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antigens) and priming the immune system to antigens that will be
boosted by infection from natural exposure (antibody responses
directed against blood stage antigens), it is hypothesized that one
will reduce the severity and mortality due to Plasmodium falciparum
malaria. Other research is being directed towards the develop-
ment of whole organism vaccines such as the irradiated sporozoite
vaccine being commercialized by Sanaria Inc. [15] and genetically
attenuated parasites [16-19] which rely on the expression of the
entire repertoire of parasite antigens expressed in given stage of
the parasite life cycle. It is well established that antigen variability
is a major obstacle to malaria vaccine development [20,21]. The
immunological challenges to developing effective malaria inter-
ventions have been recently reviewed [22].

Based on the two models of human immunity against malaria -
irradiated sporozoite immunization and naturally acquired immu-
nity - we have sought to develop a DNA-based malaria vaccine
which relies upon the induction of antibody and T-cell responses
against multiple parasite proteins expressed in different stages of
the parasite life cycle. Our previous studies of mice immunized
with a mixture of plasmid DNA (pDNA) encoding nine P. falci-
parum (3D7 strain) antigens revealed suppressive effects in the
multi-antigen mixture which could be associated with a specific
subset of the nine antigens [23). Those data led us to down-select
a core panel of five antigens, designated CSLAM (CSP, SSP2, LSA1,
AMAT1, and MSP1), for further development and evaluation. The
pre-erythrocytic stage antigens (CSP, SSP2, and LSA1) are designed
to induce T-cell responses against liver stage antigens, and the
erythrocytic stage antigens (AMA1 and MSP1) are aimed at induc-
ing responses directed against blood stage parasites. Since AMA1
and MSP1 are also expressed in sporozoites and liver stage par-
asites [24-26) they are expected to also contribute to hepatic
stage immunity. The underlying rationale is that, upon vaccina-
tion, the combination of responses from the pre-erythrocytic and
erythrocytic stage components could result in sterile protection
by eliminating all or most of the parasites developing in the liver
(pre-erythrocyticimmunity) together with a backup immunity that
would limit and clear any breakthrough parasites that evaded the
liver stage immunity to develop blood stage infections (erythro-
cytic immunity).

One limitation of multi-antigen vaccines is the amount of pDNA
injected and the potential need for a highly concentrated pDNA
mixture which could affect the efficiency of transcription and trans-
lation and thereby result in a suppressed or suboptimal immune
response against target antigens. Moreover, the modest immuno-
genicity of some pDNA vaccines to date in human and nonhuman
primate studies that involved needle injections may be attributed,
at least in part, to the relatively low dose per body weight as com-
pared to murine studies. The upper limit of total pDNA that can
be injected is influenced by both the concentration and viscosity
of the vaccine and the injection volume. Finally, the manufactur-
ing costs associated with high dose and requirements to include
multiple antigens of interest for some pathogens, detract from the
often-cited advantages of pDNA vaccines.

In both animal and human studies that involved needle injec-
tions, the immune responses induced by DNA prime followed
by DNA boost (D-D) immunization regimens often follow a dose
response [27,28]. This implies that in order to induce optimal
responses against all antigenic components in an optimal pDNA
mixture without significant interference from some specific plas-
mids, one may still have to meet a certain dose threshold for
all individual pDNA components in the mixture. To avoid possi-
ble suppressive effects due to the use of high dose pDNA and to
reduce cost, we embarked on a series of studies which capital-
ized on the ability to formulate low dose pDNA with Vaxfectin®
for induction of robust antibody and T-cell responses. We have
previously shown that, compared to PBS-formulated pDNA, low

dose PyCSP pDNA formulated in Vaxfectin® enhanced levels of
antibodies, IFN-y responses, and sterile protection after chal-
lenge [29). In other studies in mice, rabbits, and other animals,
the use of Vaxfectin® formulation to deliver vaccine antigens for
anthrax and influenza induced strong systemic, long-lived, and
antigen-specific antibody responses |30-36,38,39]). Vaxfectin®-
formulated influenza H5 hemagglutinin-containing pDNA vaccines
have undergone Phase | testing in humans with encouraging results
[37]. Vaxfectin® was also shown to enhance antibody and T-cell
responses to a protein-based influenza vaccine in mice [40].

In the current study, we hypothesized that, when tested at
the same pDNA dose, the breadth of the total anti-malarial T-
cell response induced to a 5-gene vaccine, CSLAM, will exceed the
response induced to a single gene vaccine. Our second hypothe-
sis was that a homologous D-D immunization regimen with low
dose pDNA, involving single antigen or with a 5-gene vaccine for-
mulated with Vaxfectin® will yield immune responses comparable
to those obtained with higher dose pDNA of the same vaccines
given without formulation. In general, priming with pDNA followed
by boosting with recombinant vaccinia virus (D-V) dramatically
increases the immune response as compared to responses induced
by D-D regimens [41,42]. Therefore, our third hypothesis was that
a D-D immunization regimen with low dose pDNA involving single
antigen or with a 5-gene vaccine formulated with Vaxfectin® will
yield enhanced immune responses comparable to or approaching
those obtained with unformulated low dose pDNA administered
in a heterologous DNA prime-viral boost (D-V) immunization reg-
imen.

2. Materials and methods
2.1. Mice

Six to 8-week-old female inbred BALB/cBy] (H-29) mice were
purchased from The Jackson Laboratory (Bar Harbor, ME) and used
for cellular response studies. Six to 8-week-old female outbred CD-
1 mice obtained from Charles River Laboratories (Wilmington, MA)
were used for antibody response studies.

2.2. Plasmids

Plasmid DNA (pDNA) stocks encoding each of five P. falci-
parum antigens (3D7 strain), CSP, SSP2, LSA1, AMA1, and MSP1,
as well as empty vector without insert, VR1020, were produced
by PureSyn, Inc. (Malvern, PA). All plasmids have been previ-
ously described [23). All pDNA stocks were >90% supercoiled.
Vaxfectin®-formulated pDNA stock endotoxin levels were less than
30EU/mg, while the unformulated pDNA stock endotoxin levels
were less than 7.5 EU/mg.

2.3. P. falciparum recombinant virus (NYVAC-Pf7)

The recombinant attenuated vaccinia virus, NYVAC-Pf7, used in
boosting experiments has been previously described [23,43,44].
NYVAC-Pf7 expresses seven P. falciparum antigens comprising Pf
CSP. PfSSP2, PfLSA1, Pf SERA, Pf MSP1, Pf AMA1, and Pf Pfs25. The
Pf CSP, Pf SSP2, Pf AMAL1, and Pf Pfs25 antigens derive from the
NF54/3D7 clone of P. falciparum, the Pf LSA1 antigen derives from
the NF54 strain of P. falciparum, and PAMSP1 and SERA derive from
the Uganda-Palo Alto and FCR3 strains, respectively.

2.4. Vaxfectin® formulations

Plasmid/Vaxfectin® formulations were prepared as previously
described [29]. Briefly, Vaxfectin® in sterile water for injection
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Fig. 2. IFN-y ELISPOT response in BALB/c to CSP and CSLAM vaccines in D-D and
D-V regimens (Experiment 1), IFN-y ELISpot assays were carried out as described in
Section 2. Freshly isolated spleen cells were pooled from 8 BALB/c mice per group
2 weeks after the last immunization and incubated with A20 cells transfected with
P. falciparum CSP, SSP2, LSA1, AMA1, MSP1, CSLAM, or empty plasmid as control.
Data is presented as antigen-specific IFN-y spot-forming cells per million spleen
cells (SFC) after background control responses have been subtracted. The X-axis
reflects the immunization regimen: 2, 10, and 50 pg total pDNA/dose administra-
tion formulated in either PBS or Vaxfectin (Vax). Regimens were either the univalent
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Inan example of an assay that utilized 100K APCs, CSLAM immu-
nized splenocytes stimulated with CSP, SSP2, LSA1, AMA1, MSP1,
and CSLAM APCs yielded 5, 85, 88, 117, 154, and 316 SFC/million
respectively; CSP immunized splenocytes stimulated with CSP and
CSLAM APCs yielded 14 and 20SFC/million, respectively; SSP2
immunized splenocytes stimulated with SSP2 or CSLAM APCs
yielded 124, and 153 SFC/million, respectively; LSA1 immunized
splenocytes stimulated with LSA1 or CSLAM APCs yielded 41 and
90 SFC/million, respectively: AMA1 immunized splenocytes stim-
ulated with AMA1 or CSLAM APCs yielded 38 and 78 SFC/million
respectively: and MSP1 immunized splenocytes stimulated with
MSP1 or CSLAM APCs yielded 18 and 16 SFC/million, respectively.
Overall, our general finding from these preliminary assays was that,
while the responses detected against A20-CSLAM APCs were gener-
ally variable and higher than those detected against single antigen,
the use of these APCs that expressed all 5 antigens served as a
helpful additional tool in the evaluation of the total T-cell response
induced to the 5-gene vaccine.

3.3. Induction of P. falciparum antigen-specific IFN-y ELISpot
responses by immunization with CSP and CSLAM vaccines

Splenocytes from BALB/c mice immunized with either CSP or
CSLAM pDNA by D-D or D-V immunization regimens were assayed
for IFN-y responses against individual Pf antigen APCs. Seven dif-
ferent APCs were assayed, prepared by transfecting A20 cells with
plasmid encoding CSP, SSP2, LSA1, AMA1, MSP1, CSLAM, or unmod-
ified plasmid VR1020.

We first compared the magnitude of the CSP-specific IFN-y
response in mice immunized with 2, 10, and 50 p.g of either CSP or
CSLAM vaccine. Accordingly, CSP or CSLAM splenocytes were each
incubated with A20-CSP APCs (A20 cells expressing only CSP) or
A20-CSLAM APCs (A20 cells simultaneously expressing CSP, SSP2,
LSA1, AMAT1, and MSP1). Robust CSP-specific IFN-y responses were
detected by both CSP and CSLAM vaccines when A20-CSP APCs
were used (Tables 3a and 3b, and Fig. 2). Secondly. each of the vac-
cines induced the strongest response against the matching APCs
(Tables 3aand 3b, and Fig. 2). In general, it was noted that responses
measured against A20-CSLAM APCs were generally higher regard-
less of vaccine (Tables 3a and 3b, and Fig. 2).

Next, we summed the [FN-y response against all five antigenic
APCs, as a measure of the total response induced by the multiva-
lent CSLAM vaccine. Accordingly, splenocytes from CSP or CSLAM
immunized mice were incubated with the panel of individual anti-
genic APCs comprising A20-CSP, A20-SSP2, A20-LSA1, A20-AMAT1,
and A20-MSP1. For each vaccine, we then summed the responses
against all five APCs. Data with effectors from the CSLAM low dose
group (2 pg) containing only one-fifth of the dose (0.4 pg) of the
univalent CSP 2 pug dose group, confirmed our earlier finding that
there was no evidence of suppression in the multi-antigen mixture
(Tables 3a and 3b; 279 SFC using 0.4 ug CSP in CSLAM, compared
to 582 SFC using 2 g CSP). Similar findings were made when A20-
CSLAM targets were used (Tables 3a and 3b; 1679 SFC using 0.4 pg
CSP in CSLAM, compared to 598 SFC using 2 ug CSP).

For mice immunized with CSPvia the D-D regimen, the summed
response for the five antigen-expressing APCs was similar to the
response obtained with A20-CSP APCs alone. For example, in the
case of Vaxfectin® formulated CSP at 2, 10, and 50 p.g doses, results

pDNA vaccine PCSP or the multivalent pDNA mixture CSLAM DNA alone regimen
given as 4 homologous DNA doses 4 weeks apart (DD) or a prime-boost regimen
given as 3 homologous DNA doses followed by a NYVAC-Pf7 boost dose each 4 weeks
apart (DV). Control groups were given the DV regimen (3 doses empty PDNA, then
1 NYVAC-Pf7 boost) with pDNA in PBS (cV), or with pDNA in Vaxfectin (¢ vaxV). A
third control group was naive. Erfor bars reflect standard deviation of quadruplicate
samples.
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Table 3a
IFN-y ELISpot response in BALB/c mice to P. falciparum CSP vaccine given by D-D and D-V regimens (Experiment 1).
Regimen Dose (pg) A20-CSP A20-CSLAM
VAX PBS Ratio (VAX/PBS) VAX PBS Ratio (VAX/PBS)
D-D 2 582 73 8 598 474 126
10 750 153 489 390 548 071
50 757 603 1.26 658 734 0.0
D-v 2 803 1026 0.78 1230 71 1.73
10 806 1098 0.73 728 730 1.00
50 1078 1317 0.82 642 1003 0.64

IFNy ELISpot assays were carried out as described in Section 2. Freshly isolated spleen cells were pooled from 8 BALB/c mice per group 2 weeks after the last immunization
and incubated with A20 cells transfected with P. falciparum CSP, CSLAM, or empty plasmid as control. Data is presented as antigen-specific [FN-y spot-forming cells per
million spleen cells (SFC) after background control responses have been subtracted. The ratio of SFC of corresponding Vaxfectin® and PBS groups were obtained and are

reported in the “Ratio (VAX/PBS)" column.

obtained for A20-CSP vs. (A20-CSP+A20-SSP2 + A20-LSA1 +A20-
AMA1 +A20-MSP1) were 582 vs. 602; 750 vs. 755; and 757 vs. 775
respectively.

In the Vaxfectin® formulated CSP at 2 ug dose group given via
the D-V regimen, we obtained robust responses against CSP due to
the CSP component from the NYVAC-Pf boost. However, expected
background responses against the other four CSLAM antigens were
also noted due to the immunogenicity of the NYVAC-Pf7 boost even
in the absence of prior antigen-specific priming with the non-CSP
antigens. Summed responses induced by NYVAC-Pf7 when injected
alone against all 5 antigens was 95, which comprised of A20-CSP
(19)+A20-SSP2 (44)+A20-LSA1 (0)+A20-AMA1 (21)+A20-MSP1
(11).

In other studies, we have reported observed suppressive effects
with a 9-gene mixture which included the CSLAM antigens {23].
The CSLAM mixture was specifically down-selected from that 9-
gene mixture on the basis of improved compatibility with negligible
antigen interference [23).

3.4. Effect of Vaxfectin® formulation with low dose pDNA on
antigen-specific IFN-y responses in D-D and D-V immunization
regimens

We have previously shown that Vaxfectin® formulation was
most effective in enhancing immune responses at low doses of
pDNA [29]. We hypothesized thatimmune responses obtained with
low dose pDNA formulated with Vaxfectin® would be comparable
to responses induced by higher doses of unformulated pDNA. Initial
studies with 2, 10, and 50 g pDNA in PBS, administered via a D-D
regimen, showed a general dose response (Tables 3a and 3b, and
Fig. 2). As hypothesized, Vaxfectin® formulation of low dose (2 p.g)
pDNA CSP and CSLAM vaccines administered via a D-D regimen
resulted in high levels of response against A20-CSP and A20-CSLAM
APCs that were comparable to or better than those achieved by
unformulated high dose (10 and 50 .g) pDNA (Tables 3a and 3D,
and Fig. 2). A similar trend was noted for the D-V immunization
regimen, although the responses were more variable.

Our third hypothesis was that a D-D immunization regi-
men with low dose pDNA formulated with Vaxfectin® would
yield enhanced immune responses comparable to those obtained
with unformulated low dose pDNA administered in a heterolo-
gous DNA prime/viral boost (D-V) immunization regimen. Data
showed that D-D immunization of Vaxfectin® formulated low
dose (2 ug) pDNA CSLAM vaccine induced high responses against
A20-CSP APCs, which were comparable to the responses induced
by D-V immunization of unformulated low dose (2pug) pDNA
CSLAM vaccine (Tables 3a and 3b). However, for the non-
CSP APCs, Vaxfectin® formulation of low dose (2pg) pDNA
enhanced D-D induced immune responses; however, levels
approached but did not reach those obtained by D-V immuniza-

tion with 2 ug unformulated pDNA CSLAM (Tables 3a and 3b, and
Fig. 2).

3.5. IFN-y ELISpot response to P. falciparum antigens by
multivalent CSLAM and 5 individual antigens

Data presented above showed that the immune enhancing effect
of Vaxfectin® formulation was generally greatest at low dose pDNA.
Therefore, we next assessed the ability of Vaxfectin® formulation
to enhance responses induced by low dose (2 p.g) immunization
with each of the five CSLAM plasmids injected individually or as
the CSLAM mixture in Experiment 2; those studies used only two
priming doses of pDNA instead of the three doses given in previ-
ous experiments in order to better dissect any potential differences
(Table 4). In almost all cases, Vaxfectin® formulation enhanced
responses against the respective APCs (Table 4).

Results from the experiments reported above suggested that
the enhancing effects of Vaxfectin® formulation were more pro-
nounced under suboptimal immunization conditions (namely, low
pDNA dose and fewer primes). Since heterologous D-V immu-
nization regimens are more immunogenic than homologous D-D
regimens, we next asked whether Vaxfectin® formulation could
enhance a suboptimal D-V regimen involving a single prime with
an extremely low dose pDNA in Experiment 3. For those studies,
mice were primed once with 0.4 j.g pDNA encoding CSP, SSP2, LSAT,
AMA, MSP1, or CSLAM, and boosted 4 weeks later with NYVAC-
Pf7. Results showed that mice were sufficiently primed by the
vaxfectin® formulated low dose pDNA for boosting by NYVAC-Pf7
in this abbreviated immunization regimen. Enhanced responses
after priming with individual antigens were detected against all
tested APCs, reaching statistical significance with almost all APCs
(Table 5). Furthermore, as seen in the earlier experiments, no
evidence of suppression in the mixture was noted taking into con-
sideration that the amount of CSP pDNA was one-fifth the dose
of the univalent vaccine being tested. Another group of mice that
received the NYVAC-Pf7 boost but no pDNA prime showed minimal
responses (data not shown).

4. Discussion

Because of the complexity of the Plasmodium parasite life cycle,
many believe that an effective subunit malaria vaccine will need to
contain antigenic components from more than one developmen-
tal stage. Multi-antigen vaccines against malaria given as plasmids
or in the form of recombinant mastocytoma-transfected cells have
successfully protected mice [9.46] and monkeys [47.48] against
malaria, establishing the feasibility of a multivalent malaria vac-
cine. Ease of combining pDNA vaccines, as compared to other
conventional methods such as recombinant proteins and viral vec-
tors, has made DNA an attractive platform for the delivery of



Table 3b
IFN-y ELISpot response in BALB/c mice to P. Jalciparum CSLAM vaccine given by D-D and D-V regimens (Experiment 1).
Regimen Dose A20-CSP A20-SSP2 A20-LSA1 A20-AMA1 A20-MSP1 A20-CSLAM Summed CSLAM
(ng)
VAX PBS Ratio VAX PBS  Ratio VAX PBS  Ratio VAX  PBS Ratio VAX PBS  Ratio VAX PBS  Ratio VAX  PBS Ratio
(VAX/PBS) (VAX/PBS) (VAX/PBS) (VAX/PBS) (VAX/PBS) (VAX/PBS} (VAX/PBS)
D-D 2 279 51 5 628 214 3 573 3714 2 1069 356 3 584 211 3 1679 1336 1 3133 1206 3
10 53 143 037 455 818 0.6 327 788 041 1447 919 157 383 621 0.62 1768 1924 092 2665 3288 0.81
50 51 244 o021 308 373 083 598 591 1.01 1049 531 198 541 454 119 1724 1526 1.13 2546 2193 1.16
D-v 2 647 192 337 1265 807 1.57 1713 1133 1.51 1808 1277 142 1392 650 214 2278 2273 1.00 6825 4058 1.68
10 653 250 261 1160 1155 1.00 1480 1963 0.75 1707 1188 144 1495 1593 094 2168 2468 0.88 6495 6150 1.06
50 638 356 1.79 1368 1278 1.07 1584 1734 091 1476 1624 091 1686 1524 1.1 2016 2243 090 6751 6516 1.04

IFN-y ELISpot assays were carried out as described in Section 2. Freshly isolated spleen cells were pooled from 8 BALB/c mice per group 2 weeks after the last immunization and incubated with A20 cells transfected with P,
Jalciparum CSP, SSP2, LSA1, AMA1, MSP1, CSLAM, or empty plasmid as control. Data is presented as antigen-specific IFN-y spot-forming cells per million spleen cells (SFC) after background control responses have been subtracted.
The ratio of SFC of corresponding Vaxfectin® and PBS groups were obtained and are reported in the “Ratio (VAX/PBS)" column.

Table 4
IFN-y ELISpot response in BALB/c mice to P, Jalciparum individual and CSLAM vaccines given by D-D and D-V regimens (Experiment 2).
Regimen  Vaccine Individual and CSLAM vaccines vs. individual A20 targets ) Summed CSLAM response
A20-CSP A20-SSP2 A20-LSA1 A20-AMA1 A20-MSM VAX PBS Ratio
VAX/PBS
VAX  PBS Ratio VAX PBS Ratio VAX PBS Ratio VAX PBS Ratio VAX PBS Ratio (VAX|PBS)
(VAX/PBS) (VAX/PBS) (VAX/PBS) (VAX/PBS) (VAX/PBS)
D-D Individuat 490 157 3.1 2293 522 44 1007 783 1.3 1828 1183 1.5 840 353 24
CSLAM 220 57 39 620 460 1.3 597 447 1.3 1223 1160 1.1 1617 1037 1.6 4,277 3160 14
D-v Individual 1663 377 44 3970 3840 1.0 4473 3680 12 4067 2373 1.7 2540 1600 16
CSLAM 270 292 09 1237 888 14 2823 1312 22 2860 1598 18 3897 2088 19 11,087 6178 1.8

Regimen  Individual and CSLAM vaccines vs. A20-CSLAM targets

csp Ssp2 LSA1 AMA1 MSP1 CSLAM
VAX PBS Ratio VAX P8BS Ratio VAX PBS Ratio VAX PBS Ratio VAX PBS Ratio VAX PBS Ratio
(VAX/PBS) (VAX/PBS) (VAX/PBS) (VAX/PBS) (VAX/PBS) (VAX/PBS)
D-D 517 163 32 2.433 458 5.3 1080 740 1.5 1402 783 18 643 147 44 2433 2140 11
D-v 2240 683 33 3823 3747 1.0 4447 4177 1.1 3993 2163 1.8 2597 1940 1.3 4663 3368 14

IFN-y ELISpot assays were carried out as described in Section 2. Freshly isolated spleen cells were pooled from 8 BALB/c mice per group 2 weeks after the last immunization (individual antigens or CSLAM), and incubated with
A20 cells transfected with P. falciparum CSP, SSP2, LSA1, AMA1. MSP1, CSLAM. or empty plasmid as control. Data is presented as antigen-specific IFN-y spot-forming cells per million spleen cells (SFC) after background control
responses have been subtracted. The ratio of SFC of corresponding Vaxfectin® and PBS groups were obtained and are reported in the “Ratio (VAX/PBS)" column.
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A20-CSP

VAX

Individual and CSLAM vaccines vs. A20-CSLAM targets

CSP vaccine

Vaccine
Individual
CSLAM

IFN-y ELISpot response in BALB/c mice to P. falciparum individual and CSLAM vaccines given by low dose (0.4 ng pDNA) D-V regimen only (Experiment 3).

Table S
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1ma3

1305

197

457

596

934

498

1185

636

1223

173

581

TET malaria vaccines. Our previous data indicated that heterologous
§ g :922 prime-boost immunization regimens, such as priming with pDNA
dle ﬁg and boosting with recombinant virus, are more efficacious than

B § B homologous immunization regimens [41,49]. The complex logistics

';«% < and costs associated with manufacturing a second vaccine platform

< QE could be avoided if a suitable means of enhancing the immuno-

ga 2 genicity of pDNA vaccines could be identified.

§ 28 We have previously reported reduced immune responses to the

§c & antigenic components of a 5- and 9-gene mixture as compared to

g _3}‘ Q the responses obtained when given as individual Plasm'ids [23,50].

E p % Subsequent plasmid elimination studies led us to u.ientnfy a S-geng
|2 ‘=f > mixture, designated CSLAM, that was capable of mducmg mulp-
d|BES target responses without serious suppressive effects. Studies with
Sls &5 mixtures of this down-selected CSLAM mixture in nonhuman pri-
& ‘;95' =% mates have shown no adverse effects due to antigen combination

a2 e [51].

E E 5 Herein, we have used this 5-gene mixture to address the

EsS e effect of dose and plasmid formulation for optimal multi-antigen

EsE immunogenicity. We show that, with homologous DNA (D-D)

£ ;'8 immunization regimens, formulation of low dose plasmid with

g E’ a Vaxfectin® enhances immune responses, induci.ng levels comp.?ra-

; é % ble to those obtained with higher dose pDNA w!thout formulation.
~|® g s We further show a general trend whereby the immune responses
§ E @ §. induced by D-D immunization regimens with a low dose pDNA
dl& §§ formulation with Vaxfectin® was higher compared with unformu-

sEg2 lated pDNA, levels did not reach those induced with unformulated

TuE PDNA in a heterologous DNA prime-recombinant viral boost

'_§§ T (D-V) regimen. This is a significant finding since the use of a

8 § homologous vaccine platform is more cost effective and easier to

¢ Eg manufacture and administer than a heterologous multiple pla_t-

H 25 form vaccine. This was not the first demonstr.:ation that Vaxfectin

E 55 did not facilitate transfection [30]. An earlier study has sug-

L= § [ges;ed that the enhanced antibody responses are IL-6 dependent
QI2ES 40].

3 é 88 It should be noted that the readout of the current studies was
d 4 E § immunogenicity (both T cell and antibody responses) since pro-

3 Ean tection induced by P. falciparum constructs cannot be evaluated in

E 28 preclinical models. However, the results reported here are consis-

£ E;’ tent with data previqusly generatgd in the P. yoelii model whlc_h

2ES showed that Vaxfectin® formulation of low dose PyCSP plasmid
cE5& DNA vaccines enhanced T cell and antibody responses as well
¥s% as protective efficacy against Plasmodium sporozoite challenge in

a3 E mice, as compared to PBS-formulated pDNA [29).
" g ? 5 Our data further validate our previous down-selectiop of the
§ §§ 2y 5-gene CSLAM vaccine [23,50]. Overall, our data establish that
olz=%83 the multivalent vaccine CSLAM vaccine can induce robust and
L8 broad antibody and T cell responses against each component of

el E 2 the mixture in the apparent absence of antigen interference. The

15 g S g apparent absence of antigenic competition with plasmid DNA mix-

§N-§ﬁ tures noted here, for both antibody and cellular responses.‘ is

4 .‘."6 2 consistent with data generated in Aotus monkeys where no sig-

35 2 :-f nificant difference in antigen-specific EL]SA' titers was noteq in

e E g monkeys immunized with a m_ixture of P. falciparum DNA vaccines

SEE § encoding apical merozoite antigen-1 (AMA1), erythro_cyte binding
~|8gg2 protein-175 (EBA-175) and merozoite surface protein-1 (MSP1)
gl3sks as compared to monkeys immunized with each of the individ-
S 2 ; 5;{5‘ ual vaccines [52]. Other studies in mice have demonstrated that
& E EE] a mixture of two plasmid DNA vaccines can confer synergistic or

g E 1 % additive effects on protection against sporozoite challengg [53]). Tt}e

2 & s § data presented here provide additional experimental evidence in

Z5 ‘g & support of the concept of multivalent vaccination. While the supe-

?; ’_.,."' 2 ;E riority of this multi-target, multi-immune response approach will

V%E §-§ have to await clinical testing with challenge, it is expected that

= § % 2 multivalent vaccines, especially those targeted against more than

zf' £ & § one stage in the parasite life cycle, would be more protective than

%8s univalent vaccines.
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Herein, we also report a novel approach to evaluation of a
multivalent vaccine, whereby A20 transfectants expressing either
single antigens or all five antigenic APCs simultaneously (A20-
CSLAM) were used as APCs for the in vitro T cell assays. This
made it possible for us to estimate the total response against
the multivalent CSLAM vaccine by two methods, namely (1)
summing responses induced against each of the five individual
antigenic A20-APCs, or (2) assaying responses against a single tar-
get expressing all five antigens simultaneously. We found that,
though the sum of responses against each of the five individual
antigenic APCs was generally higher than the response against the
CSLAM APGs, the pattern of responses was similar. This method is
likely to be a useful complement to other studies of multivalent
vaccines.

Inother studies in the P. yoelii model, we have evaluated another
cationic lipid formulation, DMRIE-DOPE. Our data showed that
DMRIE-DOPE enhanced antibody response at all pDNA doses tested
(0.4-50 p.g) but reduced both IFN-y responses and protective effi-
cacy against sporozoite challenge, as compared with unformulated
PDNA(Sedegah, unpublished). In contrast, our data with Vaxfectin®
reported here show that Vaxfectin® preferentially enhanced both
cell-mediated immunity and humoral immunity, and surpassed the
level of antibody responses induced by DMRI-DOPE formulation
(Sedegah, unpublished). Others have evaluated cationic distearoyl
phosphatidylcholine (DSPC) liposomes in Leishmania vaccine stud-
ies and report long-term immunity in mice when the adjuvant
was added with the immunodominant 63-kDa glycoprotein (gp63)
of Leishmania donovani [54]. Chemical adjuvants for plasmid DNA
vaccines which include liposomes, polymers and microparticles
have been investigated extensively and liposomes and polymer
adjuvants have proved effective in some models but not others
[reviewed in 55].

In the current studies, Vaxfectin® formulation enhanced
immune responses with fewer priming doses and reduced concen-
trations of pDNA which are advantageous for vaccine development
in general, and for the development of a vaccine against com-
plex pathogens such as malaria in particular. Preliminary human
safety and immunogenicity data from a Phase I trial to evaluate
a monovalent and trivalent Vaxfectin®-formulated H5N1 pan-
demic influenza DNA vaccines in healthy volunteers suggests that
PDNA vaccines can achieve potentially protective levels of anti-
body responses in humans [37]. The aim is to use Vaxfectin®
formulation to optimize pDNA priming of immune responses
that could potentially eliminate the need for boosting with the
viral vector vaccine. The finding of a well-tolerated safety pro-
file and no vaccine-related serious adverse events in humans
after immunization with Vaxfectin®-formulated pDNA [37] sup-
port further development of Vaxfectin®-formulated multivalent
malaria pDNA vaccines for humans either as part of a prime-boost
regimen that involves a recombinant virus, such as NYVAC-Pf7
(which has already been evaluated in humans and showed to
induce partial protection) [44], or as a stand alone DNA-DNA
vaccine.
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