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ABSTRACT

Modern medicine produces data with every patient interaction. While many data elements

are easily captured and analyzed, the fundamental record of the patient/clinican interaction is

captured in written, free-text. This thesis provides the foundation for the Military Health System

to begin building an auto classifier for ICD9 diagnostic codes based on free-text clinican notes.

Support Vector Machine models are fit to approximately 84,000 free-text records providing a

means to predict ICD9 codes for other free-text records. While the research conducted in this

thesis does not provide a consumate ICD9 classification model, it does provide the foundation

required to further more detailed analysis.
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Executive Summary

Coding is directly related to a physician’s revenue stream and, as such, receives a great deal of

attention in the private sector. Most physicians contract with external agencies to code diagnoses

from each patient encounter to ensure that the physician receives maximum reimbursement. In

contrast, the Military Heatlh System is presented with a different problem when it comes to cod-

ing. While the Military Health System does not receive payment for each patient visit, coding

plays an important role in justifying the medical budget, ensuring leadership understands the

trends of patient utilization and providing data for physician review. Unfortunately, subjectivity

in coding mitigates analysis performed across the healthcare system. Lack of confidence in

accuracy and consistency of coding leaks into the decision-making process. Leaders are able to

reject analysis when it doesn’t fit with their notions of how the system is performing. This thesis

is the first to utilize statistical learning to provide the Military Health System with an objective

and automated method to code patient diagnosis and should provide a foundation for further au-

toclassifcation research. The patient record data collected by the Military Health System allows

a variety of methodologies to be implemented; however, this thesis will focus on a statistical

learning method, support vector machines, for assigning diagnostic codes, specifically ICD9

codes, to records of patient visits based on the free-text physician notes found in those records.

Six months of data, which constituted 124,766 patient encounters, is collected from Naval Med-

ical Center Portsouth. These encounters are randomized and split into training and test sets. The

training set included 105,994 records and is split into a training set and a validation set. The

training set consists of 84,919 records and the validation set consists of 21,075 records. These

records include demographic data as well as the free-text note that will be the focus of this

study.

The Term Document Matrix is the key data structure when developing a text classifier. Its

construction involves analyzing the corpus of medical records and transforming each document

into a vector of term counts or term frequencies (tf). An example of such a document vector is

xxi



⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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#{Xray}

#{Patient}
...

#{Infection}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

3
...

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

in which the term “Reviewed” appears once, “Xray” does not appear, and so on. These vectors

are used to construct the Term Document Matrix whose elements are functions of the term

frequencies. Each row of the Term Document Matrix represents a term from the corpus and

each column represents a document. Specifically, the elements, xij , of a Term Document Matrix

are associated with the occurence of term i, in document j. That is, xij might be taken to be

the frequency of the ith word in the jth document. We analyze three Term Document Matrix

configurations in this thesis.

Support Vector Machines (SVMs) are a supervised statistical learning technique introduced by

Corinna Cortes and Vladimir Vapnik. The support vector machine seeks to find a hyperplane

that maximizes the margin between two classes, say positive and negative, in a high-dimensional

space. This hyperplane is known as the optimal hyperplane. For example, consider the two

classes represented by orange plus signs, positive examples, and blue hyphens, negative exam-

ples, in Figure 1. The goal is to find the linear function of the two variables x1 and x2 which

yields the widest separation, or largest margin, between the two classes. In Figure 1, the optimal

seperating hyperplane is in fact a line. The margin is indicated by the dashed lines parallel to

the optimal seperating hyperplane. The points on the margins are called the support vectors.

In Figure 1, the two classes are separable in two dimensions. Classes are not always separable in

their original space. By mapping them to a sufficiently high-dimensional space, classes can be

made seperable. SVM classification based on seperable classes without any crossover produces

what is known as a hard margin classifier. In addition to hard margin classifiers, a soft margin

classifier exists where the positive and negative examples are not necessarily required to be

linearly seperable. This is accomplished using a penalty function described in more detail in

this thesis.

To judge the performance of the SVM we utilize common text categorization metrics to evaluate
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Figure 1: Example of a linearly separable problem in 2 dimensions. Support vectors define the margin of largest
separation between the two classes.

the performance of the support vector machine models. These metrics include precision, a

fraction that describes the confidence we have when the model predicts a positive outcome,

recall, a fraction that describes how well the model identifies positive records out of the total

number of positive records, and F -score, the harmonic mean of precision and recall providing

insight into the overall performance of the support vector machine. The F -score provides the

final measurement of success for this study.

Results indicate that the SVM alone does not provide a consumate classification technique for

Military Health System free-text records. This thesis provides a foundation for future work in

free-text disease classification specific to the Military Health System by providing a framework

for data manipulation, and memory and analytically efficient data structures for analysis.
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CHAPTER 1:
Introduction

Healthcare delivery in the United States has been under a great deal of scrutiny since as early as

the 1920s when a study, commissioned by President Coolidge, addressed rising costs of health-

care delivery to Americans. Since that time, healthcare has been a lightning rod on the national

stage on multiple occasions and is always an issue of public debate. The delivery of health-

care is constantly changing and rife for new and elegant ways to enhance the patient/provider

experience while reducing costs.

At the turn of the 20th century healthcare practitioners were compensated with point of service

bartering, entailing currency ranging from livestock to professional/manual services. [1] One

hundred years later, third party payers and government agencies provide the financial infras-

tructure required to care for patients. As access to healthcare has expanded, the infrastructure

to support the payment system has grown. With this growth, an entire industry of person-

nel to transcribe, interpret, bill, review and pay for services rendered to patients has emerged.

The payment process hinges on the idea that diseases and procedures can be classified into

groups that are homogenous across the medical spectrum. As early as the mid 1800s, clinicians

were inventing simple ways to objectively communicate information about how patients fit into

these homogeneous categories. One such schema for communication is the International Dis-

ease Classification coding system. Currently in its 9th revision, these codes have been adapted

and grown throughout the years to their current form (ICD9), with over 7,000 code roots with

numerous extenders for each code. Codes classify a disease so that a physician’s diagnosis, re-

gardless of semantics, can be understood and used throughout the world. Standardized codes are

used for epidemiological study, medical research and billing throughout the medical community

including the Military Health System (MHS). It is these codes, and how they are assigned, that

are the focus of this study.

1.1 Problem Statement
Coding is directly related to a physician’s revenue stream and, as such, receives a great deal of

attention in the private sector. Most physicians contract with external agencies to code diagnoses

from each patient encounter to ensure that the physician receives maximum reimbursement. In

contrast, the MHS is presented with a different problem when it comes to coding. While the
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MHS does not receive payment for each patient visit, coding plays an important role in jus-

tifying the medical budget, ensuring leadership understands the trends of patient utilization

and providing data for physician review. Unfortunately, subjectivity in coding mitigates anal-

ysis performed across the healthcare system. Lack of confidence in accuracy and consistency

of coding leaks into the decision-making process. Leaders are able to reject analysis when it

doesn’t fit with their notions of how the system is performing. This thesis is the first to utilize

statistical learning to provide the MHS with an objective and automated method to code patient

diagnosis and should provide a foundation for further autoclassifcation research. The patient

record data collected by the MHS allows a variety of methodologies to be implemented; how-

ever, this thesis focuses on methods for assigning diagnostic codes, specifically ICD9 codes, to

records of patient visits based on the free-text physician notes found in those records.

1.2 Statistical Learning and Text Classification
Statistical learning is a branch of statistics that promotes the study of algorithms which allow

computers to improve their performance of a task given a training set of experiences. [2] As data

sets grow larger, statistical learning has proven to be beneficial in science, finance and industry.

Statistical learning models have been used to predict quantitative outcomes, such as stock prices,

and categorical outcomes, such as the classification of email as spam or not spam, sucessfuly

in many different industries. Medicine has an abundance of free-text data that is currently only

useful to clinical professionals. These records, while rich in detail, are cumbersome and are not

easily accessed, interpreted, nor profitable to practitioners. A solution to this problem may be

found in the use of statistical text classification.

Text classification attempts to categorize large collections of texts, known as a corpus, into

predefined categories using statistical and machine learning techniques. What makes text clas-

sification difficult is that each document can belong to multiple, exactly one, or no category at

all. Furthermore, texts within each category can be written by different authors, contain dif-

ferent vocabularies, or have different semantic structures. Practitioners of text classification

attempt to train models from data sets to automatically perform the categorization task.

Research shows that three distinct methodologies, naı̈ve bayes, k-nearest neighbors and support

vector machines, are often used to classify text. [3, 4, 5, 6] Each of these methodologies have

distinct advantages that are highlighted by multiple authors. While each of the methodologies

have proven succesful in previous research, support vector machines (SVM) appear to be the

best solution for classifying diagnosis codes based on the text of the physician summaries [7],
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which is the focus of this thesis. SVM’s flexiblity, indifference to high dimensional sample

spaces, and robustness to deal with the variability introduced by multiple authors, vocabularies

and diseases provide a consumate methodology that should prove to be succesful.

Text classification has been used with success in the medical field to detect the service line that

is treating a patient [3], the presence of an undiagnosed disease [8] as well as in previous work

to assign diagnosis codes to medical records [5, 7]. In [3], support vector machines are shown

to be a succesful classification tool for analyzing medical records and identifying the service

line that treated the patient. In [5], the authors create an array of the most probable diagnosis

codes, given the text, that could be accessed by the user to aid in the code assignment. This type

of tool is already present in many of the electronic health records used in the medical industry.

However, providing a list of the most likely candidates does not remove the subjectivity from

the assignment process. In order for the MHS leadership to have reliable, objective codes across

the spectrum of facilities, an objective automated process must be created. This thesis provides

evidence that an automated text categorization technique, that can remove the subjectivity from

current medical coding practice, is possible.

1.3 Overview of MHS
The Military Health System is a global medical network within the Department of Defense

(DoD) that provides health care to all U.S. military personnel, veterans, and their dependents,

worldwide. The MHS contains 59 hospitals, 364 health clinics and a $50 billion budget that

provides care for approximately 9.6 million eligible beneficiaries. Navy Medicine, a subset of

the MHS, is responsible for 3 million beneficiaries with a total budget of approximately $17

billion. Navy Medicine provides care to deployed service members at sea as well as in multiple

field hospitals located around the world. Furthermore, Navy Medicine’s most intense resource

commitment is manifested in the care of dependents and retirees in traditional medical settings.

As has been seen in the national healthcare debate, the delivery of medicine is fraught with

inefficiencies and resource constraints that can mitigate a patient’s ability to receive care. The

leadership of Navy Medicine has developed a strategy to facilitate the way ahead outlined in the

Navy Medicine Strategic Plan. The plan outlines objectives on the delivery of medical care in

an efficient and effective manner.
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1.4 Hospital Clinic Description
Naval Medical Center Portsmouth (NMCP) is a tertiary care medical facility that provides med-

ical services to the Sailors and Marines stationed at Naval Base Norfolk, Naval Air Station

Oceana and the surrounding military facilities. Naval Medical Center Portsmouth was selected

as the contributing medical facility due to its volume of family practice encounters, its status

as a teaching hospital, and the number of branch clinics that compose the medical delivery net-

work. The medical network is comprised of ten branch clinics located throughout the greater

Norfolk area. These clinics treat approximately 360,000 patients per year. Six months of data,

which constituted 124,766 patient encounters, was collected from NMCP. These encounters are

randomized and split into training, validation and test sets.

1.5 Thesis Outline
The second chapter details the data, the data systems and the method of procurement. Further-

more, a detailed description of the data fields included. The third chapter describes the Term

Document Matrix Weighting schemes and the text classification methodology. The fourth chap-

ter provides an analysis of the results of the classification analysis. The final chapter presents

conclusions and recommendations for further research.
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CHAPTER 2:
Data

The data for this study was procured from the Clinical Data Mart (CDM). Records from the

family practice outpatient clinics of Naval Medical Center Portsmouth were extracted from the

CDM. This location was chosen due to the high concentration of Navy personnel as well as the

volume of medical care that is delivered on a daily basis. Data is delivered via Excel spreadsheet

and is coerced into an extensible markup language (XML) format for easier entry into the R

software package. Data was presented in two seperate categories. Initial patient demographic

data consisted of approximately 124,000 records, where a record corresponds to a single patient

encounter, and contains twelve separate data fields. In addition to the demographic data, textual

data, matched to the corresponding patient encounter, was provided. File size requires that the

data extraction from the CDM be separated into multiple transactions. Matching demographic

data to its corresponding textual records is accomplished using the CDM Patient ID number

and the Julian date of the encounter. Concatenating these data elements creates a single unique

identifier for the complete record. Data coercion presents a significant challenge and will be

discussed in detail in Chapter 3.

Data is partitioned into a training and test set. Eighty percent of the records are assigned to

the training set and twenty percent to the test set. Partitioning is accomplished by the gener-

ation of a random number, distributed uniformly, between 0 and 1 where values less than or

equal to 0.8 cause the record to be assigned to the train set and values greater than 0.8 cause

assignment to the test set. The training set is partitioned a second time, using the methodology

described above, in order to create a validation set. Thus, the training, validation and test sets

are respectively 64%, 16%, and 20% of the original 124,766 records. The training set is used to

build SVM clasification models. The validation set is used as a pre-test set in order to tune the

parameters for each of the models built using the training set. The validation set provides the

means to select the best candidate model. Classification on the test set provides the final results

for this analysis.

In this chapter, we describe, in more detail, the source of the patient records and the CDM. We

also describe the data fields and provide preliminary summary statistics. The reader should note

that, though we choose to focus our classification methodologies on the textual data, summary

statistics, demonstrating the demographics of the patient population, are provided for context.
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Although the free-text physician notes, the focus of this thesis, form the basis of any diagnosis

classification methodology, the intent of this thesis is to provide a foundation for further re-

search. Therefore, we deem it prudent to also describe data elements that will be essential for

enhanced classification research.

2.1 Data Sources
2.1.1 AHLTA
Armed Forces Health Longitudinal Technology Application (AHLTA) is the second generation

of electronic medical records used by the MHS. AHLTA is a graphical user interface based

system that builds upon the framework of the Composite Health Care System (CHCS). The in-

tent of AHLTA is to provide a medium for physicians to record their patient encounters with as

little free-text entry as necessary. Features such as automated documentation and checkboxes

for symptoms are intended to enhance clinician efficiency while maintaining a high level of

documentation accuracy. Efficiencies are laudible; however, selecting the final diagnosis code

remains the responsibility of the physician and physicians are not coders. Physicians’ lack of

expertise, and motivation, provides the basis of all coding issues within the MHS. AHLTA pro-

vides workflow efficiencies to the physician; however, most physicians still provide a detailed

description of the encounter in the free-text record.

2.1.2 CHCS
Physicians chart and document their work in the MHS utilizing an electronic medical record

known as the CHCS. CHCS is an automated medical information system that provides doc-

umentation and support to clinicians through out the MHS. It is the backbone of the medical

information system for the DoD, with AHLTA being the primary interface, and provides access

to patient information at DoD hospitals and clinics around the world. Much of the data collected

is in free-text format that can be used as reference by individual providers to learn the medical

history of a patient. Histories are beneficial for single providers; however, the information con-

tained in histories cannot be easily aggregated to provide insight for MHS leadership into the

medical history of the beneficiary population.

2.1.3 Clinical Data Mart
The CDM was queried for a six month period, January 2010 to June 2010, producing 124,766

records for training and testing. The CDM is the end-user database that aggregates the raw med-

ical information that is compiled in the two front-line systems, AHLTA and CHCS. The CDM
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contains approximately 5.2 terabytes of medical data, ranging from free-text orders and notes

to numerical data fields, that contain volume of medications, demographic data, and physician

data.

2.2 Data Fields
Several types of information are extracted from the CDM for each record to ensure that multiple

classification techniques could be attempted in the future. For example, demographic data, such

as patient sex and age, are included in addition to the text field, containing physicians’ notes,

which is used for semantic-based classification. Again, the intent of this thesis is to provide

a solid foundation for more enhanced classification techniques. We believe that demographic

information and patient histories can be used to augment the SVM semantic-based classification

techniques of this thesis. The patient information provided for this thesis contains the following

fields for each patient encounter:

• Military Treatment Facility (MTF) Defense Medical Inforation System (DMIS) ID

• CDM Patient ID

• Family Member Prefix (FMP)

• Sex

• Patient Age

• Appointment Date

• Appointment Status

• Appointment Type

• Medical Expense and Reporting System (MEPRS) Code

• DMIS ID

• Clinic Name

• ICD9 Code

• Physician Note
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The Physician Note is used to define the independent variables for the SVM classification mod-

els through the use of text processesing software. The ICD9 codes will comprise the dependent

variables in the analysis. The remaining data fields are provided for future endeavors.

2.2.1 MTF DMIS ID
The Defense Medical Information System Identification number (DMIS ID) is a numeric iden-

tifier assigned to each of the medical facilities within DoD. This number is used to track patient

enrollments as well as workload at each of the medical facilities around the world. In total there

are over 9,000 DMIS ID’s. Many of these are for field hospitals, battalion aid stations, as well

as disease labs, and veterinary clinics in addition to hospitals and primary care clinics.

2.2.2 CDM Patient ID
The Clinical Data Mart Patient ID (CDM ID) is a unique identifier assigned to each of the

patients in the MHS. This number can be used to track the care of a patient, longitudinally,

as he or she progresses through the MHS continuum. The CDM ID allows for a non-patient-

identifying field to be used instead of a Social Security Number. This study consists of 122,474

individual patients.

The CDM ID played a key role in matching patient demographic data to the corresponding

physician note. In addition, the CDM ID provides the necessary granularity in the data to

analyze longitudinal relationships among codes.

2.2.3 FMP
The Family Member Prefix (FMP) is a numerical representation of the patient’s relationship

to the active duty sponsor. The numerical representation of the patient’s relationship allows for

easy access for analysts to sort and filter for certain population types within studies. A summary

of the FMP relationships is shown in Table 2.1.

2.2.4 Sex
The Sex field shows each the gender for each patient record. Gender is denoted by M for male

and F for Female. A single record with an “unknown” categorization was present in the data.

The record was removed. The distribution of Sex is shown in Table 2.2. It should be noted

that Table 2.2 shows the frequency of gender by record while Table 2.1 shows the frequency of

patient FMP by indvidual patient. The change in perspective results in the different frequency

totals between Table 2.1 and Table 2.2.
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FMP Beneficiary Status Frequency

01 - 19 Children 36,202

20 Sponsor 42,175

30 - 39 Spouse 43,977

40 Mother or Stepmother 54

45 Father or StepFather 2

50 Mother-in-Law 12

55 Father-in-Law 0

60 - 69 Other Authorized Dependent 37

90 - 95 Beneficiary Authorized by Statute 0

98 Civilian Emergencies 3

99 All Others, Not Elsewhere Classified 12

Total 122,474

Table 2.1: Family Member Prefix. Note that the frequency is a description of the number of individuals in the data,
not necessarily the number of records, as has been described in other summary statistics.

Symbol Sex Test Train Total
M Male 11,374 64,682 76,056

F Female 7,398 41,311 48,709

U Unknown 0 1 1

Total 124,766

Table 2.2: Distribution of Data by Sex. Note that the total describes the number of Male and Female records in the
data set.

2.2.5 Patient Age
The Patient Age is the age of the patient, in years, at the time of the encounter with the physi-

cian. Figure 2.1 provides the distribution of beneficiaries by age. It appears that certain age

groups require more care than others. This is to be expected. Infants require frequent well baby

checkups, hence the high frequency at the age of 1. Again we see an increase in physician visits

from age 24 to 35. This age group makes up the largest population in the United States Military

and, therefore, provide the largest resource demand the MHS.

2.2.6 Appointment Date
The Appointment Date is the date on which the encounter with the physician occured. Data was

only extracted for patients seen between January 1, 2010 and June 30, 2010.
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Figure 2.1: A histogram of the frequency of beneficiaries by age contained in the data. The orange lines represent
the distribution by age for the training data set and the blue lines represent the distribution by age for the test data
set.

2.2.7 Appointment Status
The Appointment Status is a marker that identifies the status of an appointment. The statuses

include Kept, No-Show, Cancel, and Telephone consults. Each status provides information as

to how the patient treated the time slot alloted to him or her.

2.2.8 Appointment Type
Appointment Types are used by the MTF to ensure that a physician has an array of different

types of availability and to ensure access by all beneficiaries to the system. The appointment

types are shown in Table 2.3.

2.2.9 MEPRS Code
Medical Expense and Reporting System (MEPRS) codes are four-level codes used to represent

work centers within each MTF across the MHS. Initially these codes were utilized for cost ac-
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Type Description Test Train Total
Acute Patients that must be seen today 281 1,501 1,782

Follow Up Patients that have been seen and require a checkup 6,105 35,236 41,341

Open Access Any patient who needs care 6,660 37,242 43,902

Routine Patients who have illnesses that are not urgent 81 428 509

Wellness Physicals, yearly exams 3,208 17,661 20,869

Group Appointments in a group setting 19 68 87

Inital Spec. Care First visit with a Specialist 2 33 35

Procedure A procedure will take place 94 520 614

Tel. Consult Patient recieves diagnosis via Telephone 2,322 13,305 15,627

Table 2.3: Distribution of Data by Appointment Type

counting purposes in order to ensure the tracking of costs in an MTF. However, in recent years

MEPRS codes have also been used to track the workload generated in each work center. The

MEPRS Code breaks down into four seperate characters. The first character, or level, describes

the overarching purpose of the workspace or the Functional Category. An A represents an in-

patient space, a B represents an outpatient space, a C represents Dental, and so on. The next

character of the code, or second level, represents the type of work being done or the Summary

Account. An A represents medical space, a B represents surgical, etc. . . . The preponderance

of data are represented by the Functional Category B and the Summary Account of H. BH
describes primary care clinics and are extended by a third-level code. The third-level is the

work center description and the fourth level describes the type of work done in each space.

For example, BACA represents an outpatient clinic, classified as Medical work with a specialty

of Cardiology with a standard visit. The creation and management of these codes allow for

hospitals within the MHS to compare workload as well as to provide meaningful reports of pro-

ductivity to upper management at many levels. In this study they may be used as a demographic

seperator. Table 2.4 shows the distribution of records for each of the MEPRS codes.

2.2.10 Clinic Name
A human readable interpretation of the MEPRS code that describes the location where the work

load occured. The clinic names can be seen in Table 2.4 as well as the relationship between

the MEPRS codes and the clinic names. Each BH clinic is denoted as a primary care clinic;

however, the third-level MEPRS code, the work center, is different for each. This difference

manifests itself in the different locations for each of the clinics.

11



MEPRS Code Description Test Train Total
BGAA Family Practice Clinic 148 882 1030

BHA2 Deployment Health Clinics 189 1100 1,289

BHAA Preventive Medicine Clinic 4 23 27

BHAJ Primary Care Clinic - Boone 5,209 29,305 34,514

BHAK Primary Care Clinic - Oceana 3,666 20,487 24,153

BHAM Primary Care Clinic - Northwest 2 2

BHAO Primary Care Clinic - MSC DN 1 10 11

BHAR Primary Care Clinic - MSC NNY 1 3 4

BHAS Primary Care Clinic - Sewells 2,241 13,011 15,252

BHAT Primary Care Clinic - Chesapeake 2,956 16,823 19,779

BHAV Primary Care Clinic - VA Beach 4,356 24,347 28,703

BHAY Primary Care Clinic - BMC Yorktown 1 1 2

Table 2.4: Distribution of Data by MEPRS Code

2.2.11 ICD9 Code
International Classification of Diseases, ninth revision (ICD9), codes are used to code and clas-

sify morbidity data from the inpatient and outpatient records, physician offices, and most Na-

tional Center for Health Statistics surveys. They are the official system of assigning codes to

diagnoses and procedures associated with hospital and clinic utilization in the United States.

Figure 2.2 provides insight into the distribution of codes.

ICD9 codes present a straightforward nominal numeric structure. The code is built hierarchi-

cally with the primary disease represented by the whole number, the code root, and additional

specific information can be found in the decimal place, an extender. For example, 403 is Essen-

tial Hypertension and can be expanded upon by adding a 0 to describe the code as malignant.

Thus 403.0 is malignant essential hypertension and 403.1 is benign essential hypertension. The

hierarchy of information in ICD9 codes can be exploited to simplify classification problems by

removing the extenders and dealing only with the code roots, thus reducing the total number of

categories to be classified.

2.2.12 Physician Note
Physician notes are a compilation of multiple fields from the AHLTA patient record. The note

is a text description of the patient encounter, physician’s opinions, and diagnosis of the patient

ailment. Furthemore, it includes patient history and the chief complaint for each encounter. The

patient note contains an array of information, much of which is encoded in the cryptic shorthand
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Figure 2.2: A histogram of the ICD9 codes presented in the training data set. We show this histrogram to provide
context to the distribution of codes in the data set. Due to the large number of infrequent codes in the data, as
well as the memory requirements for data processing, we choose to focuse on the 20 codes. These codes can be
viewed in Figure 3.5

of a physician. Examples of notes include:

pt is a 30 y/o whi c/o 25lb weight gain in 5 weeks. has a h/o TAH ovaries remain

in Oct for fibroids and DUB. has a h/o primary Hypothroidism on Synthroid, dose

stable for 4 years. she quit smoking with chantix recently and is worried ince she

ahs been more physically active and keeps gaining. she feels tired, acne has flared

as well. weight gain

and

pt here for CPE he states has appt with PT for elbo and knee pain and has appt

for sleep study. Oter wise djng well without c/o. He has tried nicotene patch and
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gum and has not worked and would like to stry something else. no psych hx

The two examples illustrate a number of difficulties within the data: shorthand, jargon, miss-

spellings and overall short descriptions. Unfortunately, these records are not the most challeng-

ing physician notes in the data set to classify. Due to the automated nature of AHLTA a number

of records contain little to no discriminating information. For example:

Allergy information in Autocite area was reviewed and verified with patient.

Curent medications reviewed and reconciled. :Reviewed

Records containing little discriminating information are not likely to be classified correctly;

however, they represent a key area of interest for this study.
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CHAPTER 3:
Model Formulation

In this thesis, free-text disease classification is accomplished using the support vector machine

construct. In order to use this supervised learning methodology a series of steps, described in

the following section detailing the process and assumptions that are incorporated into the clas-

sification model. The steps begin with the extraction of the data from the CDM, followed by the

delivery and conversion from multiple Excel files into a single XML source. Subsequently, the

XML source is processed by R using the software package tm [9], undergoes feature selection

and culminates with the fitting of SVM models. We close the chapter with a discussion of the

performance metrics employed to measure the effectiveness of each classification scheme.

Medical records are delivered in an Excel format, as is mentioned in Chapter 2. Each medical

record consists of multiple rows in Excel requiring aggregation into a single record. Visual

Basic for Application (VBA) scripts were written to perform the aggregation task programmat-

ically. Once aggregated, each row represents a patient encounter. Upon completion, the data is

formatted into a XML document. A custom XML schema was created and applied to the aggre-

gated data in order to produce the final XML document. With the aggregated data formatted,

the data was exported into XML files. The XML files were read into PYTHON to remove a

number of ASCII characters that were not recognised by R. These characters included: end of

transmission, bell, device control 1. An R add-on package, tm[9], is used in conjuction with a

custom XML parser, supported by the XML package[10], to convert the XML documents into

plain text documents, held within a corpus in memory. The computational requirements for

processing the medical records and storing the corpus are extensive. As a frame of reference,

the training set requires 4GB of RAM to hold its corpus in memory. Additional work, such as

fitting support vector machine models, requires supplementary computational assets.

Text processing methodologies, resident to the tm package, are used to strip extra white space,

convert letters to lowercase, remove suffixes, and remove stop words from each document. Stop

words are those terms used in sentences, such as “a,” “the,” “that,” etc. . . , that are used so often

they provide no discriminatory power for a classification model. Text processing methodologies

are the first step in feature selection, a technique described later in this chapter. The final data

processing step is to convert plain text documents, still written in prose, to a mathematically

friendly data structure. This thesis uses the Term Document Matrix (TDM) for such a purpose.
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The TDM is a construct resident to the tm package of R and provides great flexibility for regular

textual analytics. TDM’s store data in a simple triplet matrix representation. This representa-

tion stores each value as a triplet where the first value represents the row number, the second

value represents the column number and the third value represents the value contained within

the matrix. Previous analytical work using the tm package was based on smaller data sets that

could utilize the simple triplet matrix framework and the RAM requirments of holding the TDM

matrix was not prohibitive.[11] Due to the size of the training corpus used in this thesis, conver-

sion of TDM data structures to compressed sparse row was necessary. Conversion of the TDM

allows the matrix to be used by the SVM software [12]; however, the new data representation

reduces the metadata that is carried along with the compressed version of the TDM. Therefore,

a series of metadata functions were written and applied to the corpus to create vectors for each

of the demographic categories. These vectors can be applied in order to reconstitute the wealth

of information available in the original data structure.

3.1 Term Document Matrix
The TDM is the key data structure when developing a text classifier. Its construction involves

analyzing the corpus of medical records and transforming each document into a vector of term

counts or term frequencies (tf). An example of such a document vector is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

#{Reviewed}
#{Xray}

#{Patient}
...

#{Infection}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

3
...

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

in which the term “Reviewed” appears once, “Xray” does not appear, and so on. These vectors

are used to construct the TDM whose elements are functions of the term frequencies. Each row

of the TDM represents a term from the corpus and each column represents a document. Specif-

ically, the elements, xij , of a TDM are associated with the occurence of term i, in document j.

That is, xij might be taken to be the frequency of the ith word in the jth document. As one might

assume, the TDM can be very sparse and in many instances individual terms are used only once

in the corpus. In addition, document authors have different vocabularies and patterns of term

usage. The value of each xij can also be calculated using multiple weight schemas which apply
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weights to the term frequencies, also known as feature selection techniques. Feature selection is

the process of identifying terms that are the most useful in determining the differences between

classes of documents and includes, not only term weighting, but term selection.

3.2 Feature Selection
Feature selection increases the efficiency and the effectiveness of the classifier by enhancing

the similarities and the differences between like and unlike document vectors, respectively, by

normalizing the term frequencies and reducing the feature space. Studies have shown that large

reduction in feature space has little negative effect on the accuracy of a classifier. [6] Document

frequency techniques were shown to be an effective selection criteria when dealing with large

data sets. We will use two techniques, term selection and term weighting, for feature selection in

this thesis. These techniques have been used succesfully in previous medical text classification.

[3]

3.2.1 Term Selection
Term selection is an important step in developing the feature space for the text classifier. Terms

that appear in extremes, either frequently or infrequently, are less likely to enhance the ability

of the model to discriminate between classes. Therefore, sets of terms, falling into the extremes,

should be eliminated to increase the efficiency of the classification algorithm. Zipf’s law [13]

provides a framework for the distribution of term frequencies in a corpus. Furthermore, Zipf’s

law provides a structure for the removal of very infrequent terms as well as terms that are

deemed to occur too frequently. Figure 3.1 shows the distribution of term counts for the training

set of data. In Figure 3.1, terms are first ranked according to their total term frequency over all

documents tfi i = 1, . . . , I where I is the number of terms in the corpus, the y-axis is log(tfi)

and the x-axis is the log rank of each term. The logs of the frequency and ranks are used due to

the extreme values in the data set.

The training set has approximately 81,000 different terms. Many of these terms are used often.

For example, the word “reviewed” is used 293,126 times. That averages 3.5 uses per document

in the corpus. We believe the prevalance of the term “reviewed” results from those records

that contain auto-populated segments, or that require some sort of acknowledgement of review.

While it is helpful to have an overlap of terms, it is unlikely that the word “reviewed” will

provide any discrimination between classes. In addition, Figure 3.2 shows 45,981 terms that are

used once. After inspection we find that most of these terms are errors in typing that include

miss-spellings and forgotten spaces. These errors are removed from the training data set as it
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Figure 3.1: A Zipf distribution of the frequncy of terms used in the training set where terms are ranked according to
frequency. The distribution shows a large number of terms that are used infrequently

is unlikely that they will provide any discrimating evidence to the classification model yet to

be trained. Previous works [3, 4] use document term frequency cutoff of three which reduces

their feature spaces by 60%. If that criteria is used in this analysis, 76% of the terms would

be removed. Therefore, a term frequency cutoff of two is used, reducing the feature space by

70% or 57,670 terms. In addition to a low-end cutoff, a ceiling usage will be sought. A cutoff

of 84,919 was selected as it represents a word that is used at least once per document in the

training set, where the training set contains 84,919 documents. The ceiling requirement only

removes two terms from the dictionary; the previously mentioned “reviewed” as well as the

word “patient”.

3.2.2 Term Weighting
While term frequency provides gains in enhancing the computational efficiency of the classifier,

term-weighting provides a means to enhance the information gain in each terms usage. Term-

weighting schemes enhance an algorithm’s ability to retrieve documents by emphasizing the

characteristics unique to the document, and minimizing the characteristics that are similar to

those in other documents. [14] The same ideas have been adopted by text classifiers. Three

weight schemas, term frequency, term frequency-inverse document frequency, and normalized

term frequency-inverse document frequency come standard in the tm package of R. [9] These

three weighting schemas have also proven to be satisfactory weight schemas in other research.
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Figure 3.2: A historgram of term freqeuncies illustrates the number of terms used infrequently. 45,981 terms are
used once and 11,689 terms are used twice. Therefore, terms used twice or less represent 70% of the terms and
terms used three times or less represent 76% of the terms

[3, 4]

Salton and Buckley [14] propose a construct for enhancing term importance in a TDM that

involves three different perspectives on the relationship of a term with its class.[14] The rela-

tionship can be described using three components: local, global, and normalization. These three

components are used in the three weighting schema. The local component describes the impor-

tance of a term within a single document, where importance is measured by frequency. The

local component is term frequency, tfij , of each word in each document. The global component

looks across the corpus of documents and describes how important the term is across all of the

documents. Finally, the normalization component seeks to adjust for documents that use more

terms than others.

Term Frequency Schema
Let I be the number of terms in the corpus and J be the number of documents. The term

frequency schema uses the number of times a term, ti, is used in a document, dj .

tfij = #{ti ∈ dj} for i=1. . . I, for j =1. . . J (3.1)
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The term frequency provides the integer values for each term’s usage. It is the rawest form of

term weighting and does nothing to adjust for a term’s usage outside of a given document. The

term frequency schema is based soley on the local component.

Term Frequency-Inverse Document Frequency
While the local factor describes the importance of a word within a single document, a global

factor expresses the relative importance of a word across all of the documents in the TDM. As

such, the global factor has the ability to discern if a word is used too much or too little in the

dataset to be useful. Let N be the total frequency of all terms in the corpus i.e.

N =
I∑

i=1

J∑
j=1

tfij (3.2)

The inverse document frequency, idfi, is defined for each document i = 1 . . . I to be

idfi = log2

(
N∑J

j=1 (tfij)

)
(3.3)

The inverse document frequency is a global factor because it varies inversely with the number

of documents to which a term is assigned in a collection of J documents.[14] It serves as an

adjustment to the term frequency factor in an effort to reduce the impact of terms that are

popular throughout the corpus. In the term frequency-inverse document frequency schema, the

elements of the TDM are taken to be

tfidfij = tfij · idfi for i=1, . . . , I, j = 1, . . . , J (3.4)

Normalized Frequency-Inverse Document Frequency
A normalization factor is utilized to adjust for the variability in the number of terms used in each

document. For example, longer documents tend to use a larger variety of terms. Functionally, a

document which contains more terms is more likely to be considered ”important” when creating
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the classification scheme simply because it has more terms in common with other documents.

The normalization component, as the name suggests, provides a system to normalize the effect

each document will have on the classification algorithm. The normalization is computed by

dividing the term frequency by the total number of times each term appears in the document.

The entries in the TDM for this schema are

TfIdfNij =
tfij∑I
i=1 tfij

· idfi for i = 1, . . . , I, j = 1, . . . , J (3.5)

The components in equations (3.2), (3.4) and (3.5) are used to build TDM’s. These approaches

were originally developed based on the empirical observations that: (1) the more times a word

appers in a document, the more relevant it is to the subject of the document, and (2) the more

times a word occurs throughout all the documents in the collection, the more poorly it discrim-

inates between documents.[14]

3.3 Text Classification Model
A number of classification techniques have been developed in an effort to classify text docu-

ments in many settings. This thesis will focus on a vector space approach using support vector

machines.

3.3.1 Support Vector Machines
Support Vector Machines (SVM) are a supervised statistical learning technique introduced by

Corinna Cortes and Vladimir Vapnik to classify observations by mapping their “input vectors

into a high dimensional space, Z, through some non-linear mapping.” [15] The SVM seeks to

find a hyperplane that maximizes the margin between two classes in a high-dimensional space.

This hyperplane is known as the optimal hyperplane. For example, consider the two classes

represented by orange plus signs and blue hyphens in Figure 3.3. The goal is to find the linear

function of the two variables x1 and x2 which yields the widest separation, or largest margin,

between the two classes. In Figure 3.3, the optimal seperating hyperplane is in fact a line. The

margin is indicated by the dashed lines parallel to the optimal seperating hyperplane. The points

on the margins are called the support vectors.

In Figure 3.3, the two classes are separable in two dimensions. Classes are not always separable
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Figure 3.3: Example of a linearly separable problem in 2 dimensions. Support vectors define the margin of largest
separation between the two classes.

in their original space. By mapping them to a sufficiently high-dimensional space, classes can be

made seperable. SVM classification based on seperable classes without any crossover produces

what is known as a hard margin classifier. Hard margin classifiers, based on sufficiently high

dimensional spaces are usually poor classifiers. [2]

Classifying lower-dimensional spaces in which the classes are not seperable requires a slightly

different formulation. For clarity of purpose, we diverge from the common notation used to

describe SVMs, letting J represent the number of documents, or observations, and I represents

the terms or the dimension of the “input vectors”. The SVM accomplishes this by introducing

slack variables ξj j=1,. . . , J. The slack variable allows observations to be on the “wrong side”

of the seperating hyperplane with a penalty against the objective function. Figure 3.4 shows an

example in two dimensions where the data is not linearly seperable.

Specifically, in I-dimensional space we wish to find the hyperplane β0 + β1x1 + . . . + βIxI
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Figure 3.4: Example of a Non-linearly separable problem in 2 dimensions. Support vectors define the margin of
largest separation between the two classes.

where
∑I

i=1 β
2
i = 1 which maximizes the margin M subject to constraints

yj(x
t
jβ + β0) ≥ M − ξj for j =1,. . . ,J (3.6)

ξj ≥ 0 for j =1,. . . ,J (3.7)

and

J∑
j=1

ξj ≤ constant (3.8)
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where for j = 1, . . . , J yj = +1 or −1 depending on the class of the jth observation xt
j =

(x1j, . . . , xIj) is the input vector for the jth observation and βt = (βi, . . . , βI), the vector of

coefficeints for the seperating hyperplane. Equivalently, the problem of finding the optimal

seperating hyperplane is a quadratic minimization problem with linear constraints:

min
β0,β

1

2
‖β‖2 + C

J∑
j=1

ξj (3.9)

Subject to:

yj[x
T
j β + β0] ≥ 1− ξj for j=1,. . . ,J (3.10)

ξj ≥ 0 for j=1,. . . ,J (3.11)

where C is the cost, and C
∑J

j ξj is the soft margin function. The cost allows the user to vary

the penalty by which a point on the “wrong” side of the hyperplane will affect the value of the

objective function. Small values of C increase the allowance for misclassification of the training

data (or training error). A large value of C leads to behavior more similar to a hard margin SVM.

The result is very little training error, but classification models that perform poorly on test data.

While most articles concerning SVM text categorization acknowledge that the cost parameter

must be tuned, no guidance could be found for initial starting values. Furthermore, [2] argues

that when the number of terms is much larger than the number of documents, the advantages

of using soft margins is decreased. While in this thesis I is extremely large, it is believed that

the diagnosis codes will not be strictly linearly seperable and, therefore, we initially model cost

values C ∈ {2−5, 2−3, 2−1, 2, 22, 23}.

Classifying diagnosis codes based on patient record documents requires a seperate SVM to be fit

for each of the chosen diagnosis codes included in this study. Each SVM classifier will assign to

each record a probability that the record belongs to the code in question. These probabilities will

be aggregated, and the most likely code, the one with the highest probability, will be selected for

each record. Adding another level of refinement allows us to artificially increase the precision,

a measure to be discussed in the next section, and increase the overall performance of the

classifier. The additional level of refinement will be a confidence cutoff that will ensure that

the probability produced from the SVM is above a certain threshhold in order for a code to be

considered as the predicted code. For example, if the confidence cutoff is 0.8 and the largest

probability, say for code V70, is 0.7, then the record will be labeled as “other”. We vary the

cost variable as well as the confidence cutoff to find the best classifier for each code.
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In order to simplify the classification problem, the complexity of the classificaiton is reduced

by focusing on the roots, the whole numbers of the codes, and eliminating the extenders, the

decimal points, reducing the total number of codes from 2,265 to 624. Furthermore, for ease of

purpose, and due to time constraints, only the 20 most numerous codes are included. Initial tests

show that each code’s SVM model could take up to 8 hours to fit, requiring up to 4 months to

fit the 360 models required for this thesis. Figure 3.5 provides the frequencies for the 20 codes

tested in this thesis. In addition, Table 3.1 presents a description of each code, the frequencies

amongst the test and training sets, as well as the overall frequency of each code.

Figure 3.5: A histogram of the top 20 ICD9 codes in the training set. V70, General Medical Examination, is shown
to be the most common with more than 6,500 records in the training set. Chronic Sinusitis, Code 473, is in the 20th
spot with just under 1,000 records. The codes selected represent a variety of different diagnosis from Hyperkinetic
Syndrom of Childhood to Contact Dermatitis to Hypertension to Diabetes. The codes and their descriptions can be
viewed in Table 3.1. The spectrum of codes present should provide some indication of the ability of the SVM to
classify across many specialties.

25



ICD9 Code Diagnosis Description Test Train Total

V70 General Medical Examination 1,549 9,575 11,252

V72 Special Investigations 982 5,525 6,507

V20 Well Child Visit 633 3,686 4,319

401 Hypertension 571 2,991 3,562

465 Upper Respiratory Infection 431 2,447 2878

250 Diabetes Mellitus 398 2,413 2,811

724 Disorders of the Back 381 2,250 2,631

477 Allergic Rhinitis 390 2,153 2,543

719 Disorders of the Joint 370 2,140 2,510

272 Disorders of Lipoid Metabolism 390 2,118 2,508

382 Otitis Media 358 1,858 2,216

462 Acute Pharyngitis 292 1,626 1,918

V25 Contraceptive Management 292 1,593 1,885

780 General Symptoms 270 1,579 1,849

692 Contact Dermatitis 274 1,378 1,652

314 Hyperkinetic Syndrom Childhood 248 1,366 1,614

786 Symptoms Involving Respiratory

System and other Chest Symptoms 227 1,329 1,556

493 Asthma 221 1,314 1,535

V65 Other Persons Seeking Consultation 217 1,259 1,476

473 Sinusitis 210 1,167 1,377

Total 8,704 49,767 58,699

Table 3.1: Presents the distribution of diagnosis codes across the different data sets. Furthermore, a description of
each code is presented for future reference.

3.4 Measures of Success
In order to determine how successfully each classifier performs on the validation and test set, a

standard set of four measures will be utilized. [3] These measures include accuracy, precision,

recall and F -score. The first three measures in themselves are not enough to properly describe

how well each classifer performs; the F -score is an overarching measure that evenly weights

precision and recall. F -score is not unduly influenced by a large number of negative exmples,

or records in the traning set which do not have the code corresponding to the classifier being

assessed. For this thesis the F -score will serve as the overall measure of success because we

seek to build an automated classifier. Building this classifier will require confidence that the

predictions are accurate, precision, and that the classifier predicts enough of the codes correctly

that are present in the population, recall, to be useful to the MHS. Therefore, F -score is a metric

that provides an indsight into each of the requirements.
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3.4.1 Accuracy
Accuracy is an intuitive measure for the performance for classification algorithms; however, it

can be misleading. In cases where positive examples, i.e., records in the training set with the

diagnosis code being classified, are scarce, the classifier gets a lot of credit for labeling negative

examples correctly. Confusion matrices are constructed for each of the 20 diagnosis codes.

A confusion matrix tabulates records by their observed diagnosis code (“+” if they have the

particular diagnosis code, “-” if they do not) and by how the code’s classification is predicted

(“+” predicted with the code, “-” not). The elements of a confusion matrix are denoted by

f−−, f−+, f+−, f++ as depicted below:

Observed = “+” Observed = “-”

Prediction = “+” f++ f+−
Prediction = “-” f−+ f−−

Accuracy is most commonly measured as the sum of the diagonal of the confusion matrix

divided by the sum of the elements in the confusion matrix.

Accuracy =
f++ + f−−

f++ + f+− + f−+ + f−−
(3.12)

While accuracy can be misleading when few positive examples are available, precision and

recall (below) are less sensitive to the total number of records classified and their focus in on

how well the classifier performs when it labels a record as positive.

3.4.2 Precision
Precision, p, measures how often the classifier is correct when it labels a test record as positive.

[3]

p =
f++

f++ + f+−
(3.13)

3.4.3 Recall
Where precision measures how well the classifier performs within the realm of those records

that were predicted to be positive, recall, r, assesses how well the classifer picks out true records.

[3]

r =
f++

f++ + f−+

(3.14)
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3.4.4 F -score
Finally, F -score provides a summary statistic that balances the precision and the recall statistics

of each classifier. In this thesis, the harmonic mean between of the precision and the recall will

be utilized. [3]

F -score =
2

1
p
+ 1

r

(3.15)

3.4.5 Macro-Averaging
Macro-averaging corresponds to the standard way of computing an average. A performance

measure (i.e. precision, recall, F -score, etc..) is computed separately for each classified value,

Fi where Fi i = 1, . . . , 20 are the F -score for the ith classifier. The average is computed as the

arithmetic mean of the performance measure over all classifiers. The F -score, being our main

decision metric, would have a macro-average function of:

Macro(F -score) =
1

20

20∑
i=1

Fi (3.16)
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CHAPTER 4:
Results and Analysis

Classification models are built for each of the twenty selected ICD9 codes using a range of

tuning parameters. This chapter discusses the strengths and weaknesses of each of the proposed

models as well as provide a discussion of the final model that was selected. The discussion of

the models is broken down across the three weighting techniques described in Chapter 3 and

focus on how the changes in tuning parameters affect the results.

The SVM models are evaluated using the validation set described in Chapter 2. Six models are

constructed per code, totaling 120 models per weighting schema and 360 models for the thesis.

Each model produces a probability describing how likely the record in question is to have the

code for which the SVM was fitted. A probability is produced for each of the records in the

validation set and for each of the SVM models. These probabilities are stored in a matrix where

the columns represent the results for a codes specific model and the rows represent the document

that the SVM is attempting to classify reulting in a matrix that is approximately 21,000, the

number of records in the validation set, by 20, the number of codes for which we are testing.

Once the 20 models are evaluated on the validation set, a series of processes determines the most

likely code by finding the column for each document with the largest probability. We select the

largest probability because it indicates the model that believes it has the “most right” prediction

based upon the training set of data. While it would be simple enough to assign the code with

the highest probability, a further layer of discretion is added. We choose to add another variable

in the classification known as the confidence cutoff. The cutoff is a threshold that must be

surpassed in order to classify a given document as any code. For example, if we set the cutoff to

0.8, then we are ensuring that the model is at least 80% confident that its assignment is correct.

A larger confidence cutoff leads to higher precision values because it artificially increases how

confident the SVM needs to be in order to assign a code to a record. Ultimately, the management

of the precision and recall metrics allow a greater opportunity to build a successful classification

model.

4.1 Initial Modeling
Literature review suggests using a series of cost variables, C ∈ {2−5, 2−3, 2−1, 2, 22, 23},

and multiple weighting techniques would provide the best classification opportunity. [3, 4,
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5, 6, 7] We begin the process with the understanding from previous work [2] that large data

sets could classify well using hard margin classifiers, resulting from large cost variables, and

using sophisticated weighting techniques. The term frequency-inverse document frequency and

normalized term frequency-inverse document frequency weighting methodology have proven

to be the most effective at classifying medical text. [3, 5, 7] Therefore, we begin our discussion

with the more complex weighting schemas and progress to the simpler term frequency schema.

4.1.1 Term Frequency-Inverse Document Frequency
The first weighting schema, term frequency-inverse document frequency, presents a sophisti-

cated feature selection technique that should enhance the similarities and differences between

documents. The term frequency-inverse document frequency validation matrix is evaluated for

six values of the cost parameter. A precision, recall and F -score metric is reported for each

scenario. The first confidence cutoff is 0.8, indicating that the model must be at least 80% sure

that the predicted code is correct before the predicted code could be assigned to the record. It

is hoped that the size of the data set allows this high confidence level to prove useful. As a

reminder, the F -score is the harmonic mean between precision and recall. Figure 4.1 shows the

initial F -score values for the first weighting schema as a function of the cost parameter C.

These results require further examination and suggest a need for further refinement in our classi-

fication methodology. In order to create a plan for enhancing the classifers F -score, we consider

the F -score’s initial pieces, precision and recall. Remember, precision is the probability that

the predicted classification is correct, given that it classified the record as positive. Recall is the

fraction of correct classifications out of the population of positive examples.

The plot of precision against the cost parameter in Figure 4.2(upper panel), provides encour-

agement that an autoclassifier may in fact be possible. A handful of codes (V70, V72, 724,

473, etc. ) have precision values above the 0.8 requirement and many have precision values

at or near 1, indicating that every code that is predicted correctly. While this provides some

encouragement, it also means that the recall values must be very small. The analysis continues

with an inspection of the recall values.

The recall values, also presented in Figure 4.2(lower panel), indicate a very poor classifier.

Many of the recall values fall to 0 values greater than 2−5. Furthermore, for those codes whose

recall values that don’t fall to 0, their are still so low that they significantly drag down the overall

F -score.
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Figure 4.1: F -scores for the 80% cutoff threshold using the TfIdf weighting schema. We find that many of the codes
have poor F -score values; however, a handful of scores may provide some promise. The F -score is the harmonic
mean of the precision and the recall value. Therefore, if either the precision or the recall is lower than desired, we
can tune the parameters to increase the F -score.

The initial results leave much to be desired; however, they are not completely unexpected and

can be dealt with. The confidence cutoff was specifically used to improve the precision values

with the foreknowledge that it could affect the recall values. As such, the cutoff parameter needs

to be further tuned. We illustrate this tuning using a plot of the response surface for the F -score

as we adjust the cost parameter and the confidence cutoff.

The response surface, presented in Figure 4.3, shows the effect of adjusting the cost parameter

and the confidence cutoff. We find that reducing the cost parameter and the confidence cutoff

provide the best results. V72, the code corresponding to Special Investigations, provides the best

F -score amongst the 20 codes. Unfortunately, the F -score generated is 0.53, with a precision

value of 0.61 and a recall value of 0.48.

The confusion matrix also provides insight into the applicability of this technique being imple-
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Figure 4.2: Precision and Recall for the 60% cutoff threshhold using the TfIdfN weighting schema. The precision
value is the ratio of codes there were correctly predicted to the total number of codes predicted. While this chart
shows a number of codes that oscillate at different values, we see that there are a handful of codes that have
promise. We conclude that the recall values must be the issue with the current F -scores. The recall values leave
much to be desired; however, it was not unexpected that the reacall values would be low. By implementing the
confidence cutoff we enhanced the precision value and reduced the recall. By adjusting the confidence cutoff we
should be able to ultimately improve the F -score.
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Figure 4.3: The Response Surface for code V72 using the TfIdf weighting schema. While the response surface
indicates a significant increase in performance, we are still not much better off than we would have been flipping a
coin. Perhaps further exploration into smaller cost values could improve the resulting F -score.

mented into industry. While we can be fairly confident of the accuracy of a prediction produced

by the classifier, it only classifies a small portion of the total encounters correctly. For example,

while the SVM makes 350 predictions, 279 of which were correct, we are still left with 725

that have not been classified. If the intention is to leverage statistical learning solely to enhance

the accuracy of the codes we have, then the current SVM is a good potential candidate. If the

intention is to reduce the human workload as well as to enhance the accuracy of the data, the

SVM, in its current from, is not an appropriate tool.

From the response surface, we also learn that the term usage for this code is not necessarily

linearly seperable. Evidence of this occurrence is presented by the F -score of 0 as the cost

parameters trend to a hard margin classifier. In other words, the SVM provides better classifi-

cation when terms are allowed to cross over the seperating hyperplane. Response surfaces for

the remaining 19 codes can be found in Appendix B.
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Label y = V72 Label y = Unknown

prediction ŷ = V 72 279 171

prediction ŷ =Unknown 725 17,968

Table 4.1: Confusion Matrix for V72 using a cost value 2−5 and confidence cutoff 0. We find that the number of
correct predictions is not satisfactory. While the SVM was fairly accurate when it made a prediction, it did not make
enough predictions to actually be useful.

Term frequency-inverse document frequency weighting does not provide the type of results we

expected from our initial research. In fact, the macro-average score for this weighting schema

was a dismal 0.26 with a range of 0.53 to 0.05. It is not readily apparent why this schema did

not classify more appropriately. The second methodology, normalized term frequency-inverse

document frequency, should provide a better classifier given the normalization component of

the weighting.

4.1.2 Normalized Frequency-Inverse Document Frequency
Normalized frequency-inverse document frequency provides a slightly more sophisticated weight-

ing schema than term frequency-inverse document frequency. While the normalized version

provides the ability to normalize documents that are written by authors who utilize a more ver-

bose dictionary. In other words, it puts documents that contain many terms on the same playing

field as documents that contain very few terms.

As with term frequency-inverse document frequency schema, we begin our analysis by review-

ing the performance of each model using six different cost parameters with a confidence cutoff

of 60%. However, Figure 4.4 shows the same trends in F -score values as seen in Figure 4.1.

As before, precision and recall values are broken out to determine if the recall is the greatest

hindrance to the success of this classifier.

Figure 4.5 shows that the term frequency-inverse document frequency plots resemble those of

Figure 4.1; however, the recall has improved slightly. Again a handful of codes have promis-

ing precision values that appear to be degraded by the poor recall values. Altering the tuning

parameters shows promise with the previous data set and are attempted as well. We employ

response surfaces to visualize the effect of changing the tuning parameters has on the F -score.

Altering the tuning parameters, does provide some benefit; however, it still does not strengthen

the classifier enough to be a viable option. The tuning parameter confidence cutoff tested the

values 0.8, 0.6, 0.4, 0.2 and 0.0 as is represented in Figure 4.6. The cost parameter were also
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Figure 4.4: F -scores for the 60% cutoff threshold using the TfIdfN weighting schema. The F -scores are not sat-
isfactory and require further investigation. Again, breaking the F -score into its parts, precision and recall, should
provide the direction required to improve the overall performance of the classifier.

tested in the set C described earlier. We see the affect of the changes in the paramters in the

response surfaces. Again code V72 presents the best classified code and will be used to illustrate

the performance. The full list of response surfaces can reviewed in Appendix C.

The response surface corresponding to the normalized term frequency-inverse document fre-

quency for code V72, presented in Figure 4.6, is similar to the non-normalized version. The

precision value is 0.62, a 0.01 increase from the non-normalized dataset, and the recall is 0.47,

a 0.01 decrease from the non-normalized dataset, resulting in the F -score remaining constant at

0.53.

Code V72 only represents one code across the classification spectrum and so we must calculate

the macro-average F -score in order to properly compare the two weighting techniques em-

ployed thus far across all twenty diagnosis codes. We find that the macro average F -score for
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Figure 4.5: Precision and Recall for the 60% cutoff threshhold using the TfIdfN weighting schema. The precision
value is the ratio of codes there were correctly predicted to the total number of codes predicted. While this chart
shows a number of codes that oscillate at different values, we see that there are a handful of codes that have
promise. We conclude that the recall values must be the issue with the current F -scores. The recall values leave
much to be desired; however, it was not unexpected that the reacall values would be low. By implementing the
confidence cutoof we enhanced the precision value and reduced the recall. By adjusting the confidence cutoff we
should be able to ultimately improve the F -score.
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the normalized data set is 0.25 with a range of 0.53 to 0.06. Therefore, we can conlclude that

for this particular data set, normalizing is a hindrance to the classification process.

Figure 4.6: The Response Surface for code V72 using the TfIdfN weighting schema. While the response surface
indicates a significant increase in performance, we are still not much better off than we would have been flipping a
coin. Perhaps further exploration into smaller cost values could improve the resulting F -score.

4.1.3 Term Frequency
Term Frequency is the base weighting schema used in this thesis and will serve as the final

weighting schema to be analyzed. As a reminder, the term frequency matrix is composed of

the counts of each term for each document in the corpus. While this is the least sophisticated

weighting scheme it has been shown to provide sucessful results in other contexts. [3]

We begin our analysis in the same manner as before, an inspection of the F -score with a rigorous

confidence cutoff of 0.8. Figure 4.7 shows the twenty codes selected for this analysis and their

corresponding F -score at the 80% cutoff. These scores are significantly better than the two

previous methodologies. Unfortunately, no code’s F -score meets the goal F -score of 0.8 at the

80% confidence cutoff requiring further tuning of the paramters.
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Figure 4.7: F -scores for the 80% cutoff threshold

With only a handful of codes currently near the goal of 0.8, we must refine our classification

methodology. Figure 4.8 shows that the precision of the model is quite good for most of the

records. This is not surprising as we have artificially increased this metric by requiring the

confidence of the SVM to be above a very high threshold. Again, we conclude that the recall

for these models must be at fault.

Figure 4.8 presents recall values across the six cost parameters. The best recall metrics are

below 0.6 and deteriorate quickly. It is readily apparent that the cost variable directly corre-

sponds to the recall and precision metric and hopefully can be enhanced by continuing to tune

the confidence cutoff value. Visualizing the response surface created by the cost variable and

the confidence cutoff value should aid in selecting the optimal combination. With such positive

performance from this classifier thus far a series of response surfaces will be created for the

four codes that have the most potential of becoming successfully classified: V70,V72, V20, and

314. We delve deeper into the response surfaces of each of these codes as we vary the tuning
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Figure 4.8: Precision and Recall for the 80% cutoff threshhold using the Term Frequency weighting schema. The
precision value is the ratio of codes that were correctly predicted to the total number of codes predicted. The
worst precision value for the Term Frequency schema is significantly better than the best values of the two more
complicated weighting schemas. Furthermore, we find that the recall values are still the limiting factor, but, as we
have shown before, we can adjust the confidence cutoff in order to enhance the F -score.

39



parameters. The initial response surface for V70 can be seen in Figure 4.9, which presents the

F -scores at each of the parameter values.

Figure 4.9: Response Surface for Code V70: General Medical Examination. The response surface indicates that the
F -score greatly increases as the cost variable value is decreased. Furthermore, we find a peak at the confidence
cutoff level of 20%. If this trend continues, further examination into smaller cost variables will be conducted to
determine if the F -score goal can be exceeded.

Figure 4.9 illustrates the relationship between the two tuning parameters, cost and confidence

cutoff, while plotting the corresponding F -score value. The resulting F -score increases as the

confidence cutoff and the cost variables are decreased. We find that the smallest cost param-

eter, 2−5, and a confidence cutoff value of 20% provide the best results. An F -score of 0.74,

comprised of a precision value of 0.76 and a recall value of 0.73, is the best classification mix

that can be achieved for code V70 under the current spread of parameters. Unfortunately, in

the case of V70 we never exceed the 0.8 threshold deemed a successful autoclassification. The

trend does indicate that building models with smaller values of the cost parameter may produce

satisfactory results. We investigate if this trend exists throughout the remaining codes.
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Figure 4.10 demonstrates the F -score values for the code V72: Special Investigations. Again,

a sharp increase in F -score by the response surface indicates that smaller cost variable val-

ues and a confidence cutoff value of 20% provide the best combination of tuning parameters.

V72’s ultimate F -score is 0.75 with a precision value of 0.8 and a recall value of 0.72. Both

of these codes are very close to being successfully classified under our initial definition of

success. The same behavior is manifested throughout the remaining codes (see Appendix A)

resulting in a macro-averaged score is 0.51 with a range of 0.76 to 0.11. Not surprisingly, the

term frequency weighting schema produces the best macro-averaged F -score among the three

weighting schemas tested.

Figure 4.10: V72 Response Surface

We have shown that the term frequency weighting schema is the most promising in our initial

pass through the data and we must now determine where to focus our research. While 80% of

the codes, 16 out of 20, report the highest F -score values with a cost parameter of 2−5 and a

cutoff value of 20% we are not ready to ultimately declare that tuning parameter combination

our best model. Figure 4.11 shows each code and its respective F -scores by the two smallest
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cost values used, the values on the x axis, as well as cutoff values, the colored bars. As you can

see, the 20% cutoff bar, in orange, eminating from the 2−5 cost value, is most often the largest

F -score value in the group. In rare cases we find that the cutoff value of 0, in blue, has the best

F -score. The cases where the cutoff value of 0 is chosen tend not to categorize well, evidenced

by the best F -score remaining below 0.4, and provides more proof that the best combination of

tuning parameters is a cost value of 2−5 and a confidence cutoff of 20%.

Figure 4.11: The F -scores of all 20 codes by Cutoff Value and cost Value

In regards to the term frequency weighting, under the current parameter values we conclude that

the best combination of parameters, to be referred to as the candidate model, is a confidence

cutoff value of 20% and a cost variable value of 2−5; however, searching the response surface

beyond cost values of 2−5 may yield more promising results.
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4.2 Final Model
We conclude our discussion of the model formulation with the presentation of the results from

applying the candidate model to the test data set. The test set was prepared in the same fashion

as the training set. We find that the test set does not classify as well as the validation set. In fact,

the classification is quite poor.

Figure 4.12: Results from the application of the candidate model to the test set of data. We see that the results are
not as positive as the results discovered using the validation set.

We find that the precision value remains similar to the values derived in the validation stage of

research. The recall values still remain poor which affects the overall score. While this was

mitigated in the validation stage of the experiment, further research needs to be conducted in

order to find methods that are more robust in regards to the recall value. Figure 4.12 shows the

precision, in blue, recall, in red, and score, in green, for the final model. Only one code, 314

Hyperkinetic Disorders Childhood, classifies above the successful threshold using the candidate

model. The model, in its current form, does not provide enough discrimination between codes

to function as a stand-alone coding classifier. Further research must be conducted in order to
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provide an autoclassification technique that can be utilized by the MHS.
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CHAPTER 5:
Conclusion

Healthcare delivery is in need of technological injections that provide value to clinicians while

enhancing the efficacy of the documentation system. This thesis lays the foundation for future

work in classification of ICD9 coding for MHS. The greatest and first hurdle to such work is

the arduous and time-consuming preperation of the physician’s notes into a corpus of useable

documents and terms and their subsequent translation into TDMs. In this thesis, we provide a

process consisting of a series of programs which convert TDMs to more memory and analyti-

cally efficient sparse matrix formats which can be used for classification.

In this work we used support vector machine classifiers which have proven successful in similiar

classification of text in medical contexts. [3, 5, 7] Interestingly, of the three weighting schema

investigated, the simplest technique, term frequency, perfomed the best. This result contrasts

with the results of [3] which finds that the more complicated schema; term frequency-inverse

document frequency and normalized inverse document frequency, tend to perform better. Fur-

ther work will need to be done to determine the reasons for methods, that have proven successful

previously, to perform so poorly on MHS data. We suspect that the most common terms may

have been due to AHLTA’s auto-population resulting in a bulk of common words throughout

all of the records. Furthermore, the culture surrounding AHLTA’s utilization may negate some

of the traditional documentation practices that are common in civilian practice. A final area of

weakness in the data could be from the coding of the records used in the training set. Data, in

which physicians assign the ICD9 code, was used in order to prove the concept without large

financial expenditure. It may be that a clean set of professionally coded data is required to pro-

vide the discriminatory power required. In addition to these data issues, we suggest changes to

the model that include exploring cost values less than 2−5 as well as more refined increments of

cutoff values. A full list of potential areas of further analysis include

• exploring cost values less than 2−5 (previously mentioned)

• Smaller increments of confidence cutoff values (previously mentioned)

• Adding extenders to the codes
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• Analysis of the term frequency-inverse document frequency and normalized term frequency-

inverse document frequency matrices to determine why the classification of these methods

was so poor. (previously metioned)

• Using the probabilitiy outputs of the SVM as a meta-model to be fed into a classification

tree that also utilizes the demographic information

• Additional classification engines such as naı̈ve bayes, and k-nearest neighbors

We focused solely on the physician text and how a SVM could descriminate between codes.

Other classifiers, which have performed well in classification of text in a medical context, are

available for application. These techniques include the naı̈ve bayes classifier and the k-nearest

neighbor classifier. Even more important, in this thesis we focus on the physician notes to

classify codes. While the notes provide the most pertinent and detailed information for diag-

nosis, other data, availabe from the CDM, can also be used for good purpose. For example,

we might partition the data by age and gender prior to developing classification schemes. Fur-

thermore, fields such as appointment type, Family Member Prefix, and MEPRS code can be

incorporated directly into the physician note SVM classifiers. With additional data processing,

patient histories can be constructed from CDM data. These might also prove valuable for clas-

sification. Alternatively, because constructing SVM classifiers based on physician notes is so

time-consuming and labor-intensive, the SVM classifiers might be used as a first stage in classi-

fication. The output probabilities of the candidate diagnosis code from the SVM text classifier,

along with demographic information available from CDM records, could be used as more man-

ageable input to a second stage classifier. This approach to statisical learning is call “chaining”

and is described in [2].

Finally, to be useable, this work must be extended to more diagnosis codes and to include the

code extenders. Adding extenders may uncover the unique vector space that comprises each of

these codes. Finding this smaller space will require enhanced computational assets, but may

provide a better vector space in which to classify. More importantly, adding the extenders will

provide an output that is practical and necessary for the leadership of the MHS. Continued

research in these areas may provide the necessary boost to SVM model to provide an ICD9 au-

toclassification engine. ICD9 autoclassification is an important first step in providing objective

data for the MHS leadership and deserves further research.
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APPENDIX A:
Additional Term Frequency Response Surfaces

Figure A.1: The F -score response surface of 250 created by the tuning of the cost parameter and the confidence
cutoff for term frequency weighting
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Figure A.2: The F -score response surface of 272 created by the tuning of the cost parameter and the confidence
cutoff for term frequency weighting

Figure A.3: The F -score response surface of 314 created by the tuning of the cost parameter and the confidence
cutoff for term frequency weighting
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Figure A.4: The F -score response surface of 382 created by the tuning of the cost parameter and the confidence
cutoff for term frequency weighting

Figure A.5: The F -score response surface of 401 created by the tuning of the cost parameter and the confidence
cutoff for term frequency weighting
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Figure A.6: The F -score response surface of 462 created by the tuning of the cost parameter and the confidence
cutoff for term frequency weighting

Figure A.7: The F -score response surface of 465 created by the tuning of the cost parameter and the confidence
cutoff for term frequency weighting
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Figure A.8: The F -score response surface of 473 created by the tuning of the cost parameter and the confidence
cutoff for term frequency weighting

Figure A.9: The F -score response surface of 477 created by the tuning of the cost parameter and the confidence
cutoff for term frequency weighting
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Figure A.10: The F -score response surface of 493 created by the tuning of the cost parameter and the confidence
cutoff for term frequency weighting

Figure A.11: The F -score response surface of 692 created by the tuning of the cost parameter and the confidence
cutoff for term frequency weighting
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Figure A.12: The F -score response surface of 719 created by the tuning of the cost parameter and the confidence
cutoff for term frequency weighting

Figure A.13: The F -score response surface of 724 created by the tuning of the cost parameter and the confidence
cutoff for term frequency weighting
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Figure A.14: The F -score response surface of 780 created by the tuning of the cost parameter and the confidence
cutoff for term frequency weighting

Figure A.15: The F -score response surface of 786 created by the tuning of the slack variable and the confidence
cutoff for term frequency weighting
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Figure A.16: The F -score response surface of V25 created by the tuning of the cost parameter and the confidence
cutoff for term frequency weighting

Figure A.17: The F -score response surface of V65 created by the tuning of the cost parameter and the confidence
cutoff for term frequency weighting

57



THIS PAGE INTENTIONALLY LEFT BLANK

58



APPENDIX B:
Additional Term Frequency-Inverse Document

Frequency ResponseSurfaces

Figure B.1: The F -score response surface of 250 created by the tuning of the cost parameter and the confidence
cutoff for term frequency-inverse document frequency weighting
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Figure B.2: The F -score response surface of 272 created by the tuning of the cost parameter and the confidence
cutoff for term frequency-inverse document frequency weighting

Figure B.3: The F -score response surface of 314 created by the tuning of the cost parameter and the confidence
cutoff for term frequency-inverse document frequency weighting
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Figure B.4: The F -score response surface of 382 created by the tuning of the cost parameter and the confidence
cutoff for term frequency-inverse document frequency weighting

Figure B.5: The F -score response surface of 401 created by the tuning of the cost parameter and the confidence
cutoff for term frequency-inverse document frequency weighting
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Figure B.6: The F -score response surface of 462 created by the tuning of the cost parameter and the confidence
cutoff for term frequency-inverse document frequency weighting

Figure B.7: The F -score response surface of 465 created by the tuning of the slack variable and the confidence
cutoff for term frequency-inverse document frequency weighting
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Figure B.8: The F -score response surface of 473 created by the tuning of the cost parameter and the confidence
cutoff for term frequency-inverse document frequency weighting

Figure B.9: The F -score response surface of 477 created by the tuning of the cost parameter and the confidence
cutoff for term frequency-inverse document frequency weighting
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Figure B.10: The F -score response surface of 493 created by the tuning of the cost parameter and the confidence
cutoff for term frequency-inverse document frequency weighting

Figure B.11: The F -score response surface of 692 created by the tuning of the cost parameter and the confidence
cutoff for term frequency-inverse document frequency weighting
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Figure B.12: The F -score response surface of 719 created by the tuning of the cost parameter and the confidence
cutoff for term frequency-inverse document frequency weighting

Figure B.13: The F -score response surface of 724 created by the tuning of the cost parameter and the confidence
cutoff for term frequency-inverse document frequency weighting
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Figure B.14: The F -score response surface of 780 created by the tuning of the cost parameter and the confidence
cutoff for term frequency-inverse document frequency weighting

Figure B.15: The F -score response surface of 786 created by the tuning of the cost parameter and the confidence
cutoff for term frequency-inverse document frequency weighting
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Figure B.16: The F -score response surface of V25 created by the tuning of the cost parameter and the confidence
cutoff for term frequency-inverse document frequency weighting

Figure B.17: The F -score response surface of V65 created by the tuning of the cost parameter and the confidence
cutoff for term frequency-inverse document frequency weighting
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Figure B.18: The F -score response surface of V20 created by the tuning of the cost parameter and the confidence
cutoff for term frequency-inverse document frequency weighting
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APPENDIX C:
Additional Normalized Term Frequency-Inverse

Document Frequency Response Surface

Figure C.1: The F -score response surface of 250 created by the tuning of the cost parameter and the confidence
cutoff for normalized term frequency-inverse document frequency weighting
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Figure C.2: The F -score response surface of 272 created by the tuning of the cost parameter and the confidence
cutoff for normalized term frequency-inverse document frequency weighting

Figure C.3: The F -score response surface of 314 created by the tuning of the cost parameter and the confidence
cutoff for normalized term frequency-inverse document frequency weighting
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Figure C.4: The F -score response surface of 382 created by the tuning of the cost parameter and the confidence
cutoff for normalized term frequency-inverse document frequency weighting

Figure C.5: The F -score response surface of 401 created by the tuning of the cost parameter and the confidence
cutoff for normalized term frequency-inverse document frequency weighting

71



Figure C.6: The F -score response surface of 462 created by the tuning of the cost parameter and the confidence
cutoff for normalized term frequency-inverse document frequency weighting

Figure C.7: The F -score response surface of 465 created by the tuning of the cost parameter and the confidence
cutoff for normalized term frequency-inverse document frequency weighting
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Figure C.8: The F -score response surface of 473 created by the tuning of the cost parameter and the confidence
cutoff for normalized term frequency-inverse document frequency weighting

Figure C.9: The F -score response surface of 477 created by the tuning of the cost parameter and the confidence
cutoff for normalized term frequency-inverse document frequency weighting
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Figure C.10: The F -score response surface of 493 created by the tuning of the cost parameter and the confidence
cutoff for normalized term frequency-inverse document frequency weighting

Figure C.11: The F -score response surface of 692 created by the tuning of the cost parameter and the confidence
cutoff for normalized term frequency-inverse document frequency weighting
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Figure C.12: The F -score response surface of 719 created by the tuning of the cost parameter and the confidence
cutoff for normalized term frequency-inverse document frequency weighting

Figure C.13: The F -score response surface of 724 created by the tuning of the cost parameter and the confidence
cutoff for normalized term frequency-inverse document frequency weighting
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Figure C.14: The F -score response surface of 780 created by the tuning of the cost parameter and the confidence
cutoff for normalized term frequency-inverse document frequency weighting

Figure C.15: The F -score response surface of 250 created by the tuning of the cost parameter and the confidence
cutoff for normalized term frequency-inverse document frequency weighting
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Figure C.16: The F -score response surface of V25 created by the tuning of the cost parameter and the confidence
cutoff for normalized term frequency-inverse document frequency weighting

Figure C.17: The F -score response surface of V65 created by the tuning of the cost parameter and the confidence
cutoff for normalized term frequency-inverse document frequency weighting
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Figure C.18: The F -score response surface of V70 created by the tuning of the cost parameter and the confidence
cutoff for normalized term frequency-inverse document frequency weighting
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