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ABSTRACT 

The computing capability to which Operations Research (OR) analysts have access today 

is over 1,000,000,000 times more powerful than the first simulation pioneers had sixty 

years ago, yet the concept that simulation is a “method of last resort” still plagues the OR 

community.  Many real-world problems are complex, with properties such as high 

dimensionality, non-linear effects, stochastic elements, and dependence between 

variables.  Solving these problems analytically often requires simplifying assumptions, 

running the risk of making a Type III error (i.e., getting the right answer to the wrong 

problem).  This paper explores the development of computer simulation, and the key 

design principles that must be followed, to demonstrate how simulation is often the 

appropriate tool in understanding complex, real-world problems.  Contrasting the results 

of a recently published analytical approach to the analysis of an airport check-in counter 

scheduling problem versus those of a simulation study of the same system, we 

demonstrate that simulation can quickly provide the same answers with any desired 

degree of precision and with no loss of insight.  More importantly, simulation can easily 

use both empirical data and more realistic assumptions—which allows for the analyst to 

address the right problem.  With current computational capabilities and methods, it is 

time to change the paradigm.  Simulation is a method of first resort. 
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 vii 

THESIS DISCLAIMER 

The reader is cautioned that the simulation model presented in this thesis has not 

been exercised and tested to its fullest extent.  While every effort has been made within 

the time available to ensure that the simulation represents the scenario presented by 

Parlar and Sharafali (2008) (henceforth referred to as the Parlar Model), interpretations of 

their intentions and distributions were made to facilitate the development of the 

simulation.  Further, this model does not represent a real-world system, and has been 

made to demonstrate the benefits of computer simulation when examining real-world 

problems. 
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EXECUTIVE SUMMARY 

If anyone, here or later, can tell us how the approach of certainty—
traditional mathematics—is going to answer the questions that practical 
data analysts are going to have to have answered, I will rejoice. But until I 
am reliably informed of such a utopian prospect, I shall expect the critical 
practical answers of the next decade or so to come from the approach of 
simulation—from a statistician’s form of mathematics, in which ever more 
powerful computing systems will be an essential partner and effective. . . 

—John Tukey, (1986) 

The paradigm that simulation is a method of last resort has been around for over 50 years, 

with its first use in operations research focused literature by John Harling (1958), in an 

article entitled “Simulation Techniques in Operations Research.”  In that article, Harling 

uses the term “it has been often said,” implying that the paradigm of simulation being a 

tool of last resort was not just prevalent at the time, but had been for several years 

(Harling, 1958).  The phrase saw continued use throughout the operations research 

community, and is perhaps best known from Harvey Wagner’s seminal textbook 

Principles of Operations Research (Wagner, 1969).  Why was this the paradigm of the 

time?  Was it a valid paradigm at the time, and is it a valid paradigm now? 

Since the inception of computer simulation with the use of the Electronic 

Numerical Integrator and Computer (ENIAC), there have been significant advances in 

both processing power and storage capability.  Computing power today is over 

1,000,000,000 times what it was just 60 years ago.  It took the ENIAC’s computational 

capabilities to solve the complex integrals needed in the design of a thermonuclear 

weapon, and with the increases in computing power, many more computationally 

challenging problems have now become computationally tractable.  We define 

“computationally tractable” as follows:  A model is computationally tractable if it can be 

solved on a computer to any required level of precision in a short period of time. 

Unfortunately, some in the OR community have not fully embraced the power of 

today’s computers, and has failed to recognize the benefits of simulation to its fullest.  

One may argue that simulation can only provide an approximate solution, while an 



 xx 

analytical one presents an exact one.  That statement, however, needs to be placed into its 

proper context.  An analytical solution may only be exact when it is done in the absence 

of assumptions.  The moment one must “assume,” is the moment the analytical solution 

slips away from the paramount of perfection, to simply providing an “approximate” 

solution. 

This thesis provides an examination of a paper written by Parlar and Sharafali 

(2008) on an analytical approach to providing an optimal solution on the allocation of 

airline check-in counters.  Numerous assumptions were made by Parlar and Sharafali in 

order to present an analytically tractable problem.  Many of which are made contrary to 

the actual workings of the system.  Three of the most significant assumptions are: 

• the time period in which the counters are open is a fixed time ( )T  that can 

be partitioned into ( )K  segments, in which the arrival rate can be 
estimated as a constant; 

• service times are exponentially distributed; and 
• a linear increase in service rate, based on the number of passengers in the 

system who have not completed service. 
These assumptions have a dramatic impact on the authors’ objective function to 

be minimized.  This objective function, which is evaluated through the use of a dynamic 

program, calculates the minimum expected cost to go from time kt  to T , given m  

arrivals and, of those arrivals, n  having completed service.  This expected cost function 

is significantly affected by the distribution of service times and the linear increase in 

service rate. 

With an understanding of the model presented by Parlar and Sharafali, this thesis 

then presents the methodology presented originally by Law and Kelton (1982), and 

adopted by the Defense Modeling and Simulation Coordination Office for Verification, 

Validation and Accreditation (Modeling and Simulation Coordination Office (MSCO), 

2001).  Through this process, and the use of Simio simulation software, this thesis 

produced a simulation model, copying the assumptions and distributions of the Parlar and 

Sharafali model as closely as possible.  As this model is computationally tractable, 

through simulation we quickly were able to replicate the transition probabilities 
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calculated by Parlar and Sharafali to any degree of precision required.  The simulation 

model was then exercised to test the validity of Parlar and Sharafali’s findings of the 

optimal configurations, the monotonicty within the optimal solution, and that the number 

of counters to open is nonincreasing in the number of passengers who have  

been serviced. 

Contrary to Parlar and Sharafali’s findings, our results demonstrated that not only 

did monotonicity not exist in the solution, but the “optimal” solution calculated by the 

dynamic program did not have the lowest mean cost.  To investigate this, we examined 

two of the key the assumptions made by Parlar and Sharafali.  First, the linear increase in 

service rate was evaluated.  We demonstrated that this assumption played a significant 

role in the development of the optimal solution and, through a numerical illustration, is 

not a reasonable assumption.  The second demonstration illustrated the importance of 

choosing the right distribution model.  Utilizing a more realistic distribution, with the 

same mean value, demonstrated that the average total cost of a run is lower, and from a 

much narrower range, than when calculated with the exponential distribution due to the 

heavier weightings of the exponential distribution at higher numbers. 

With today’s computing power and storage capacity, combined with a logical and 

formal method for developing and validating simulation studies, simulation should no 

longer be looked at as a method of “last resort.”  No longer are analysts constrained to 

having to make assumptions such as normality, independence, memorylessness, 

deterministic, linear, stationary, and homoscedasticity—as the advanced simulation suites 

handle these conditions with ease.  No longer do analysts have to manipulate a problem 

to make it analytically tractable, which can lead the analyst away from solving the real 

problem as they are preoccupied by solving the analytical one.  Simulation allows for a 

more realistic analysis to be done, being able to incorporate actual statistics of the real 

systems into the simulation.  It allows for the simultaneous exploration of multiple 

parameters of the system through a proper design of experiments.  It provides the insight 

needed by decision makers to make robust decisions.  It is time to change the paradigm.  

Simulation is a method of first resort. 
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I. INTRODUCTION 

It has been often said that a simulation is a last resort. 

—Harling, (1958) 

A. BACKGROUND AND LITERATURE REVIEW 

The paradigm that simulation is a method of last resort has been around for over 

50 years.  The earliest record of the phrase (as quoted above) is from 1958, when  

John Harling gave a presentation to the London School of Economics on operations 

research.  One must note that Harling uses the term “it has been often said,” thus 

implying that the paradigm of simulation as a tool of last resort was not just prevalent at 

the time, but had been for several years (Harling, 1958).  The phrase saw continued use 

throughout the operations research community, and is perhaps best known from pages 

887 and 890 of Harvey Wagner’s seminal textbook Principles of Operations Research 

(Wagner, 1969).  Why was this the paradigm of the time?  Was it a valid paradigm at the 

time, and is it a valid paradigm now? 

First, to discuss the term simulation, one must be clear of the definition being 

used.  In the case of this paper, simulation strictly refers to the use of a numerical model 

to study the behavior of a system as it operates over time using a computer (Kiviat, 

1967).  To have a clearer understanding of the term in the operations research context, 

one should turn to the explanation provided by John E. Cremeans in his 1967 paper 

entitled “Why Simulation?”  Cremeans, rather than defining simulation in a concrete 

way, chose to provide a characterization of what a simulation is and is not.  First, 

Cremeans clarifies that simulations are not optimizing programs, and that only through 

data analysis of the simulation output can one gain insight into the model and apply that 

insight in an effort to optimize the system.  Second, Cremeans compares simulation to 

that of a laboratory experiment, where the variables can all be controlled and altered as 

seen fit by the programmer.  In fact, a stochastic simulation can be run multiple times 

with all the parameters remaining the same, or changing them as the designer sees fit, 

which is different from virtually all true laboratory experiments. 
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From the Buffon needle experiments in the 1770s to estimate π, to the complex 

models run on supercomputers and computing clusters today, simulation persists and has 

grown in its use, but the phrase “as a last resort” can still be seen in scholarly papers.  

One should examine how simulation has evolved over time in order to make the 

determination if the adage is still valid. 

1. A Brief History of Computer Simulation 

If you would understand anything, observe its beginning and its 
development. 

—Aristotle 

Keeping with the academic spirit of Aristotle, let us examine the development of 

simulation over time in order to gain an appreciation of the history of simulation and how 

it has changed with the advances of technology.  To examine the history of simulation, 

Goldsman, Nance, and Wilson (2009) have provided a framework with which one can 

segregate the changes of computing power over time and its effect on simulation.  Their 

framework consists of three definitive phases:  the Precomputer Era (Pre–1945), the 

Formative Period (1945–1970), and the Expansion Period (1970–1981).  Their study of 

simulation history stopped at 1981, as they did not believe that sufficient time had passed 

to see any definitive changes since that time (James R. Wilson, personal communication, 

August 11, 2011).  However, during a discussion with Professor James Wilson of  

North Carolina State University regarding the substantial increases in computing power 

and memory availability, it was proposed that two additional periods may be examined:  

the Maturation Period (1983–2000 [approximately]) and the Distributed Processing Era 

(2000–present). 

a. Precomputer Era 

The idea behind the Monte Carlo approach. . . is to [replace] theory by 
experiment whenever the former falters. 

—Hammersley & Handscomb, (1964) 

Although the term “Monte Carlo Simulation” was not known or discussed 

at the time, the process we know today as “Monte Carlo Simulation” has been utilized as 
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far back as 1777, when Buffon conducted his famous “needle experiment” to estimate the 

value of π (Goldsman, Nance, & Wilson, 2009).  Further, in 1908, William Sealy Gosset 

used a manual simulation to verify the probability density function for his “Student’s ‘t’ 

Distribution” prior to his seminal paper’s 1908 publication (see Figure 1).  It is important 

to note that these “simulations” conducted by Buffon and Gosset were both validated 

later through analysis; Buffon’s by Laplace (Laplace, 1812) and Gosset’s by Fisher 

(Fisher, 1925). 

 

Figure 1.   Student’s Comparison of Theoretical Frequency Curve With an Actual 
Sample Originally Published in Biometrika (From Student, 1908) 

b. Formative Period 

It was John Von Neumann, Stanislaw Ulam, and Nicholas Metropolis who 

can take credit for coining the phrase “Monte Carlo methods” when the trio were working 

on the issue of neutron diffusion and also realized the computational potential of the 

computers being built (Metropolis, 1987).  Recognizing the challenge in the analytical 

analysis of the diffusion of particles and either particle procreation or multiplication, the 

trio created a mathematical description of the problem that consisted of both deterministic 

and stochastic processes.  Then, through the use of random sampling, they were able to 

obtain sample sets of the results for a statistical analysis.  This “Monte Carlo method” 

was adopted by many more people as expanded access to computers became a reality. 

What enabled the trio to develop their “Monte Carlo method” was the 

invention of America’s first computer—the ENIAC (Electronic Numerical Integrator and 

Computer).  Using their method and formulas, the trio submitted their calculations for 
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computation by ENIAC and, with the results, were able to design a working 

thermonuclear weapon.  It is essential to recognize that prior to the ENIAC, the complex 

integrals needed to design the weapon where analytically intractable (Fritz, 1994).  These 

calculations became computationally tractable only through the building of the ENIAC 

and the development of the “Monte Carlo method” to solve them. 

With the potential of computer simulation just starting to be realized, the 

period from 1945 through 1970 saw the development of computing capacity all over the 

world in government, corporate, and academic institutions.  Not only was the access to 

computing facilities becoming readily available to researchers and scientists, others 

began to develop programming languages to better facilitate the use of these machines.  

For example, FORTRAN was developed between 1954 and 1957 in order to 

automatically generate efficient machine code from an easier to read input design  

(Padua, 2000). 

As the use and availability of simulation grew, so did the understanding of 

the difficulties associated with simulation.  In order to confront these difficulties, 

Conway, Johnson, and Maxwell of Cornell University addressed them in two key papers 

in 1959 and 1963.  They identified two components to the use of computer simulation 

that needed to be examined:  the construction of the model and the analysis of the results.  

These papers identified issues in both components, some of which have been resolved, 

while others are still being researched. 

c. Expansion Period 

Up until the late 1970s, computer access time was costly and severely 

limited to institutions that could afford the large computers.  It was the advent of the 

“personal computer” that brought the computing power needed for computer simulation 

to the average user. 

As the availability of computers grew, so did the number of available 

simulation programming languages (SPLs).  The primary source of improvement through 

the 1970s was the development of more efficient and user friendly SPLs.  As the number 

of SPLs increased, the textbooks also began to change.  Several key texts were published 
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that were not arbitrarily tied to a specific SPL and focused on computer simulation as a 

method in general (e.g., Law & Kelton, 1982). 

In addition to the improvement of SPLs, several other key topics were 

advanced during this period.  A new object-oriented approach to simulation design 

entitled “Conical Methodology” was developed by Nance (1978).  Additionally, advances 

in random number generation, event graphs (Schruben, 1983), and the need for formal 

verification and validation (Blaci & Sargent, 1981) were brought forward.  The text 

Simulation Modeling and Analysis by Law and Kelton (1982) has been credited with 

being the first of many that brought the advanced methodologies to a wide audience 

(Goldsman, Nance, & Wilson, 2010). 

d. Maturation Period 

With a definitive structure set in place on the issues that face the use of 

simulation, combined with an ever increasing source of experts, research continued 

throughout the maturation period on how one can achieve more reality and fidelity in 

simulation.  One source which has had a significant influence, and continues to underpin 

these developments, is the Winter Simulation Conference (WSC). 

While the WSC provides a forum for discussion of the most recent 

advances in simulation, it also “provides the central meeting place for simulation 

practitioners, researchers, and vendors working in all disciplines and in the industrial, 

governmental, military, service, and academic sectors” (White, Fu, & Sanchez, 2011).  

The WSC has annually brought together individuals and sponsors from six major 

professional organizations and one government agency to accomplish this through a 

completely volunteer lead effort for over 40 years (White, Fu, & Sanchez, 2011).  For 

more information on the WSC, and access to their past presentations and papers, refer to 

http://wintersim.org/. 

The Department of Defense’s (DoD) reliance on modeling and simulation 

grew throughout the 1990s.  It was during this period that the use of simulations for 

operational wargaming became widespread (Army Modeling & Simulation Office 

[AMSO], 2011).  With that usage came the realization that without proper quality control 
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being applied, the validity of the models and simulations would be dubious.  To address 

this, and several other issues, the DoD published Directive 5000.59 in 1994, mandating 

all services and defense agencies to establish a modeling and simulation (M&S) office in 

order to provide a structure in which future M&S initiatives would be developed  

and controlled. 

e. Distributed Processing Era 

Goldsman, Nance, and Wilson (2009) stopped their detailed analysis of 

the history of simulation at the end of the expansion era, as it was felt that “insufficient 

history had been accumulated” since that time to effectively comment on the maturation 

period (James R. Wilson, personal communication, August 11, 2011).  However, during a 

phone interview with Professor Wilson, it was suggested that the maturation period was 

over and that the Distributed Processing Era had begun.  Professor Wilson not only 

agreed that this was the case, but stated that entering into the Distributed Processing Era 

may be as significant to the simulation community as the realization of the potential of 

the ENIAC back in 1946 (James R. Wilson, personal communication, August 11, 2011). 

The ability to run simulations on multiple processors simultaneously is not 

a new concept or capability; however, the ability to do so on a relatively inexpensive 

machine is.  With multicore architecture now the standard on processors, simulation 

software companies who specialize in the development of software for those who do not 

have access to computer clusters are beginning to exploit the capabilities of the new 

multicore architectures.  For example, a simulation software suite entitled Simio 

(Simulation Modeling Framework based on Intelligent Objects), having recognized the 

greater performance that can be achieved through using the multicore architecture, have 

included the following statement in their hardware requirements page:  “Multiple 

scenarios and replications run in the Experiment Window take full advantage of each 

available processor (e.g., a quad-core processor will execute 4 replications or scenarios 

simultaneously” (Simio, 2011). 
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2. Changes in Computer Architecture and Cost 

The new slope might approximate a doubling every two years, rather than 
every year, by the end of the decade. 

—Gordon Moore, (1975) 

a. Application of Moore’s Law 

While many people quote Moore’s “law,” there are many who quote him 

incorrectly.  Mr. Moore provided clarification of what Moore’s “law” entails in a video 

interview he did with Intel in 2005.  Moore clarified that while his original prediction of 

transistor density was correct at the time (i.e., the number of transistors per chip were 

doubling twice per year), that it was only valid until 1975.  In 1975, he reevaluated his 

estimate to complexity doubling once every two years.  He also asserted that not only has 

it proven to be true, but it is now a driver behind the progress, as industry holds it as a 

standard to live up to.  Figure 2 shows a plot of transistor count to production year, from 

1971 through 2008. 
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Figure 2.   Moore’s Law Depicted Through the Change in Transistor Count Over Time 
(From Moore’s Law, 2011) 

This is of significance to the operations research community, as the ability to 

compute complex numbers and run complex simulations is highly dependent on the 

processing capability of the computer system being used.  In a study conducted by the 

Lawrence Berkeley National Laboratory in 2008, the rate of increase in floating point 

operations per second (FLOPS) has also been consistent with Moore’s “law” (see  

Figure 3).  We now have over one billion times more processing power than those first 

simulation pioneers had 60 years ago. 
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Figure 3.   Moore’s Law and Peak Performance Over Time (From Dongarra, Meuer, 
Simon, & Strohmaier, 2000) 

b. Relative Cost and Quantity of Memory 

In addition to the increase in the computing performance factor of FLOPS, 

there has been an equally dramatic change in the availability and cost of data storage over 

time.  This decrease in cost has allowed for much more data to be retained than before, 

and at a much lower cost.  Using historical data, Mr. Matthew Komorowski, a software 

engineer from Buffalo, New York, found that the amount of storage per unit cost has 

shown to double approximately every 14 months (Komorowski, 2009). 
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Figure 4.   Hard Drive Cost per Gigabyte (From Komorowski, 2011) 

c. Computational Tractability 

Analytical procedures are usually preferred over numerical ones, as they 
are more accurate and less costly to compute. 

—Kiviat, (1967) 

With the increase in processing power and available memory space, 

problems that once were too complex to be solved are beginning to become 

computationally tractable.  Through this increase, the ability to use analytical procedures 

has also increased, as well as the ability to run simulations with much higher degrees of 

reality and fidelity than previously seen. 

For example, Parlar and Sharafali show the equation used to calculate the 

transient probability that for a given set of conditions, the probability to move from state 

( ),m n  to a state ( ),i j  can be determined by the following equation (for additional 

details, refer to Parlar and Sharafali, 2008): 
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With the conditions of 10,  1, 2,3N c= =  with ( ) ( ) ( ) ( ), 4, 2 ,  , 7,3m n i j= = , and 

( ) ( ), 1.5,5λ µ = , they produced the following plot of transient probability versus time 

(see Figure 5). 

 

Figure 5.   Transient Probability Graph With 1c =  Having the Highest Peak (From 
Parlar & Sharafali, 2008) 

This same plot was found through a simulation approach implemented in 

MATLAB (http://www.mathworks.com/products/matlab/).  The simulation was 
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developed through an examination of the transition rate diagram (see Figure 6) provided 

by Parlar and Sharafali (2008), which was used to develop their conceptual model. 

 

Figure 6.   Transition Rate Diagram for 3N =  (From Parlar & Sharafali, 2008) 

In approximately 30 minutes, (due mainly to a lack of familiarity of the 

MATLAB syntax), the transition rate diagram shown above was implemented in 

MATLAB and an initial 1,000 runs were made to verify that the MATLAB 

implementation was producing results consistent with Figure 5.  These initial runs took 

approximately 0.1 seconds to run.  When it was found that the results matched the 

expectations, the simulation was run 107 times (which took approximately 18 minutes on 

a desktop computer utilizing an Intel Core i5-2500K central processing unit (CPU), with 

8.0 gigabytes of installed memory) and the graph in Figure 7 was produced. 
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Figure 7.   Simulation Result for Transition Probability Graph 

The displayed graph produced by the MATLAB simulation appears to be 

identical to the results produced by the analytical, yet the simulation does not provide an 

“exact” answer.  However, when the confidence interval for the simulation results is 

smaller than the width of the line depicting the distribution, how relevant is it?  In this 

case, the 99% confidence interval half-width is bounded as follows (with p determined as 

the maximum value found at 0.0241 and n being the number of trials set at 107): 
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With the capability to quickly run the simulation a vast number of times in 

a relatively short time span, the simulation results converge on the analytical results with 

such closeness that one must determine when it is “close enough” to count as an 

equivalent answer.  It is also important to note that while asserting the superiority of 

analytical solutions due to them being more precise, the calculations are most often being 

made by computer, which (unless conducting strictly integer operations or symbolic 

manipulation) contain a degree of error to the manner in which real arithmetic operations 

are conducted. 

3. Use of Simulation in the Department of Defense 

The DoD has been on the forefront of computer simulation use since its inception 

with the ENIAC and the Monte Carlo method being used to solve the complex integrals 

required for the design of the thermonuclear bomb.  A recent study conducted by the 

National Research Council, and published in a book entitled Defense Modeling, 

Simulation, and Analysis:  Meeting the Challenge, recognizes that through the increase in 

computing power, richer approaches in modeling and simulation have been made 

possible (Committee on Modeling and Simulation for Defense Transformation, 2006).  

They illustrate this through examples of simulation areas at three levels of complexity 

(see Table 1). 

Aspect Simplistic Intermediate Advanced 

Number of parties Two sides, with allies 

folded into the 

appropriate side 

Plus some explicit 

modeling of third 

countries 

Plus nongovernment 

organizations and 

threats 

Nature of Variables Only objective 

variables, such as a 

side’s firepower 

Plus soft variables such 

as a side’s fighting 

effectiveness, affected 

by leadership and other 

factors 

Plus soft variables such 

as nationalism, ethnic 

group association, and 

propensity for brutality 

and terrorism  

Table 1.   Partial List of Levels of Combat Model Sophistication  
(From Committee on Modeling and Simulation for Defense Transformation, 

2006) 
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The use of simulation has grown to span virtually every component of the DoD.  

The projected spending for DoD training, training support, and simulation is estimated to 

total nearly $35 billion annually (MSCO, 2010).  In 2010, the DoD M&S workforce 

consisted of approximately 30,000 military personnel, government civilian employees, 

and contractors (MSCO, 2010).  In addition to the DoD employees, each branch of 

service has created their own M&S office and separate human capital strategy plan for 

M&S (see www.ms.army.mil/, nmso.navy.mil/, www.mccdc.usmc.mil/MCMSMO/, and 

www.afams.af.mil/).  Additionally, each service has established a virtual catalog of 

models and simulations applicable and employed by their respective service.  For 

example, within the Navy’s Model and Simulation catalog (accessible via 

https://nmso.navy.mil/NavyMSRR/Browse/tabid/85/Default.aspx), there are currently 

924 simulation models being utilized.  Figure 8, which represents the DoD’s M&S 

Governance, shows how vested the DoD is in simulation. 

 

Figure 8.   DoD M&S Governance (From MSCO, 2011) 
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a. Acquisition and Logistics 

M&S provides virtual and constructive test beds through which weapon, 

equipment, and ammunition factors can be prototyped, tested, and evaluated during the 

acquisition process.  M&S develops a level of understanding of the interaction of the 

parts of the logistical system, and of the logistical system as a whole, which is seldom 

achievable via any other process.  The use of M&S reduces testing time and costs, and 

allows measurement of phenomenon that cannot be measured using traditional methods.  

The results of these tests provide data on which procurement decisions are based.  

Additionally, it allows for the selection and characterization of optimal material 

solutions.  On the logistics side, things such as deployment timelines and studies on how 

to improve the efficiencies of logistical operations are conducted.  The Marine Corps 

Acquisition M&S community provides access to anyone with a Common Access Card 

(CAC) with DoD certificates to see their M&S services, tools, and data via their website 

(linked through https://www.mccdc.usmc.mil/MCMSMO/acquisition.htm). 

b. Analysis 

The analysis community employs M&S to analyze the performance, 

effectiveness, survivability, trade-offs, and cost/benefit on everything from logistical and 

personnel systems to force structure and risk.  Additionally, tests are done to determine 

the effectiveness of weapon systems, performance and system characteristics of 

equipment and system purchases, and the effectiveness of force management decisions.  

The DoD’s integrated support activity, the Modeling and Simulation Analysis Center, can 

be reached at http://www.dod-msiac.org/). 

c. Experimentation 

Through the exploration, testing, and validation of warfighting ideas, 

insight is found into how we will transform our forces and potentially fight future battles.  

This is done through experiments involving soldiers and leaders within live, virtual, and 

constructive environments (see http://www.nps.edu/research/TRAC/). 
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d. Intelligence 

M&S helps provide actionable events designed to stimulate/simulate the 

proper human intelligence (HUMINT), signals intelligence (SIGINT), and geospatial 

intelligence (GEOINT), which was gathered in real-world operations.  M&S is also used 

in training intelligence personnel for counterinsurgency operations. 

e. Testing 

With changes in the DoD instruction for acquisition, M&S is required to 

be used throughout a program’s life cycle (Office of the Under Secretary of Defense 

(Acquisition, Technologies, and Logistics [OUSD-AT&L], 2006).  This is done in order 

to support requirements definition, the design and engineering phase, test planning, 

rehearsal, and then the conduct of actual tests.  It also is used to aid in evaluating the 

performance of tested items, systems and/or organizations, and the early examination of 

soldier interface and missions.  Finally, simulation is used to help determine system 

performance and safety.  (For more information, refer to the Acquisition Modeling and 

Simulation Master Plan available via the OUSD-AT&L website at: 

www.acq.osd.mil/se/docs/AMSMP_041706_FINAL2.pdf.) 

f. Training 

M&S has been instrumental in preparing personnel for deployment to 

recent combat operations through the significant growth of “the ability to link together 

disparate virtual simulators and integrate constructive simulations to achieve complex 

mission environments” (United States Air Force [USAF], 2010).  Through the delivery of 

integrated live, virtual, and constructive training environments that support personnel and 

mission rehearsal requirements, predeployment training exercises, and mission 

rehearsals, M&S has helped to ensure that personnel being deployed are trained and 

ready.  The United States Marine Corps has fully embraced the use of simulations in 

training, and in an article on the Defense Transformation website (http://www.defense. 

gov/transformation/), one article states: 
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“Live-fire training events come with a high price tag in the form of 
money, risks, logistics and time,” said Jilson.  Because of this, tactical 
decision-making simulations is one of the resources available to provide 
the same effective training without the risks.  Research has also shown 
that there is effective training transfer when simulations are used to 
augment live training.  In other words, when they are taught a new skill, 
they learn that skill better.  (Bohanner, 2004) 

g. Planning 

The planning community utilizes a system of systems approach for 

examining long-term issues, which range from determining our next warfighting 

capabilities requirements, to examining the total force manpower.  The assessment made 

by the Navy Modeling and Simulation Office (NMSO) is that “many of the emerging 

modeling technologies will play a key role in this new analytical realm, including agent-

based models, computational social science, artificial societies, and behavior models” 

(NMSO, 2009).  Figure 9 depicts the hierarchal relationship between models, and lists 

some of the models employed by the Navy for the respective hierarchies. 

 

Figure 9.   Hierarchy of Combat Models and Corresponding Navy Simulation Systems 
(From NMSO, 2009) 
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4. Related Studies 

If the relationships that compose a model are simple enough, it may be 
possible to use mathematical models to obtain exact information on 
questions of interest. 

—Law & McComas, (2001) 

While there are no specific papers that discuss the paradigm of “simulation being 

a method of last resort,” or when specifically to choose a simulation over an analytical 

solution, there are numerous papers and texts that identify situations in which the authors 

believe simulation should be utilized. 

Averill Law (2007), in his textbook entitled Simulation Modeling and Analysis, 

provides the following list of applications of simulation: 

• Designing and analyzing manufacturing systems 

• Evaluating military weapon systems or their logistics requirements 

• Determining hardware requirements or protocols for 
communication networks 

• Determining hardware and software requirements for a computer 
system 

• Designing and operating transportation systems such as airports, 
freeways, ports, and subways 

• Evaluating designs for service organizations such as contact 
centers, fast-food restaurants, hospitals, and post offices 

• Reengineering of business processes 

• Analyzing supply chains 

• Determining ordering policies for an inventory system 

• Analyzing mining operations 

When Law discusses analytical solutions versus simulation, he states that model 

complexity is the primary factor when deciding which approach to use.  If the 

relationships between variables within the model are simple enough, Law states it is often 

possible to find an analytical solution.  Law conditions this with the fact that some 

analytical solutions require vast computing resources, so while it may be possible to find 

an exact analytical solution, it may not be feasible based on available resources. 
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Pradeep Bhatia, of the Guru Jambheshwar University of Science and Technology 

in Hisar, India (http://www.gjust.ac.in/) provides some advantages and disadvantages to 

the use of simulation, along with recommendations on when to choose simulation as the 

primary option of exploration in his course notes for his class “System Simulation and 

Modeling.”  Bhatia (2010) states that the following are the advantages and disadvantages 

to simulation: 

Advantages:  Simulation arbitrary models complexity, circumvents 
analytically intractable models, facilitates what-if and sensitivity analyses, 
and building a model can lead to system improvements and greater 
understanding that can be used to verify analytic solutions. 

Disadvantages:  Simulation provides only estimates of the solution, only 
solves one parameter at a time, can take a large amount of development 
and/or computer time (“simulation as a last resort”).  Don’t use computer 
simulation if a common-sense or analytical solution is available, or if 
resources are insufficient, or if simulation costs outweigh benefits. 

While we can agree with the advantages Professor Bhatia has listed, we cannot 

agree with the concept that simulation “only solves one parameter at a time” (Bhatia, 

2010).  The belief in this concept is perhaps one of the reasons the “last resort” paradigm 

has continued to plague the OR community.  Through a proper design of experiments 

(DOE), one can search for robust solutions to problems, and examine the simultaneous 

effects of thousands of input variables concurrently (Kleijnen, Sanchez, Lucas, &  

Cioppa, 2005). 

Professor Andrew Loerch of George Mason University (http://www.gmu.edu/) 

also addresses how one should choose between an analytical solution and a simulation in 

his course notes for OR540, Management Science (http://classweb.gmu.edu 

/aloerch/OR540.htm).  In his notes, Professor Loerch states that in order to use a 

simulation to provide an optimal solution, one needs to analyze the output, make changes 

to the system, and then run the simulation again to see if an improvement has been 

achieved.  He further states that one must weigh the advantages and disadvantages of 

using simulation, and use simulation only if the advantages outweigh the disadvantages. 
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Of the advantages Professor Loerch states, two are extremely important in the 

realm of military application of simulation.  First, Professor Loerch (2001) states that 

simulation is “not subject to so many assumptions.”  Analytical solutions often require 

multiple assumptions to be made in order to find a solution (e.g., normality, 

independence, memorylessness, deterministic, linear, stationary, and homoscedasticity).  

One distinct benefit of simulation is that one can often reduce the number of or change 

the assumptions, which will allow for data outliers to enter the system.  These outliers 

may identify critical problems or shortfalls within the system that would never have been 

seen using an analytical solution.  Perhaps more importantly, Professor Loerch states that 

simulation results are “easy for [a] decision maker to understand” (2001). 

With the premise that “unplanned, hit-or-miss course of experimentation with a 

simulation model can often be frustrating, inefficient, and ultimately unhelpful,” Kelton 

(2000) provides a basic understanding on what is required in a simulation in order to 

maximize the benefit from it in his paper “Experimental Design for Simulation.”  This 

paper, presented at the 2000 Winter Simulation Conference, discussesfive key 

components that need to be addressed when developing a simulation: 

• What model configuration should you run? 

• How long should the run be? 

• How many runs should you make? 

• How should you interpret and analyze the output? 

• What’s the most efficient way to make the runs? 
Professor Kelton (2000) then continues to educate his readers on the importance 

of utilizing carefully planned simulation studies to avoid “an undue amount of 

computational effort or (more importantly) your time.” 

B. RESEARCH QUESTIONS 

This research seeks to answer the question as to when simulation should (and 

should not) be used to gain insight into a problem.  It further seeks to identify the benefits 

one receives through a simulation approach to a problem, compared to the benefits of an 

analytical solution to the same problem. 
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C. BENEFIT OF THE STUDY 

The primary benefit of this study is to demonstrate that the adage of simulation 

being a method of last resort is no longer valid.  This paper will illustrate the benefits of 

using simulation to gain insight into complex problems and the adaptability to examine 

different assumptions of the input variables.  Finally, the paper will highlight the 

responsibilities of the simulationist, analyst, and decision maker, which are inherent to a 

successful simulation study. 

D. THESIS ORGANIZATION 

The remainder of this thesis is organized into the following chapters.  Chapter II 

provides an in-depth analysis of the analytical approach used by Parlar and Sharafali in 

their 2008 paper “Dynamic Allocation of Airline Check-In Counters:  A Queuing 

Optimization Approach.” 

Chapter III begins with a discussion on the methodology employed by 

simulationists when approaching a problem, followed by a brief introduction to the Simio 

software suite.  With the basics of the simulation process explained, they are then 

illustrated through the development of a simulation created using as close to the criteria 

and assumptions made by Parlar and Sharafali as possible.  The chapter concludes with a 

demonstration of how simulation can often provide more insight to a problem through the 

ability to easily explore different assumptions and distributions with no change to the 

core model. 

The research is concluded in Chapter IV, where the significant findings to the 

research questions are posed.  Additionally, Chapter IV provides recommendations for 

future improvements and extensions of this research in order to demonstrate how the use 

of simulation should be one of “first resort” for many complex, real-world problems. 
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II. ANALYSIS OF AN ANALYTICAL SOLUTION TO A 
COMPLEX PROBLEM 

Because our model is analytical and more realistic, the optimization 
results are on firmer ground than those based on simulation. 

—Parlar and Sharafali, (2008) 

A. BACKGROUND 

Mahmut Parlar and Moosa Sharafali published a paper entitled “Dynamic 

Allocation of Airline Check-In Counters:  A Queuing Optimization Approach” in 

Management Science in August 2008.  In this paper, the authors proposed an analytical 

method to optimize the management of airline check-in counters.  They claim that while 

others have “resorted to simulation,” they found that “this complicated problem is 

amenable to analytical treatment.” 

The authors were motivated to write this paper after witnessing the demands 

placed on the counter management staff to meet their customer-service criteria, security 

requirements, and service efficiency standards in various international airports.  They 

claim that there should be two phases in their research, of which they are focusing only 

on the first.  Parlar and Sharafali’s focus was to study “the queuing and statistical analysis 

phase to help determine the optimal number of counters needed for each flight over time 

to minimize a certain expected cost function (while implicitly achieving a desired level of 

customer service),” (Parlar & Sharafali, 2008). 

The authors saw two distinct benefits to airline-counter management as a result of 

their research.  First, their methodology, through the use of a dynamic program, would 

enable counter management staff to make optimal decisions on manning the counters to 

minimize total cost.  Second, the methodology could also be utilized to ensure that the 

airline is meeting a quality of service standard. 

Our intent through this discussion is not to fully define and explain the methods 

used by Parlar and Sharafali, but to provide a simplified framework with which their 
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assumptions can be seen in their analytical context.  For a detailed explanation on their 

methodology, it is best to refer to their paper. 

B. ASSUMPTIONS 

Such an assumption would also destroy the Markovian nature of the 
process and make the model intractable. 

—Parlar & Sharafali, (2008) 

We have always assumed that the lifetimes and the service times are both 
exponential, and with this assumption we derived analytic expressions for 
quantities of interest (the most important being the transient solution of the 
conditional probability.  

—Parlar & Sharafali, (2008) 

Assumptions underpin all models; in practice, to make an analytical solution 

possible, many assumptions must often be made to constrain the problem to something 

that is solvable.  In Parlar and Sharafali’s case, it was the authors’ goal to solve the 

problem, their result was the solution to a mathematical exercise, with little relevance to 

the original problem (Type III error).  With the goal to develop an analytical solution, the 

authors had to continually make assumptions until they were in a position to use an 

analytical process. 

In their paper, the authors explicitly stated some of the assumptions they made in 

the model development.  However, while some of the assumptions were stated, 

simplifying assumptions were not addressed, and it is important to recognize all 

assumptions made in the model—not just the stated ones. 

1. Passengers 

To begin, let us examine the assumptions made concerning the passengers.  The 

first assumption is that all passengers for a specific flight will arrive at the window 

accounted for by the model (e.g., a 3-hour window prior to flight).  This assumption is in 

direct conflict with reality.  The problem of no-shows for any given flight has been a 

problem that has vexed the airline industry since its inception, as each empty ticket is a 

loss of potential revenue.  In one recent study, the mean no-show rate for a given flight 
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was approximately 10% (Lawrence, Hong, & Cherrier 2003), which is why airlines 

attempt to factor in the expected number of no-shows when overbooking a flight. 

The next assumption is that all passengers arrive as individuals.  From anecdotal 

evidence alone, we know this to be categorically false.  This has several significant 

effects on their optimal solution.  First, the calculated arrival rates for the subintervals do 

not take group arrival into consideration.  Second, the service time is based on assisting 

an individual, vice a group of people who are traveling together (e.g., a husband and 

wife).  Another key assumption is that all passengers have the same complexity and 

needs.  This, too, each of us knows to be false based on personal experience.  There are 

times when scheduling issues, seat issues, or connection issues take place that make the 

initial check-in process more complex.  In addition, passengers arrive according to a 

specific profile, which must be known in advance.  This profile is used to determine the 

length of the subintervals and the arrival rates ( )k̂λ  for each subinterval. 

The calculation and use of k̂λ  for each subinterval is also suspect.  Their 

calculations are based on the procedure given in Basawa and Prakasa Rao (1980).  This 

procedure calculates a constant arrival rate over a subinterval.  See Parlar and Sharafali 

(2008) (when referring to the model and assumptions made by Parlar and Sharafali, it 

shall be henceforth referred to as the Parlar Model for brevity) for amplification. 
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Through the use of the equations above, Parlar and Sharafali provide a numeric example, 

as shown in Table 2 (from this table, each period k  is one hour in length).  To see a 

detailed definition of these variables, refer to Parlar and Sharafali (2008). 
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Period k  
No. of Passengers Arrived 

( )kn  

Arrival Times 

[ ]( )1 hrs.nτ τ< ⋅⋅⋅ <  k̂λ  

1 4 [0.32, 0.34, 0.42, 0.47] 0.31 
2 6 [1.15, 1.46, 1.47, 1.58, 1.93, 1.96] 0.69 
3 5 [2.11, 2.44, 2.57, 2.71, 2.87 1.83 

Table 2.   Numerical Example of Estimated Arrival Rates (From Parlar &  
Sharafali, 2008) 

Given that these arrival rates are constant over each 1-hour period, one would 

expect that the projected number of arrivals would be able to be calculated.  In this case, 

there were 15 arrivals scheduled; however, using the calculated arrival rates, one cannot 

match the expected number of arrivals with the number that actually arrived. 

Finally, the authors assumed that all passengers arriving are traveling in the same 

class.  This is instrumental in their calculation of the passenger delay cost, as the cost is 

set at a fixed value for all passengers.  This, too, does not reflect the reality of most 

airline traffic.  It only applies when one is addressing a very minor number of instances 

where there is no class differentiation on price of seat, or significance of the passengers. 

2. Service 

The way in which the customers are served is the next set of assumptions that are 

examined.  First, over any given epoch, a constant number of counters are available.  The 

number of open counters can only change at the beginning of each period ( )k , which is 

based on the number people who have arrived and the number of people who have 

arrived and already completed service.  The times at which these decisions are made are 

based on the history of previous arrivals on which the arrival rates have already been 

calculated.  Thus far, the conditions set are not too unrealistic.  However, when the 

service rate is examined, it is another story.  First, the authors assume that the service rate 

for a given counter ( )µ  is the same for each counter.  Second, the service rate increases 

as a function of the number of people who have not been served, and the number of open 

counters.  This presents a major issue with the analytical solution, as it is not reasonable  
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that service rates increase linearly as a function of the number who have arrived and not 

yet had service completed.  Table 3 illustrates service rate (as a function of passengers 

per unit time) with this assumption. 

 Number of Passengers Arrived Who Have Not Completed Service 
1 2 3 4 5 6 7 9 9 10 

N
um

be
r 

of
 

O
pe

n 
C

ou
nt

er
s 1 5 10 15 20 25 30 35 40 45 50 

2 10 20 30 40 50 60 70 80 90 100 
3 15 30 45 60 75 90 105 120 135 150 
4 20 40 60 80 100 120 140 160 180 200 
5 25 50 75 100 125 150 175 200 225 250 

 Service Rate (Passengers/Unit Time) 

Table 3.   Service Rate Table Based on the Parlar Model 

In addition to an impossible increase in rate of service, the authors assume an 

exponential service time distribution in order to make the model mathematically 

tractable.  The fact that the mode of the exponential probability density function is equal 

to zero, one can reasonably argue against the validity of the “most likely” service time is 

zero assumption.  The authors did provide a discussion regarding the potential use of 

Erlang service times, but concluded that “such a generalization would probably require a 

computational approach (rather than an analytic approach as used in this paper) due to the 

resulting high dimensionality” (Parlar & Sharafali, 2008).  This statement illustrates that 

the author’s goal was to provide an analytical solution vice a solution which actually 

addresses the problem (Type III error). 

3. Costs 

The goal of the authors was to provide an optimal solution that is based on 

minimizing cost to the airline; thus, the assumptions made regarding cost play a 

significant role in the development of their solution. 

The first cost is the Passenger Delay Cost ( wC ).  The authors chose to use  

wC =$40, which they claim is close to the value of the Federal Aviation Administration’s 

(FAA) estimate for business class customers.  As mentioned previously, all passengers 

are considered to be in the same class.  The total expected cost for the passengers during 
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each period is based on the calculation for the expected wait time during each period.  

This value is determined by the authors as follows (in passenger hours): 

( ) ( ) ( ) ( ) ( )
1

1
k k k k

k k

c t c t
t tk k

k k k k
k k k

N m N me eW c m n e e
c c c

µ µ
λ λλ

λ µ µ λ µ

+
+

− −
− −− −  −

= + − + − − −  .
 

It is important to note that in this equation, the arrival rates are based on the 

previous estimates, and the service rate is affected by the number of open counters and 

the number of passengers who have arrived, but not completed service.  Thus, any 

problem with the assumptions has a direct impact on the optimal solution they calculate.  

Another important item to note regarding this cost is that the cost is only attributed to the 

expected delay that the passenger experiences while waiting in the queue and the service 

time itself.  The time to walk between their arrival point and the security checkpoint are 

not accounted for. 

The next cost assumed is the Check-In Counter Operating Cost, ( )sC .  Here the 

authors chose to use a value of 60sC = .  The authors based this cost on their “best 

guess” of associated costs, as no real analysis had been previously done to provide a cost 

estimate for the assumptions made in their counter model.  Their estimate is based on the 

cost of the employee, use of the telephone, counter space, restrooms, and etcetera.  The 

interesting part of this assumption is that the cost is a deterministic cost, based solely on 

the number of counters open during a specific period.  This means that the cost is only 

incurred when the counter is manned. 

The cost for each interval is based on the number of counters open during the 

interval and the expected wait time and cost of the passengers: 

( ) ( ) ( ) ( )1, ,k k k k k k w k k s k k kg c g c m n C W c C t t c+= = + − . 

The third cost taken into account is the Aircraft Delay Cost, ( h ).  The authors 

chose $20h =  as the value to use in the optimization.  This represents the cost incurred 

by the airline for every passenger not cleared when the counter is expected to close.  The 

authors assumed that this would most likely cause a delay in the departure of the aircraft.  
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The authors used data from the European Organization for the Safety of Air Navigation 

(EOSAN), which provides a cost estimate due to delays in transportation by source in 

cost per minute values.  The authors assumed that the delay would be due to people not 

checked in, and took the average duration of delay and divided it by the number of 

passengers not checked in.  While some airlines may have sufficient slack in their 

schedule that they may wait for a passenger to arrive, one can safely say that it would be 

the exception to the norm if it occurred. 

C. INTERPRETING THE SOLUTION 

The error of the third kind is the error committed by giving the right 
answer to the wrong problem. 

—Kimball, (1957) 

After Kimball provided the definition of the Type III error as quoted above, he 

went on to say “In defining it this way we are allowing the statistician the benefit of the 

doubt by rejecting the possibility that he would give the wrong answer to the wrong 

question” (2008).  In the case of Parlar and Sharafali’s (2008) paper, one must wonder if 

this is an example of a Type III error. 

Parlar and Sharafali (2008) utilized a dynamic program written in Maple to 

calculate their optimal solution.  The optimal solution they provide is a table that 

indicates the number of counters that should be open during a specific epoch, given the 

number of people who have arrived and the number of people who have already been 

served.  Table 4 lists the parameters that were used as an example to compute  

their output: 
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T  K  N  min
kc  max

kc  1̂λ  2̂λ  3̂λ  µ  
wC  sC  h  

1 3 10 1 5 0.58 1.60 2.74 5 40 60 20 

Table 4.   Parameters for Numerical Example (From Parlar & Sharafali, 2008) 

Based on the values above, the dynamic program calculated the transient 

probabilities and the expected number of passengers in the system.  Based on those 

values, the dynamic program then calculated the minimum expected cost to go from the 

beginning of the subinterval until the final time using the following expression: 

( )
( ) ( )

( ) ( ) ( )
min max , 1 1

, 0, , 0
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k k k
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The output of the dynamic program was consolidated into Table 5. 
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 n  

* * *
1 2 3, ,c c c  0 1 2 3 4 5 6 7 8 9 10 

m = 0 1,1,4           

m = 1 1,1,4 1,1,4          

m = 2 1,1,4 1,1,4 1,1,4         

m = 3 1,1,3 1,1,3 1,1,3 1,1,3        

m = 4 1,1,3 1,1,3 1,1,3 1,1,3 1,1,3       

m = 5 1,1,3 1,1,3 1,1,3 1,1,3 1,1,3 1,1,3      

m = 6 1,1,3 1,1,3 1,1,3 1,1,3 1,1,3 1,1,3 1,1,3     

m = 7 2,2,3 1,1,3 1,1,3 1,1,3 1,1,3 1,1,3 1,1,2 1,1,2    

m = 8 2,2,3 2,2,3 1,1,3 1,1,3 1,1,3 1,1,2 1,1,2 1,1,2 1,1,2   

m = 9 2,2,3 2,2,3 2,2,3 2,2,3 1,1,2 1,1,2 1,1,2 1,1,2 1,1,2 1,1,1  

m = 10 2,2,3 2,2,3 2,2,3 2,2,3 2,2,3 2,2,2 2,2,2 1,1,2 1,1,2 1,1,1 0,0,0 

Table 5.   Optimal Number of Counters to Open for Any ( )* ,kc m n  for Any State 

( ),m n  at 1, 2,3k =  (From Parlar & Sharafali, 2008) 

To interpret the output, one must know the epoch, number of arrivals ( )m , and 

the number of passengers who have completed service ( )n  at the end of a given epoch.  

For example, if at the end of epoch 2, six passengers have arrived ( )6m = and four of 

those passengers have completed service ( )4n = , three counters need to be opened for 

epoch 3 ( )*
3 3c = .   

Despite receiving a copy of the dynamic program code, we were unable to 

reproduce the exact table above based on the same inputs.  Additionally, it is important to 

note that Parlar and Sharafali provide a disclaimer on the use of their “optimal” solution 

when they state that “that our intention here is just to highlight the usability of our model 

rather than the use of very realistic estimates as input into our models” (Parlar & 

Sharafali, 2008). 
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III. THE SIMULATION APPROACH 

There are some serious misunderstandings concerning the nature of 
simulation and its ease of employment.  The truth of the matter is that 
there’s no such thing as ‘simple simulation.’  It’s a myth often 
inadvertently perpetuated by manufacturers of simulation software and 
professors who want their students to believe they’re learning an easier 
alternative to tools like linear programming. 

—Keller, Harrell, and Leavy, (1991) 

A. HOW A SIMULATIONIST WOULD APPROACH THE PROBLEM 

Throughout operations research textbooks (e.g., Hillier & Lieberman, 1986), 

simulation textbooks (e.g., Law & Kelton, 2000), and papers, the methodology used to 

develop a solution to a given problem is consistent.  The DoD’s MSCO for Verification, 

Validation, and Accreditation (VV&A) cite the seven-step approach (developed by Law 

and Kelton) to successful simulation modeling in the document entitled “A Practitioner’s 

Perspective on Simulation Validation,” available via their website at http://vva.msco.mil/ 

Key/key-pr.pdf.  It is through this process that the simulation for this paper is developed.  

The logical flow of this seven-step approach is illustrated in Figure 10. 
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Figure 10.   Seven Step Approach to Successful Simulation and Modeling,  
(From MSCO, 2001) 

1. FORMULATE THE PROBLEM 

Essential to formulating the problem is the identification of the problem itself.  

With the problem identified, it is then essential to determine what the overall objective of 

the study is and which specific questions need to be answered.  These are essential to 

know in the very beginning of the process in order to ensure that not only the correct data 

are collected, but the correct output mechanisms are incorporated.  These specific 

questions and objectives will shape the scope of the model and the conditions under 

which the simulation will be run. 
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2. COLLECT INFORMATION/DATA AND CONSTRUCT 
CONCEPTUAL MODEL 

The most successful procedure for model building has been to work from 
simple and small to the larger and more complex. 

—Ancker, (1995) 

With the problem formulated and the specific questions and objectives specified, 

the next step is to collect the information necessary to create a simulation that operates in 

the same manner as the airline-counter system being studied.  The data collected are used 

to program the model parameters and the probability distributions of events in the system 

(e.g., arrival times of passengers, number of passengers who travel together, and the 

service times of passengers). 

Essential to this process is ensuring that any assumptions made for the system are 

documented, along with any algorithms used when developing a conceptual model.  

There are several factors that help determine what level of detail should be represented 

within the model.  Some of these are constraints on model complexity due to the 

computer system being utilized, the cost of programming, and the amount of time it 

takes.  Others are to ensure there is sufficient detail to be able to address the credibility of 

the model.  For example, if the objective is to determine how many service counters to 

open at an airport to minimize the delay passengers experience, while also minimizing 

the operating costs, one can model the arrivals from the time they enter the airport to the 

time they have completed checking in.  Modeling their method of arrival, highway or 

parking delays, or their passage through the security checkpoints are all irrelevant when it 

comes down to answering the specific question posed in the formulation process. 

3. IS THE CONCEPTUAL MODEL VALID? 

Once the conceptual model has been developed, it is critical that a structured 

walk-through is conducted to verify its validity.  This walk-through needs to be 

conducted with people who are knowledgeable about the system to ensure that any 

erroneous assumptions on operations are addressed, and along with the analysts, to ensure 

that the required metrics are being output.  This is an iterative process, so if there are any 
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issues, it is important to address them, redesign the model (or reformulate the problem if 

it was not being understood correctly), and then check the model for validity again. 

4. PROGRAM THE MODEL 

For any given study, in selecting the tools to use, analysts must weigh 
several competing attributes, such as the models’ ease of use, agility, 
transparency, reproducibility, and realism. 

—Lucas and McGunnigle, (2003) 

As pointed out by Lucas and McGunnigle (2003), choosing the right tool is 

essential in constructing the simulation model.  The tool that one picks is based on 

availability, knowledge, cost, and capabilities.  Some models can be implemented in 

commercial programs such as Simio and ARENA, whereas others are better suited to be 

done in a programming language such as C++ or JAVA.  Regardless of the software used 

to implement the model, the limitations of the software and how those limitations affect 

the capability of the software to implement the model as designed need to be known, 

understood, and accounted for in the design and in the analysis portion. 

5. IS THE PROGRAMMED MODEL VALID? 

Whether a solution is provided through an analytical model or a simulation, one 

must be able to validate the results.  The output from the model needs to be reviewed by 

subject matter experts to determine whether or not the results are consistent with the 

understanding of the system. 

There has been a substantial volume of information published on the VV&A 

process.  Osman Balci, in his paper for the 1997 Winter Simulation Conference, 

published a very succinct taxonomy of the verification and validation techniques for both 

conventional and object-oriented simulation models.  Figure 11 is the taxonomy for his 

conventional simulation models. 
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Figure 11.   Taxonomy of Verification and Validation Techniques for Conventional 
Simulation Models (From Balci, 1997) 
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6. DESIGN, CONDUCT, AND ANALYZE EXPERIMENTS 

Unfortunately, few simulation practitioners seem to be aware of the 
additional insights that can be gleaned by effective use of designs. 

—Kleijnen et al., (2005) 

Understanding how to properly design a series of experiments for the maximum 

effectiveness is critical for both the stakeholder and the analyst.  Through a robust DOE, 

one can gain a better understanding of the system and find more robust solutions than if 

one limits the design to looking only for an optimal solution.  In the paper entitled “A 

User’s Guide to the Brave New World of Designing Simulation Experiments,” Kleinjnen 

et al. (2005) attempt to change the mindset of simulation practitioners and researchers so 

that the DOE process is considered instrumental in any simulation study. 

When a system is complex with many variables, it becomes a significant 

challenge to run a full-factorial design.  Through a proper DOE and utilizing tools such as 

efficient nearly orthogonal and space-filling Latin hypercubes (see Cioppa & Lucas, 

2007), one can maximize the efficiency and ability of the analysts to “examine multiple 

factors within the simulation through fitting models with main, quadratic, and interaction 

effects with nearly uncorrelated estimates of the regression coefficients for the linear 

effect terms” (Cioppa & Lucas, 2007). 

7. DOCUMENT AND BRIEF THE RESULTS 

In order for the simulation to be useful to the person who requested it in the first 

place, the results need to be presented in such a manner that the true implications of the 

analysis are unambiguous.  Simply stating the mean values of some of the parameters of 

interest is insufficient when presenting the results of the simulation to the stakeholders.  It 

is imperative that the analyst not only provide the means, but the confidence intervals and 

the conditions under which those means were ascertained.  Then, if sensitivity analysis 

was conducted, present that information as well, followed by the identification of 

possible improvements to remove bias, increase precision (fidelity), or other factors 

needed for better sensitivity analysis. 
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B. THE SIMIO SOFTWARE 

The software chosen to implement a simulation version of the Parlar Model is 

Simio (www.simio.com).  Simio (Simulation Modeling framework based on Intelligent 

Objects) provides a graphical, object-oriented modeling framework that allows for both 

continuous and discrete time events, as well as supporting an event, process, object, and 

agent modeling view.  Figure 12 shows the graphical user interface of Simio, which 

allows for representation in both two and three dimensions. 

 

Figure 12.   Simio Model View of the Airport Terminal Example Scenario 

With a built-in analytical tool, the “quick look” of the simulation data is 

extremely convenient.  It allows for the user to verify the outputs of the model during the 

course of the model development without having to export the results and interpret the 

results using additional software.  The software allows for a box plot, histogram, 

individual observations, confidence intervals, and a means line to all be depicted on the 

same graph.  Figure 13 illustrates this functionality utilizing two different scenarios of the 

same model. 
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Figure 13.   Simio Response Results Display—Depicting Two Different Scenario 
Evaluations of the Same Model 

Taking full advantage of multiple core processors, Simio can run multiple 

scenarios concurrently, each with separate streams of random numbers.  This greatly 

reduces the total run time on an average computer system (Simio, 2011).  Further, 

leveraging increased graphics capability, Simio allows for both two-dimensional and 

three-dimensional graphical representation of the system.  Through the use of 

standardized coding, Simio has a direct interface to the Google 3D Warehouse, allowing 

for the simulation to be modeled visually as accurately as possible.  For some systems 

(and decision makers), the visual component provides insight that the analytical 

component might not make apparent. 

Simio also provides an “Experimentation Mode,” which allows for a DOE to be 

run, allowing as many scenarios and replications of each scenario run as desired, with the 

output of all readily available to either view within Simio or be exported to a  

comma-separated values (CSV) file for further analysis. 
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For detailed information regarding the Simio software one should refer to the 

Simio Reference Guide, available at www.simio.com/academics/simio-academic-

resources.htm. 

C. SIMULATION MODEL BASED ON THE PARLAR MODEL 

1. Formulation, Data Collection, and Conceptual Model 

To follow the steps as discussed previously, the first step in building our model is 

to identify the problem.  In this case, the problem is to ascertain the validity of the 

analytical solution presented by the Parlar Model.  With the problem identified, the next 

step is to formulate the problem.  Here, we will attempt to replicate the same assumptions 

and conditions and time frames as done by Parlar, hence the data, distributions, and 

associated problem parameters should be the same in the simulation model as in the 

analytical model. 

Using the same parameters as Parlar and Sharafali (2008) (see Table 6), we 

attempt to replicate the Parlar Model as accurately as possible.  A minimum of min 1kc =

counters must be open, while no more max 5kc =  counters being open during a given 

epoch.  With 3K =  epochs and 1T =  hour, each epoch is 20 minutes in length.  All 

10N =  passengers will arrive during that time frame, with the estimated arrival rate of 

k̂λ  per epoch.  These passengers will be processed at a mean rate of 5µ =  (passengers 

per hour).  The cost of passenger delay is 40wC =  per hour, while the cost of delaying the 

aircraft for every passenger not checked in by is 20h =  per passenger.  The cost of 

operating the counters is 60sC =  per counter, per hour. 

T  K  N  min
kc  max

kc  1̂λ  2̂λ  3̂λ  µ  
wC  sC  h  

1 3 10 1 5 0.58 1.60 2.74 5 40 60 20 

Table 6.   Parameters for Numerical Example (From Parlar & Sharafali, 2008) 

During the development of the conceptual model, a problem was identified with 

the given arrival rates per epoch.  We were unable to produce a system using the above 
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rate parameters such that exactly 10N =  passengers arrive within the 1T =  hour period.  

This brought into question the validity of the k̂λ ‘s.  A simple experiment was done in 

order to ascertain whether or not these were valid values.  Given the following: 

• k̂λ ‘s are known, 

• ˆ
kk k Tn Vλ = , and 

• ( ) ( )1
10k

n
T i i i n k ni

V x x Tτ τ τ−

+=
≡ − + −∑ .

 

Utilizing Microsoft EXCEL and the SOLVER add-in, 1̂λ  was calculated for { }1 1, 2,3n =  

to minimize or maximize the value of 1̂λ  in order to determine if 1̂λ =0.58 was feasible.  

Based on the calculations shown in Table 7, the value for 1̂λ =0.58 is not feasible.  Thus, 

it is apparent that the values provided in the paper were either not calculated in 

accordance with the method indicated, or there was an error during the publication 

process where incorrect values were substituted. 

xi τi+1 τi xi(τi+1-τi) VTk nk/VTk Solved 
Three Arrivals 

10.0000 0.3333 0.0000 3.3333 

3.3333 0.9000 MIN 9.0000 0.3333 0.3333 0.0000 
8.0000 0.3333 0.3333 0.0000 
7.0000 0.3333 0.3333 0.0000 

Two Arrivals 
10.0000 0.3333 0.0000 3.3333 

3.3333 0.6000 MIN 9.0000 0.3333 0.3333 0.0000 
8.0000 0.3333 0.3333 0.0000 

One Arrival 
10.0000 0.0000 0.0000 0.0000 3.0000 0.3333 MAX 9.0000 0.3333 0.0000 3.0000 

       Cells in blue represent the xn(Tk-τi) portion of function 

Table 7.   Calculation of 1̂λ  Based on the Parlar Model Parameters 

In order to provide a simulation result as close as possible to the Parlar Model’s 

conditions, the values of 5.22, 14.4, 24.66 (the original k̂λ ‘s multiplied by a factor of 9) 

produced an average of 9.8 arrivals over the 1-hour period.  Runs during which 10 

arrivals did not occur were omitted from analysis after the preliminary examinations. 
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2. Program and Validate Model 

a. Basic Model 

As the scope of the model in this instance is designed to specifically 

represent the same system as in the Parlar paper, the conceptual model was very easy to 

build.  To program the model, Simio provides a great flexibility that programming in 

SIMKIT or developing the simulation in ARENA did not, as Simio has a very easy to 

learn (and use) graphical user interface (contrary to SIMKIT), and an installed 

experimentation, optimization, and analysis tool (contrary to ARENA).  To start the 

model, a generic source, server, and sink are dragged and dropped from the Standard 

Library onto the Modeling Canvas (see Figure 14), then the objects are renamed to be 

representative of their respective functions of “Arrivals,” “Counters,” and “Security.” 

 

Figure 14.   Simio User Interface when Creating a New Model (From Joines &  
Roberts, 2010) 
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As seen in Figure 15, each of these objects is connected via a “Connector” 

object (again taken from the Standard Library), which allows for a zero time transit 

between the objects (as assumed in the Parlar Model). 

 

Figure 15.   Basic Simio Implementaiton of the Parlar Model 

As mentioned previously, Simio has an object-oriented architecture.  

Combining the object-oriented architecture with an easy to navigate graphical user 

interface, it is extremely easy for beginning users to quickly customize each of the 

objects in the Standard Library.  By selecting an object on the Modeling Canvas, the 

properties of that object are displayed in the Property Inspector (see Figure 15).  To 

establish some of the conditions of the Parlar Model, the “Arrivals” object must be 

modified.  By selecting the “Arrivals” object, the properties of that object are then 

displayed (see Table 8).  The first parameter to change is “Arrival Mode,” by selecting 

the “Time Varying Arrival Rate.”  This allows for a rate table to be utilized in lieu of a 

single distribution, allowing for complex arrival rates to be modeled within the 

simulation, which is much more representative of reality.  A portion of the simulation 

control is also embedded in the “Arrivals” object, as it will only produce a maximum of 

N  arrivals (where N was previously defined as 10N =  by the Parlar Model). 
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Table 8.   Properties of the “Arrivals” Object 

The Arrivals Rate Table (as seen in Table 9) allows for any number of 

time periods of constant length to be entered.  Upon reaching the end of rate table, Simio 

loops back to the first row if the simulation is still running. 

 

Table 9.   Arrivals Rate Table 
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With the parameters set for the “Arrivals” object, the “Counters” object 

requires settings to be established (see Table 10).  First, the initial server capacity is set to 

a variable “E1SC” (epoch 1 Server Capacity).  The processing time for each entity is 

determined through a random exponential draw, based on the variable “ServiceRate.”  

Upon the model’s initialization, the “EstablishInitialServiceCounterRate” process is 

called, and then upon processing each entity, the “UpdateServiceRate” process is called 

(see Figure 16).  This process is included to mimic the Parlar assumption that the service 

rate at the counter will increase as a function of the number of people in line and being 

served.  Table 10 shows the properties of the “Counters” object. 

 

Table 10.   Properties of the “Counters” Object 

The cost of the counters is tallied using a “Rate Tally Statistic.”  This 

allows for the rate at which cost is accrued (based on the number of open counters and 
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the counter operating cost) to happen in the background since that portion of the cost is 

not passenger dependent.  The first time this process is called is on the initialization of 

the project.  It also will run each time the “Counters” object capacity (which represents 

the number of open counters) changes (see Figure 16 and Table 11). 

 

 

Figure 16.   Update Counter Cost Rate Process 

 

Table 11.   Assignment for Total Counter Cost Tally Statistic 

A key assumption of the Parlar Model is that the service rate provided is 

dependent on the number of people in the system who have not completed service (see 

Figure 17).  As one of the tests that will be run removes this assumption, two different 

assignments functions are utilized, depending on which case is being examined (see 

Table 12). 

 

Figure 17.   Update Service Rate Process 



 48 

 

 

Table 12.   Service Rate Calculations 

Upon completion of service, the passengers arrive at the “Security” object.  

As the entities are destroyed, the first cost process is called (see Table 13 and Figure 18).  

The first portion of this process is to record the passenger delay cost in the variable 

assigned to track the total cost of passenger delay (see Table 14).  The process then 

checks to see if all N  passengers have arrived, and if so, closes the counters (see Tables 

15 and 16). 

 

Table 13.   Properties of the “Security” Object 

 

Figure 18.   Add All Passenger Costs Process 



 49 

 

Table 14.   Passenger Delay Cost Calculations 

 

Table 15.   Decision to Close Counters Logic 

 

Table 16.   Closing the Counters by Setting Capacity to Zero 

b. Cost Factors 

With the basic flow of the model complete, the final cost elements need to 

be included.  The first of these is the Airline Delay Cost (see Figure 19).  This cost is 

incurred for all passengers who are scheduled to be on the plane, but have not cleared the 

service counter at the time the service counter is supposed to close (Table 17).  This 

process is called each time an entity arrives at the “Security” object.  The current time is 

checked to determine whether or not the counters should be closed, and if they are—the 

Aircraft Delay Cost is invoked (see Table 18). 
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Figure 19.   Airline Delay Cost Process 

 

Table 17.   Logic to Decide Whether or Not to Implement Aircraft Delay Cost 

 

Table 18.   Aircraft Delay Cost Assignment 

At the end of the run, the “OnRunEnding” process is called (see  

Figure 20).  This process calculates the total cost for the run by the summation of the 

airline delay costs, the service counter costs, and the passenger delay costs (see  

Table 19).  This is the key output of the simulation, on which results will be compared. 

 

Figure 20.   Total Cost Summation Process 
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Table 19.   Total Cost Calculation 

c. Decision Management 

With all necessary objects, connections, and cost calculations in place, the 

remaining portion of the implementation is the decision management criteria for how 

many service counters should be open, given the state of the system.  The logic of the 

management process is seen in Figure 21. 

 

Figure 21.   Management Process 
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Upon run initialization, this process commences its work.  The first 

assignment is to update the variable tracking which epoch the simulation is in (see  

Table 20).  After each epoch is complete, the process loops back to the epoch Tracker to 

move to the next epoch. 

 

Table 20.   Current Epoch Calculations 

The next step is to determine which epoch we are in, in order to facilitate 

the decision-making process (see Table 21).  Considering changes only occur at the end 

of the first and second epoch, the logic for the third epoch is much simpler, and does not 

have to loop back to the epoch tracker. 

 

Table 21.   Epoch Decision Logic 

Figure 22 shows the logic flow for epoch 1.  As the first and second epoch 

logic works the same, with the only difference in updating the specifics for each epoch, 

the discussion of the logic flow for epoch 1 applies to both. 
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Figure 22.   Logic Flow for Epochs 1 and 2 

Upon reaching either epoch 1 or 2, a delay of 20 minutes occurs before 

proceeding to the next step.  This time is based on T K where T  was the time allotted (in 

this case, 1T =  hour) and the number of epochs ( )3K = .  Following the delay, the 

number of arrivals and the number of people served during that period are calculated in 

the Update epoch Data step.  Simio allows for multiple variables to be manipulated with 

each assigned step, as shown in Figure 23. 
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Figure 23.   Updating Epoch Data 

Using the “Experiment” feature of Simio, logic was included in the system 

to determine which type of decision-making process to use.  The first option checks to 

see if the configuration generated by the built-in optimization process is to be used, and if 

it is, it executes it. 

Figure 24 shows the logic flow for the optimization results.  Each of the 

decision points within the logic is determined via the built-in optimization tool  

“Opt-Quest.”  This tool uses a heuristic algorithm and can be configured for multiple 

settings and variables.  For each epoch, there is a decision point for the number of arrivals 

that have occurred from the start of the run to the end of that epoch.  Based on whether or 

not the number of arrivals were less than or equal to that decision point, the next step of 

the logic is executed.  The next step is based on the number of passengers served from the 

start of the run to the end of that epoch.  Based on the number of passengers served, the 

“Counters” capacity is updated with a value between 1 and 5. 
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Figure 24.   Optimization Results Server Capacity Assignment Logic 

The results of the optimization are discussed in the analysis segment.  

Table 22 lists the variable names, along with their definitions and range of values.  To do 

a full-factorial design requires a total of 100,656,875 design points.  Regardless of the 

computing power available, running a sufficient number of replications for each of those 

design points could not be done in a reasonable time. 
Variable 

Name Description Min 
Value 

Max 
Value Increment Number of 

Settings 
A1DP m in epoch 1 0 10 1 11 

NS1DP1 n in epoch 1 when “m” Exceeds 
A1DP 

0 10 1 11 

A2DP m in epoch 2 0 10 1 11 
NS2DP1 n in epoch 2 when “m” is Less than 

or Equal to A2DP 
0 10 1 11 

A2NS1_A1 Counters to open when in epoch 2 
when m <= A2DP and n < NS2DP1 

1 5 1 5 

A2NS1_A2 Counters to open when in epoch 2 
when m <= A2DP and n >= 
NS2DP1 

1 5 1 5 

NS2DP2 n in epoch 2 when “m” is Less than 
or Equal to A2DP 

0 10 1 11 

A2NS1_A3 Counters to open when in epoch 2 
when m > A2DP and n < NS2DP2 

1 5 1 5 

A2NS1_A4 Counters to open when in epoch 2 
when m > A2DP and n >= NS2DP1 

1 5 1 5 

Number of combinations required for a full-factorial design: 100,656,875 

Table 22.   Variable Names and Descriptions for Optimization Run 
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In order to reduce the number of possible combinations, insight from the 

previous design runs was utilized to limit the scope of each of the variables.  The updated 

values are seen in Table 23.  It was with these values that the initial optimization run was 

conducted.  The initial configuration for the optimization run allowed for a minimum of 

25 replications, a maximum of 250 replications, and a total of 5,000 scenarios—with the 

confidence level being 99% and a relative error of 0.01 (see Table 24). 
Variable 

Name Description Min 
Value 

Max 
Value Increment Number of 

Settings 
A1DP m in epoch 1 2 6 1 5 

NS1DP1 n in epoch 1 when “m” Exceeds 
A1DP 

3 6 1 4 

A2DP m in epoch 2 5 8 1 4 
NS2DP1 n in epoch 2 when “m” is Less than or 

Equal to A2DP 
3 6 1 4 

A2NS1_A1 Counters to open when in epoch 2 
when m <= A2DP and n < NS2DP1 

2 8 1 7 

A2NS1_A2 Counters to open when in epoch 2 
when m <= A2DP and n >= NS2DP1 

2 8 1 7 

NS2DP2 n in epoch 2 when “m” is Less than or 
Equal to A2DP 

2 8 1 7 

A2NS1_A3 Counters to open when in epoch 2 
when m > A2DP and n < NS2DP2 

2 4 1 3 

A2NS1_A4 Counters to open when in epoch 2 
when m > A2DP and n >= NS2DP1 

2 4 1 3 

Number of combinations required for a full-factorial design: 987,840 

Table 23.   Changed Variable Min and Max Values to Utilize for Optimization Run 

 

Table 24.   Configuration for First Optimization Run 
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Examining the top 100 scenarios for the minimum and maximum values 

of each variable, the optimization run was conducted again, this time requiring a 

minimum of 100 and a maximum of 500 replications.  This process was completed once 

more for the top eight scenarios, but now with a minimum of 2,000 and a maximum of 

4,000 replications, with the confidence level being 99.9% and a relative error of 0.001 

(see Table 25). 

 

Table 25.   Configuration for Final Optimization Run 

After conducting a total of 4,000 runs on the each of the eight scenarios, a 

subset of 29,528 were examined (based on 10 arrivals during the 1-hour period).  The 

summary statistics of these are listed in Table 26.  Utilizing a Student’s t comparison 

method, all scenarios are statistically the same.  As scenario 4 had the lowest mean and 

was in the group with the smallest range, scenario 4’s configuration (see Table 27) is 

determined as the final optimized solution parameters. 

Scenario Mean 
(TotalCost) 

Std Dev 
(TotalCost) 

Min  
(TotalCost) 

Max  
(TotalCost) 

1 165.164 48.144 67.781 435.174 
2 165.128 47.373 71.784 435.174 
3 164.998 47.519 71.784 435.174 
4 164.961 47.535 71.784 435.174 
5 166.476 49.259 67.781 477.470 
6 166.256 49.019 67.781 477.470 
7 165.140 47.427 71.784 435.174 
8 165.263 47.988 67.781 435.174 

Table 26.   Summary Statistics for Eight Optimization Candidates 
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Variable 
Name Description Final Value 

A1DP m in epoch 1 3 
NS1DP1 n in epoch 1 when “m” Exceeds A1DP 2 
A2DP m in epoch 2 8 

NS2DP1 n in epoch 2 when “m” is Less than or Equal to A2DP 4 
A2NS1_A1 Counters to open when in epoch 2 when m <= A2DP and n < NS2DP1 3 
A2NS1_A2 Counters to open when in epoch 2 when m <= A2DP and n >= NS2DP1 2 

NS2DP2 n in epoch 2 when “m” is Less than or Equal to A2DP 6 
A2NS1_A3 Counters to open when in epoch 2 when m > A2DP and n < NS2DP2 3 
A2NS1_A4 Counters to open when in epoch 2 when m > A2DP and n >= NS2DP1 2 

Table 27.   Final Variable Settings for Optimization Run Configuration 

If the results from the optimization analysis are not to be used, the logic 

then checks to see if the Parlar solution is to be used.  The implementation of the Parlar 

solution follows a similar, but more complex logic tree, as the optimization results uses.  

If neither complex management solution is to be used, the system defaults to a preset 

value for the number of service counters to remain open during an epoch.  At the 

completion of epochs 1 and 2, the process is looped back to the beginning to increment 

the epoch counter and follow the logic flow again.  At the end of the third epoch, the 

process stops after recording the number of arrivals to the system and the number who 

have completed service. 

3. Design of Experiments and Analysis 

The objective of this project is to determine if the Parlar results provide an 

optimal solution when compared to a generic baseline configuration, a configuration 

based on insight provided from the simulation results, and a solution gained from using 

Simio’s built-in optimization algorithm.  In addition to testing the optimality of the Parlar 

Model, two statements regarding the optimality of the Parlar Model’s solution will  

be assessed: 

• The number of counters to keep open is nondecreasing in the 
number of passengers who have already arrived (monotonicity of 
the optimal solution). 

• The number of counters to open is nonincreasing in the number of 
passengers who have been serviced.  (Parlar & Sharafali, 2008) 
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To establish the generic baseline configuration, a full-factorial design was 

utilized, allowing the number of servers to be open in each epoch range from 1 to 5, with 

each design point utilizing 100 replications.  Using the resulting output, and filtering out 

instances when 10 arrivals did not occur within the 1-hour time period, 11,422 simulation 

results remained.  Utilizing a Student’s t comparison method, the top 30 results with the 

lowest mean cost are selected for further experimentation with an increased number of 

runs.  These top 30 were then selected for an additional 400 runs, with the comparison 

made again, now selecting the top five configurations.  These final five configurations 

were then subjected to a total of 4,000 replications each, with the configurations for each 

scenario shown in Table 28. 

Configuration Epoch 1 Capacity Epoch 2 Capacity Epoch 3 Capacity 
Scenario2 1 1 2 
Scenario3 1 1 3 
Scenario7 1 2 2 
Scenario8 1 2 3 
Scenario4 1 1 4 

Table 28.   Scenario Configuration Matrix 

For each of the scenarios, the values listed in the applicable epoch Capacities 

column represent the number of service counters open during that period.  For example, 

Scenario 2 has one server open during epoch 1, one server open during epoch 2, and two 

servers open during epoch 3.  Figure 25 shows the distribution of cost values for each of 

the scenarios.  Utilizing a Student’s t comparison method, as discussed previously, 

Scenario 2 had the lowest mean and was significantly different than the other scenarios 

(see Table 29). 



 60 

 

Figure 25.   One-Way Analysis of Cost by Scenario 

Level       Mean 
Scenario4 A          172.44781 
Scenario8   B        169.58419 
Scenario7     C      159.83866 
Scenario3       D    156.30028 
Scenario2         E  148.36898 

Levels not connected by same letter are significantly different. 

Table 29.   Means Comparisons for Each Pair Using Student’s t 

With the generic baseline configuration established, one can exploit the benefits 

of simulation to analyze the underlying conditions that cause the variability within the 

cost data, as using simulation lets you examine the conditions which cause the outliers—

if the appropriate parameters are recorded during the simulation run.  After conducting a 

total of 20,000 runs on the baseline configuration, a subset of 18,472 were examined 

(based on 10 arrivals during the 1-hour period).  The summary statistics of these are listed 

in Table 30. 
COST 

Mean Std Dev Min  Max 
$148.08 $45.97 $57.49 $553.07 

Table 30.   Summary Analysis of 18,472 Baseline Runs 

As the intent is to minimize cost, the instances in which the cost of the run 

exceeds the mean are examined.  Through selecting a subset of data in which the total 
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cost was three or more standard deviations above the mean (see Table 31), we can 

examine the conditions under which these outliers occur. 

  Number of 
Rows 

Total 
Cost 

Passenger 
Cost 

Counter 
Cost 

Arrivals 
Epoch 1 

Arrivals 
Epoch 2 

Served 
Epoch 1 

Served 
Epoch 2 

>=3 Standard 
Deviations 248 $319.85 $89.54 $133.53 1.33 4.58 0.53 1.91 

< 3 Standard 
Deviations 18,224 $145.74 $57.30 $76.40 1.81 6.67 0.79 3.45 

Table 31.   Summary Analysis of Instances with Total Cost Greater Than or Equal to 
Three Standard Deviations Compared to Those With Less Than Three Standard 

Deviations 

With the counters closing on the completion of service to the last passenger, the 

Counter Cost component to the total cost is significant when passengers are arriving later, 

forcing the counters to stay open longer.  This is seen in Table 31, with the increased 

counter cost, and lower number of passengers served during epoch 2 (Served epoch 2) 

than the corresponding values in the case with less than three standard deviations in  

total cost. 

Table 32 allows for us to identify two issues.  First, counter cost is greater when 

the counters have to remain open for a longer period due to late arrivals.  When limited to 

changing the number of open counters only at the designated intervals, the only option to 

minimize this cost is to have fewer counters open during epoch 3.  This modification, 

however, brings the risk of increasing the passenger delay cost.  To investigate this, a 

modification was included that set the number of open counters in epoch 3 to one when 

the number served in epoch 2 equaled five.  Executing an additional 20,000 runs with this 

modification yielded the results of Tables 33 and 34.  As expected, the counter operating 

costs decreased; however, the passenger delay costs increased too much, resulting in a 

higher overall mean cost. 
 Mean Values 

Counter 
Dominant 

Number 
of Rows 

Total 
Cost 

Passenger 
Cost 

Counter 
Cost 

Arrivals 
Epoch 1 

Arrivals 
Epoch 2 

Served 
Epoch 1 

Served 
Epoch 2 

Counter 191 $315.48 $79.69 $143.01 1.29 4.53 0.60 2.17 
Pax 57 $334.52 $122.57 $101.78 1.46 4.75 0.28 1.02 

Table 32.   Summary Analysis of Instances With Total Cost Greater Than or Equal to 
Three Standard Deviations Based on Major Cost Component 

 



 62 

 Mean Values 
Counter 

Dominant 
Number 
of Rows 

Total 
Cost 

Passenger 
Cost 

Counter 
Cost 

Arrivals 
Epoch 1 

Arrivals 
Epoch 2 

Served 
Epoch 1 

Served 
Epoch 2 

Counter 31 $366.70 $92.41 $151.06 0.65 3.32 0.29 1.26 
Pax 291 $388.36 $170.13 $90.12 2.11 6.56 1.24 3.43 

Table 33.   Summary Analysis of Instances (Using Modified Baseline) With Total 
Cost Greater Than or Equal to Three Standard Deviations Based on Major Cost 

Component 

COST 
Mean Std Dev Min  Max 

$158.25 $59.10 $58.66 $655.97 

Table 34.   Summary Analysis of 18,476 Modified Baseline Runs 

Leveraging the ability to assign a variable and run multiple experiments of the 

simulation, a variable X  was inserted into the logic to see if any value of number served 

in epoch 2 would enable the closing of one counter in epoch 3 (see Figure 26). 

 

Figure 26.   Branching Condition for Modified Baseline—Using Variable X , 
Controlled in the Experiments Window to Determine Branching 

Executing 5,000 runs at each configuration, the top three results—compared to 

the baseline simulation—are seen in Table 35.  The only scenario that was able to achieve 

a lower mean cost than the baseline was to only allow one counter to be open during 

epoch 3, when the number of served passengers during epoch 2 was greater than 7.  

While this does show an improvement, when a means comparison is done using Student’s 

t test, none of the scenarios is statistically significantly different from the other (see  

Table 36). 
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COST 
Scenario Mean Std Dev Min Max 

Baseline 148.66 46.59 63.71 449.56 
X = 6 148.47 46.98 66.37 449.56 
X = 7 148.32 46.74 66.37 449.56 
X = 8 148.37 46.71 63.71 449.56 

Table 35.   Comparison of Generic and Modified Baseline Statistics 

Level - Level Difference Std Err Dif Lower CL Upper CL p-Value 
Baseline X = 7 0.3379828 0.9729054 –1.56900 2.244967 0.7283 
Baseline X = 8 0.2914047 0.9729054 –1.61558 2.198389 0.7645 
Baseline X = 6 0.1887487 0.9729054 –1.71824 2.095733 0.8462 

X = 6 X = 7 0.1492341 0.9729054 –1.75775 2.056219 0.8781 
X = 6 X = 8 0.1026560 0.9729054 –1.80433 2.009641 0.9160 
X = 8 X = 7 0.0465781 0.9729054 –1.86041 1.953563 0.9618 

Table 36.   Comparisons for Each Pair Using Student’s t Test 

The other insight gained from the original data is that when there are few arrivals 

in epochs 1 and 2, and few served by the end of epoch 2, the mean cost is higher.  Using 

the same concept as before, a variable X  was assigned to the modified baseline (see 

Figure 27) and the experiment was run 5,000 times at each design point { }0,1,2,3,4X ∈  

to determine if any improvement could be made.  In order to see the results clearly, the 

conditional statement used is (Arrive < X  && Served <= 0). 

 

Figure 27.   Branching Condition for 2nd Modified Baseline—Using Variable X , 
Controlled in the Experiments Window to Determine Branching 

Of the 30,000 combined runs (5,000 per simulation), 27,713 runs met the 

previously stated criteria of all 10N =  arrivals occurring during the 1T = -hour time 

frame.  The summary statistics for these runs are listed in Table 37. 
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COST 
Scenario Mean Std Dev Min Max 

Mod 7 w/o Change 148.32 46.74 66.37 449.56 
Mod 7  X=0 148.32 46.74 66.37 449.56 
Mod 7  X=1 148.33 46.76 66.37 449.56 
Mod 7  X=2 148.33 46.72 66.37 449.56 
Mod 7  X=3 148.30 46.70 66.37 449.56 
Mod 7  X=4 148.36 46.56 66.37 447.46 

Table 37.   Comparison of Modified Baseline (More Than 7 Served in Epoch 2), With 
Opening an Additional Counter in Epoch 3 Based on Number of Arrivals (With 

None Completing Service by the End of Epoch 2) 

Utilizing the result with the lowest mean cost (when the number of arrivals in 

epoch 2 is less than 3), one additional set of experiments is conducted.  Given the 

conditional statement (Arrive < 3 && Served <= X ), where { }0,1,2,3X ∈ , we conducted 

10,000 replications at each design point.  Based on the results listed in  

Table 38, there was an improvement when the X  value was set to two and three.  

Considering that the results in both cases are identical, the finalized modification has the 

conditional statement set at (Arrive < 3 && Served <= 2).  The finalized implementation 

is seen in Figure 28. 
COST 

Scenario Mean Std Dev Min Max 
Mod S7 A3 X=0 148.30 46.70 66.37 449.56 
Mod S7 A3 X=1 148.21 46.58 66.37 449.56 
Mod S7 A3 X=2 148.13 46.37 66.37 449.56 
Mod S7 A3 X=3 148.13 46.37 66.37 449.56 

Table 38.   Comparison of Modified Baseline (More Than 7 Served in Epoch 2), With 
Opening an Additional Counter in Epoch 3 Based on 3 Arrivals (and Less Than or 

Equal to X  Completing Service by the End of Epoch 2) 

 

Figure 28.   Finalized Modified Baseline Configuration 
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With the modified baseline configuration determined, the final comparison 

between the four models can now be assessed.  Utilizing a total of 80,000 runs (20,000 of 

each configuration), 73,879 runs met the 10 arrival requirement.  The summary statistics 

of the four different configurations is listed in Table 39.  Further discussion of these 

results is in the next section. 

COST 
Scenario Mean Std Dev Min Max 

Baseline 148.08 45.97 57.49 553.07 
Modified Baseline 147.59 45.73 57.49 449.56 
Optimization Results 151.71 47.44 57.49 467.35 
Parlar Model 154.28 48.78 57.49 510.45 

Table 39.   Comparison of Four Scenarios 

With the results having very similar values, a one-way analysis was conducted 

that showed that the Modified Baseline and Baseline were statistically comparable; 

however, the Parlar Model and the Optimization Results configurations were not (see 

Tables 40 and 41), and had higher average costs. 
Level    Mean 

Parlar Model A     154.27976 
Optimization Results   B   151.71097 
Baseline     C 148.07510 
Modified Baseline     C 147.59466 

Table 40.   Means Comparisons for Each Pair Using Student’s t Test 

Level - Level Difference Std Err Dif Lower CL Upper CL p-Value 
Parlar Model Modified Baseline 6.685103 0.4890703 5.07574 8.294466 <.0001* 
Parlar Model Baseline 6.204661 0.4890306 4.59543 7.813894 <.0001* 
Optimization Results Modified Baseline 4.116312 0.4890901 2.50688 5.725741 <.0001* 
Optimization Results Baseline 3.635871 0.4890504 2.02657 5.245169 <.0001* 
Parlar Model Optimization Results 2.568791 0.4890504 0.95949 4.178088 <.0001* 
Baseline Modified Baseline 0.480441 0.4890703 –1.12892 2.089805 0.3259 

Table 41.   Means Comparison of Each Configuration With Corresponding p-Values 

4. Document and Brief Results 

As discussed previously, it is essential that the insight learned within a simulation 

study is conveyed to the decision maker in a manner that is clear and concise, addressing 

the questions raised by the study.  From the analysis of the four different model 
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configurations, the following are the significant findings (with the optimal resulting 

design output, as previously shown in Figure 28): 

• The configuration leading to the lowest mean cost was the Modified 
baseline. 

• Contrary to the statement of monotonicity by Parlar and Sharafali, 
monotonicity does not exist in the optimal solution. 

• The finding by Parlar and Sharafali that the number of counters to open is 
nonincreasing in the number of passengers who have been serviced  
held true. 

• While the Modified baseline configuration had a lower mean than any 
other configuration, it did not have a statistically significant difference 
with that of the baseline configuration. 

D. USING SIMULATION TO EXPAND OUR UNDERSTANDING 

With the comparison between the analytical model of Parlar and Sharafali and a 

simulation complete, let us now turn to demonstrating the way simulation can expand our 

understanding of a situation.  Utilizing the same arrival profiles, number of confirmed 

passengers, associated costs, and number of available counters, we shall examine the two 

following changes to the simulation: 

• Service rate does not increase as a function of the number of personnel  
in line. 

• The service rate is approximated using a gamma distribution, with 
parameters ( )6, 2α β= = . 

1. Service Rate Does Not Change 

Utilizing the baseline configuration previously discussed, 8,000 simulation runs 

were conducted, with 4,000 of those runs utilizing the increased service rate (as discussed 

previously), and the other 4,000 runs utilizing a nonadjusting service rate with the same 

mean time of service as before.  It took less than two minutes to make the changes in the 

scenario, conduct the runs, and view the resulting statistics.  As expected, the mean cost 

for the configuration without the increased service rate is higher (see Table 42). 
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 Mean Values 
Scenario Total Cost Passenger Cost Counter Cost Service Rate 

Constant Service Rate 388.41 147.81 147.67 12.0000 
Increased Service Rate 148.37 57.46 77.14 4.0701 

Table 42.   Constant Versus Increased Service Rate Comparison of Mean Values 

With these results being assessed so quickly, as conducted for the initial study, a 

full-factorial design was utilized to test all possible combinations of counters being open 

in each epoch.  Running these 125 design points, with 1,000 repetitions each, took a total 

of three minutes, the majority of which was utilized in setting up the optimization 

interface.  Taking the top 10 design points and utilizing a Student’s t test to compare 

means, the top five scenarios had no statistically significant difference.  Conducting a 

further 4,000 runs per design point (for a total of 5,000 each).  The total elapsed time to 

conduct all the experiments was just under nine minutes.  The optimal baseline 

configuration when the service rate is not increased as a function of the number of people 

who have arrived, but not been served, is one counter in epoch 1, three counters in  

epoch 2, and three counters in epoch 3.  The results of these runs are listed in Table 43. 

 Mean Values 

Scenario Total  
Cost 

Passenger 
Cost 

Counter  
Cost 

Airline Delay 
Cost 

Servers:  1 3 3 319.04 79.62 190.76 48.66 
Servers:  1 2 3 322.85 90.52 177.19 55.15 
Servers:  1 4 3 326.37 73.79 207.58 44.99 
Servers:  1 2 4 326.87 79.70 203.36 43.81 
Servers:  1 3 2 329.57 97.92 167.84 63.82 

Table 43.   Optimal Baseline Counter Schedule for System When Service Rate is Not 
Increased as a Function of the Number of Passengers in the System Who Have 

Not Completed Service 

2. Service Rate Uses Gamma Distribution 

Continuing from the previous example, the same problem is examined utilizing a 

service rate based on a gamma distribution.  As the intention is to maintain the same 

mean service time, the parameters utilized for the gamma distribution should provide the 

same mean service time as that of the exponential service rate.  As the previous scenario 

utilized an exponential distribution with a mean number passengers having service per 

hour 5µ = , the expected service time was 12 minutes.  Corresponding parameters for the 
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gamma distribution ( )6, 2α β= =  achieve the same expected service time.  Figure 29 

illustrates the difference in the two distributions. 

 

Figure 29.   Comparison of Exponential to Gamma Distributions With the Same  
Mean Times 

With the two distributions presented visually, one must question the validity of 

the use of an exponential service time in the first place.  In the case of service times, 

when looking up the “Random.Exponential(mean)” function in the Simio Reference 

Guide, the following statement appears:  “This distribution is generally not appropriate 

for modeling process delay times” (Simio, 2011).  The effect of choosing the wrong 



 69 

distribution for generating service times can be substantial.  In this case, in an analysis of 

10,000 simulation runs (5,000 for each distribution), the mean cost of using a gamma 

distribution was lower than that of the exponential distribution of the same mean (see 

Table 44).  The fact that the mean is lower is not the important insight gained from the 

comparison; rather, the true insight lies within the distribution of the total costs.  

Examining Figures 30 and 31 clearly shows that the use of the exponential service times 

is producing a much broader distribution of costs than that of the gamma distribution.  

With a much narrower distribution of costs using the gamma distribution, the “optimal 

policy” based on an exponential service time may no longer be valid. 

Scenario 

Mean Values 
Cost Data Passenger Data 

Total  
Cost 

Passenger 
Cost 

Counter 
Cost 

Airline 
Delay Cost 

Time In 
System 

Minimum 
Time 

Maximum 
Time 

Exponential 319.04 79.62 190.76 48.66 15.400 2.710 38.241 
Gamma 302.32 89.25 166.64 46.43 15.742 7.328 26.220 

Table 44.   Comparison of Mean Values When Service Time is Assumed Exponential 
to Service Time Assumed Gamma 

 

Figure 30.   Distribution of Total Costs When Exponential Service Time is Assumed 
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Figure 31.   Distribution of Total Costs When Gamma Service Time is Assumed 
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IV. CONCLUSIONS 

A. WHY SIMULATION SHOULD BE A METHOD OF FIRST RESORT 

The days of limited access to computers, simulation software, and modeling 

experts has long passed, yet the operations research community is still plagued by the 

adage that simulation is a “method of last resort.”  In an attempt to change the paradigm, 

this thesis has demonstrated how simulation has changed since its inception.  With a brief 

overview of the history of simulation, to identifying the increase in computing power, 

insight was given to the reader on where simulation started and where it is today. 

With an understanding of the changes in simulation over the decades, this thesis 

then demonstrated the power of simulation when faced with a complex problem over that 

of an analytical solution.  Often, to make a complex solution tractable, many assumptions 

have to be made, which are often in conflict with how the system really works.  With 

today’s robust simulation software capabilities, many of these assumptions (e.g., 

normality, independence, memorylessness, deterministic, linear, stationary, and 

homoscedasticity) are not required to be made.  In a detailed examination of Parlar and 

Sharafali’s (2008) paper “Dynamic Allocation of Airline Check-In Counters:  A 

Queueing Optimization Approach,” this thesis identified the vast number of assumptions 

that had to be made in order to make this solution analytically tractable.  Then, through 

the use of a simulation study utilizing as many of the assumptions and conditions in the 

Parlar Model as possible, a comparison was made between the simulation and  

analytical results. 

When the restrictions of the Parlar Model were removed from the simulation, this 

thesis demonstrated how simulations can easily adapt to changes, often providing much 

more insight on the workings of a system, as well as enabling analysts to find not only the 

optimal design, but robust designs as well. 
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B. SUMMARY OF COMPARISON BETWEEN THE SIMULATION AND 
ANALYTICAL RESULTS OF THE AIRLINE COUNTER QUEUE 

This thesis provides an examination of a paper written by Parlar and Sharafali 

(2008) on an analytical approach to providing an optimal solution on the allocation of 

airline check-in counters.  Numerous assumptions were made by Parlar and Sharafali in 

order to present an analytically tractable problem.  Many of these assumptions are made 

contrary to the actual workings of the system and, at times, were completely illogical. 

With an understanding of the model presented by Parlar and Sharafali, this thesis 

then presents the methodology originally presented by Law and Kelton (1982), and 

adopted by the Defense MSCO for VV&A (MSCO, 2001).  Through this process, and the 

use of Simio simulation software, this thesis produced a simulation model, copying the 

assumptions and distributions of the Parlar and Sharafali model as closely as possible.  

The simulation model was then exercised to test the validity of Parlar and Sharafali’s 

findings of the optimal configurations, monotonicty within the optimal solution, and that 

the number of counters to open is nonincreasing in the number of passengers who have 

been serviced. 

With the simulation model mimicking the Parlar and Sharafali’s model as closely 

as possible, the results indicated that Parlar and Sharafali’s solution was not optimal, and 

that monotonicity did not exist in the solution.  After disproving these two points, the 

simulation demonstrated the effect two of the assumptions had on their analysis.  First, 

Parlar and Sharafali assumed that service rate would increase as a multiple of the number 

of people in line.  This assumption played a dramatic role in the development of the 

optimal solution, which if attempted in reality, would be ineffective.  The second 

demonstration illustrated the importance of choosing the right distribution model.  Parlar 

and Sharafali used an exponential service time, which is also not representative of reality.  

Utilizing a gamma distribution with the same mean value demonstrated that the average 

total cost of a run is lower, and from a much narrower range, than when calculated with 

the exponential distribution due to the heavier weightings of the exponential distribution 

at higher numbers. 
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C. RECOMMENDATIONS FOR FUTURE RESEARCH 

More literature could exist on the topics of when to utilize simulation, how to 

choose the correct simulation software, and the importance of using advanced DOE 

techniques when conducting a simulation study.  Future research relating to the use of 

simulation can extend to the following: 

• Guidance on how to choose a simulation software suite based on the 
nature of the problem to be studied. 

• Analysis of simulation study results, which utilized an inadequate DOE. 

• The effects of incorrect assumptions of input data (e.g., normality, 
independence, memorylessness, deterministic, linear, stationary, and 
homoscedasticity) on simulation study results when input assumptions 
were made for convenience. 
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