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Synthetic Aperture Sonar Imaging of Simple

Finite Targets

Steven G. Kargl, Kevin L. Williams, and Eric I. Thorsos

Abstract

During the Sediment Acoustics Experiment 2004 (SAX04), a synthetic aperture sonar (SAS) was

used to detect simple targets that were either proud or buried below a water-sediment interface, where

the nominal grazing angle of incidence from the SAS to the point above a buried target was well below

the critical grazing angle. SAS images from other measurements below the critical angle have also

produced target detections of buried spheres and finite cylinders. Models and numerical simulations are

developed to investigate these proud and buried target detections. For buried targets, the simulations

include estimates of reverberation from the rough seafloor, the subcritical penetration through the

seafloor, scattering from a target, and propagation back to the SAS. For proud targets, the simulations

include the scattering from the target where interaction with the seafloor is included through simple

ray models. The simulations used environmental and material parameters measured during SAX04. The

environmental measurements include profiles of small-scale surface roughness and superimposed ripple

structure. The SAS simulations and model/measurement comparisons over a frequency range of 10–50

kHz further support scattering from sediment ripple structure as the dominant mechanism for subcritical

penetration in this range.

Index Terms

Synthetic aperture sonar, acoustic scattering, ripple, signal-to-noise ratio (SNR)

I. INTRODUCTION

Synthetic aperture sonar (SAS) systems are becoming a common tool in underwater acoustics,

a particular example being systems designed to detect mines in shallow water [1], [2]. In such

environments the water-sediment interface invariably plays a role, affecting both the signal

The authors are with the Applied Physics Laboratory, University of Washington, Seattle, WA 98105 USA.
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from the target being detected and contributing to the noise that masks this signal. Thus,

understanding and modeling the acoustic processes at the water-sediment interface and simulating

SAS operation in the presence of this interface are important.

The primary goals of this work are to summarize the modeling techniques used to quantitatively

understand SAS imaging of simple proud and buried targets and compare modeling results to field

data. The model development was motivated by the specific problem of shallow grazing angle

detection of buried targets at frequencies below 50 kHz. However, the more general objective of

incorporating the environment into a “single realization” modeling capability needed to generate

SAS images was equally important. Thus several problems of increasing complexity are examined

here starting with SAS imaging of freefield targets and ending with the buried target problem.

The field data used for comparisons with modeling results were obtained during the Sediment

Acoustics Experiment in 2004 (SAX04) [3]. SAX04 was conducted in the Gulf of Mexico about

1 km offshore near Fort Walton Beach, Florida in 17–18 m of water. The SAS measurements

were made using a 28 m rail system [4] deployed on the sea floor.

Finite element modeling (FEM) can also be applied to model with high fidelity scattering from

proud and buried targets (e.g., see [5]). However, the FEM approach is computationally intensive,

and therefore its application to SAS imaging that involves Fourier synthesis to model each

transmission would be especially challenging. The approach being described here involves a more

approximate treatment of target scattering, but has the advantage of much better computational

efficiency than for the FEM method.

II. MODEL DESCRIPTIONS

Several independent models have been combined to produce a single model, which can be

used to generate a set of signals for SAS processing. This section describes these models and

some of the underlying assumptions and approximations.

The origin of the coordinate geometry for the reverberation and penetration models lies in

the mean water-sediment interface. The z-axis is oriented perpendicular to this interface such

that its unit vector, ẑ, points towards the air-water interface. The x-axis coincides with the range

coordinate of the SAS. The y-axis is aligned with the direction of travel of the SAS, sometimes

called the along-track direction or dimension. Throughout this article, the y-axis will be referred

to as the cross range direction or simply as cross range. For a given signal, the locations of
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the source, receiver, and target are given by rsrc = (xsrc, ysrc, zsrc), rrcv = (xrcv, yrcv, zrcv), and

rtgt = (xtgt, ytgt, ztgt), respectively. For the surface integrals to be defined shortly, capital bold

symbols denote horizontal vectors (i.e., r = R + zẑ).

For the SAX04 experiment and the simulations to be discussed below, interaction of the

acoustic field with the air-water interface does not occur in the time interval of interest. Thus,

the model assumes semi-infinite inviscid water above a semi-infinite fluid sediment. The sound

speed and density in the water are c1 and ρ1; while the sound speed, density, and dimensionless

loss parameter for the sediment are c2, ρ2, and δ2, respectively [6].

A. Reverberation

A time domain reverberation model has recently been developed, based on first-order pertur-

bation theory, to describe sound scattering from a rough seafloor. A derivation of this model is

given in Appendix I. Several approximations are employed in addition to first-order perturbation

theory: the stationary phase approximation is used to evaluate the zero-order field needed for

the first-order theory, the sound speed in the sediment is approximated as independent of

frequency, the attenuation in the sediment is approximated as linearly increasing with frequency,

and the frequency dependence of the source and receive beam patterns is neglected. The latter

approximation is reasonably satisfied for our measurements because the horizontal aperture of

the source, composed of four transducers in a compact horizontal array, is steadily reduced as

the frequency is increased by reducing the number of active elements from four down to one in

steps. For bistatic backscattering in the incident vertical plane [see the discussion near (I.40)],

this model reduces to the following surface integral over the mean plane of the water-sediment

interface:

prev(rrcv, t) =
1

4πc21

×
∫
d2R

Arev(R)h(R)p̈src(t− trev)

|rrcv −R||R− rsrc|
. (1)

Here, and throughout this article, the assumed time convention is exp(−ıωt) with t and ω

denoting time and angular frequency. In (1) the subscript rev denotes quantities related to

reverberation, that is, sound scattering from the rough water-sediment interface. Environmental
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and system parameters enter into the formulation through the complex coefficient

Arev(R) = r0BsrcBrcv{[1 + Γ11(θi)][1 + Γ11(θs)]

× (1− κ2/ρ) + (ρ− 1)[1− Γ11(θi)][1− Γ11(θs)] (2)

× sin θi sin θs + (1− 1/ρ)[1 + Γ11(θi)][1 + Γ11(θs)]

× cos θi cos θs},

where Bsrc, Brcv, θi, θs, and Γ11(θ) depend on R. The source and receiver response functions

evaluated at R on the mean surface plane are Bsrc and Brcv, respectively. (The beam patterns are

the square of the response functions.) The incident and scattered grazing angles are determined

by sin θi = zsrc/|R− rsrc| and sin θs = zrcv/|rrcv −R|, respectively. The plane-wave reflection

coefficient at grazing angle θ is

Γ11(θ) =
ρ sin θ − (κ2 − cos2 θ)1/2

ρ sin θ + (κ2 − cos2 θ)1/2
. (3)

In (3) ρ = ρ2/ρ1 and κ = k2/k1 = (1 + ıδ2)/ν, where ν = c2/c1 is the real index of refraction.

(The subscripts on Γ11(θ) denote that both the ingoing and outgoing fields are in the water

(medium 1), in contrast to the transmission coefficient introduced in Sec. II-B.) Finally, r0 = 1

m has been introduced into (2) to preserve dimensional consistency in (1). In (1), h(R) is the local

height of the water-sediment interface relative to the mean plane, and psrc(t) is the pressure field

at 1 m from the source on the transmit beam axis. The double dot notation indicates the second

derivative with respect to time. Finally, the round-trip time delay to propagate from the source to

the point R on the mean plane and then back to the receiver is trev = (|rrcv−R|+|R−rsrc|)/c1.

B. Penetration

Thorsos et al. [6] proposed rough surface scattering as a mechanism to explain the significant

penetration of an incident acoustic field into sandy sediments below the critical grazing angle θc =

cos−1(1/ν). Subsequently, Jackson et al. [7] demonstrated that ripples are the primary surface

feature needed to cause this increased penetration. Their model for the penetrating acoustic

pressure, p, is expressed in a baseband representation, i.e., the signals are downshifted by the

center frequency. In the present case the signal bandwidth is much greater, and therefore the

baseband representation is not used, but otherwise the treatment here follows closely that given

in [6]. Three possible contributions are contained in the model: a zeroth-order refracted field,
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IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. XX, NO. XX, MARCH 2011 5

pR(r, t), a zeroth-order evanescent field, pe(r, t), and a first-order surface (i.e., interface) scattered

field, p2s(r, t). Each field is briefly summarized below to unify the notation with the other models

presented here as well as to absorb a 1/4π scaling factor in (C15), (C21), and (C25) of [6] into the

amplitude of the source waveform. This results in the same normalization for the reverberation

and penetration models. (In [6] the source waveform normalization was taken to be the same

as the point source Green’s function as written in (C1) of [6], introducing a factor of 1/4π in

these equations.)

For a source located at rsrc and an in-sediment field point at rf , the refracted acoustic field

is [6, see (C21)]

pR(rf , t) = r0ρ
1/2Bsrc,RΓ12E(θiR)psrc(t− tR)

× [|Rf −Rsrc| tan θ2R sin θiR (4)

× (|zsrc|/ sin3 θiR + ν|zf |/ sin3 θ2R)]−1/2

where the subscript R denotes quantities associated with the refracted path connecting the source

at rsrc to the in-sediment field point at rf . For the refracted path, θiR denotes the in-water grazing

angle at the interface, and θ2R is the grazing angle of the refracted ray in the sediment (medium

2). The determination of θiR will be described below, and θ2R is related to θiR by Snell’s law,

cos θ2R = ν cos θiR, where the loss in the sediment is ignored in defining θ2R. The use of absolute

values on the vertical coordinates ensures that (4) is invariant to the z-axis convention. Bsrc,R

is the source response function evaluated at the refraction point, the point where the refracted

path intersects the mean plane. The quantity Γ12E(θiR) is a real transmission coefficient from

medium 1 into medium 2 defined such that its square is the energy transmission coefficient. It

is given by

Γ12E(θiR) = [1− |Γ11(θiR)|2]1/2, (5)

where Γ11(θiR) is given by (3). The parameter tR = (diR + κd2R)/c1 is a complex time delay

where the imaginary part accounts for attenuation in the sediment. The distance from the source

to the refraction point is diR = |zsrc|/ sin θiR, and d2R = |zf |/ sin θ2R is the distance from

refraction point to the field point in the sediment.

To obtain θiR, we begin by noting that the horizontal projections of the distances from

the source to the refraction point and from the refraction point to the field point are given
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by |zsrc| cot θiR and |zf | cot θ2R, respectively. These must combine to give the total horizontal

distance between the source and field point. Thus, we have

|Rf −Rsrc| = |zsrc| cot θiR + |zf | cot θ2R. (6)

It readily follows from (6) that

z2
f cot2 θ2R = |Rf −Rsrc|2 − 2|Rf −Rsrc||zsrc| (7)

× cot θiR + z2
src cot2 θiR.

By using the identity [
1 + (1− ν2) cot2 θiR

]
cot2 θ2R = ν2 cot2 θiR, (8)

cot θ2R can be eliminated from (7) and the following quartic equation for cot θiR is obtained:
4∑

j=0

bj cotj θiR = 0, (9)

where

b0 = |Rf −Rsrc|2, b1 = −2|Rf −Rsrc||zsrc|,

b2 = z2
src + µ|Rf −Rsrc|2 − ν2z2

f , (10)

b3 = −2µ|Rf −Rsrc||zsrc|, b4 = µz2
src,

with µ = 1− ν2. Only the real, positive root of (9) is retained.

For the evanescent contribution, we define the incident grazing angle θie to be the grazing

angle at the point on the interface directly above the field point in the sediment. (The subscript

e denotes quantities associated with the evanescent field.) Thus,

θie = sin−1(|zsrc|/die), (11)

where

die = (|Rf −Rsrc|2 + z2
src)

1/2 (12)

is the distance from the source to the point (Rf , 0) on the mean plane directly above the field

point. As with the refracted field, the evanescent field is found for a flat interface making it a
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zeroth-order contribution. If θie is greater than the critical angle, the evanescent contribution is

set to zero. Otherwise, it takes the form [6, see (C25)]

pe(rf , t) = r0Bsrc,eΓ12(θie)psrc(t− te)/die, (13)

where Bsrc,e is the source response function evaluated at (Rf , 0). The plane-wave pressure

transmission coefficient is

Γ12(θie) = 1 + Γ11(θie) =
2ρ sin θie

ρ sin θie + κ sin θ2e

(14)

where θ2e is a complex angle obtained from Snell’s law with loss neglected; thus,

sin θ2e = (1− ν2 cos2 θie)
1/2. (15)

Note that when θie is less than the critical angle, sin θ2e is purely imaginary. Finally, the complex

time delay te is

te = (die + κd2e)/c1 = (die + κ|zf | sin θ2e)/c1. (16)

Insertion of (16) into (13) reveals the characteristic exponential decay with depth into the

sediment of an evanescent field. Thus, pe(rf , t) is important only within a few wavelengths

of the water-sediment interface.

The contribution to the penetrating acoustic field due to scattering from the rough surface is

obtained with first-order perturbation theory, which gives

p2s(rf , t) =
ρ

4πc21

∫
d2R

As(R)h(R)p̈src(t− ts)

|rf −R||R− rsrc|
. (17)

(See (C15) in [6] where −k2
10c

2
1 = −ω2

0 has been replaced by the double time derivative applied

to the source function.) The subscript s denotes a quantity associated with the scattered field,

while the subscript 2s indicates the scattered field is in the sediment (medium 2). The complex

time delay is ts = (di + κd2s)/c1 where di = |R − rsrc| and d2s = |rf − R|. The complex

coefficient As(R) is given by

As(R) = r0BsrcΓ12(θi)Γ21(θ2)

[
1− κ2

ρ
− κ

(
1− 1

ρ

)
×

(
Rf −R

d2s

· R−Rsrc

di

+ sin θ1s sin θ2s

)]
(18)

with the plane-wave pressure transmission coefficient from water into the sediment

Γ12(θi) =
2ρ sin θi

ρ sin θi + κ sin θ2s

, (19)
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and the coefficient for transmission from the sediment into water

Γ21(θ2) =
2κ sin θ2

κ sin θ2 + ρ sin θ1s

. (20)

From the specified geometry, the real grazing angles θi and θ2 satisfy tan θi = |zsrc|/|R− rsrc|

and tan θ2 = |zf |/|rf−R|, and the complex angles θ2s and θ1s are then determined from Snell’s

law:

sin θ2s = (1− cos2 θi/κ
2)1/2, (21)

sin θ1s = (1− κ2 cos2 θ2)
1/2. (22)

C. Target scattering

The steady-state interaction of an acoustic field with a finite target is modeled using the

freefield scattering of an incident plane wave. At the ranges commonly found in SAS applications,

the receiving transducer is in the far field of the target, and the scattered pressure for a freefield

target can be written as

ptgt(r) = p0f(r̂, r̂i) exp(ıkr)/r, (23)

where p0 is the incident pressure at the target, f(r̂, r̂i) is the scattering amplitude where r̂i

and r̂ refer to the incident and scattering directions, respectively, r is the slant range from the

target to the receiver, and k is the wavenumber in the water. As will be shown later in this

section, scattering from a proud target can also be approximately put into the form of (23). The

case of a buried target is more complicated, as discussed in Sec. III-C. The scattering amplitude

also depends on frequency, but that dependence is suppressed. For SAS applications here we are

interested only in monostatic backscatter, for which r̂ = −r̂i. Restricting the scattering amplitude

to monostatic scattering allows it to be expressed using a single set of spherical angles f(θ, ϕ),

where the coordinate origin is centered on the target. For a finite cylindrical target, we choose θ

to be the polar angle relative to the cylinder axis, and then by symmetry the scattering amplitude

has no dependence on ϕ. For a spherical target, symmetry demands that there be no dependence

on θ or ϕ. In what follows the scattering amplitude is written as f(θ), which includes both cases.

It is convenient to express the scattering amplitude in terms of the dimensionless form function

F (θ):

f(θ) =
a

2
F (θ), (24)
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where a is the radius of either a sphere or cylinder. The scattering cross section per unit solid

angle is given by

σ = |f(θ)|2 =
a2

4
|F (θ)|2 =

πa2

4π
|F (θ)|2. (25)

Thus, the form function can be viewed as an angular and frequency dependent correction to the

scattering pattern of an ideal scatterer with total cross section πa2 that scatters uniformly over

4π steradians. The target strength is given by TS = 10 log10(σ).

Scattering for spheres and spherical shells is well understood and expressions for various form

functions are readily available [8]–[11]. In particular, for a fluid-filled, elastic, spherical shell

see Eq. (2) in [10].

Stanton considered broadside and near broadside scattering of sound from finite fluid and

elastic cylinders [12], [13]. In the simulations of Sec. III, the axis of symmetry of the finite

cylinder is parallel to the cross range axis. Stanton’s model was developed under the assumptions

that end effects can be ignored and the length of the cylinder, L, satisfies L� 2
√
rλ and r � L,

where λ is the wavelength of the incident acoustic field in the host medium. Stanton’s result

can be cast into the following expression for the form function for backscattering from a finite

cylinder:

Fcyl(θ) =
L

a

(
− ık⊥a

π

)1/2 sin(k‖L)

k‖L
F cyl
∞ (k⊥a), (26)

where F cyl
∞ (k⊥a) is the form function for backscattering of a normally incident plane wave from

an infinite cylinder. In (26) the perpendicular and parallel components of the wave vector are

k⊥ = k sin θ and k‖ = k cos θ, respectively. The polar angle θ is determined by cos θ = r̂c · r̂src,

where r̂c is a unit vector parallel to the cylinder axis and r̂src is a unit vector directed from the

target center to the source position.

To obtain (26) first recall that scattering of a plane wave from an infinite cylinder is a two-

dimensional problem, and therefore in place of (23) the scattered field is given by

ptgt(r) = p0f(r̂, r̂i) exp(ıkr)/r1/2. (27)

For backscattering from an infinite circular cylinder, the scattering amplitude has no angular

dependence, and here is represented in terms of its frequency dependence as f cyl
∞ (k⊥a). (When

expressed in terms of wavenumbers, the full dependence includes the compressional and shear

wavenumbers in the elastic cylinder, but that dependence is suppressed.) An expression for
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f cyl
∞ (k⊥a) follows from Eq. (13) in [13] when specialized to backscattering. By convention [14]

the dimensionless form function for scattering in a 2-D geometry is related to the scattering

amplitude by F cyl
∞ (k⊥a) = (2/a)1/2f cyl

∞ (k⊥a). By using this relation and (24) plus Stanton’s

expressions for the scattering amplitudes for both finite and infinite length cylinders, (26) readily

follows.

Ye revisited Stanton’s model and provided a scattering amplitude that includes the scattering

from a flat end [15]. His model was developed from a Kirchhoff scattering integral, which in the

backscattering direction, reduces to (26) along the body of the finite cylinder. The backscattering

contribution from a flat end is found to be

Fend(θ, ka) = −ıΓ11(π/2− θ)J1(2ka sin θ) cot θ

× exp(−ıkL cos θ), (28)

where an explicit dependence on ka is shown to aid discussion in Sec. III-B. Γ11 is the reflection

coefficient for the interface between the water and the flat end, J1 is the first-order cylindrical

Bessel function, and θ is the angle that the incident wave vector makes with the cylinder axis.

(The exponent sign and the overall sign given in [15] have been corrected in (28).) Because

our present use of Fend(θ, ka) is for incidence near end-on, we use for simplicity a reflection

coefficient in the form of (3) but with the material parameters of the cylinder and the surrounding

water; this neglects effects of shear in the reflection coefficient.

Scattering from proud targets is more difficult to model due to the interaction of the sound

field with the target and bottom, including the possibility of multiple scattering. For this case

we have used a simplified treatment in which the interaction of the incident sound field with

the water-sediment interface and the target is modeled from a simple geometric ray analysis [5,

See Fig. 5]. The ray diagrams for a sphere and cylinder at broadside incidence are identical, and

yield an approximate backscattering form function

F (θi) = Γtgt(π/2) exp(−ı2ka)

+ 2Γtgt(π/2− θi)Γ11(θi) exp[ı2ka(sin θi − cos θi)]

+ Γtgt(π/2)Γ2
11(θi) exp[ı2ka(2 sin θi − 1)], (29)

where θi is the incident grazing angle relative to the sediment surface. The form function given

by (29) can be obtained using the Kirchhoff approximation for scattering followed by a stationary
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phase analysis, consistent with a geometric ray analysis. (See Baik and Marston [16] and their

Appendices I and II; these authors treat an analogous problem of a rigid cylinder near an interface

and is a more general treatment than required here in that the cylinder can intersect the surface.)

The water-sediment reflection coefficient, Γ11(θi), is given by (3), and Γtgt is also evaluated

from (3) using material properties of the target for the second medium. The first term in (29) is

the field specularly backscattered from the target. The second term represents a ray that reflects

from the water-sediment interface and is then specularly scattered by the target back to the

source/receiver. This term also includes the reciprocal path of first specularly scattering from the

target and then reflecting from the water-sediment interface. The last term accounts for a surface

reflected ray that specularly backscatters from the target and then follows its incoming path back

to the source/receiver. With direct substitution of (29) into (24), the approximate scattering from

a proud spherical target is given by (23). Substitution of F (θi) from (29) for F cyl
∞ (k⊥a) in (26)

yields an approximation for scattering from a proud cylindrical target at and near a broadside

orientation. In this expression θi is again the incident grazing angle relative to the sediment

surface, while θ is the angle the incident wave vector makes with the cylinder axis.

Equation (29) includes only geometrically reflected ray paths and neglects possible surface

guided waves contributions to the scattered field (e.g., leaky Rayleigh [5] or Lamb waves [11]).

It is possible, however, to include the most important elastic effects by inserting more general

form functions into each of the terms in (29). The first step is to re-express each term of (29) in

terms of the form function for scattering from a sphere or cylinder based on geometric reflection

only. To do this we must relax our earlier restriction to only monostatic scattering, since the

second term in (29) corresponds to a vertical bistatic scattering combined with a reflection from

the water-sediment interface. This extension of the formalism will at first be restricted here to

the case of a spherical target. Thus, we write the form function for a spherical target as Fsph(φ),

where φ is the vertical angle for bistatic backscatter, defined such that φ = π for monostatic

backscatter. In particular, for scattering based on geometric reflection (i.e., reflection in the high

frequency limit) one obtains Fsph(φ) = Γtgt(φ/2) exp{−ı2ka cos[(π − φ)/2]}. The phase factor

accounts for the difference in path length between a path for scattering from a point at the center

of the sphere and the path that reflects from the surface of the sphere. [An equivalent phase

factor is given in [17] for the case of a rigid sphere, Eq. (10.103). Note that (29) corresponds

to using just the leading term in Eq. (10.103) for the spherical target form function.] For the
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geometry of a proud sphere, φ = π in the first and third terms in (29) and φ = π − 2θi in the

second term. Thus (29) becomes

Fp(θi) = Fsph(π) + 2Γ11(θi)Fsph(π − 2θi) exp(ı2ka sin θi)

+ Γ2
11(θi)Fsph(π) exp(ı4ka sin θi). (30)

The phase factors that survive in (30) arise from the path length differences for the terms in

(29) when the target is considered a point. The form factors in (30) can now be generalized

to approximately account for the most importance surface guided wave contributions. This was

done by summing the partial wave series for scattering from an elastic spherical shell as given

by Eq. (3) in [18], where the series was truncated using the second condition given in Eq. (16)

in [18] for all ka. The partial wave series gives a more complete description of the specular

reflection component than given by (29), and also includes the contribution of surface guided

waves. The latter contribution may be overestimated because the effects of the sediment-target

contact are not being taken into account.

The final piece of the target simulation is a Fourier synthesis to generate a scattered acoustic

pulse emanating from the target location; this is necessary to account for the frequency depen-

dence of the target’s form function. Zhang et al. [19] provide a detailed description of a procedure

similar to one outlined here. The complex pressure, after propagation from the source to the

target location in the absence of the target, is convolved with the relevant form function. This is a

three step process. First, the complex pressure is Fourier transformed into the frequency domain.

Second, the form function as a function of angular frequency, F (θ, ω), is computed for each of

the positive frequencies of the complex signal, and the negative frequencies are populated by

F (θ;−ω) = F ∗(θ;ω) where ∗ denotes complex conjugation. Third, the scattered signal is given

by an inverse Fourier transform of the product of the form function and the Fourier transform

of the complex signal.

III. NUMERICAL SIMULATIONS AND COMPARISONS TO EXPERIMENTS

Several numerical simulations were conducted to validate individual models described in

Sec. II, and some of those results are reported here. The simplest simulations are the freefield

scattering from targets. These permit validation of the target models and the time domain imaging

(TDI) algorithm described in Appendix II. Proud targets are then considered, which introduces
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the interaction of the SAS signals with both the water-sediment interface and target. These

simulations are compared to SAX04 data and data collected in the Naval Surface Warfare

Center, Panama City Division (NSWC PCD) test pond facility. The simulations culminate with

the imaging of buried targets under various conditions that correspond to SAX04 measurements.

Unless otherwise specified, the simulated data are sampled at 400 kHz and the time ranges

from 0 to 24 ms. The length of the SAS aperture is typically 10 m and 400 individual signals

are generated. This gives a spatial sampling of ∆y = 0.025 m, which is consistent with the ∆y

used during the experiments.

A. Freefield scattering

For the freefield simulations, a source and a receiver are co-located, and initially placed at

rsrc = (0,−5, 0) m. Omnidirectional beam patterns are used (i.e., Bsrc = 1 and Brcv = 1). A

rigid sphere or rigid finite cylinder with broadside orientation is placed at rtgt = (10, 0, 0) m

where the radii are a = 0.21 m and the length of the cylinder is L = 1.1 m. The target is in

lossless water with c1 = 1482 m/s and ρ1 = 1000 kg/m3, which correspond to the water at the

NSWC PCD test pond facility [20], [21].

The form of the chirp signal emitted by the source is given in (I.2). The carrier frequency is

f0 = 20 kHz with a bandwidth of fb = 15 kHz and chirp duration of tc = 3 ms. The envelope

parameter, ac = 8, produces an effective bandwidth of fbe ≈ 4.5 kHz as determined from the full

width at half maximum of the Fourier spectrum of the source replica. Throughout the simulations,

a unit amplitude is assumed. A set of SAS signals are now generated by time shifting the replica

to account for propagation from rsrc to rtgt and scaling by the geometric spreading, performing

the convolution described in Sec. II-C, and finally time shifting the scattered signal from rtgt to

rrcv and again including the geometric spreading.

The target strength of a sphere, as given by Urick [22], is TSs = 10 log10(a
2/4), which

yields TSs = −19.58 dB. To determine a target strength from Fig. 1a, it is noted that TDI

compensates for the spherical spreading for propagation from the source to each point in the

image. The distance of closest approach to the center of the rigid sphere is Rd = 10 m giving

a one-way spreading loss of −20.00 dB that needs to be removed. Additionally, all signals

in the SAS aperture contribute to the image formation, so the image needs to be adjusted by

−20 log10 400 = −52.04 dB. The “hottest” pixel in Fig. 1a corresponds to 12.63 dB. Thus, we
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Fig. 1. SAS images of the freefield scattering from (a) a rigid sphere and (b) a finite rigid cylinder. The color scale is referenced

to 12.63 dB and 11.42 dB for (a) and (b), respectively.

find TSi
s = 12.63− 52.04 + 20.00 = −19.41 dB, which compares favorably with Urick’s value.

From Urick, the target strength of a finite cylinder at broadside, is TSc = 10 log10(aL
2/2λ),

and yields TSc = 2.34 dB at 20 kHz. To determine a target strength from Fig. 1b, the one-way

spreading loss of −20.00 dB again needs to be removed to account for the propagation from rtgt

to rrcv. The number of SAS signals that actively contribute to an image is not governed by the

length of the SAS aperture, but rather by the full width of the main lobe of the finite cylinder’s

directivity pattern. From Kinsler et al. [23], the main lobe for a rectangular aperture goes as

sin2 v/v2 with v = kL sin θ/2 and θ is the angle between the axis that is perpendicular to the

cylinder’s axis of symmetry and the ray from the origin to the field point. For the simulation

depicted in Fig. 1b, the half-width angle is θh = 1.7◦. The number of signals contained within

the half width of the main lobe is given by tan θh = n∆y/Rd ≈ θh with again a distance of

closest approach denoted by Rd. The total number of contributing signals is then N = 2n ≈

2θhRd/∆y = 23.74. To estimate the target strength from Fig. 1b, the averaged squared pixel

value over the “hottest” portion of the image is found, and it gives 10 log10〈P 2〉 = 9.08 dB. The

estimated target strength is now TSi
c = 9.08 − 27.51 + 20.00 = 1.57, which is again in good

agreement with Urick. It is noted that a value of N = 21.7 reproduces TSc.

The final freefield simulation is a cement drainage pipe with an end-on orientation. The

relevant water parameters from SAX04 are c1 = 1538 m/s and ρ1 = 1000 kg/m3. For the

pipe, the compressional sound speed and density of the cement are taken to be c3 = 3100 m/s

and ρ3 = 2600 kg/m3, and the shear properties are ignored. The outer radius of the pipe is

a = 0.21 m and the ratio of the inner-to-outer radii is b/a = 0.819. To facilitate comparison

to the SAX04 measurement, the initial source and receiver locations are rsrc = (0,−5, 3.86)
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Fig. 2. SAS images of the freefield scattering from (a) a cement drainage pipe with an end-on orientation and (b) a proud

cement pipe during SAX04.

m and rrcv = (0,−5, 3.91) m such that zsrc and zrcv are the nominal measured values from

the mean sediment surface to the center of the aperture. The center of the pipe is located at

rtgt = (10.25, 0, 0.21) m. The simulation constructs the required scattering form function from

two applications of (28), F = Fend(θ, k1a) − Fend(θ, k1b). The bandwidth and duration of the

chirp have been increased to fb = 25 kHz and tc = 4 ms while ac = 8 is retained. This

gives an effective bandwidth of fbe ≈ 7.5 kHz, which is consistent with the bandwidth of the

SAX04 12–28 kHz chirp. The simulation is depicted in Fig. 2a where the result clearly shows

the two glints observed in the SAX04 data shown in Fig. 2b. [The geometry for the SAX04

measurement actually had the target proud on the sediment, but the important observation is that

the characteristic signature of the target shown in the simulation is evident in the measurement.]

Additionally, the separation distance between glints are consistent with the observed glints. Figure

2b also shows glints at the far end of pipe. The simulation does not currently take into account

the propagation along the pipe nor the scattering from the far end in the end-on orientation.

B. Proud target

These simulations use the scattering amplitude given by (29) and (30). A few comments are

in order. First, (29) only includes geometrically scattered contributions to the pressure, which

obviously excludes possible resonant or elastic target responses. These contributions are included

in (30). Second, the simulations also exclude a surface reverberation component because the

observed SNR is greater than 25 dB. Third, a set of signals for SAS processing is generated in

a manner similar to the method described in Sec. III-A. That is, a chirp is time shifted to the

target location and scaled by the propagation distance, convolved with the scattering amplitude,
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and then time shifted to the receiver. The following describes simulations and experiments for

scattering from a proud spherical target in the NSWC PCD test pond facility and a cement

drainage pipe at broadside incidence during SAX04.

Figure 3 depicts SAS images, generated from simulated and experimental data, for the scatter-

ing from an air-filled, proud, elastic spherical shell. The shell has an outer radius of a = 0.3 m and

an inner-to-outer radii ratio of b/a = 0.95. The shell’s material was a mild steel. The SAS aperture

for the measurement includes 764 pings, which gives a 19.1 m length aperture. The center of

the physical apertures in the experiment were initially located at rsrc ≈ (0,−10.25, 3.86) m and

rrcv ≈ (0,−9.76, 3.89) m. In the simulation, the initial source, initial receiver, and target locations

are rsrc = (0,−5, 3.86) m, rrcv = (0,−5, 3.89) m, and rtgt = (9.35, 0.25, 0.3) m, respectively.

The apertures are directed toward the sediment at a 20◦ depression angle with source and receiver

dimensions of 0.1 × 0.05 and 0.1 × 0.1 m2. The chirp, used in the simulations, has a carrier

frequency of f0 = 20 kHz with a bandwidth of fb = 28 kHz, duration of tc = 4 ms, and envelope

parameter of ac = 8. This yields an effective bandwidth of fbe ≈ 15.4 kHz, and the sample rate

is 1 MHz. The density and sound speed of the test pond water are given in Sec. III-A. Finally, for

completeness, the density, compressional speed, and shear speed of the mild steel are ρ3 = 7700

kg/m3, cl3 = 5950 m/s, and ct3 = 3240 m/s.

Figures 3a and b are SAS images created from simulated data sets with the form functions

given in (29) and (30). In (30), we used the form function for an air-filled, elastic spherical shell

for Fsph(π) and Fsph(π − 2θi). Figure 3c is the SAS image from experimental data. The three

leftmost features in these images can be uniquely identified with the geometrically reflected ray

contributions contained in (29). In Fig. 3a and b, the spatial separation between the left and

center features is 0.13 m and the spatial separation between the center and right features is

0.10 m. For the experimental data, these features have spatial separations of 0.085 and 0.095 m,

respectively. In the simulations, the target is assumed to be in contact with the water-sediment

interface at a tangent point. In the experiment, the target’s weight slightly depresses the interface

and, hence, shortens the ray paths that interact with the interface. Inspection of Fig. 3b and c

also reveals a feature near a range of 10 m. This feature is associated with the subsonic branch

of the lowest order antisymmetric leaky Lamb wave, which is often designated as the A0− leaky

Lamb wave [19].

The proud target simulation in Fig. 4 approximates a broadside measurement from a cement
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Fig. 3. SAS images of a proud elastic spherical shell. (a) The scattering model used (29) to generate data. This simulation

includes only the geometrically reflected acoustic field. (b) The scattering model used (30), which includes both the reflected

acoustic field and the elastic response of the shell. (c) SAS image generated from a measurement at the NSWC PCD test pond

facility.

drainage pipe during SAX04. The environmental parameters are those given above for the end-

on orientation of the pipe with the additional SAX04 sediment properties: ρ2 = 2000 kg/m3,

c2 = 1779 m/s, and δ2 = 0.01. The center of the pipe is now at rtgt = (9.8, 0, 0.21) m, and

its length is nominally L = 1.09 m. The locations and physical properties of the source and

receiver are the same as those used in the proud spherical shell measurement. For this simulation

the form function will again be generalized to include the most important elastic effects using

an expression similar to (30). This requires including two angles in the finite cylinder form

function now denoted Fcyl(θ, φ), where θ is the same polar angle used in (26), and φ is the

vertical bistatic angle. The form function given by (26) is for monostatic backscatter. In the

generalization to include vertical bistatic scattering and elastic effects the only change required

is to replace the final factor by F cyl
∞ (k⊥a, φ), corresponding to vertical bistatic scattering from

a water-filled, elastic, infinite cylindrical shell [12]. The simulation uses (30) with the spherical

shell form factors replaced by Fcyl(θ, π) and Fcyl(θ, π − 2θi). At the extreme ends of the SAS
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Fig. 4. SAS images of the scattering from a proud cement drainage pipe with a broadside orientation: (a) simulation and (b)

SAX04 measurement.

aperture, the incident angle is nominally 26◦ from broadside and one may anticipate a failure

in (30) due to (26). However, the discussion of the freefield image of the finite rigid cylinder

shown in Fig. 1b suggests that only the central v 20 signals contribute significantly to the image.

The extreme angle of incidence for the signals of consequence is v 1.5◦, and hence, (30) with

(26) should be adequate. Inspection of Fig. 4 shows that the simulation captures not only the

length and width of the target, but also a “doublet”. This splitting is a clear indication of the

interaction of the target scattering with the sediment interface as characterized by the ray model

in Sec. II-C. Finally, the broad light blue feature at an approximate 10.2 m range suggests that

an elastic response of the pipe has been stimulated (such as a surface elastic wave).

C. Buried targets

The buried target simulations require three basic steps: (1) generate a realization of the rough

seafloor; (2) compute reverberation from the seafloor; and, (3) compute a signal scattered from

the target. Each step is briefly outlined below.
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A realization of a seafloor must be generated in accordance with measured small-scale rough-

ness and ripple structure. The small-scale roughness spectrum is given as an isotropic power law

with an algebraic cut-off

W (kx, ky) = w2/(k
2
s + k2

c )
γ2/2 (31)

where kx and ky are the Cartesian components of the spatial wavenumber, k2
s = k2

x + k2
y , and a

constant cut-off typically taken to be kc = 20.9 m−1 (i.e., a 0.3 m length scale). Fourier methods

can be used to convert W (kx, ky) into a small-scale surface relief. The general form of a sine-

wave ripple is given by Jackson [7, see (1) and (2)], and its importance to acoustic penetration

is discussed therein. For simulations, the ripple crests are parallel to the cross range direction.

Reverberation is computed from (1) with a surface realization that is “sufficiently large” to

accommodate all positions along the SAS aperture, the typically wide horizontal beamwidths of

the source and receiver, and the total duration of a signal [24]. The surface integral is converted

to discrete sums over the mean surface coordinate Rij = (xi, yj) such that

prev(tn) =
∆x∆y

4πc21

Nx∑
i=0

Ny∑
j=0

Aij
revhij

rij
rcv r

ij
src

p̈src(tn − tijrev) (32)

where rij
rcv = |rrcv − Rij|, rij

src = |Rij − rsrc|, Aij
rev = Arev(Rij), tijrev = (rij

src + rij
rcv)/c1,

∆x < c1/[4(f0 + fb/2)] and similarly for ∆y, and tn = n∆t for n = 0, ..., Nt. Direct evaluation

of p̈src(tn − tijrev) for each discrete surface point and discrete round-trip delay time is possible,

but numerically inefficient. To rapidly evaluate (32), p̈src(t) is computed once at a much finer

resolution δt � ∆t in the interval 0 ≤ t ≤ tc. Outside of this interval, p̈src(t) is identically

zero. Then, p̈src(t) is linearly interpolated onto prev(tn) by time shifting p̈src(t) to tijrev with an

appropriate scaling from the other factors in the summand.

The scattered target signal is computed in three steps. First, the refracted, evanescent, and

surface scattered contributions in going from the source to the buried target location are deter-

mined from (4), (13), and (17), respectively. The surface integral in (17) is again reduced to a

double summation over discrete points on the surface realization

p2s(tn) =
ρ∆x∆y

4πc21

Mx∑
i=0

My∑
j=0

Aij
s hij

rij
f r

ij
src

p̈src(tn − tijs ), (33)

with Mx � Nx and My � Ny. Only those points within a small area in the vicinity of target

contribute. In (33), rij
f = |Rij − rf | is the distance from (xi, yj) to the field point. The method
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used to rapidly evaluate (32) in general cannot be applied to (33) because tijs is a complex

time delay. However, for signals of the form given by (I.1)–(I.3), interpolation schemes can be

implement to account for tijs .

The second step convolves the predicted penetrating signals with the target response as

described in Sec. II-C. To investigate the importance of the refracted, evanescent, and surface

scattered contributions, each is convolved with the target response independently.

The third step propagates the three scattered signals from the target to the receiver. To

accomplish this step, the scattered signals are again propagated via (4), (13), and (17) with

an appropriate change of coordinates for the source and field point locations. By tracking

the individual paths back to the receiver, a total of nine possible signals are generated. For

example, the acoustic energy refracted into the sediment scatters from the target and a portion

of this scattered acoustic energy can arrive at the receiver via a refracted, evanescent, or surface

scattering mechanism. Hence, the refracted-refracted signal is pRR(t), the refracted-evanescent

signal is pRE(t), and the refracted-scattered signal is pR1(t). A final detail of the third step is a

simple time shifting and interpolation scheme similar to the one used in the surface reverberation

computation. This is required because the scattered signals no longer have an analytic form. In

this step, only attenuation from the exponential factors in (4), (13), and (17) is included while

the dispersion associated with the complex time delay is omitted.

In preparation for the SAX04 SAS measurements conducted during October 2004, proud and

buried target fields were deployed during the Spring of 2004 off the coast of Fort Walton Beach,

Florida. The intent of the early deployment was to allow natural scouring and benthic activity

to heal any anthropogenic artifacts. Subsequent to the deployment and prior to the SAX04

field effort, several major weather events nearly destroyed the target fields. Fortunately, a few

buried targets survived, and a focusing fluid sphere and cement drainage pipe were located from

SAS measurements. For brevity, only images constructed from data sequence 16 (recorded on

2 October 04) and sequences 44 and 51 (recorded on 4 October 04) are analyzed here.

The APL-UW SAS system and the STMS2 electronics package have been described elsewhere

[4], so only the operational parameters relevant to the SAS processing are given. An instrumented

tower moved along the rail at a constant speed of 0.05 m/s, and it emitted 2 pings per second.

Imposing the “stop-start” assumption [25], the spatial separation of adjacent pings is ∆y = 0.025

m. A typical sequence contains 1080 pings, which gives a 27 m SAS aperture. Each ping was
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Fig. 5. SAS image of large area from sequence 44 of SAX04 data. The carrier frequency and bandwidth are f0 = 150 and

fb = 80 kHz, respectively.

recorded for 200 ms at a 1 MHz sample rate.

Figure 5 displays the SAS image created from sequence 44. A 110–190 kHz chirp with a 4

ms duration was applied to the source. The source and receiver apertures are 0.1 × 0.02 and

0.1× 0.01 m2 where the leading dimension is the horizontal length. Both apertures are directed

at the sediment interface at a 20◦ depression angle. The source and receiver elevations are 4.83

and 4.79 m above the mean sediment interface. Inspection of Fig. 5 shows regions of high and

low backscatter. The regions of low backscatter have been correlated with a thin layer of mud on

the sediment surface via diver observations. Furthermore, measurements of sediment profiles by

Tang et al. [26] in nearby locations revealed distinct mud layers. Clearly, if a buried target were

located beneath a mud patch, then the reduced backscatter would facilitate detection. Although

not visible due to the frequency band, a buried focusing fluid sphere is detected at a lower

frequency at approximately (10,10) m, which is near the edge of a mud patch.

The rough surface realization, used in the simulations to follow, was composed from two sine-

October 3, 2011 DRAFT



IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. XX, NO. XX, MARCH 2011 22

wave ripples and a small-scale isotropic roughness component for a water-sand interface. The

ripple wavelengths were 0.75 and 0.44 m with RMS heights of 0.015 and 0.011 m, respectively.

The phases of the ripples at x = 0 were φ75 = 0◦ and φ44 = 37◦. These ripples are consistent

with profiles given by Tang et al. [26]. The small-scale roughness was generated from (31)

with γ2 = 5.29 and w2 = 1.597 m4−γ2 , which were obtained by Williams et al. [27] from

measurements on a water-sand interface during SAX04. Numerically, the generated surface was

60× 40 m2 with the first dimension corresponding to range and the second to cross range. The

spatial increments were ∆x = ∆y = 0.008 m.

The sound speed and density of the water are given in Sec. III-A; while the sediment’s sound

speed, density, and loss parameter are provided in Sec. III-B. The sound speeds give a critical

angle of 30◦. The material properties of the cement drainage pipe are given in Sec. III-A. The

focusing fluid sphere is a thin steel shell filled with a silicon oil. The density, compressional

speed, and shear speed in the steel are ρ3 = 7890 kg/m3, cl3 = 5790 m/s and ct3 = 3100 m/s,

respectively. The outer radius is a = 0.178 m and the inner-to-outer radii ratio is b/a = 0.99.

The properties of the silicon oil were selected to maximize the focusing when embedded in a

sediment. The sound speed and density are c4 = 1004 m/s and ρ4 = 800 kg/m3. The silicon oil

is also given a small loss parameter of δ4 = 0.01, which effectively dampens the elastic response

of the shell that is associated with its shear properties.

Figure 6a displays the SAS image created from sequence 16. The source signal is a 12–28

kHz chirp with a 4 ms duration. The source and receiver apertures are 0.1× 0.05 and 0.1× 0.1

m2, and the depression angles are again at 20◦. The source and receiver elevations were 3.86

and 3.91 m above the mean sediment interface, which corresponds to a nominal grazing angle

of 20◦ at the sediment interface above the focusing fluid sphere. After the SAS data collection,

divers probed the site with thin rods and estimated a burial depth of 0.86 m to the top of the

shell. Figure 6b displays an image created from a simulation of 1080 pings based on the models

presented here and our best estimate of the environmental conditions, where only a single rough

surface realization was used. The SAS aperture in the simulation extended from -13.5 to 13.5 m

and adjacent pings are 0.025 m apart. Each ping is 24 ms in duration. The center of the focusing

fluid sphere was located at rtgt = (10, 0,−1.04) m (i.e., the top of the shell is buried to a 0.86

m depth and located at a horizontal range of 10 m from the SAS track).

To achieve a comparable SNR in Fig. 6b to the observed SNR in Fig. 6a, the reverberation
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Fig. 6. SAS image of (a) a buried focusing fluid sphere from data sequence 16 taken during SAX04 (b) a numerical simulation.

predicted by (1) was reduced by a multiplicative factor of 0.18. At first glance, a 14.9 dB

compensation may suggest that a problem exists within the simulation. However, inspection of

Fig. 5 indicates that the overlying mud layer reduced reverberation by 6 to 8 dB relative to a

region without mud. It is also noteworthy that roughness parameters, used in the generation of the

small-scale surface roughness, are those for a sand-water not sand-mud interface. Additionally,

the RMS heights of the ripples were estimated from surface profiles taken at nearby sites not at

the location of the sphere. Diver observations elsewhere at the site and at later times found an

estimated 0.07 m peak-to-trough ripple amplitude. This suggests that an increase in the RMS

ripple heights could account for difference in the observed and simulated SNR. An increase of

the RMS heights by a factor of 2 gives a 12 dB increase in the SNR.

The SAS image in Fig. 7 (left) is created from sequence 51. The source signal is a 12–

28 kHz chirp with a 4 ms duration. The target is a cement drainage pipe in a nearly end-on

orientation. The source and receiver elevations were 4.72 and 4.79 m above the mean water-

sediment interface. With an observed horizontal range of 38.5 m to the target, the incident

grazing angle above the pipe is approximately 7◦, which is well below the critical grazing

angle. The SAS image in Fig. 7 (right) is created from a simulation of an finite cylindrical

pipe in an end-on orientation. As in Sec. III-A, the scattering amplitude is constructed from

(28) via F = Fend(θ, k2a)− Fend(θ, k2b). The center of the near end of the pipe was located at

rtgt = (38, 0,−0.3) m. The initial source and receiver locations are rsrc = (0,−13.5, 4.72) m

and rrcv = (0,−13.5, 4.79) m. Simulations generated 1080 pings with ∆y = 0.025 m, and each

ping is 70 ms in duration.

To achieve a comparable SNR in Fig. 7 to the observed SNR, the simulated reverberation is
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Fig. 7. Left: SAS image of a buried cement drainage pipe from data sequence 51 taken during SAX04. Right: numerical

simulation.

reduced by a multiplicative factor of 0.14. Sequence 55 is a data set for a 110–190 kHz chirp,

taken 2 hours after sequence 51. A 10×10 m2 image, centered at R = (38, 10) m and generated

from sequence 55, reveals that the observed target is near an edge, but outside, of a mud patch,

and hence the 17 dB compensation cannot be attributed solely to reduced surface backscatter.

Based on diver observations, it was argued that the RMS ripple heights could be increased (to

account for the detection in Fig. 6a). However, a 17 dB compensation would require a factor of

2.75 increase (or an RMS height exceeding 0.04 m).

IV. CONCLUSION

Models for reverberation, acoustic penetration, and target scattering have been combined

into a unified model in Sec. II. A salient feature of the unified model is its incorporation

of the environment into a “single realization” modeling capability. The model can generate

pings suitable for SAS simulations over a range of environmental (and experimental) conditions,

which includes grazing angles below the sediment’s critical grazing angle. Model predictions

can then be compared to experimental data to gain insight into the mechanisms important to

proud and buried target detection. Section III discusses several simulations that validate the

model against benchmark problems and experimentally measured target scattering from proud

and buried targets.

Although this article concentrated on the scattering from spherical and finite cylindrical

targets, the form of (23) permits other target shapes. If a target’s scattering response can

be reduced to a form function F (θ, φ), then it is straightforward to investigate the target’s

potential appearance in SAS images. Methods for determining F (θ, φ) include the geometrical
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theory of diffraction, numerical simulation via finite elements, and direct freefield experimental

measurement. Obviously, the frequency response in any new form function would need to span

the frequency band of the source signal.

Two refinements of the unified model are possible. First, the reverberation model in Sec. II-

A is restricted to the backscattered direction. By removing this restriction, the current model

would be applicable to bistatic SAS. Second, at fairly shallow grazing angles and a given ripple

wavelength, a portion or even the entire frequency band of a chirp may exceed an inherent

high-frequency cut-off via the ripple penetration mechanism. To accommodate this scenario, the

penetration model would need to be updated. Two candidates are the addition of higher order

terms from the perturbation theory that led to (17) or possibly a penetration model based on the

small-slope approximation.

APPENDIX I

DERIVATION OF TIME-DOMAIN REVERBERATION MODEL

This appendix provides a derivation of (1), a time domain expression for the pressure field

backscattered from roughness at the water-sediment interface where the sediment is considered as

a homogeneous absorbing fluid. Several approximations are employed in obtaining (1): first-order

perturbation theory is used for the treatment of scattering from roughness, the stationary phase

approximation is used to evaluate the zero-order field where the frequency dependence of the

source and receive beam patterns is neglected, the sound speed in the sediment is approximated

as independent of frequency, and the attenuation in the sediment is approximated as linearly

increasing with frequency. First-order perturbation theory yields the scattered field correct to

first order in the small parameter k1h, where k1 is the wave number in the water, and h is the

rms height of the interface roughness. The utility of making the final three approximations is that

a time domain result can be obtained without the numerical effort inherent in a Fourier synthesis

approach. The stationary phase approximation assumes the path lengths are large compared to

the wavelength, a good approximation here. The assumption that the sediment sound speed is

independent of frequency while the sediment attenuation increases linearly with frequency entails

a negligible violation of causality [28]. The derivation will begin with the general bistatic case,

and then specialize to the case where the source, receiver, and scattering patch lie in the same

vertical plane, sufficient for the present applications.
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Appendix C in [6] outlines the derivation of an analogous expression for scattering into the

sediment, the primary penetration mechanism at low grazing angles, and the same approximations

given above are used there. In addition, the relatively narrow bandwidths employed in [6]

allowed the use of the baseband representation of the transmitted pulse with some simplifying

approximations. For the present case the broadband linear chirp signal was emitted from the

source at a center frequency of 20 kHz with a bandwidth of up to 16 kHz. A baseband

representation could still be used, but the simplifying approximations made in [6] would not

be appropriate. Instead, the baseband representation has simply been avoided in the present

work.

We let p(r, t) represent the space and time dependent pressure field. At unit distance from

the source center on the transmit beam axis, we write the pressure as

psrc(t) = psrcs(t), (I.1)

where psrc is the maximum rms pressure of the source pulse (at pulse center) and where s(t)

is the normalized pulse waveform with a maximum rms value of unity. (This representation

anticipates the later stationary phase approximation, and uses the common expedient of defining

a source waveform at unit distance as if near field effects can be ignored.) Specifically,

s(t) = exp{−ac[(t− ts)/ts]
2} exp(ıφ), (I.2)

with

φ = −ω0(t− ts)− πKc(t− ts)
2. (I.3)

The pulse is initiated at t = 0 and in (I.2) the constant ac permits some control over the width

of the Gaussian envelope independent of ts. In (I.3) ω0 = 2πf0 with f0 the center frequency,

and Kc is the chirp rate defined by Kc = fb/tc where fb is the bandwidth and tc = 2ts is the

duration of the chirp.

To obtain the time domain scattered pressure field we begin with a Fourier synthesis approach,

and show later how that simplifies to the form given by (1) with the approximations mentioned

at the beginning of this Appendix. First-order perturbation theory is used to obtain the scattered

pressure field in the frequency domain, which is denoted by ψ
(1)
1 (r, ω), where the subscript 1

indicates a field in the water and the superscript (1) denotes first-order perturbation theory has
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been used. The time-domain pressure field is then given by

p
(1)
1 (r, t) =

1

2π

∫ ∞

−∞
dω ψ

(1)
1 (r, ω)S(ω) exp(−ıωt), (I.4)

where

S(ω) =

∫ ∞

−∞
dt s(t) exp(ıωt). (I.5)

In order to obtain the necessary generality, a self-contained derivation will be outlined here for

obtaining ψ
(1)
1 (r, ω) and then the time-domain pressure field using (I.4). The derivation can be

broken up into five steps: (1) Using the Helmholtz integral theorem to express the scattered field

in terms of the fields just above and below the mean plane of the water-sediment interface and

in terms of the Green’s function for the case of a flat interface; (2) using perturbation theory and

the boundary conditions to express the field quantities at the mean plane in terms of zero-order

fields and h(R), the rough water-sediment interface that varies with the horizontal coordinate R

(in this notation, the 3-D position vector r = R + zẑ); (3) simplifying the resulting expression

for ψ(1)
1 (r, ω) using integration by parts; (4) approximating the zero-order field and the Green’s

function using the stationary phase approximation; and (5) performing the ω integration in (I.4)

to get (1).

A. Getting started using the Helmholtz integral theorem

To state the problem, water above and sediment below (represented as a fluid) are separated

by a rough interface defined by z = h(R) with the mean surface at z = 0. The z-axis is taken as

directed upward from the mean plane into the water, and the coordinate system origin is taken

as in the mean plane centered on a section of the rough interface of interest. The steady state, or

CW, problem is considered at this point for a particular angular frequency ω, but for simplicity

of notation the ω dependence will be suppressed until Sec. I-E. A general source distribution

Ssrc(r) is assumed to reside entirely within the water (entirely above the highest point on the

rough interface), and there are no sources in the sediment. Because the source may have spatial

extent, a point source is not being assumed; in particular, the source may have arbitrary beam

patterns. The pressure field in the water satisfies

∇2ψ1(r) + k2
1ψ1(r) = −Ssrc(r). (I.6)
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The subscript 1 will indicate quantities in the water and the subscript 2 will indicate quantities

in the sediment. Thus, k1 = ω/c1 denotes the wave number in the water with c1 the water sound

speed. The field ψ2(r) that penetrates into the sediment satisfies

∇2ψ2(r) + k2
2ψ2(r) = 0, (I.7)

because there are no sources there. Also, the wave number k2 will be complex because of

sediment absorption. The fields ψ1(r) and ψ2(r) satisfy the two-fluid boundary conditions on

z = h(R):

ψ1(r)|z=h(R) = ψ2(r)|z=h(R), (I.8)

1

ρ1

n̂ · ∇ψ1(r)|z=h(R)+ =
1

ρ2

n̂ · ∇ψ2(r)|z=h(R)− , (I.9)

where ρ1 and ρ2 are the densities in the water and sediment, respectively, and where n̂ is a unit

vector normal to the surface h(R).

Next let V1 and V2 be the volumes in the regions z > 0 and z < 0, respectively, enclosed by

the two hemispheres that are formed from a sphere bisected by the z = 0 plane and centered

horizontally on the origin. It is assumed that V1 entirely encloses the source distribution Ssrc(r).

Note that the hemisphere enclosing V1 is bounded from below by the z = 0 plane, not the surface

z = h(R). This choice is essential for the development of perturbation theory. For any two fields

ψ(r) and φ(r) that satisfy the Helmholtz equation in V1, the Helmholtz integral theorem relates

the following volume integral over V1 to an integral over the surface S1 bounding V1:∫
V1

dV ′{φ(r′)[∇′2ψ(r′) + k2
1ψ(r′)]

− ψ(r′)[∇′2φ(r′) + k2
1φ(r′)]}

=

∫
S1

dS ′[φ(r′)∇′ψ(r′)− ψ(r′)∇′φ(r′)] · n̂′, (I.10)

where n̂′ is the outwardly directed normal on S1 bounding V1. In (I.10) we now let ψ(r′) →

ψ1(r
′) where we assume that when h(R) > 0, ψ1(r

′) can be defined in the region 0 ≤ z ≤

h(R) by analytic continuation. Thus, ψ1(r
′) is defined throughout V1. Also in (I.10) we let

φ(r′) → G1(r
′, r), the Green’s function giving the field at r′, which may be in V1 or V2, due

to a point source at r ∈ V 1 in the presence of a flat water-sediment interface at z = 0. This
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Green’s function is the solution to

∇′2G1(r
′, r) + k2

1G1(r
′, r) = −δ(r′ − r), r′ ∈ V 1,

∇′2G1(r
′, r) + k2

2G1(r
′, r) = 0, r′ ∈ V 2, (I.11)

subject to the boundary conditions

G1(r
′, r)|z′=0+ = G1(r

′, r)|z′=0− (I.12)

and
1

ρ1

∂G1(r
′, r)

∂z′

∣∣∣∣
z′=0+

=
1

ρ2

∂G1(r
′, r)

∂z′

∣∣∣∣
z′=0−

. (I.13)

The surface S1 is that portion of the z = 0 plane at the base of V1 plus the hemisphere above

it. By the usual arguments for our choices for ψ(r) and φ(r), the integral over the hemispherical

surface → 0 as its radius →∞. For this argument to carry through rigorously, it is convenient to

assume that h(R) goes smoothly to zero when |R| exceeds some small fraction of the hemisphere

radius. Even so, as the hemisphere radius →∞, so does the radius of the region on the z = 0

plane with roughness. We are left with just the surface integral over the z = 0 plane, and in

(I.10) n̂′ = −ẑ. Using (I.6) and (I.11) in (I.10) gives

ψ1(r) =

∫
V1

dV ′Ssrc(r
′)G1(r

′, r)

−
∫

S1

dS ′
[
G1(r

′, r)
∂ψ1(r

′)

∂z′

∣∣∣∣
z′=0+

− ψ1(r
′)
∂G1(r

′, r)

∂z′

∣∣∣∣
z′=0+

]
. (I.14)

When both r and r′ are in V1, the reciprocity condition yields

G1(r
′, r) = G1(r, r

′), (I.15)

which is then used in (I.14) to replace G1(r
′, r) with G1(r, r

′). We can identify the first term

on the right hand side in (I.14) as the zero-order field in V1:

ψ
(0)
1 (r) =

∫
V1

dV ′Ssrc(r
′)G1(r, r

′). (I.16)

That is, ψ(0)
1 (r) is the solution in the absence of any roughness at the water-sediment interface

and is made up of a direct component from the source and a component reflected from the
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water-sediment interface. The scattered field is then given by

ψ1(r)− ψ
(0)
1 (r) =−

∫
S1

dS ′
[
G1(r,R

′)
∂ψ1(r

′)

∂z′

∣∣∣∣
z′=0+

− ψ1(R
′)
∂G1(r, r

′)

∂z′

∣∣∣∣
z′=0+

]
. (I.17)

It will be seen shortly that the right hand side of (I.17) indeed vanishes at zero order.

To proceed further the idea is to use first-order perturbation theory to express ψ1 and its z-

derivative on S1 in terms of the zero-order field and the rough surface h(R). The most convenient

approach to this end is to first develop a second equation similar to (I.17) by use of the Helmholtz

integral theorem in the volume V2 in the lower half plane. We then work with an equation

similar to (I.10), the only differences being that k1 is replaced by k2, the volume integral is

over the volume V2 and the surface integral is over the surface S2 that encloses V2. We then

let ψ(r′) → ψ2(r
′) where we assume that when h(R) < 0, ψ2(r

′) can be defined in the region

h(R) ≤ z ≤ 0 by analytic continuation. Thus, ψ2(r
′) is defined throughout V2. We also let

φ(r′) → G1(r
′, r) as before, but now r′ ∈ V 2 below the z = 0 plane, while r ∈ V 1 above that

plane. As before, as the radius of the hemisphere increases without bound, the integral over the

hemispherical surface of S2 → 0. We are left with

0 =

∫
S1

dS ′
[
G1(r

′, r)|z′=0−
∂ψ2(r

′)

∂z′

∣∣∣∣
z′=0−

− ψ2(r
′)|z′=0−

∂G1(r
′, r)

∂z′

∣∣∣∣
z′=0−

]
, (I.18)

where the integration is now over the entire z = 0 plane, the same as S1 in (I.17).

Terms corresponding to those on the left hand side in (I.17) do not appear in (I.18): ψ2(r)

because δ(r′− r) never acts in the integration over V2 and ψ(0)
2 (r) because there are no sources

in V2. There is a zero-order field in V2, but it does not enter explicitly into (I.18). To prepare

(I.18) for combining with (I.17), the Green’s functions in (I.18) can be re-expressed using

G1(r
′, r)|z′=0− = G1(r

′, r)|z′=0+ = G1(r, r
′)|z′=0+ (I.19)

and

∂G1(r
′, r)

∂z′

∣∣∣∣
z′=0−

=
ρ2

ρ1

∂G1(r
′, r)

∂z′

∣∣∣∣
z′=0+

=
ρ2

ρ1

∂G1(r, r
′)

∂z′

∣∣∣∣
z′=0+

(I.20)
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In (I.19) and (I.20) the first equality follows from the boundary conditions (I.12) and (I.13),

and the second equality follows from the reciprocity condition (I.15). Using (I.19) and (I.20) in

(I.18) gives

0 =

∫
S1

dS ′
[
G1(r, r

′)|z′=0+

ρ1

ρ2

∂ψ2(r
′)

∂z′

∣∣∣∣
z′=0−

− ψ2(r
′)|z′=0−

∂G1(r, r
′)

∂z′

∣∣∣∣
z′=0+

]
, (I.21)

and adding (I.21) to (I.17) results in

ψ1(r)− ψ
(0)
1 (r)

=

∫
S1

dS ′
{

[ψ1(R
′)− ψ2(R

′)]
∂G1(r, r

′)

∂z′

∣∣∣∣
z′=0+

−
[

1

ρ1

∂ψ1(r
′)

∂z′

∣∣∣∣
z′=0+

− 1

ρ2

∂ψ2(r
′)

∂z′

∣∣∣∣
z′=0−

]
× ρ1G1(r,R

′)

}
. (I.22)

From (I.22) it is finally possible to see that the right hand side has no contribution to zero

order (h(R) = 0)), because for that case both expressions in brackets vanish by the boundary

conditions (I.8) and (I.9). The result for the scattered field given by (I.22) is exact, except for

the analytic continuation assumption. Perturbation theory has not been used.

B. Introducing first-order perturbation theory

The first step in bringing in perturbation theory is to assume a perturbation expansion of the

fields above and below the z = 0 plane:

ψ1(r) = ψ
(0)
1 (r) + ψ

(1)
1 (r) + . . . , (I.23)

ψ2(r) = ψ
(0)
2 (r) + ψ

(1)
2 (r) + . . . . (I.24)

where the zero-order fields denoted by the superscript (0) are the solutions when h(R) = 0, and

where the first-order fields denoted by the superscript (1) are the results correct to first-order

in the perturbation theory expansion parameter k1h, where h is the rms value of h(R). Thus,

all higher-order terms will be dropped in the equations governing the first-order fields. We then
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find from (I.22) that the first-order scattered field is given by

ψ
(1)
1 (r) =

∫
S1

dS ′
{

[ψ
(1)
1 (R′)− ψ

(1)
2 (R′)]

∂G1(r, r
′)

∂z′

∣∣∣∣
z′=0+

−

[
1

ρ1

∂ψ
(1)
1 (r′)

∂z′

∣∣∣∣
z′=0+

− 1

ρ2

∂ψ
(1)
2 (r′)

∂z′

∣∣∣∣
z′=0−

]

× ρ1G1(r,R
′)

}
. (I.25)

To obtain an expression for the difference in the first set of brackets, the boundary condition

(I.8) is expanded on both sides in a Taylor series about the mean plane, and collecting together

all terms of first order yields

ψ
(1)
1 (R)− ψ

(1)
2 (R)

= h(R)

[
∂ψ

(0)
2 (r)

∂z

∣∣∣∣
z=0−

− ∂ψ
(0)
1 (r)

∂z

∣∣∣∣
z=0+

]
. (I.26)

Then, the zero-order version of the boundary condition (I.9) can be used to eliminate ∂ψ(0)
2 (r)/∂z|z=0−

yielding

ψ
(1)
1 (R)− ψ

(1)
2 (R)

= h(R)

(
ρ2

ρ1

− 1

)
∂ψ

(0)
1 (r)

∂z

∣∣∣∣
z=0+

. (I.27)

For the difference in the second set of brackets, we begin with the boundary condition (I.9),

use n̂ = n/|n| with n = −∇⊥h(R) + ẑ, and rewrite (I.9) as

1

ρ1

[
∂ψ1(r)

∂z
−∇⊥h(R) · ∇⊥ψ1(r)

] ∣∣∣∣
z=h(R)+

=
1

ρ2

[
∂ψ2(r)

∂z
−∇⊥h(R) · ∇⊥ψ2(r)

] ∣∣∣∣
z=h(R)−

(I.28)

where ∇⊥ denotes the horizontal gradient operator (i.e., ∇ = ∇⊥ + ẑ∂/∂z). Expanding the
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fields in a Taylor’s series about the mean plane and collecting the first-order terms gives

1

ρ1

∂ψ
(1)
1 (r)

∂z

∣∣∣∣
z=0+

− 1

ρ2

∂ψ
(1)
2 (r)

∂z

∣∣∣∣
z=0−

= −h(R)

×

[
1

ρ1

∂2ψ
(0)
1 (r)

∂z2

∣∣∣∣
z=0+

− 1

ρ2

∂2ψ
(0)
2 (r)

∂z2

∣∣∣∣
z=0−

]

+
1

ρ1

∇⊥h(R) · ∇⊥ψ
(0)
1 (r)|z=0+

− 1

ρ2

∇⊥h(R) · ∇⊥ψ
(0)
2 (r)|z=0− . (I.29)

The second z-derivatives can be eliminated using (I.6) and (I.7), and then all terms on the right

hand side involving ψ(0)
2 (r) can be re-expressed in terms of ψ(0)

1 (r) using the zero-order version

of the boundary condition (I.8). The result is

1

ρ1

∂ψ
(1)
1 (r)

∂z

∣∣∣∣
z=0+

− 1

ρ2

∂ψ
(1)
2 (r)

∂z

∣∣∣∣
z=0−

= h(R)

×
[(

k2
1

ρ1

− k2
2

ρ2

)
ψ

(0)
1 (R) +

(
1

ρ1

− 1

ρ2

)
∇2
⊥ψ

(0)
1 (R)

]
+

(
1

ρ1

− 1

ρ2

)
∇⊥h(R) · ∇⊥ψ

(0)
1 (R). (I.30)

C. Further simplification using integration by parts

When (I.27) and (I.30) are inserted in (I.25), there are terms linear in h(R) and one term

linear in ∇⊥h(R). In this section integration by parts is used to re-express the term in ∇⊥h(R)

as a term in h(R), which is a useful simplification. Let

ψ
(1)
1 (r) = ψ

(1)
1A(r) + ψ

(1)
1B(r), (I.31)

where ψ(1)
1A(r) denotes the terms linear in h(R) and ψ(1)

1B(r) denotes the term linear in ∇⊥h(R).

Thus, we have

ψ
(1)
1B(r) = −

∫
S1

dS ′
(

1

ρ1

− 1

ρ2

)
∇′
⊥h(R

′) · ∇′
⊥ψ

(0)
1 (R′)

× ρ1G1(r,R
′). (I.32)
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Integrating (I.32) by parts leads to

ψ
(1)
1B(r) =

(
1

ρ1

− 1

ρ2

)
ρ1

×
∫

S1

dS ′h(R′){[∇′2
⊥ψ

(0)
1 (R′)]G1(r,R

′)

+∇′
⊥ψ

(0)
1 (R′) · ∇′

⊥G1(r,R
′)}. (I.33)

No boundary term appears after integration by parts because it has been assumed that h(R)

vanishes well before the boundary is reached. (See discussion related to (I.14)). The first term

in (I.33) cancels with the second term on the right hand side of (I.30) when it is inserted into

(I.25). Collecting together the contributions to (I.25) gives

ψ
(1)
1 (r) =

− k2
1

∫
S1

dS ′h(R′)

[(
1− κ2

ρ

)
ψ

(0)
1 (R′)G1(r,R

′)

− ρ− 1

k2
1

∂ψ
(0)
1 (r′)

∂z′

∣∣∣∣
z′=0+

∂G1(r, r
′)

∂z′

∣∣∣∣
z′=0+

− ρ− 1

k2
1ρ

∇′
⊥ψ

(0)
1 (R′) · ∇′

⊥G1(r,R
′)

]
, (I.34)

where κ = k2/k1 and ρ = ρ2/ρ1.

D. The stationary phase approximation

The expression given by (I.34) is valid for arbitrary zero-order fields, and can be written in

terms of wave number integration over plane waves. If the stationary phase approximation is

applied to such a representation, the zero-order field reduces to

ψ
(0)
1 (r) = psrcr0

[
Bsrc(r, rsrc)

exp(ık1|r − rsrc|)
|r − rsrc|

+ Bsrc(r, r
′
src)Γ11(r, rsrc)

exp(ık1|r − r′src|)
|r − r′src|

]
, (I.35)

where r0 = 1 m and Bsrc(r, rsrc) is the source response function at field point r for the source

at rsrc. (The beam pattern is the square of the response function.) Also, r′src is the location of

the image source about the mean plane, and Γ11(r, rsrc) is the reflection coefficient for a ray

from rsrc to r via a reflection from the mean plane. It follows from (I.35) that the zero-order
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field on the mean plane is given by

ψ
(0)
1 (R′) = psrcr0Bsrc(R

′)[1 + Γ11(θi)]

× exp(ık1|R′ − rsrc|)
|R′ − rsrc|

, (I.36)

where Bsrc(R
′) is the source response function projected onto the mean plane, with the de-

pendence of the source position suppressed, and where Γ11(θi) is the reflection coefficient re-

expressed in terms of the grazing angle of the incident ray and is given by (3). (The 11 subscript

indicates that the ingoing and outgoing rays are in medium 1.) The stationary phase approxi-

mation assumes the path lengths are large compared to the wavelength, a good approximation

here.

Similarly, the stationary phase approximation applied to the Green’s function yields

G1(r,R
′) =

1

4π
Brcv(R

′)[1 + Γ11(θs)]

× exp(ık1|r −R′|)
|r −R′|

, (I.37)

where it is convenient here to include the response function for the receiver, Brcv(R
′), and where

θs is the outgoing grazing angle to the receiver. The grazing angles θi and θs are functions of

R, though that dependence is suppressed.

Next, working from (I.35) one finds

∂ψ
(0)
1 (r′)

∂z′

∣∣∣∣
z′=0+

= −ık1psrcr0Bsrc(R
′) sin θi

× [1− Γ11(θi)]
exp(ık1|R′ − rsrc|)

|R′ − rsrc|
, (I.38)

where sin θi = zsrc/|R′ − rsrc|. Similarly,

∂G1(r, r
′)

∂z′

∣∣∣∣
z′=0+

= − ık1

4π
Brcv(R

′) sin θs

× [1− Γ11(θs)]
exp(ık1|r −R′|)

|r −R′|
. (I.39)

In these expressions the slow dependence on z′ outside the exponentials was neglected, consistent

with the stationary phase approximation.
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Finally, working from (I.36) and (I.37) the dot product of horizontal gradients in the third

term of (I.34) becomes

∇′
⊥ψ

(0)
1 (R′) · ∇′

⊥G1(r,R
′)

=
k2

1

4π
psrcr0Bsrc(R

′)Brcv(R
′) cos θi cos θs cosφ

× [1 + Γ11(θi)][1 + Γ11(θs)]

× exp[ık1(|r −R′|+ |R′ − rsrc|)]
|r −R′||R′ − rsrc|

. (I.40)

In obtaining (I.40) the slow dependence on R′ outside the exponentials was neglected. Also, φ

is the horizontal bistatic angle between the incident and scattered wave vectors (e.g., φ = 0 in

the forward direction, and φ = 180◦ for backscatter, or for vertically bistatic backscatter).

Now using (I.36)–(I.40) in (I.34) yields

ψ
(1)
1 (r) = −k

2
1psrc

4π

∫
S1

dS ′Arev(R
′)h(R′)

× exp[ık1(|r −R′|+ |R′ − rsrc|)]
|r −R′||R′ − rsrc|

, (I.41)

where Arev(R
′) is given by (2) for bistatic backscattering in the incident vertical plane, i.e.,

when cosφ = −1. Equation (I.41) gives the final CW result, and it can now be used to obtain

a time domain result for the backscattered pressure.

E. The time domain backscattered pressure

Putting the ω dependence explicitly back into (I.41) gives

ψ
(1)
1 (r) = − 1

4πc21

∫
S1

dS ′
[
Arev(R

′)h(R′)psrcω
2

|r −R′||R′ − rsrc|

× exp(ıωtrev)

]
, (I.42)

where trev ≡ (|r − R′| + |R′ − rsrc|)/c1 is the travel time from the source to the point R′

on the mean plane and then to the field point at r. Note that Arev(R
′) has no dependence

on ω with the assumptions that have been made. It is evident from (2) and (3) that when

the frequency dependence of the transducer response functions is neglected, the only possible

frequency dependence to Arev(R
′) would enter through κ = k2/k1. But when the sound speed in
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the sediment is approximated as independent of frequency, and the attenuation in the sediment

is approximated as linearly increasing with frequency, κ is independent of frequency.

Finally, inserting (I.42) into (I.4) and performing the inverse Fourier transform leads to (1),

where the ω2 factor in (I.42) leads to the double time derivative of psrc(t).

APPENDIX II

TIME DOMAIN IMAGING ALGORITHM

A time-domain image is constructed via a delay and sum beamformer. For a point in the

image plane, located at r, the coherent, pulse-compressed, baseband pressure is

P (r) =
∑

k

A(rsk, rrk, r) exp(−ıω0tk)Pk(t) (II.1)

where rsk and rrk are the source and receiver coordinates associated with the kth signal.

The corresponding slant ranges to the image point are rsk = |r − rsk| and rrk = |rrk −

r|. The amplitude, A(rsk, rrk, r), contains the beam patterns of the source and receiver as

well as compensation for the geometric spreading for the one-way propagation from rsk to r.

Contributions from Pk(t) that occur outside of the −6 dB down points of the main lobe of the

beam patterns are ignored. The exponential factor in (II.1) compensates for spherically diverging

waves, and its argument includes the time delay to propagate from the source to an image point

and then to the receiver, tk = (rsk + rrk)/c1. Finally, co-location of the source and receiver is

not required by (II.1), so this beamformer can be used for both monostatic [29] and bistatic SAS

[30] applications.

For the SAX04 SAS measurements, the signals are real discrete time signals. In the simu-

lations, only the real part of the complex signal is retained because a generated set of signals

is designed to simulate a SAX04 data set. Hence, the complex, pulse-compressed, baseband

pressure, Pk(t), is obtained by applying a Hilbert transform to pk(t), a matched filter, and

removal of the carrier frequency. For SAS processing of the simulated data, the matched filter

is constructed from a Hilbert transformed replica of a unit-amplitude transmitted pulse. For the

SAX04 data, the matched filter is constructed from a Hilbert transform of the signal applied to

the source transducer. The match filter is then normalized to give a pulse-compressed baseband

replica with an amplitude of 2.
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To form an image, the discrete representation of the image coordinates are

xi = (x0 − xl/2) + (i− 1), (i = 1, · · · , Nx), (II.2)

yj = (y0 − yl/2) + (j − 1), (j = 1, · · · , Ny). (II.3)

The center of the image is at (x0, y0), and the lengths of the sides of the image are xl and yl.

Additionally, the image plane is not confined to the z0 = 0 plane; however, z0 is assumed to be

constant. For the kth signal, the slant ranges from the source and receiver to (xi, yj) are

rskij = [(xi − xsk)
2 + (yj − ysk)

2 + (z0 − zsk)
2]1/2, (II.4)

rrkij = [(xi − xrk)
2 + (yj − yrk)

2 + (z0 − zrk)
2]1/2. (II.5)

Inspection of (II.1) and the discrete nature of the sampled time signals, pk(tn), (n = 1, · · · , Nt)

suggests that tk seldom coincides with a discrete time point tn. Thus, the summation in (II.1)

requires interpolation of the signals. The interpolation has been performed with 2, 4, 6, and

8-point Lagrange interpolation algorithms. Cubic spline interpolation with 6, 12, 24, and 48

points, constructed on intervals centered about a tn, were also investigated. Although cubic

spline interpolation permitted the construction of an image, 4-point Lagrange interpolation was

found to be sufficient for image formation and is more numerically efficient than cubic splines.
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