both inequalities (IV.12) and (IV.13), and since

pc,t ≥ 0

F (x, v̂)− F (x, v) ≤ max

{
0,
∑

c,c′,t∈T

pc,txc,c′,trc,t −
∑

c,c′,t∈T

pc,txc,c′,tr̂c,t

}
≤

∑
c,c′,t∈T

xc,c′,t max {0, rc,t − r̂c,t} . (IV.14)

After applying the same axioms as for the upper bound calculation, in (IV.10), we

get the following lower bound

R (F (x, V ))−R(F (x, V̂ )) ≥ −
∑

c,c′,t∈T

xc,c′,tR
(

max
{

0, Rc,t − R̂c,t

})
. (IV.15)

So combining both results stated before, we obtain the result.

We use the result of Theorem IV.1 in the next section.

B. RISK-TUNED REGRESSION MODELS

We would like to compute the regression coefficients β̄ = (β0
c,t, βc,t)

>
c∈C,t∈T of

(IV.1) in such a way that we minimize the difference R(F (x, V )) − R(F (x, V̂ )). In

view of Theorem IV.1, we minimize a weighted sum of the lower and upper bounds as a

surrogate of that difference. The weights w1, w2 ∈ [0, 1] are determined by the decision

maker in a suitable manner. As an example on how to choose these weights, we have
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that large probabilities may be more unfavorable in SP, therefore the upper bound

should be more weighted. Overestimating the detection rate gives larger objective

function values in SP, but in reality it translates into higher probabilities of missing

the target.

Consequently we obtain the following optimization problem for determining

the regression coefficients:

Model RP(w1, w2):

min
β̄

{
w1

∑
c,c′,t∈T

R
(

max
{

0, Rc,t − R̂c,t(β̄)
})

+ w2

∑
c,c′,t∈T

R
(

max
{

0, R̂c,t(β̄)−Rc,t

})}
(IV.16)

s.t. β0
c,t + β>c,tY ≥ 0 ∀ c, t ∈ T , a.s. (IV.17)

Constraint (IV.17) establishes that the approximated detection rate must be

nonnegative, almost surely, for every cell and time period, since the true detection rate

never takes on negative values. We note that RP(w1, w2) is a nonstandard regression

problem.

We assume that we have a table of N realizations of the detection rates and the

corresponding realizations of the factors. Let
{
yk, rk

}N
k=1

be these realizations, where

yk and rk correspond to the kth realization of the factors Y and the detection rate

R, respectively. For simplicity, we here assume that Rc,t is identical in all cells and

all time periods. Our methodology applies also beyond this assumption. However,

it then would require more data and calculations. In situations where the table of

realizations depends on cell c and time period t, we have a total of CT auxiliary linear

optimization programs to solve.

We use superquantile as the risk measure in RP(w1, w2), and with the discrete

data mentioned above, we transcribe RP(w1, w2) into a linear program and compute

the regression coefficients β̄ = (β0, β)>, where we drop the subscripts c and t since all
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cells and time periods are identical. We then use the obtained regression coefficients

in the objective function of SP by replacing the true random vector (Rc,t)c∈C,t∈T by

the approximated detection rate R̂c,t = R̂c,t(β
0, β>), as seen in the following section.

C. SEARCH PROBLEM UNDER UNKNOWN DETEC-
TION RATE

In SP, after obtaining the regression coefficients, we substitute the true objec-

tive function

F (x, v) = exp

{
−
∑

c,c′,t∈T

pc,trc,txc,c′,t

}
by the following approximation

F (x, v̂) = exp

{
−
∑

c,c′,t∈T

pc,t(β
0 + β>y)xc,c′,t

}
, (IV.18)

and we obtain a new model of SP as follows:

Model ŜP:

min
x
R

(
exp

{
−
∑

c,c′,t∈T

pc,t(β
0 + β>y)xc,c′,t

})
(IV.19)

s.t. (II.3) - (II.5)

In ŜP we use superquantile with a given probability level α as the risk measure.

The value of α is the same one used in RP(w1, w2).

In order to further simplify the computational effort for the next section, we

only take into account one factor: visibility conditions in the AOI, measured in nau-

tical miles, during the mission’s time horizon. We consider situations where we might

not have predictions of the visibility conditions for the mission time horizon, for ex-

ample situations where the mission needs to be planned ahead in time and we do not

know which visibility conditions to expect. We utilize the N realizations
{
yk, rk

}N
k=1

in RP(w1, w2). Then we use the distinct realizations
{
yk
}N
k=1

in ŜP to estimate a
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probability distribution of Y , which we assume is independent of the probability

distribution over the target paths, and then apply these distributions in ŜP.

In our numerical example, we assume that we have N = 30 realizations, where

y1 = ... = y10 = 1, and r1, ..., r10 are randomly generated using a lognormal distribu-

tion, y11 = ... = y20 = 5, and r11, ..., r20 are randomly generated using a lognormal

distribution, and y21 = ... = y30 = 10 nautical miles, and r21, ..., r30 are randomly

generated using a lognormal distribution. All the lognormal distributions have the

same parameters as for Case A, according to the visibility conditions. After obtaining

the regression coefficients from the model RP(w1, w2), we use the three distinct yk in

the model ŜP.

D. NUMERICAL RESULTS

We next present numerical results of RP(w1, w2) and we compare the regression

coefficients obtained using weights w1 = 0.25 and w2 = 0.75, for different probability

levels α, with the traditional least-squares linear regression. We show two different

plots, one to represent RP(0.25, 0.75), the other to represent RP(0.75, 0.25), in order

to demonstrate that the values of the weights w1 and w2 are fairly important.

α Axis Interception β0 Slope β

0 0.9567 0.1645

0.25 0.9567 0.1645

0.35 0.9367 0.1665

0.50 0.8740 0.1728

0.75 0.8024 0.1750

0.80 0.6378 0.1816

0.85 0.6925 0.1707

0.90 0.6967 0.1698

Table 7. Case C - Regression coefficients β̄ = (β0, β)> for different probability levels
α, in RP(0.25, 0.75).
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Table 7 shows the obtained regression coefficients β̄ = (β0, β)> for different

probability levels α, and weights w1 = 0.25, w2 = 0.75. In the traditional least-squares

regression we obtain β̄ = (0.9665, 0.1886)>.

Figure 14. Case C - Comparison between least-squares linear regression and RP(0.25,
0.75), for different α.

Figure 14 shows the corresponding linearly approximated functions using least-

squares linear regression and RP(0.25, 0.75). We note that the nonstandard regression

RP(0.25, 0.75) tends to shift the fitted lines towards the smallest realizations of{
rk
}30

k=1
as the probability level α increases, therefore underestimating the detection

rates and returning more conservative regression coefficients. Figure 15 shows exactly

the opposite because the weights are the complements of the ones used in Figure 14.

This implies that the decision maker should be careful defining the weights w1 and

w2.

After obtaining the regression coefficients, we replace the objective function by

the approximated one in ŜP, as described in Section IV.C. Table 8 presents the opti-

mal values for Case C. We observe that Case C results in larger optimal values than
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Figure 15. Case C - Comparison between least-squares linear regression and RP(0.75,
0.25), for different α.

the previous cases, since the nonstandard regression generates conservative estimates

of the detection rate for ŜP.

SP-Sα ŜP

Case A Case A Case B Case C
ρ Visibility (Rc,t constant (Rc,t varies (random Rc,t (random Rc,t

∀c, t) between c and t) constant ∀c, t) constant ∀c, t)

0.6 0.6939 0.6947 0.6887 0.8465
0.4 Good 0.7634 0.7646 0.7539 0.8831
0.2 0.7962 0.7974 0.7949 0.9007

Table 8. Comparison of optimal objective function values between Cases, using su-
perquantile with α = 0.75 (Good visibility, w1 = 0.25, w2 = 0.75), where the objective
function is the risk measure of the probability of missing the target.

For the situation where the regression coefficients are obtained by using the
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least-squares linear regression, we use α = 0 in ŜP. Figure 16 shows that the optimal

Figure 16. Case C - Cumulative distribution functions for F (x, V ) given optimal
search plan x and random detection rate. Comparison between least-squares and
RP(0.25, 0.75) regression coefficients (Good visibility, ρ = 0.6).

search plan for the least-squares performs better for thresholds for F (x, V ) up to

45%. Then using α = 0.50 is the best solution until a threshold of 66%. After a 66%

probability of missing the target it is almost indistinguishable which α to choose,

therefore one consideration should be the run times of ŜP for each value α. From all

the numerical examples, we note that the larger the α, the longer the run time of ŜP.

From Figure 16 we observe that if we establish a goal of preventing probabilities of

missing the target of 70% or higher, we have 92% chance of doing better than the

goal if we rely on RP(0.25, 0.75) with α = 0.75 to obtain the regression coefficients

and use them in ŜP, while only 74% chance if we use the least-squares regression

coefficients in ŜP.

Figures 17 and 18 show the same comparison for fair and poor visibility condi-

tions. We notice that the optimal search plans obtained using least-squares regression
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Figure 17. Case C - Cumulative distribution functions for F (x, V ) given optimal
search plan x and random detection rate. Comparison between least-squares and
RP(0.25, 0.75) regression coefficients (Fair visibility, ρ = 0.6).

Figure 18. Case C - Cumulative distribution functions for F (x, V ) given optimal
search plan x and random detection rate. Comparison between least-squares and
RP(0.25, 0.75) regression coefficients (Poor visibility, ρ = 0.6).
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perform better for smaller thresholds of F (x, V ). However towards the tail of the cu-

mulative distribution function of the probability of missing the target, using larger

values of α gives higher chance of performing better than the established threshold.
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V. CONCLUSIONS

In this thesis, we discuss a type of stochastic optimization problems where the

decision maker does not have complete information concerning the objective function.

Specifically, we consider a discrete time-and-space search optimization problem (SP).

We want to route search assets in order to detect a moving target such as a drug

smuggler in an area of operations.

We assume that each searcher is equipped with one imperfect sensor, which

is not subject to false-positive detections. The searchers are all alike, equipped with

the same type of sensor, and they are allowed to divide their effort across multiple

cells in arbitrarily small portions. The goal is to determine a search plan such that

the probability of missing the target is minimized, without having the full knowledge

of the two sources of uncertainty: the target location and the sensor performance.

We assume that the target paths are probabilistically known via intelligence reports;

for example from data acquired by AIS (Automatic Identification System). We use

a Markov chain model to generate the paths with three stationary probabilities. We

assume that the sensor performance depends on environmental conditions, and we

use visibility to represent these conditions.

We formulate the objective function of SP in terms of a risk measure of a

parameterized random variable and consider three cases involving various degrees of

knowledge about the sensor performance. In all cases, we consider both the expecta-

tion and superquantile risk measures. While the expectation results in an objective

function representing the probability of missing the target, the superquantile gives

rise to more conservative search plans that perform reasonably well even under ex-

ceptional circumstances.

In the first two cases, we consider a random detection rate with known prob-

ability distribution. For Case A we present two possible situations, the first for a

deterministic and constant detection rate over all cells and time periods, and the sec-
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ond for a deterministic detection rate that varies between cells and time periods. The

numerical examples show that the objective function values for a varying detection

rate are smaller than for a constant one, since the search includes the cells with higher

detection rates. One example shows that if the goal is to prevent getting probabili-

ties of missing the target of 70% or higher, then the decision maker should use the

superquantile risk measure with α = 0.90. In that situation there is a 92% chance

of obtaining better mission outcomes than the goal, while there is only 81% chance

of getting better than the goal when using the expectation. This difference might be

critical when choosing a search plan and is more significant for faster moving targets.

For Case B the detection rate is random but constant for all cells and time

periods. The results obtained for Case B are close to the results from Case A. We show

different comparisons between cumulative distribution functions that demonstrate

how a decision maker may benefit from different risk measures depending on the

threshold for the probability of missing the target.

In the third case, the distribution of the sensor detection rate is unknown

and we approximate the detection rate by a linear combination of well-known factors

using a nonstandard regression. We use visibility conditions as the factor in the nu-

merical examples. Based on a table of observed sensor performances, that regression

minimizes the error induced by the approximation in some sense. We compare the

obtained coefficients with the ones resulting from a least-squares linear regression

model. We show that the coefficients obtained from the nonstandard regression are

more conservative than the ones from least-squares, by underestimating the detection

rate. Using the approximations in the objective function of SP, we obtain an approx-

imate problem that we solve for situations involving stochastic information about the

visibility conditions. The nonstandard regression utilizes all observed sensor perfor-

mances and we obtain worse results than the ones from Cases A and B, since there

is only probabilistic information about what visibility conditions to expect during

the mission. However we show that the optimal search plan performs better in ex-
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ceptional circumstances if obtained by using the nonstandard regression coefficients

instead of the ones from least-squares linear regression in the approximate problem.

We show that for good visibility we have an 18% higher chance of preventing proba-

bilities of missing the target of 70% or higher if we use the search plan that relies on

nonstandard regression coefficients with α = 0.75 in SP.

In all cases, the numerical results show that the superquantile spreads the

searchers over the area of operations, covering a larger area with smaller searcher

fractions than when using expectation. This risk measure handles exceptional target

paths more effectively.

A. FUTURE RESEARCH

Future research could generalize the bounds between the risk measure of the

true random function and the risk measure of the approximated one beyond an expo-

nential of a sum of linear functions. This generalization could lead to new nonstandard

regression techniques.
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6. Superintendência dos Serviços de Tecnologia da Informação (SSTI)
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