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ABSTRACT 

Communications within jungle environments has always been a difficult proposition.  

This is especially true of collection assets beneath triple canopy jungle that need to 

communicate with overhead national assets.  The traditional methods of countering the 

negative effects of the canopy on EM signals have been to increase the power to offset 

the losses, or to utilize new, more canopy transparent portions of the EM spectrum.  

However, there are complications with both of these methods.  Simply increasing 

transmitted power increases the drain on the system’s power supply, thus lowering 

effective on-station time.  Shifting to a different portion of the EM spectrum can 

negatively affect the transmission rate of the system and requires specialized equipment 

such as antennas and modulators.  This work addresses the issue by designing a semi-

autonomous UUV, which will clandestinely relay data from the embedded jungle systems 

to overhead national assets.  Rather than trying to punch through the canopy directly, the 

proposed UUV will take advantage of the fact that most jungle water ways have, at the 

very least, a thinner canopy overhead if not a clear view of the sky for less lossy satellite 

communications.  This shifts the primary communications from an Earth-Sky problem to 

a lateral wave model where the communications travels parallel to the canopy.  While the 

jungle is still not an ideal medium for communications, other methods can be used to 

address these losses.  The proposed UUV will be designed to be cheap and constructed 

from existing systems.  It will also be small, and lightweight, enough to be delivered and 

deployed in theater via aircraft, boats, and operators on the ground.  Additionally it will 

be capable of long on station times due to the ability recharge on station. 



 vi

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii

TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 
A. THE OPERATING ENVIRONMENT..........................................................1 
B. DEFINING THE ENVIRONMENT ..............................................................1 
C. CIRCUMVENTING THE CANOPY ............................................................2 
D. THE LATERAL WAVE PROBLEM ............................................................5 
E. MULTIPLE INPUT, MULTIPLE OUTPUT (MIMO)................................8 

1. Basics.....................................................................................................8 
2. Spatial Multiplexing and MIMO Channel Capacity ........................9 
3. Transmission Diversity and Signal Reliability ................................11 

II. CONCEPT OF OPERATIONS................................................................................15 
A. INTRODUCTION..........................................................................................15 
B. BASIC FUNCTIONALITY AND ASSUMPTIONS...................................15 

1. UUV Functionality .............................................................................15 
2. Embedded Systems ............................................................................16 

C. MISSION CRITERIA ...................................................................................16 
1. Persistent Missions.............................................................................16 
2. Non-Persistent Missions ....................................................................18 

D. UUV DEPLOYMENT ...................................................................................18 
1. Portage Deployment...........................................................................18 
2. Surface Deployment...........................................................................19 
3. Submerged Deployment ....................................................................21 
4. Airborne Deployment ........................................................................22 

a. Assisted Airborne Deployment ...............................................24 
E. MISSION EXECUTION...............................................................................24 

1. Burst Communication .......................................................................25 
2. Constant Communication .................................................................26 

F. MISSION TERMINATION..........................................................................26 
1. Recovery..............................................................................................27 
2. Destruction..........................................................................................27 

III. AN OPTIMAL UUV DESIGN..................................................................................29 
A. INTRODUCTION..........................................................................................29 
B. BASIC UUV DESIGN REQUIREMENTS .................................................29 
C. MAIN BODY DESIGN..................................................................................29 

1. Size and Weight..................................................................................29 
2. Shape ...................................................................................................30 

D. DATA LINK SYSTEM..................................................................................32 
1. Radios..................................................................................................32 
2. Antennas and Processing...................................................................32 
2. Cryptographic Systems .....................................................................34 

E. MISCELLANEOUS SYSTEMS...................................................................35 
1. Mission Control Computer and Interfaces......................................35 



 viii

2. Anchor and Winch.............................................................................36 
3. Surface and Depth Sensors ...............................................................38 
4. Self-Destruct Mechanisms.................................................................39 

a. Physical Destruction Mechanisms .........................................39 
b. Data Destruction Mechanisms ...............................................39 

F. POWER, PROPULSION, AND STEERING SYSTEMS ..........................41 
1. Power System .....................................................................................41 

a. Power Budget Analysis ...........................................................42 
2. Propulsion System..............................................................................44 
3. Steering System ..................................................................................44 

IV. SURVEY OF EXISTING TECHNOLOGY............................................................45 
A. INTRODUCTION..........................................................................................45 
B. OPERATIONAL UUVS................................................................................45 

1. iRobot/Nekton’s Ranger and Ranger 15A.......................................45 
a. Pros ..........................................................................................45 
b. Cons .........................................................................................46 
c. Comparison to optimal design ................................................46 

2. Hydroid’s REMUS 100......................................................................48 
a. Pros ..........................................................................................48 
b. Cons .........................................................................................48 
c. Comparison to Optimal Design ..............................................49 

3. Bluefin Robotics’ Bluefin-9/SeaLion................................................51 
a. Pros ..........................................................................................51 
b. Cons .........................................................................................51 
c. Comparison to optimal design ................................................52 

C. OPERATIONAL COMMUNICATIONS SYSTEMS................................53 
1. Raytheon’s MicroLight-DH500 ........................................................53 

a. Pros ..........................................................................................54 
b. Cons .........................................................................................54 
c. Comparison to Optimal Design ..............................................55 

2. Harris’ AN/PRC-152 .........................................................................56 
a. Pros ..........................................................................................56 
b. Cons .........................................................................................57 
c. Comparison to Optimal Design ..............................................57 

3. Rockwell Collins Government Systems’ FlexNet-Four ..................58 
a. Pros ..........................................................................................58 
b. Cons .........................................................................................59 
c. Comparison to Optimal Design ..............................................59 

V. CONCLUSION AND RECOMMENDED FOLLOW ON WORK.......................61 
A. GAP ANALYSIS............................................................................................61 
B. CONCLUSIONS ............................................................................................61 
C. FUTURE AREAS OF STUDY .....................................................................62 

1. CONOPS Work..................................................................................63 
a. Mission Planning Tools and Models......................................63 
b. Deployment Testing.................................................................63 



 ix

2. Design Work.......................................................................................64 
a. The Mission Planning Application ........................................64 
b. Submerged Deployment Communications.............................64 
c. Power System Specifications ..................................................64 
d. Network Integration................................................................65 

LIST OF REFERENCES......................................................................................................67 

INITIAL DISTRIBUTION LIST .........................................................................................71 

 



 x

THIS PAGE INTENTIONALLY LEFT BLANK  



 xi

LIST OF FIGURES 

Figure 1. Leaf coverage index from NASA’s NEO program.  The darker the green, 
the denser the foliage cover.  Tropical rainforests are the darkest areas, 
corresponding to on average of 7 m2 of leaves per m2 of ground.  (From ) ......3 

Figure 2. A picture of the Niger River Delta as seen from space. Approximately 
8.5% of the visible area in this picture is the river.  (From ) .............................4 

Figure 3. Conceptual figure for the use of a data relay UUV. ..........................................5 
Figure 4. Idealized planar geometry of a forest environment, of Tamir’s Lateral 

Wave Applications to Radio Systems, reproduced here for clarity.  The 
three communications pathways are Direct and Reflected (TR and TSR 
respectively), Sky (TJKLMNPQR), and Lateral (TABR).  The angle θc is 
the critical angle of total reflection within the forest slab.  (From ) ..................6 

Figure 5. A basic MIMO system. ......................................................................................8 
Figure 6. Spatial Multiplexing in a MIMO system. ........................................................10 
Figure 7. In the system on the left, the line of sight path dominates the received 

signal, and the two data channels overlap at the receiver’s antennas.  This 
prevents the reciever from being able to separate them into two 
independent data streams.  The system on the right shows a multipath rich 
environment, where non-line of sight paths dominate.  In this case there is 
little, to no, overlap at the reciever’s antennas and it can resolve the 
signals into separate data streams.  If the transmitter had knowledge of the 
state of the communications channel, it would be possible for it to modify 
its transmission to increase this spatial independence. ....................................11 

Figure 8. The system on the left shows the separate data channels discussed in the 
previous section.  However, in this scenario, the fading environment is 
such that one of the streams is attenuated past the receiver’s threshold, and 
thus that data is lost leading to errors.  The figure on the right 
demonstrates transmission diversity, with multiple antennas transmitting 
the same symbol.  Enough of the transmitted symbol energy survives the 
fading environment to be detected by the receiver with no errors...................12 

Figure 9. A U.S. Navy Mark V Special Operations Craft.  (From ) ...............................20 
Figure 10. Test version of the Snowflake ADS. (From ) ..................................................23 
Figure 11. Nominal UUV design in transit during a submerged deployment...................31 
Figure 12. Top down view of the nominal antenna coverage areas. .................................33 
Figure 13. Cross-sectional view of the nominal antenna coverage areas..........................33 
Figure 14. While active, the winch will release enough cable to expose the UUV’s 

antenna housing so it can communicate...........................................................37 
Figure 15. When not broadcasting, the winch will reel the UUV in to prevent 

observation from the surface............................................................................37 
Figure 16. The future iRobot Ranger 15A. (From ) ..........................................................47 
Figure 17. The earlier Nekton Ranger model.  Notice the shrouded propeller and 

antenna mast. (From ) ......................................................................................47 
Figure 18. The complete military REMUS 100 system. (From )......................................50 



 xii

Figure 19. A REMUS 100 being deployed by UK Royal Navy sailors.  Notice the 
antenna mast on the UUV.  (From ).................................................................50 

Figure 20. A Bluefin-9 with a US Navy EOD team. (From ) ...........................................53 
Figure 21. A MicroLight-DH500.  (From ).......................................................................56 
Figure 22. An AN/PRC-152.  (From ) ..............................................................................58 
Figure 23. The FlexNet-Four.  (From ) .............................................................................60 
 



 xiii

LIST OF TABLES 

Table 1. Estimated Daily Power Budget for a Constant Communication Type 
Mission.............................................................................................................42 

Table 2. Summary of Comparison of Nekton Ranger to Optimal Design.....................46 
Table 3. Summary of Comparison of REMUS 100 to Optimal Design ........................49 
Table 4. Summary of Comparison of Bluefin-9 to Optimal Design..............................52 
Table 5. Summary of Comparison of DH500 to Optimal Design .................................55 
Table 6. Summary of Comparison of AN/PRC-152 to Optimal Design .......................57 
Table 7. Summary of Comparison of FlexNet-Four to Optimal Design .......................59 
 



 xiv

THIS PAGE INTENTIONALLY LEFT BLANK 



 xv

LIST OF ACRONYMS AND ABBREVIATIONS 

AES  Advanced Encryption Standard 

AI  Artificial Intelligence 

ASCL  Autonomous Systems and Controls Laboratory 

AUV  Autonomous Underwater Vehicle 

CDMA Code Division Multiple Access 

CEP  Circular Error Probable 

CONOPS Concept of Operations 

COTS  Commercial off the Shelf 

CSS  Central Security Service 

FDMA  Frequency Division Multiple Access 

GPS  Global Positioning System 

JTRS  Joint Tactical Radio System 

LIDAR Light Detection and Ranging 

MIMO  Multiple Input, Multiple Output 

NISP  National Industrial Security Program 

NIST  National Institute of Standards and Technology 

NSA  National Security Agency 

RAM  Random Access Memory 

ROM  Read Only Memory 

SIGINT Signals Intelligence 

SISO  Single Input, Single Output 

SOF  Special Operations Forces 

TDMA  Time Division Multiple Access 



 xvi

USB  Universal Serial Bus 

UUV  Unmanned Underwater Vehicle 

VoiP  Voice Over Internet Protocol 

 



 xvii

ACKNOWLEDGMENTS 

First, I would like to thank my two advisors, Dr. Buettner and Sean Kragelund.  If 

you think something in here is a really good idea, I probably got it from them. 

Next, I would like to thank my wife Kathrine for putting up with the long hours 

that went along with this degree.  I know this was supposed to be a shore tour, but at least 

I had the weekends. 

Finally, I would like to thank my fellow classmates in the IW program.  This 

whole process was a team sport. 



 xviii

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1

I. INTRODUCTION 

A. THE OPERATING ENVIRONMENT 

The modern era of conflict is defined by the large number of low intensity, 

asymmetrical conflicts distributed around the world.  Whether these threats are Islamic 

extremists in Indonesia’s Aceh province, the more “classical” Maoist insurgents in 

eastern India, or cartels and narco-terrorists of the Amazon river valley, they all share a 

number of things in common, number one among them being the desire to remain hidden. 

To that end, the jungles of many of the world’s hot spots offer the perfect safe 

haven for those wishing to remain hidden from a larger and stronger force.  This idea has 

been borne out through centuries of warfare, and is no stranger to the United States given 

its experiences during the Vietnam War, the Philippine Insurrection, and the many island 

campaigns of World War II.  Combating an enemy entrenched beneath a thick jungle 

canopy requires extensive efforts by a nation’s military and intelligence assets. 

There are few environments on Earth as challenging to military and intelligence 

operations as the jungle.  This is especially true in the information age where the austere 

surroundings impede, or even nullify, the United States’ primary force enablers of 

communications, data collection, and networking.  In particular, the triple canopy of the 

jungle is nearly impenetrable to the myriad of satellites and airborne assets, which the 

U.S. has traditionally used for data collection and relay.  Until now, the push has been to 

develop canopy-penetrating technology, which has seen limited success in the areas of 

LIDAR imaging of terrain from airborne assets.  However, that is insufficient for a 

number of data collection systems such as small, ground based, signals intelligence 

(SIGINT) sensors that need to transmit back to space borne national assets. 

B. DEFINING THE ENVIRONMENT 

For the purposes of this work, the word jungle will be synonymous with 

rainforest, and will be used interchangeably.  By definition, the rainforest is one of the 
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Earth’s major biomes, and is further subdivided into tropical rainforest and temperate 

rainforest.  These subtypes share the qualities of and an enormous density of vegetation, 

and a high amount of annual rainfall. 

The primary difference between the two subtypes is their location.  Tropical 

rainforest is found along the equator, primarily between 28º North and South latitude.  

Between the two, tropical rainforest is the harsher medium for communications 

technology.  Due to relatively high temperatures year round, combined with 2 to 10 

meters of annual rainfall, they are generally very humid.  Additionally, the canopy of 

tropical rainforest is typically much denser than that of temperate rainforest, dense 

enough that it can actually prevent rainfall from reaching the ground in some places.  

C. CIRCUMVENTING THE CANOPY 

Given the profound effect that thick canopies can have on Earth-Space 

communications, this work explores methods to eliminate the canopy from the problem 

by taking advantage of the numerous waterways and rivers that cut through the world’s 

jungles and rainforests.  The main bodies of these waterways are normally marked by an 

unobstructed view of the sky making them much more preferable for Earth-Space 

communications systems. 

By creating an unmanned underwater vehicle (UUV) that can act as a data relay 

between a system in the jungle, and its satellite component, the problem of trying to 

overcome the attenuation of the canopy can be avoided.  Instead it is replaced with a 

relatively simpler lateral wave problem between the embedded jungle system and the 

UUV.  This is illustrated in Figure 3. 
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Figure 1.   Leaf coverage index from NASA’s NEO program.  The darker the green, 
the denser the foliage cover.  Tropical rainforests are the darkest areas, 

corresponding to on average of 7 m2 of leaves per m2 of ground.  (From 1)  

                                                 
 

1 National Aeronautics and Space Administration NEO Website, “NEO: NASA Earth Observations. 
August 16, 2011,” National Aeronautics and Space Administration 
http://neo.sci.gsfc.nasa.gov/Search.html?group=21. 
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Figure 2.   A picture of the Niger River Delta as seen from space. Approximately 
8.5% of the visible area in this picture is the river.  (From 2) 

                                                 
 

2 Mongabay.com, “Rainforests”, Rhett Butler, http://rainforests.mongabay.com/0603.htm. 
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Figure 3.   Conceptual figure for the use of a data relay UUV. 

D. THE LATERAL WAVE PROBLEM 

The defining work on radio wave propagation in the jungle was done by Theodor 

Tamir, and is summarized in a number of papers on the subject.3,4,5 He used a theoretical 

model commonly referred to as the dielectric slab model, or simply, “the slab model”.  

The slab model assumes the jungle acts as a lossy dielectric slab laid over flat ground. 

From this, Dr. Tamir concluded that there are only three paths that a communications 

signal in a forest environment can take6: 

• A direct line-of-sight wave and reflected waves 

• A sky wave that is due to a single hop reflection from the ionosphere 

                                                 
 

3 Theodor Tamir, "Lateral Wave Applications to Radio Systems." (Paper presented at the Workshop 
on Radio Systems in Forested and/or Vegetated Environments for Army Communications Command, Fort 
Huachuca Arizona, February 1974.  23–30). 

4 Theodor Tamir, "On Radio-Wave Propagation in Forested Environments," IEEE Transactions on 
Antennas and Propagation (1967): 23-30. 

5 Theodor Tamir, "Radio Wave Propagation Along Mixed Paths in Forest Environments." IEEE 
Transactions on Antennas and Propagation (1977): 471–477. 

6 Tamir, Lateral Wave Applications, 25. 
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• A lateral wave that travels mostly in the air region by skimming along the 

canopy 

These communications paths are illustrated in Figure 4. 

 

 

Figure 4.   Idealized planar geometry of a forest environment, of Tamir’s Lateral 
Wave Applications to Radio Systems, reproduced here for clarity.  The three 

communications pathways are Direct and Reflected (TR and TSR 
respectively), Sky (TJKLMNPQR), and Lateral (TABR).  The angle θc is the 

critical angle of total reflection within the forest slab.  (From 7) 

Due to the reflected and direct rays travelling through a lossy medium, they both 

decay exponentially as a function of distance, which limits their effects at the receiver.  

Since both the sky ray and the lateral ray both travel in air, they are less attenuated over 

long distances.  However, due to the relatively narrow frequency range of ionospheric 

 
                                                 
 

7 Tamir, Lateral Wave Applications, 25. 
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reflection (approximately 3 to 10 MHz), and the much longer path length relative to the 

lateral ray path, Tamir concludes that the lateral wave is the dominant path at distances of 

practical importance.8 

According to Tamir, this horizontal mode of travel arises from the summation of a 

system of random scatterers, which are small relative to the signal’s wavelength (i.e., 

trunks, branches, leaves).  In this system, the numerous random scatterings add 

constructively laterally away from the source.9 

While lateral wave transmission in the jungle experiences much less attenuation 

then vertical transmission through the canopy, it is not without rather large losses.  

Tamir’s work with the slab model identified four main sources of loss in lateral wave 

transmission: 

Initial Loss (Lo): A function of the spreading of the transmitted wave. 

Separation Loss (Ls): Proportional to the separation between the transmitting and 

receiving antennas and the air-forest interface.  It arises from the longer path the wave 

must take to get to the air-forest interface. 

Interference Loss (Li): Inversely proportional to the distance of the transmitting 

and receiving antennas from the ground.  Thus, the lower the antennas are the larger this 

loss. 

Resistance Loss (Lr): A result of the resistivity of an antenna changing with 

proximity to the ground.  It is inversely proportional to the distance of the transmitting 

and receiving antennas from the ground.  Thus, the lower the antennas are the larger this 

loss. 

As is clear from their descriptions, the last three loss types (Ls, Li, Lr) are higher if 

one, or both, antennas are close to the ground, thus the traditional method of increasing 

the effectiveness of a lateral wave communications system is to raise the antennas as high 

as possible.  Obviously, raising the antenna above the ground isn’t an option for the UUV 
                                                 
 

8 Tamir, Lateral Wave Applications, 25. 
9 Ibid. , 26. 



 8

proposed here, but it is certainly a consideration when placing the embedded, in-jungle 

system.  Additionally, there are other methods to mitigate some of the losses in a scatter 

rich environment such as the rainforest. 

E. MULTIPLE INPUT, MULTIPLE OUTPUT (MIMO) 

Given that raising the UUV antenna in order to decrease losses is not an option, 

alternative methods to counter the losses must be found.  One such method of countering 

channel fading is the use of MIMO, which increases channel capacity over traditional 

systems as well as improved reception in scatter and fading rich environments.  MIMO 

has two properties that make that possible: spatial multiplexing and transmission 

diversity. 

1. Basics 

Before delving further into the specifics of the benefits of MIMO, the basic 

structure must be discussed.  Figure 5 represents a nominal MIMO communications 

system with n transmitting antennas (nt = n) and m receiving antennas (nr = m). 

 

Figure 5.   A basic MIMO system. 

The h vectors in this diagram represent the various channels between each 

transmitting and receiving antenna.  These are based on the scattering environment 

between the two, and will most likely not be uniform in a real world MIMO system.  

When combined together they form the channel transfer matrix, H: 
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H =  

Each transmitting antenna will transmit a given set of symbols over a length of time 

given as L.  This set gives us a transmitted signal vector, for a given antenna i, of xi: 

 
Similarly, each receiving antenna will receive a set of symbols over the same time period 

L.  This received signal will depend on the interaction of the transmitted signal vector 

from each transmitting antenna with the channel transfer matrix as well as the amount of 

Gaussian white noise at the receiver.  In vector form this is expressed as: 

 
where yi and ni are the received signal vector and the received noise vector of a given 

receiver antenna respectively, and take the form: 

    

When the individual antenna vectors are taken together, they form the block transmission 

model: 

  

or, in matrix form: 

 

2. Spatial Multiplexing and MIMO Channel Capacity 

The simplest way to model spatial multiplexing’s effect on a MIMO system is 

depicted in Figure 6 where the MIMO channel is depicted as a number of independent, 

traditional single input, single output (SISO) data channels. 
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Figure 6.   Spatial Multiplexing in a MIMO system. 

Here H has been decomposed into r number of linearly independent vectors or, in 

more mathematical terms, r is the rank of H and is the lesser of the amount of 

transmitting or receiving antennas. 

 
The literature focuses on the creation of a rectangular matrix Λ made of the 

eigenvalues of the singular value decomposition (SVD) of H: 

 
where: 

 and  

Without going into detail on the math involved, Λ will contain r eigenvectors (λ1 through 

λr).  These eigenvectors can be thought of as the channel gains for the r independent 

channels of the MIMO system.  Unfortunately, the math does not get simpler from there. 

In a real system, the values of H are randomly determined, and vary with time.  Most 

literature assumes that these values are independent Gaussian variables.  The crux of this 

is that the capacity of a spatially multiplexed system is a probabilistic function.  Using 

Shannon’s capacity equation as a base, the final capacity of a MIMO system is derived 

using the waterfilling algorithm to be: 
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where  is the expected value of the function and  is the average SNR at the receiver 

antennas.  From this equation it is easy to see that increasing r will increase the total 

capacity of the system as it will sum more and more individual channel capacities. 

The previous work assumed that there was sufficient spatial independence 

between the antennas to prevent spatial correlation.  High spatial correlation reduces the 

overall channel capacity of the MIMO system as there is less physical volume for the 

independent channels to occupy.  In this case, a rich multipath environment can be an 

advantage to a system.  This is illustrated in Figure 7. 

 

 

Figure 7.   In the system on the left, the line of sight path dominates the received 
signal, and the two data channels overlap at the receiver’s antennas.  This 

prevents the reciever from being able to separate them into two independent 
data streams.  The system on the right shows a multipath rich environment, 

where non-line of sight paths dominate.  In this case there is little, to no, 
overlap at the reciever’s antennas and it can resolve the signals into separate 

data streams.  If the transmitter had knowledge of the state of the 
communications channel, it would be possible for it to modify its transmission 

to increase this spatial independence. 

3. Transmission Diversity and Signal Reliability 

Rather than use the transmitter and receiver arrays to create parallel data channels, 

it is possible to increase the reliability of a signal by transmitting the same symbols over 

multiple antennas.  Sending redundant data streams is called transmission diversity, and 

is useful in areas with poor SNR at the receiver due to fading conditions, as increasing 

the amount of channels broadcasting the same symbol will decrease the chances that they 

will all experience critical fading.  Figure 8 gives a basic illustration of this concept. 
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Figure 8.   The system on the left shows the separate data channels discussed in the 
previous section.  However, in this scenario, the fading environment is such 

that one of the streams is attenuated past the receiver’s threshold, and thus that 
data is lost leading to errors.  The figure on the right demonstrates 

transmission diversity, with multiple antennas transmitting the same symbol.  
Enough of the transmitted symbol energy survives the fading environment to 

be detected by the receiver with no errors. 

Figure 8 also demonstrates the fundamental tradeoff between maximizing channel 

capacity and maximizing channel reliability.  Thus, it is impossible to maximize both 

spatial multiplexing and transmission diversity. 

For an introduction to the math involved we will start with considering M 

identical versions of a given transmitted symbol s.  This gives a set of received signal 

vectors: 

 
So the total amount of energy received for a given symbol s depends on M amount of 

independent observations of that symbol, each experiencing an independent amount of 

fading via hi  If a receiver is constructed that uses a process called maximum ratio 

combining (MRC), then the total post processing SNR for symbol s is given by the 

following function: 

 
Based on this post processing SNR the probability of error for the transmitted symbol is: 
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Where  is the number of nearest neighbors and dmin is the minimum distance in the set 

of available transmission symbols.  From this most basic look at how diversity effects 

signal reliability it’s clear that increasing the redundancy of the transmission, M, will lead 

to a larger negative exponent, which in turn will lower the probability of error. 
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II. CONCEPT OF OPERATIONS 

A. INTRODUCTION 

The goal of this project is develop a cheap, and simple to use, UUV for 

clandestine data-relay in environments not conducive to traditional means of connecting 

with overhead national systems.  Using a UUV for this function allows for multiple 

deployment methods as will be described in the following sections.  A less complex 

system, such as a simple buoy or mine-like device, has much more stringent deployment 

requirements then a system that can be placed elsewhere and driven to its final location.  

This mission flexibility should prove valuable for mission planners. 

In order to design such a system, we must first define how it will be employed, 

and the types of mission sets it will be used for in order to inform the hardware and 

software choices made during the design. 

B. BASIC FUNCTIONALITY AND ASSUMPTIONS 

1. UUV Functionality 

For the purpose of establishing a concept of operations, and to inform the design 

later, certain assumptions will be made about what the UUV can do.  First and foremost, 

the UUV will be able to communicate with both embedded systems in the jungle, and 

national overhead assets.  Additionally the UUV will be assumed to have some sort of 

long term power supply allowing it to stay active for persistent missions.  The UUV will 

have some sort of anchoring system to maintain its location in the targeted waterway, and 

this tether length will be adjustable to allow the UUV to change depth over time.  Finally, 

it is assumed that the UUV is programmable with different mission parameters that will 

identify how it will communicate with both embedded systems and national assets. 

While these functions are challenging engineering problems, there are a number 

of existing UUV systems that have been built that can perform them.  A number of 

academic and commercial institutions have produced UUVs with flexible 

communications such as Hydroid’s REMUS series, which can have wireless 802.11B 
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connectivity as well as iridium satellite communications.10,11  Virginia Tech’s 

Autonomous Systems and Controls Laboratory (ASCL) has built a self-mooring AUV for 

long term oceanographic research.12  As for long term power for persistent missions, 

companies such as Liquid Robotics have produced vehicles that are able to harvest 

energy from their operating environments.13  Granted, Liquid Robotics’ Wave glider 

series is a surface vehicle, but some of the same concepts can be applied to a UUV. 

2. Embedded Systems 

The only assumptions made about the embedded systems for the purpose of this 

work is that they are able to communicate with the UUV, and that they can be 

programmed to match the same mission parameters as the UUV (i.e., transmission time 

windows.) 

C. MISSION CRITERIA 

The use of this UUV can be broken in to two broad mission categories, persistent 

and non-persistent.  Each has its own advantages and disadvantages that will have to be 

accounted for by operation planners when deciding to employ it. 

1. Persistent Missions 

Persistent missions are precisely what the name implies; long-term mission sets 

where the embedded systems, overhead national systems, and area of operations, are 

static.  When compared to transient missions, persistent missions require much more 

                                                 
 

10 Kongsberg Maritime Corporate Website, "Autonomous Underwater Vehicle - REMUS 100," 
Kongsberg Maritime, 
http://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/D241A2C835DF40B0C12574AB003EA6
AB?OpenDocument. 

11 Kongsberg Maritime Corporate Website, "Autonomous Underwater Vehicle - REMUS 600," 
Kongsberg Maritime, 
http://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/F0437252E45256BDC12574AD004BDD4
A?OpenDocument. 

12 Autonomous Systems and Controls Laboratory Website, "Self-Mooring AUV," Virginia Tech 
Autonomous Systems and Controls Laboratory, http://www.ascl.ece.vt.edu/HSAUV.html 

13 Liquid Robotics Corporate Website, "Wave Glider Concept," Liquid Robotics, 
http://liquidr.com/technology/wave-glider-concept/. 
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planning for their use and placement in order to mitigate the risk of discovery that long 

term placement brings, as well as to counter the effects of river environments the UUV 

will be exposed to for long periods of time.  For the purposes of this section persistent 

missions will be defined as those lasting a month or longer. 

Since the primary driver to using a UUV for canopy circumvention is its stealth 

and its ability to perform clandestinely, finding a suitable area for placement is key for 

persistent use.  Major rivers are the center of life for population in the areas where the 

UUV will be deployed.  They are used for transport, communications, fishing, potable 

water, as well as simple recreation.  Even if the UUV spends most its time on the bottom, 

surfacing only at night, if it is placed in a high traffic, or heavy use, area the likelihood of 

its discovery is high.  It is imperative for planners to study river usage patterns in the 

operation area to find locations where the UUV will be less likely to be exposed to cast 

nets, drag lines, and divers. 

An additional obstacle to the long term stability of the UUV is the river itself.  

Many major waterways in rainforests and jungles have severe currents, or highly 

fluctuating water levels.  These factors will have severe impacts on both the UUV’s 

position, and its ability to remain hidden.  In many cases this data is seasonal, and so 

planners must be aware of the time table for their mission and plan accordingly. 

Thus an ideal location for UUV placement would be one with little to no traffic, a 

steady, gentle current, and a relatively constant depth during the mission.  Of course, the 

odds of finding a perfect location are low, so planners must balance these competing 

considerations and make an appropriate risk assessment. 

While conducting persistent missions take much more planning and forethought 

than transient missions, they do offer more stability.  Given the long term viability of the 

chosen location for the UUV, it allows for more careful employment of embedded 

systems in the jungle.  This allows operators the time to experiment with system 

positioning in order to optimize the connection with the UUV and making the connection 

more robust. 
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2. Non-Persistent Missions 

As the name implies, non-persistent missions are not intended for long term use, 

and are more expedient in nature.  The main use for this mission set is to rapidly deploy a 

data relay capability for emergent collection needs, short-term observation, or to 

temporarily replace a compromised persistent mission UUV.  Due to the shortened 

operation time, the risk of discovery is lower than for persistent missions in the area.  

Additionally, the non-persistent mission UUV will not require a location that is as 

environmentally stable as one for a persistent mission.  For the purpose of this discussion, 

non-persistent missions will be defined as those lasting less than a month. 

The primary concern for non-persistent missions, especially those responding to 

emergent requirements, is to find a location for the UUV that is within communications 

range of the embedded systems or operators.  That is not to say that planners should 

ignore river usage patterns or current and tidal data, but the transient nature of the UUV’s 

deployment should mitigate the risk of discovery or being carried away. 

D. UUV DEPLOYMENT 

Identifying the optimal position for UUV placement is in many ways the easy 

part.  Placement of the UUV in the river or waterway may prove to be very challenging, 

especially if the destination is far inland.  Four methods of deployment are identified and 

discussed here: portage, surface, submerged, and airborne. 

1. Portage Deployment 

Portage deployment involves the UUV being hauled by an operator through the 

jungle or rainforest, and being placed in the desired location via a small dive operation.  

Obviously this method is rife with concerns for mission planners. 

Chief among these concerns is time.  Tropical rainforests are some of the most 

unforgiving terrain for overland travel on the planet.  This is compounded by the fact that 

roads and other infrastructure that would make travel easier in these areas is scarce, 

meaning that most of the transport would have to be done on foot.  The crux of this is that 

deployment time may be measure in days or weeks.  For this deployment method to be 
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feasible the UUV must be man portable, which adds a significant size and weight 

constraint to the final system design. 

Despite these issues, portage deployment has a few advantages.  First and 

foremost is accuracy of placement.  Having an operator physically place the UUV in the 

desired location means that it can be done slow and methodically and can be checked for 

accuracy before during and after.  Additionally, with operators in place for the 

deployment of the UUV, they would be able to vet the data used for placement of the 

system.  It is possible for them to make in situ observations of location usage, current, 

and tides allowing them to verify or correct the original placement location.  Portage 

deployments also have the potential to be the most clandestine of the three methods given 

their slower pace and employment of highly trained operators. 

2. Surface Deployment 

Surface deployment refers to the use of riverine or special operations naval assets 

to traverse a given river and deploy the UUV in the desired location via the use of divers.  

While lacking the speed of an airborne deployment, a surface deployment is much faster, 

comparatively, then a portage deployment.  The use of divers in placing the UUV also 

means that its placement can be just as accurate as a portage deployment, which is vital to 

the success of a persistent mission. 

However, surface deployments are not as inherently clandestine as a portage 

deployment.  This is especially true if traditional riverine assets are used in the 

deployment of the UUV as the indigenous population will certainly notice the 

deployment craft, especially while it is conducting the actual placement dive.  There are 

two ways to counter this weakness, speed, and deception. 
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Figure 9.   A U.S. Navy Mark V Special Operations Craft.  (From 14) 

The use of speed to help conceal the placement of the UUV is obvious.  The faster 

the deployment is conducted from start to finish, the less time will be spent on location, 

which in turn reduces the likelihood of detection especially during low use periods.  This 

method would be most effective when used in locations near US forces as the transit time 

for the riverine asset would be low and the indigenous populace would already be 

accustomed to seeing a U.S. vessel. 

The alternative to speed is to use vessels that are normally found on the targeted 

waterway rather than standard U.S. assets.  When deployed properly this “Q-Boats” 

should not arouse the suspicion of the indigenous population.  The method will obviously 

be much slower than a speed deployment, but it is feasible that a Q-Boat could loiter in 

 

 

                                                 
 

14 Navy.mil, “Image:   090428-N-4205W-840.jpg,” U.S. Navy, 
http://www.navy.mil/view_single.asp?id=71291. 
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the deployment area and conduct the same sort of in situ observations that portage 

deployment can, which would allow for validation or correction of the planned UUV 

position. 

3. Submerged Deployment 

The ability to deploy the UUV from a U.S. Navy ship offshore, and drive it up 

river to the desired location would be ideal because it would minimize the amount of 

equipment and personnel that would actually need to be carried into the targeted area thus 

vastly lowering the risk of detection.  However, a UUV large and powerful enough to 

fight its way against a river, especially for long distances, would be large, expensive, and 

complex, which is counter to the stated goal of being small and cheap.  Instead, if the 

UUV was to be dropped up river of the desired deployment area, it would not have to 

battle the current, and would require far less power to reach its intended destination. 

To accomplish a submerged deployment, the UUV will be dropped up river of the 

desired location from either a shore location, or a watercraft of some sort, and then travel 

semi-submerged, with its antenna housing partially exposed.  For maximum reliability an 

operator onboard a chase boat could drive the UUV to position, so that problems in 

transit can be identified and possibly corrected. Alternatively, with an exposed antenna 

housing, the UUV will be able to receive GPS signal allowing for an autonomous transit 

using a simple series of waypoints.  When the UUV reaches the target area it will be 

commanded to dive and anchor to the bottom. 

Obviously, the availability of this deployment method may be extremely limited 

given that it requires some sort of presence up river from the desired deployment location 

already, which may or may not be feasible.  However, it may be possible to “piggyback” 

the UUV deployment with normal riverine traffic such as routine presence patrols that 

happen to travel up river of the deployment location normally. 

Since the UUV will be travelling mostly submerged, it will be harder to detect 

during the deployment and, if combined with routine riverine traffic, should not draw any 
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unwanted attention.  Additionally, a submerged deployment does not require any diving 

operations to place the UUV in the deployment location as the UUV can be commanded 

to the bottom. 

However, without a diver to ensure proper placement, the accuracy of a 

submerged deployment is lower than a portage or surface deployment.  This also means 

that the anchor may not be very secure either, which can lower operational lifespan of the 

UUV if it fails to hold. 

4. Airborne Deployment 

Air dropping the UUV into the desired area is the most rapid method of 

deployment, and is most suitable for emergent temporary missions.  Unfortunately, while 

very rapid, airborne deployment is also the least accurate and least clandestine of the 

three methods.  An airborne deployment also requires an area of open water large enough 

to accommodate the circular error probable (CEP) of whatever airdrop system is used that 

may not be possible in extremely tight geography. 

The Naval Postgraduate School’s Snowflake project serves as a good reference of 

how an airborne deployment might be conducted.  The Snowflake ADS is a miniature, 

precision airdrop system that uses a small onboard guidance package to autonomously 

guide a set of parafoils to a preprogrammed GPS position.  The package is small enough 

that it can be delivered via a wide variety of platforms such as general purpose Cessnas, 

UH-60 helicopters, and even UAV’s.  The ability to deploy the UUV from non-military 

aircraft can help prevent arousing suspicion from indigenous population. 

Testing conducted in May 2009 demonstrated a CEP of 30m for a single 

Snowflake drop.  A year later, a Snowflake networked with other dropped Snowflakes 

and ground weather stations, dubbed Snowflake-N, demonstrated a CEP of 10m.  While 

extremely accurate for an airdrop system, and certainly accurate enough to land in most 

large jungle waterways, CEP’s of 10 and 30 meters do not match the precision of the 

divers in the portage and surface deployment methods.  This accuracy issue can be 

exacerbated if the desired UUV position is near shore as the CEP may overlap the 

shoreline or areas too shallow to hide the UUV. 
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Figure 10.   Test version of the Snowflake ADS. (From 15) 

Like the submerged method, the lack of human placement also means that there is 

no assurance that the UUV will properly anchor itself to the riverbed.  This, combined 

with the possibility of landing in areas not conducive to the long-term survivability of the 

UUV, can lead to a significantly reduced on-station time of the UUV. 

Airborne deployment can also be the most obvious of the three methods as the 

parafoils will leave evidence of something being dropped in the area.  Additionally, 

without operators on the ground to clear the area of observers, it’s possible that the drop 

itself may be observed, which will directly compromise the UUV. 

                                                 
 

15 Naval Postgraduate School Website, “Snowflake Home,”  No Author Given, 
http://www.nps.edu/Academics/Centers/ADSC/Projects/Snowflake/SnowflakeSystem.html, 
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Given the dynamics of airborne deployment, choosing a suitable location for the 

UUV is more complicated.  Given the CEP for a system like Snowflake, especially the 

non-networked model, planners must determine the effective area of the targeted 

waterway that encompasses the CEP of the drop system.  More than likely this will limit 

deployment locations to the centers of the waterways, and preclude the use of areas near 

shore that may be low traffic.  Additionally the drop must anticipate the current of the 

waterway meaning that the drop system must be programed to land upstream of the 

desired deployment location and allow the current to carry the UUV to the destination. 

a. Assisted Airborne Deployment 

Assisted Airborne delivery is a hybrid between the portage and airborne 

methods of deployment.  Rather than dropping the UUV into the targeted waterway, an 

assisted airborne deployment will drop the UUV in the vicinity of a team already on the 

ground.  This team can then conduct a dive operation in the river to effect the final 

placement of the UUV. 

Like a portage deployment, an assisted airborne deployment is extremely 

accurate given that the divers can precisely place the UUV.  Communication with 

operators on the ground also allows for the drop to be conducted in a cleared area, which 

should prevent the UUV from being compromised, and allows for someone to collect the 

parafoils and other evidence of the drop, thus protecting the clandestine nature of the 

operation. 

This method suffers from the same time issues as normal portage 

deployment due to the ground team having to transit to the drop area, and thus may not be 

suitable for an initial deployment.  However, it does offer a good method of augmenting a 

team that it is already in place with UUV support. 

E. MISSION EXECUTION 

Planning for the mission execution primarily entails deciding how the UUV will 

communicate with the embedded sensors that it is supposed to network with. For the 
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purpose of designing this CONOPS, actual network protocols will not be discussed, 

instead two broad, communication methodologies will be discussed: burst and constant 

1. Burst Communication 

Since the primary concern with using a data relay UUV is maintaining a 

clandestine presence, limiting the amount of time that the embedded system and the UUV 

are in communication lowers the probability of the UUV being compromised.  There are 

two primary reasons for this. 

The first is that the UUV will have to be close to the surface in order to 

communicate with the embedded system, as its antennas will have to be out of the water 

for them to function.  Having any part of the UUV exposed at the surface makes it 

vulnerable to observation and discovery.  By programming the UUV to only 

communicate during small windows of time, preferably during periods of low waterway 

usage, it’s time on the surface is greatly reduced, which in turn greatly reduces the 

chances of it being observed. 

The second advantage to burst communications is that it lowers the amount of 

time the communications signals between the UUV and the embedded system can be 

observed.  This is important as even with a highly directional antenna on the embedded 

system, its signals will be transmitting laterally through the jungle environment where 

they could possibly be detected through either actively searching by the target, or 

inadvertently through interfering with other communications systems in the jungle. 

To affect burst communications, planners must determine how long they want 

their communications windows, and at what times of day they want them.  The UUV can 

then be programmed to reel itself up and down its anchor tether to control its depth and 

breach the antennas. 

The embedded sensors will also have to be programmed with the same 

transmission windows so that they only attempt to communicate with the UUV during the 
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desired transmission windows.  This will also require that the embedded systems will 

have some sort of storage capability so they can collect and store data in real time for 

later transmission. 

The drawback to this communications method is that the data is no longer real 

time, and windowing the transmission will limit total daily throughput of the data.  This 

may not be an issue for a persistent collection mission, but if the objective is to monitor 

for indications and warnings burst communications may not be suitable.  Time 

synchronization between the UUV and the embedded sensors and systems will also be a 

problem.  GPS is the most common time synchronization source in distributed systems, 

but will not be available to embedded sensors.  It should be possible to synchronize an 

embedded sensor’s internal clock with GPS time before placement and, provided there is 

not significant drift, receive daily corrections from the UUV during the burst windows 

since the UUV should be able to receive a GPS signal when its antenna housing is 

exposed. 

2. Constant Communication 

Constant communications is exactly what the name describes.  By keeping the 

UUV at the surface constantly it allows for the embedded system and the UUV to transfer 

data in real time and has a much higher throughput then burst communications.  Of 

course this method of communications exposes the UUV to observation and discovery, 

thus compromising the mission. 

Though inherently less clandestine than burst communications, constant 

communications may be suitable for transient mission of very short duration or in areas 

of little to no indigenous usage. 

F. MISSION TERMINATION 

 In order to maintain the clandestine nature of the UUV mission it is important to 

properly terminate the mission so as to prevent it from being discovered or compromised.   
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1. Recovery 

Since the location of the UUV is known recovery is certainly a possibility.  

Recovery of the UUV precludes any chance of adversarial recovery and exploitation of 

the device, which is certainly an advantage.  This method is most viable when there are 

operators already in the area who can recover the UUV.  If recovery of the embedded 

systems is already planned at the conclusion of the mission, UUV recovery can easily be 

folded into that assignment. 

2. Destruction 

If getting operators back to the location of the UUV is not operationally feasible, 

then self-destruction is an alternative method of preventing it from being compromised.  

Given the clandestine nature of the UUV any self-destruction should be thorough enough 

to ensure that nothing usable is left that could be used to indicate what its mission was 

either directly or circumstantially.  This should include blanking any onboard information 

storage to destroy data, blow plugs that fill the UUV with water in order to achieve 

physical destruction, and releasing the anchor and letting the waterway carry the UUV 

away from the mission area. 
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III. AN OPTIMAL UUV DESIGN 

A. INTRODUCTION 

Given the description of the mission, and concept of operations for a clandestine 

data relay UUV, this chapter will enumerate an optimal design for such a device.  This 

design will then serve as a benchmark for comparison to existing military, and 

commercial off the shelf (COTS), subsystems that could be used to construct one. 

B. BASIC UUV DESIGN REQUIREMENTS 

• Man portable 

• Able to travel semi-submerged for short distances, as well as dive and 

anchor on command 

• Able to communicate with a wide variety of other systems 

• Able to operate on station for at least two months 

• Must have programmable mission parameters 

• Must be able to change depth at anchor 

• Must have multiple self-destruct mechanisms 

C. MAIN BODY DESIGN 

1. Size and Weight 

Of all the deployment methods described in Chapter II, the portage method is the 

most restrictive on the size, shape, and weight of the UUV given that it involves an 

operator physically carrying it overland into theater. 

A medium sized, Army type ALICE Pack, which serves as good baseline for what 

an operator might be using if faced with a long overland march through the jungle, has 

internal dimensions of 22” by 29” by 19” , which when combined with the other gear the 

operator will need, doesn’t leave much room to carry the UUV internally.  It is possible 

however, to attach things to the frame of the pack and carry them below the main 
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compartment.  Ideally, this would take the form of a weather tight case that could be 

strapped on.  In order to prevent it from being too bulky the case shouldn’t be much 

larger than the pack itself.  This limits the case, and thus the device it carries, to 

dimensions in the range of 22” by 10” by 22”. 

The device’s weight is, again, limited by the operator carrying the device into 

theater.  Given the relatively small size of the device, keeping it less than 20 pounds 

should be sufficient.  This of course does not include any peripheral gear required such as 

a computer of some sort to program the UUV in the field, and any data cables that may 

be required for initial programming. 

2. Shape 

There are two general categories of shapes for underwater devices that were 

considered for this application.  The first is a spherical type, not unlike a classic 

underwater mine.  Since the UUV will spend much of its life stationary and moored to 

the bottom, this shape seems to make sense for this application.  Additionally, a spherical 

type of UUV would be easier to carry, and a more accommodating internal volume to fit 

other system components.  However, there are some drawbacks to this shape that 

preclude it from being used in this application.  In order for the UUV to have an extended 

on-station time it will have to be able to power itself.  The most obvious way of doing 

this is to take advantage of the river, and draw energy from the current.  A spherical 

shape makes this difficult to do, as installing any sort of turbine or propeller in a sphere 

where it has optimum access to the current would interfere with the placement of other 

systems.  Additionally, in order to accomplish a submerged deployment, the UUV will 

have to share some of the same basic characteristics as other semi-submersible UUV’s.   

Taken in aggregate, this means that the UUV will most likely have a traditional 

torpedo type shape.  Besides being hydrodynamically superior to a spherical shape for 

submerged transits, a torpedo shape would align itself naturally with the current while at 

anchor, giving its propeller optimum positioning to generate electrical power.  The only 

caveat to this shape is that it must be able to keep its antenna housing oriented so that it 
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will always be closest to the surface in order to ensure that the smallest amount of UUV 

is exposed during its collection/transmission windows.  Figure 11 gives a basic external 

layout of the UUV: 

 

Figure 11.   Nominal UUV design in transit during a submerged deployment. 

Given the dimensional constraints from earlier, and a torpedo shape, an 

approximate internal volume can be calculated to help inform further design choices.  Of 

the 22in maximum length, 8in of it were assumed to be taken up by both the anchor 

winch housing and the UUV drive shaft, propeller, and steering gear.  Additionally, the 

main body was assumed to have a 0.5in wall thickness leaving an internal diameter of 9”.  

This results in an approximate main body volume of 890.64 in3 (14.59 L). 

Most standard torpedo shaped UUVs use a length to diameter ration (L/D) of 7 to 

maximize internal volume while minimizing drag.  With a length of 22” and a maximum 

diameter of 10”, this proposed design has an L/D of only 2.2.  However, given the 

relatively short transit distances drag is not necessarily a concern, especially if it is 

travelling with the current during a deployment as is proposed in Chapter III. 
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D. DATA LINK SYSTEM 

The communications systems are the heart of the UUV, and their delivery to the 

proper location is the primary driver of its design.  Ideally the UUV will contain at least 

two different radio systems, one for talking to the desired system embedded in the jungle 

environment (the client) and another for communication with the targeted overhead assets 

(the master). 

1. Radios 

In order to ensure that the UUV will work with a variety of different embedded 

sensor systems, it must be able to accommodate multiple frequencies and use multiple 

modulation schemes.  A software defined radio meets this requirement, and prevents 

costly, and time consuming, change outs of dedicated radio systems. 

Since at a minimum the UUV will need to connect with two separate systems (one 

client, one master), the radio must be able to support two separate and independent 

channels.  Using a multichannel radio will save space and weight when incorporated into 

the final design.  Ideally, the UUV’s radio will be able to accommodate many more 

channels allowing them to communicate with multiple client sensors in a distributed 

network, or possibly even feed multiple master systems with information. 

Additionally, the UUV must be able to receive commands from a master system 

remotely, and forward commands to a client system, thus duplex communications is a 

requirement for any of the channels the UUV will be communicating on.  Time-division 

duplexing is preferred due to less antenna overhead, and the ability to still use beam-

forming methods to enhance communications in an already challenged environment. 

2. Antennas and Processing 

Antenna choice for the UUV will have to depend on the desired frequencies of 

communications.  While a universal antenna would be preferred for ease of use and cost 

of procurement, the jungle environment is difficult enough to communicate in, and any 

possible antenna gains must be exploited in order to maximize the effectiveness of the 

channel.  Since communication with master systems will be easier, it should be possible 
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to use a one size fits all type antenna, such as a horn, oriented to send and receive from 

overhead.  This antenna should be fitted to a self-leveling mount in the antenna housing 

so that it remains in the proper orientation regardless of the orientation of the housing.  

Figures 12 and 13 illustrate the desired nominal coverage areas. 

 

Figure 12.   Top down view of the nominal antenna coverage areas. 

 

Figure 13.   Cross-sectional view of the nominal antenna coverage areas. 
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The nominal beam shape for client communications is based on the work by 

Tamir as discussed in Chapter I.  Based on Figure 4, the signals received by the UUV 

from the client would primarily be the ones “leaking” from the canopy from the lateral 

ray traveling along the air-canopy boundary.  This means that there is no need to try and 

maximize antenna coverage far into the forest, and instead the client antennas should 

focus up into the canopy where the signal should be arriving from. 

In order to accommodate multiple client channels an array of small antennas, such 

as printed inverted “F” antennas (PIFA) that are extremely small and can be custom made 

for communications in the range of 1 to 10 GHz, will be used for client communications.  

An antenna array can be segmented to create multiple, independent, channels if necessary 

or can be used to enhance the effectiveness of a single channel through the use of 

beamforming.  Beamforming also allows the UUV to scan the area electronically when 

attempting to establish client communications, which eliminates the need for any sort of 

mechanical scanning apparatus in the design. 

The final advantage of using an antenna array is that it allows for the use of 

MIMO techniques in processing the client end communications.  As was discussed in 

Chapter I, this should help to mitigate the environmental losses from the jungle and 

increase data throughput of the communications systems.  

The antennas will be housed in a distinct compartment on the top of the UUV.  

This allows for the main body of the UUV to remain submerged while the antennas are 

above the water and transmitting.  Additionally, having an antenna housing that is distinct 

from the main body of the UUV makes changing out the client side array much simpler if 

required.  The housing itself will be made from standard radome material that is 

transparent at the desired communications frequencies.  Ideally this housing could also be 

fashioned to look like river debris such as an exposed rock, or colored similar to the 

water in the river so as to help keep it covert and clandestine. 

2. Cryptographic Systems 

In addition to basic radio communication, the UUV will require a robust 

cryptographic system that will allow it to talk with both its client and master systems.  
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Discussion of actual cryptographic methods or of specific cryptographic equipment is 

beyond the scope of this work.  However, in order to be the most effective, the 

communications suite for the UUV must be able to handle various cryptographic 

techniques and be able to have different keys loaded by the operator, which would allow 

it communicate with a wide variety of clients and masters with different forms of 

cryptography. 

E. MISCELLANEOUS SYSTEMS 

The UUV will require a number of other systems to support its operation once 

deployed. 

1. Mission Control Computer and Interfaces 

With the requirement to be able to program different mission parameters into the 

UUV prior to deployment, some sort of central controller must be installed to coordinate 

the functions of the UUV’s various system components in accordance with the desired 

mission parameters. This computer will also be the main controller for the UUV during a 

submerged deployment.  The only real requirements for this computer are that it be easily 

accessible by the operator for both mission programming and for simple guidance.  

Ideally, the interface between the operator and the UUV should be just as clandestine and 

portable as the UUV itself.  A smart phone application meets both these requirements. 

A mission planning application would be able to capitalize on the ease of use 

most smart phone applications offer to encapsulate vital data (mission type, transmission 

frequencies, number of communications channels) allowing one relatively small file to be 

transferred to the UUV.  Additionally, using a smart phone application would allow 

planners that may not be in theater to send mission parameters to operators in the field 

using existing mobile communications and data infrastructure.  Since many modern smart 

phones use mini and micro-USB architecture, transfer of mission data could be done via a 

data port (inside the antenna housing to minimize the amount of openings in the main 

body) or by using a wireless communications standard such as Bluetooth, for which an 

antenna could easily be placed in the housing. 
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Steering and guiding the UUV could also be done via a Bluetooth connection 

using a smart phone application.  Class 1 Bluetooth devices, at 100 mW, have a nominal 

range of 100 meters (approximately 328 feet) more than sufficient for short duration 

submerged transits using a chase boat and yet be short to make the chance of 

unauthorized detection low.  Additionally, with data throughputs ranging from 0.7 to 2.1 

MBits/s, a Bluetooth connection should be sufficiently fast to transfer positioning data 

and steering commands between the UUV and the operator.  Obviously a smartphone 

application used to control the UUV in transit will not offer the same sort of precision as 

the dedicated command architectures of dedicated UUV control systems.  Given that the 

UUV will actually be underway for only a short time, and should be transiting under the 

close supervision of the operator, the control and accuracy of a dedicated system does not 

outweigh the portability, ease of use, and relative covertness of a smartphone application 

vice having to carry dedicated command and control equipment. 

At a minimum such an application needs to be able to display the UUV’s position 

relative to the desired deployment location and be able to give simple commands (i.e., 

steer left, steer right, forward, reverse, dive to anchor).  Additionally, the UUV itself 

needs to be able make rudimentary control decisions based on is GPS location in case the 

Bluetooth connection is lost in transit, or at the very least be able to maintain its position 

until the connection is reestablished. 

Additionally, security and encryption in Bluetooth devices can be a concern.  

While the Bluetooth standard does include a basic encryption capability, any 

communication application developed for the UUV should also have additional security 

and encryption built into it in order to prevent unauthorized access to the device and to 

prevent any knowledge of what the UUV is doing from being intercepted. 

2. Anchor and Winch 

In order for the UUV to remain in place after it is deployed some sort of 

anchoring system is required.  Ideally, this anchor would allow for normal use in muddy 

or silty bottom types, but also have some sort of hook or clasp mechanism so that it may 

be attached to roots and other partially submerged debris along the bottom for a more 
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secure hold.  This anchor would then be attached to a heavy duty cable wound on a 

winch.  This winch would then control the depth of the UUV, based on preprogrammed 

mission parameters, keeping it out of sight near the bottom when dormant or releasing 

just enough cable to expose the antenna housing when active.  Figures 14 and 15 

illustrate nominal active and dormant positions for the UUV at anchor. 

 

Figure 14.   While active, the winch will release enough cable to expose the UUV’s 
antenna housing so it can communicate.  

 

Figure 15.   When not broadcasting, the winch will reel the UUV in to prevent 
observation from the surface. 
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In order for the design to be of universal use, the winching system needs to be 

able to accommodate a variety of depths.  Ideally, this would require around 30 feet of 

cable on the winch in order to give the system flexibility without requiring a bulky 

winching system that may exceed the volume allotted for it. 

The problem with the anchor and cable design comes from the weight restrictions 

on the UUV both for carrying purposes and to limit the displacement the propulsion 

system must be able to handle. A cable, though easier to winch in and out then a chain, is 

not very heavy and thus puts emphasis on anchor weight and design to keep the UUV 

secure. 

One way to lessen the carry load for portage deployments is to make the anchor 

detachable so that it can be carried by a different person.  However, the anchor weight is 

still limited by the propulsion system of the UUV meaning that much more emphasis 

must be placed in shape and design of the anchor to make up for its lack of weight.  The 

final design must be able to capitalize on the abundant debris set into the bottom of the 

targeted waterway to aid its ability to hold. 

3. Surface and Depth Sensors 

In order for the UUV to be able to use its winch for proper positioning it must be 

able to determine when its antenna housing has breached the surface.  This information 

would then be fed through the mission computer to command the winch to stop.  While 

theoretically a fathometer of some type could be used to do this, in practice it would be 

difficult to use one. 

Since a fathometer would be measuring from the river bottom, the UUV would 

have to know how deep the river is at any given time in order to know how much slack to 

let out from the winch.  This knowledge is complicated by changing river levels over 

time and also by variations of current that will affect how much drag the UUV will 

experience and thus the amount of cable required for it to breach the surface.  Therefore 

some sort of sensor mounted near the base of the antenna housing that can determine 

when it is exposed to air is preferred. 
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A series of simple conductivity sensors should work, as their measurement will 

change immediately after leaving the water.  By analyzing the readings from several 

sensors, the UUV will be able to account for some of them being covered intermittently 

by waves, debris floating in the river, or by rainfall.  The use of multiple sensors also 

adds redundancy in case one of them fails. 

4. Self-Destruct Mechanisms 

In order to prevent unauthorized recovery of the UUV, or the ability for the 

UUV’s purpose to be deduced if it is recovered, there must be self-destruct safeties added 

to the system.  These will take two, mutually supporting, forms: physical destruction 

mechanisms and data destruction mechanisms. 

a. Physical Destruction Mechanisms 

The physical destruction mechanisms will consist of a number of seals and 

entries into the main body of the UUV that can be preprogrammed to open after the 

conclusion of the mission, or commanded to open via the overhead assets.  Opening these 

seals will flood the internal spaces of the UUV, not only to send it to the bottom of the 

river to make it hard to find, but also exposing sensitive internal components to river 

water.  While freshwater exposure is generally not harmful to electrical components, 

cycling the power to the electronic components while submerged can lead to severe 

damage from shorts.  Additionally, the water of some rivers is brackish in nature, and has 

a high enough salt content that prolonged exposure to it will corrode most of the more 

sensitive portions of the computers and radios. 

b. Data Destruction Mechanisms 

The prevention of unauthorized data removal from the UUV, 

accomplished through a media sanitization process, is in many ways more important than 

its physical destruction given that its computers and radios will contain a wealth of 

classified information such as frequencies and cryptographic keys for multiple controlled 
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systems.  As such, the guidance set forth in NSA/CSS Policy Manual 9-12: Storage 

Device Declassification Manual is the standard used in planning for data destruction in 

the UUV. 

According to the 9-12, simple overwriting (replacing of existing data with 

strings of nonsense data such as all 1’s or all 0’s) is not an acceptable form of classified 

data sanitization.  In order to be 9-12 compliant, the information must be physically 

corrupted prior to release.16  The easiest, and most effective, way of accomplishing this is 

through physically destroying the data with a device such as a shredder or incinerator.  

Since neither of those methods is possible in a UUV, it leaves degaussing as the only 

method available to sanitize the magnetic media. 

Unfortunately, there is no way to address the solid state media (RAM and 

ROM) that will be present in the UUV’s computers and radios in accordance with the 9-

12 as the manual requires physical destruction17 and degaussing will not work.  This 

means the only recourse is to use a data overwriting process to eliminate any data that 

may be stored on it. 

Taken together that means that there must be some form of degaussing 

equipment installed around all magnetic media in the UUV as well as some sort of data 

overwriting protocol installed to handle the RAM and ROM.  These two processes will 

be set to activate in three different ways.  The first two are the same as in the physical 

destruction mechanisms, a simple preprogrammed timer and or a command that destroys 

all the UUV’s data when the mission window expires.  The third method would be a 

triggered sanitization if an unauthorized person attempts to open the UUV.  This fail safe 

method should be able to be deactivated via the encrypted Bluetooth connection that is 

used to upload mission parameters.  The ability to communicate to the UUV with that 

connection requires possession of a device with an encryption key of some sort, which 

implies authorization to deactivate the safeguard and enter the UUV’s casing. 

                                                 
 

16 U.S. National Security Agency/Central Security Service, "Storage Device Declassification Manual 
(Manual 9-12)," 7. 

17 NSA/CSS, Manual 9-12, 4. 
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F. POWER, PROPULSION, AND STEERING SYSTEMS 

While semi-submerged transit is a stated mission requirement for the UUV, it is 

not expected to be able to travel for long distances or at high rates of speed therefore the 

propulsion system should be a primary concern in the design.  Given the mission 

parameters set forth in the beginning of this chapter the power system for the UUV is of 

much more importance, and will be the primary driver in making design decisions for the 

drive train. 

1. Power System 

In order to operate for long periods of time on-station, with no support, precludes 

the UUV from using any sort of fuel based power system such as a fuel cell which would 

require logistical support to keep operational.  Instead the UUV will be powered by a 

high capacity secondary battery, such as a lithium ion system, that will use the movement 

of the river to recharge itself. 

As was stated earlier, the UUV’s shape will naturally orient itself parallel with the 

flow of the river, which will place its propeller in a perfect position to receive energy 

from the current.  If allowed to freewheel while not engaged, the propeller will be used to 

drive an electric motor in reverse, which when attached to a rectifier can be used to 

constantly recharge the installed battery system.  This is known as tidal stream 

generation, or stream generation, and has been used in industrial power generation 

applications. 

With a constant power source such as the river’s current, the UUV does not 

require an inordinately large battery for its operations.  This should free up substantial 

internal volume for the other necessary components and subsystems.  Lithium ion battery 

systems have high energy densities, ranging from 254-430 Wh/L.18  Even at the lower 

 

 

                                                 
 

18 Grant Ehrlich, "Lithium-Ion Batteries," In Handbook of Batteries (Third Edition), ed. D. Linden and 
T. Reddy, (New York: McGraw Hill, 2002), 35. 
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end of that range, dedicating a liter (or 6.85% of the approximate volume) of the UUV to 

the battery system should provide sufficient power for the short periods where the UUV 

will not be able to charge itself. 

a. Power Budget Analysis 

Since the ability for the UUV to draw energy from the current is vital to 

the success of any of the mission types as proposed in this work it is important to have a 

basis to understand the power generation requirements.  Since this is just the initial 

design it is hard to say what the actual power requirements of any constructed data-relay 

UUV would be.  However, Virginia Tech’s miniature AUV provides a good approximate 

for the power consumption of some subsystems due to the similarities in size and 

function between it and this proposed UUV design.19 

Due to the short amount of time the proposed UUV would be underway, 

and the short distances it will travel, underway considerations will be ignored as the 

UUV’s power requirements at anchor will dominate the power requirements.  Table 1 

lists the estimated power consumption by the subsystems that would be active during the 

mission. 

System Power (W) Duty Cycle Average Power (W) 

Anchor Winch (DC Motor) 44.4 0.4 17.76 

Mission Control Computer 3.5  1 3.5 

Master Communications   0.5720 

Client Communications 10 1 10 

  Total: 31.83 

Table 1.   Estimated Daily Power Budget for a Constant Communication Type Mission 

                                                 
 

19 William Seely, “Development of a Power System and Analysis of Inertial System Calibration for a 
Small Autonomous Underwater Vehicle,” (Master’s thesis, Virginia Polytechnic Institute and State 
University, 2004), 11. 

20 HighSpeedSat.com, “Motorola 9505 Iridium Phone,”  No Author Given, 
http://www.highspeedsat.com/motorola-9505.htm. 
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The motor powering the anchor winch is by far the largest power draw, 

but during a constant communications mission it would only need to be active long 

enough to ensure the antenna housing was above the water.  The average power for 

master communications was based on the average power output of the Motorola 9505 

Iridium satellite phone.  This should be a good estimate for the UUV as it can 

communicate with overhead assets in bursts rather than constant communications for 

simple data relay missions.  Client Communications was estimated at 10 W it falls 

between the normal output powers of handheld and vehicle borne military radios. 

The amount of power that can be generated by an unducted tidal stream 

generator is given by: 

 
where P is the total amount of power generated in Watts, ρ is the density of the water in 

kg/m3, A is the swept area of the propeller blades in m2, V is the velocity of the water 

current in m/s, and Cp is the power coefficient of the tidal generator system and will be a 

result of losses from blade inefficiencies due to the number of blades and their angle of 

attack in addition to losses in the inverter and charging system. 

Though this equation it is possible to estimate what the minimum current 

required to meet the average power of the UUV from Table 1.  Assuming a Cp of 0.70, a 

swept area of 0.032 m2 (or a 4” propeller radius), and using the density of pure water 

(1000 kg/m3), the minimum current required to generate 31.83 W per day is 1.41 m/s or 

2.74 knots. 

2.74 knots is reasonable expectation for the current in a targeted 

waterway.  Also, this minimum current will be lower in real world water systems since 

the water will have a higher density then pure water.  The power requirements themselves 

will also be lower for burst communications missions as the UUV will spend more time 

dormant thus lowering the power consumed by both communications systems and the 

anchor winch. 

Additionally, river currents are not constant and can fluctuate with the 

tides or based on seasonal forces like rain run-off.  With proper mission planning, it is 
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possible to build the transmission windows around these lulls in the current so that the 

UUV is dormant when its power generation capacity is its lowest. 

2. Propulsion System 

Since the UUV will only be driven under its own power for very small periods of 

time, the propulsion system does not have to be very robust.  Since the primary function 

of the propeller and its shroud will be to keep the UUV’s battery charged, ensuring that it 

can accomplish that as efficiently as possible should be the primary design concern when 

choosing a given blade geometry.  Additionally, the shroud should be designed to ensure 

that river debris does not foul the propeller and prevent it from meeting its power 

generation requirements. 

3. Steering System 

Again, since the UUV will only be driven under its own power for very small 

periods of time, the steering gear only needs to be sufficient to make basic course 

corrections during a submerged deployment.  They also need to be able to dive the UUV 

to the bottom when it is commanded to anchor during a submerged or airborne 

deployment.  
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IV. SURVEY OF EXISTING TECHNOLOGY 

A. INTRODUCTION 

The field of UUV development is rapidly expanding and advancing as both 

military and commercial customers seek better tools for leveraging the undersea 

environment.  Therefore a survey of current products, both government and commercial 

off the shelf, can frame the feasibility of the proposed UUV design from Chapter III. 

B. OPERATIONAL UUVS 

There are a number of man-portable UUV’s that could serve as the basis for a 

data relay UUV.  Most of these systems are designed around modular payloads, which 

would make installing internal components, such as radios relatively simple, and thus 

limit any required design modification. 

1. iRobot/Nekton’s Ranger and Ranger 15A 

The Ranger AUV, developed by Nekton Research, is a well-known, low cost, and 

highly adaptable micro-UUV.  Nekton was acquired by iRobot Corporation, which in 

turn has started development on the Ranger 15A model.    The Ranger is designed for 

short range, short duration, reconnaissance and oceanographic missions. 

a. Pros 

With an overall length of 35.83”, and a maximum diameter of 3.58”, the 

Ranger is very close to the dimensions stated in section II.C.1.21  Additionally, the UUV 

itself rated at less than 45 pounds making a portage deployment plausible even after the 

addition of internal equipment. 

                                                 
 

21 No Author Given, "15A Ranger," Jane's Unmanned Maritime Vehicles and Systems (2011), 
http://client.janes.com.libproxy.nps.edu/K2/doc.jsp?t=B&K2DocKey=/content1/janesdata/binder/jumv/juw
ta188.htm@current&Prod_Name=JUMV& 
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Additionally, the Ranger already incorporates mission programming via a 

standard 802.11 WIFI connection.  It also has a straightforward system design standard in 

order to make the development and integration of special sensors and subsystems easier. 

b. Cons 

While the Nekton Ranger has small antenna masts, the proposed Ranger 

15A would require one to be fitted to the hull.  Self-destruct ports would have to be added 

in order to facilitate the craft’s physical destruction. 

The standard 172 Wh Lithium-Ion battery provides only 8 hours of 

endurance, which is completely insufficient to meet even short-term mission 

requirements as defined in Chapter II.22  Installing a propulsion system that can recharge 

via the environment would be required. 

Finally, the Ranger does not support anchoring or bottom mooring.  An 

anchoring/mooring system would have to be created and integrated into the UUV in order 

for it to achieve the requirement. 

c. Comparison to optimal design 

CATEGORY RATING COMMENTS 

Size and Weight  While exceeding the ideal length, 35” is still feasible to 

carry in a portage deployment. 

Hull Shape  Would require a mast to be affixed for the antenna housing 

and holes for self-destruct ports. 

Anchor and Mooring  No organic anchoring or mooring capability. 

Power/Propulsion  8 hour endurance insufficient without recharge capability.  

Programmability  802.11 WIFI capability is sufficient for using small PDA 

devices to upload mission parameters in theater. 

Table 2.   Summary of Comparison of Nekton Ranger to Optimal Design 

                                                 
 

22 No Author Given, 15A Ranger. 
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Figure 16.   The future iRobot Ranger 15A. (From 23) 

 
Figure 17.   The earlier Nekton Ranger model.  Notice the shrouded propeller and 

antenna mast. (From 24) 

                                                 
 

23 No Author Given, 15A Ranger. 
24 No Author Given, 15A Ranger. 
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2. Hydroid’s REMUS 100 

The REMUS 100 is the smallest UUV in Hydroid’s REMUS model line that has 

seen widespread use by Navy’s around the world for hydrographic surveys, mine 

clearance, harbor security, and salvage operations. 

a. Pros 

The REMUS 100 is a very popular and reliable UUV system, and is 

already a part of the United States’ UUV fleet.  Existing personnel experience, combined 

with the REMUS’ ability to accept varying payloads, should make incorporating the data 

relay equipment relatively simple. 

The REMUS 100’s top speed is 5 knots, which should make even 

upstream deployments possible except in areas with excessive current. 

Additionally, some REMUS 100’s already have an antenna mast installed, 

which may be able to be adapted for the data relay UUV’s antenna housing.  However, it 

should prove insufficient, Hydroid has proved willing to do custom design work for 

government customers.25 

b. Cons 

While the REMUS 100 is the smallest of the REMUS models, and is a 

man-portable system, its 54” length and 80 pound base weight would make it very 

difficult to deploy via the portage method.26  Additionally the REMUS does not have any 

self-destruct ports, so those would have to be added. 

The standard REMUS model relies on pre-placed acoustic beacons for 

navigation.  Obviously, this is unsuitable for a clandestine data-relay mission.  It is 

possible for the REMUS to use GPS waypoints for navigation but this will incur extra 

cost during acquisition. 
                                                 
 

25 No Author Given, "REMUS 100," Jane's Underwater Warfare Systems (2011), 
http://client.janes.com.libproxy.nps.edu/K2/doc.jsp?t=B&K2DocKey=/content1/janesdata/binder/jumv/juw
s2192.htm@current&Prod_Name=JUMV& 

26 No Author Given, REMUS 100. 
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The REMUS 100 is power by a Lithium-Ion battery system that is rated at 

22 hours of endurance, which alone is insufficient for even short duration relay missions.  

The REMUS 100 does sport a traditional propeller for propulsion however that should 

make installation of a rechargeable system possible. 

Lastly, the REMUS 100 has no anchoring or mooring capability.  In order 

for the system to accomplish that one must be designed, integrated, and installed. 

c. Comparison to Optimal Design 

CATEGORY RATING COMMENTS 

Size and Weight  Portage method not possible but small and light enough to 

be deployed via every other method in Chapter II. 

Hull Shape  Though lacking self-destruct ports, the REMUS 100 has 

an existing antenna mast that may be capitalized.  

Additionally, 7.5” diameter should be adequate space for 

any required communications equipment. 

Anchor and Mooring  No organic anchoring or mooring capability. 

Power/Propulsion  22 hour endurance insufficient without recharge capability. 

Programmability  Relies on proprietary mission programming system using 

laptop included with vehicle. 

Table 3.   Summary of Comparison of REMUS 100 to Optimal Design 
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Figure 18.   The complete military REMUS 100 system. (From 27) 

 
 

Figure 19.   A REMUS 100 being deployed by UK Royal Navy sailors.  Notice the 
antenna mast on the UUV.  (From 28) 

                                                 
 

27 No Author Given, REMUS 100. 
28 No Author Given, REMUS 100. 
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3. Bluefin Robotics’ Bluefin-9/SeaLion 

The Bluefin-9 is a man-portable UUV used extensively by US Navy Explosive 

Ordinance Disposal teams for shallow water clearance operations.  It is built around a 

free-flooded architecture that gives it a slight negative buoyancy in salt water. 

a. Pros 

Since the Bluefin-9 is already a government program, it should be possible 

to obtain UUV’s within the existing Navy acquisition system.  It also means that there is 

existing personnel expertise in operating the vehicle that should make planning and 

deploying it simpler. 

A free flooded architecture and natural negative buoyancy should make 

physical self-destruction of the UUV relatively simple. 

b. Cons 

With a length of 64.96”, and a base weight of 119 pounds, the Bluefin-9 

would be nearly impossible to deliver via a portage deployment.29  Additionally, that 

much weight would also make an airborne deployment extremely difficult and 

impractical as well. 

The Bluefin-9 is powered by a 1.5 kWh Lithium-ion battery system with a 

rated endurance of 12 hours.  Like the previous UUV’s surveyed, this is inadequate for 

even short duration missions.   

Lastly, there is no organic anchoring or mooring capability with the 

Bluefin-9.  In order for the system to be able to do it, a complete anchoring system must 

be developed and installed.  Also, having a negative buoyancy means that the Bluefin-9 

cannot remain stationary without sinking to the bottom.  This means that even if the 

Bluefin-9 were anchored at the desired target location, it would not be able to return to 

                                                 
 

29 No Author Given, "Bluefin-9/Sealion," Jane's Underwater Security Systems and Technology 
(2009), 
http://client.janes.com.libproxy.nps.edu/K2/doc.jsp?t=B&K2DocKey=/content1/janesdata/binder/jumv/juw
sa030.htm@current&Prod_Name=JUMV& 
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the surface again to communicate without powering back on and driving itself to the 

surface.  This could be corrected using foam, or other positively buoyant payload, but 

would waste payload space that might be needed for the anchoring and communications 

systems. 

c. Comparison to optimal design 

CATEGORY RATING COMMENTS 

Size and Weight  Size and weight preclude portage and airborne 

deployments. 

Hull Shape  While the Bluefin-9 has an antenna mast, it’s far enough 

forward that it would make functioning as in Figure 14 

difficult. 

Anchor and Mooring  No anchor capability.  Also, negative buoyancy means 

UUV would have to power-up and drive itself to the 

surface rather than simply winch itself up and down.  

Power/Propulsion  1.7 kWh battery insufficient and requires recharge system 

to be installed.  Propulsion thruster would need to be 

replaced for recharge system to be installed. 

Programmability  While the Bluefin-9 can be programmed and controlled via 

an RF, it uses a proprietary system and software. 

Table 4.   Summary of Comparison of Bluefin-9 to Optimal Design 
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Figure 20.   A Bluefin-9 with a US Navy EOD team. (From 30) 

C. OPERATIONAL COMMUNICATIONS SYSTEMS 

Given how essential effective communications, of both voice and data, is to 

modern military operations it is no wonder that there are a host of existing 

communications systems that could serve as the heart of a data relay UUV.  The 

following systems operate in the VHF range and offer high rates of data transfer and ad-

hoc networking capability.  While HF communications generally perform better in the 

jungle environment, using a UUV for data relay will shorten the distances communicated 

over thus allowing for VHF systems to be used. 

1. Raytheon’s MicroLight-DH500 

The MicroLight-DH500 is the latest entry into Raytheon’s MicroLight software 

defined radio family.  The MicroLights are intended to be small systems for use by 

 

 
                                                 
 

30 No Author Given, Bluefin-9/Sealion. 
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everything from infantry patrols to airborne assets.  They offer flexible networking for 

both voice and data communications, and are interoperable with the Joint Tactical Radio 

System (JTRS). 

a. Pros 

The DH500 is both incredibly compact and lightweight.  Off the shelf, the 

system is 19.4 cm by 6.6 cm by 4 cm (0.512 L or 31.25 in3) and weighs 0.873 pounds 

without an installed battery so it should be relatively simple to fit into nearly any man-

portable UUV.31 

The system can communicate in three frequency bands, from 225-2000 

MHz and establish multiple channels using TDMA, CDMA, or FDMA.  Like the 

previous model  

Additionally, the DH500 supports VoiP, data, and video communications 

with a data rate of up to 1 Mbit/s meaning that a relay UUV that integrated it would be 

able to support a diverse set of relay missions.  The DH500 can serve as a hub for an ad-

hoc network, which should make establishing communications with any embedded jungle 

systems simple especially during a burst transmission mission set where the network will 

need to be reestablished often. 

b. Cons 

The most significant problem with using the DH500 in a clandestine data 

relay UUV is its use of commercial grade AES encryption.  According to Raytheon’s 

own specifications, the DH500 is only approved for secure, but unclassified 

communications.32  However, AES encryption has been approved by the NSA for 

communications up to TOP SECRET.  According to the Committee for National Security 

                                                 
 

31 No Author Given, "MicroLight{TM} Software-Defined Radio Family," Jane's Military 
Communications (2011), 
http://client.janes.com.libproxy.nps.edu/K2/doc.jsp?t=B&K2DocKey=/content1/janesdata/yb/jmc/jmc_999
9.htm@current&Prod_Name=JMC& 

32 No Author Given, MicroLight{TM} Software-Defined Radio Family. 
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Systems policy the NSA has to approve any AES system that is intended for use with 

classified information. 

Though it’s unclear why the DH500 is not approved for classified 

information, it might be possible to certify the DH500 is suitable for use in a clandestine 

data system.  It might also be possible to modify the specific AES algorithm employed by 

the system so that it is suitable for classified data, though it’s unclear what effects this 

type of modification would have on the through put of the system. 

c. Comparison to Optimal Design 

CATEGORY RATING COMMENTS 

Size and Weight  Extremely small.  Should be easy to fit inside even a small 

UUV. 

Frequency Range  Large frequency range should allow for communications 

with many different systems. 

Data Rate  1 Mbit/s is sufficient for data, voice, and video 

communications. 

Channels  Supports multiple channel separation schemes. 

Security  Only approved for “Secure but unclassified” data.  May be 

possible to upgrade to classified data. 

Table 5.   Summary of Comparison of DH500 to Optimal Design 
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Figure 21.   A MicroLight-DH500.  (From 33) 

2. Harris’ AN/PRC-152 

The PRC-152 is a handheld tactical radio, and is the first JTRS compliant system 

certified by the NSA for traffic up to the TOP SECRET level of classification.  It has 

seen extensive use by U.S. forces in operations in both Iraq and Afghanistan. 

a. Pros 

The PRC-152 is small and relatively lightweight with dimensions of 23.36 

cm by 6.35 cm by 4.318 cm (0.614 L or 37.47 in3) and a weight 2.402 pounds.34  Being 

able to integrate the system into UUV should not be difficult. 

The system uses to standard frequency bands, 30-512 MHz and 30-520 

MHz, and a “High Band Option” or 762-870 MHz.  As with most hand-held radios, the 

PRC-152 has a maximum power output of 5 W, with the high band being limited to 4 W. 

                                                 
 

33 No Author Given, MicroLight{TM} Software-Defined Radio Family. 
34 No Author Given, "AN/PRC-152(C) JTRS SCA Multiband Hand-Held Radio," Jane's Military 

Communications  (2011), 
http://client.janes.com.libproxy.nps.edu/K2/doc.jsp?t=B&K2DocKey=/content1/janesdata/yb/jmc/jmc_a06
3.htm@current&Prod_Name=JMC& 
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The PRC-152 supports both voice and data communications up to the TOP 

SECRET level, though precise throughput of the system is not advertised. 

b. Cons 

The PRC-152 does not offer any sort of real networking options.  

Additionally it does not support multiple simultaneous communications channels, and 

thus multiple PRC-152’s would need to be installed in a data relay UUV in order for it to 

communicate with multiple embedded systems. 

 

c. Comparison to Optimal Design 

CATEGORY RATING COMMENTS 

Size and Weight  Very compact and lightweight. 

Frequency Range  Large frequency bands available, allowing for flexibility in 

systems it can communicate with. 

Data Rate  Not advertised. 

Channels  Does not support networking or multiple simultaneous 

channels. 

Security  NSA certified up to the TOP SECRET level. 

Table 6.   Summary of Comparison of AN/PRC-152 to Optimal Design 
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Figure 22.   An AN/PRC-152.  (From 35) 

3. Rockwell Collins Government Systems’ FlexNet-Four 

The FlexNet product line is a JTRS compliant software defined radio 

communications architecture.  The FlexNet-4 model in particular is vehicle radio 

designed to function as a high data rate network backbone. 

a. Pros 

The strengths of the FlexNet-Four are its networking capabilities.  

Rockwell advertises that the FlextNet-Four can host simultaneous voice, data, and video 

communications for up to 150 participants with a data throughput of 5 Mbits/s for UHF 

communications and 64 kbits/s in in the VHF range.  The FlexNet-Four operates from 2-

2000 MHz. 

 

 

                                                 
 

35 No Author Given, AN/PRC-152(C) JTRS SCA Multiband Hand-Held Radio. 
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Additionally the FlexNet-Four, as a vehicle mounted device, has a much 

higher output power then smaller dismounted communications system.  Its maximum 

output of 50 W should ensure that it covers a much larger area then the smaller systems 

surveyed earlier. 

b. Cons 

As a vehicle system the FlexNet-Four is rather large, measuring in at 

15.39” by 7.48” by 14.50” (1669 in3 or 25.48 L).36  Fitting this system into some of the 

smaller man-portable UUV’s will not be possible.  It may be possible to remove the 

internal components of the system to better fit the payload space available. 

Security is also a concern for the system, as it is not rated as a Type 1 

device by the NSA.  Rockwell purports to be able to embed user specific encryption, so it 

should be possible for the device to be loaded with encryption abilities sufficient for it to 

be used for classified communications. 

c. Comparison to Optimal Design 

CATEGORY RATING COMMENTS 

Size and Weight  The FlexNet-Four is designed to be a vehicle borne 

system.  It is not suitable for very small UUV’s. 

Frequency Range  Operates from 2-2000 Mhz.  Should be sufficient to 

communicate with a multitude of existing systems. 

Data Rate  64 kbits/s up to 5 Mbits/s should be sufficient 

Channels  FlexNet-Four is a four channel device that can host 150 

separate users. 

Security  Not rated as Type 1 device, though may be possible to 

upgrade its encryption 

Table 7.   Summary of Comparison of FlexNet-Four to Optimal Design 

                                                 
 

36 Rockwell Collins FlexNet Website, "FlexNet-Four Specifications," Rockwell Collins, 
http://www.rockwellcollins.com/sitecore/content/Data/Products/Communications_and_Networks/Commun
ication_Radios/FlexNet-Four_H-V-UHF_Vehicular_Multichannel_Software_Defined_Radio.aspx 
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Figure 23.   The FlexNet-Four.  (From 37) 

 

                                                 
 

37 No Author Given, "FlexNet JTRS-Compliant Software Defined Radio," Jane's Military 
Communications (2010), 
2011.http://client.janes.com.libproxy.nps.edu/K2/doc.jsp?t=B&K2DocKey=/content1/janesdata/yb/jmc/jmc
_a189.htm@current&Prod_Name=JMC& 
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V. CONCLUSION AND RECOMMENDED FOLLOW-ON WORK 

A. GAP ANALYSIS 

Based on the survey of technology in Chapter IV, it is clear that there is a 

sufficient baseline to use in building a data relay UUV.  However, as was identified 

previously, none of the existing systems is ready off the shelf. 

The most pressing gap is the lack of a hybrid propulsion/power generation system 

that can both drive the UUV during deployment and also perform stream generation to 

power the UUV at anchor.  The technology itself is not new; it is more that it has never 

been miniaturized and installed in a UUV before.  Developing such a propulsion system 

is vital to meet the mission criteria set forth in the concept of operations in Chapter II. 

Additionally none of the basic UUV systems reviewed have an anchoring or 

mooring capability.  This is also a vital capability required to achieve the mission sets 

from Chapter II.  As was mentioned in Chapter III, anchoring capability is not unheard of 

in UUV’s, it’s more a matter of finding a system small enough that it can be fit into the 

chosen base system and integrating self-anchoring into the UUV’s control system. 

The last main gap is the development of the antenna arrays that will be used for 

client communications.  These arrays will need to be designed and constructed based on 

the specific amount of channels desired for client communications and the frequency 

ranges chosen. 

B. CONCLUSIONS 

This thesis presented the concept of using a UUV to conduct clandestine data 

relay in a jungle environment in order to circumvent the heavy canopy interference 

normally found in such locations.  It also presented an ideal design for building such a 

device with some analysis of the various design options available. 

Based on the results of the technological survey in Chapter IV the optimal design 

for the data relay UUV would be a man portable, self-anchoring system with the ability to 

use stream generation techniques to power itself while at anchor that can be delivered to 
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the desired location using multiple means.  Additionally, it would contain a robust 

communications capability that can support rapid, ad-hoc networking for receiving data 

from a distributed network of sensors.  It would be able to have mission parameters 

uploaded and modified in theater using a non-dedicated system, and would be controlled 

via either preprogrammed GPS waypoints, or through the use of the same non-dedicated 

system used to upload mission parameters.  Finally, the UUV should be able to terminate 

itself either at the conclusion of its mission, or if it is tampered with, in order to maintain 

the covert and clandestine nature of its mission. 

The ultimate goal of this project is for a cost effective UUV to be developed using 

as many existing systems as possible.  Based on the very basic design specifications 

presented here, as well as the brief survey of existing UUV and communications systems, 

achieving this goal seems possible.  The proliferation of small UUV’s in the Navy offers 

plenty of systems to draw from in addition to the myriad of designs from private industry 

that can also be leveraged. 

However, despite the abundance of existing Navy and COTS systems, the primary 

method of saving money on the design is to make the UUV just robust enough to 

accomplish its primary mission.  Thus for the UUV to be successful there must be ample 

programmatic support to ensure that missions are planned efficiently, and that the proper 

method of deployment is used.  Operators and planners must understand the capabilities, 

and especially the limitations, of the UUV.  To that end, the concept of operations 

presented here in Chapter II is more than just a basic assumption of the mission sets any 

relay UUV must be able to accomplish, it is also a set of questions that any operator must 

be able to satisfy so that they can maximize the effectiveness of the UUV. 

C. FUTURE AREAS OF STUDY 

Since both the CONOPS and UUV design presented here are only nominal, and 

laid out only as the foundation for a UUV program, there are plenty of areas for follow on 

work. 
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1. CONOPS Work 

As was mentioned earlier, the ability to build a cost efficient UUV means that 

there must be a considerable amount of focus placed on the front end of the program, 

namely the concept of operations and mission paradigms. 

a. Mission Planning Tools and Models 

In order to aid mission planners in making appropriate deployment 

decisions, there needs to be some sort of planning tool that can take in vital information 

regarding the desired deployment area and present it visually so that the planners have a 

clear understanding of what the UUV will be able to accomplish.  Examples of such 

information is the target waterway’s current and tidal patterns, the topography of desired 

shoreline, estimated electromagnetic propagation variables based on seasonal data and 

communications frequencies, weather patterns, and river usage information from 

intelligence sources. 

The mission planning tools should be able to aggregate this data and 

visually display estimated coverage areas for the UUV’s radios based on its location.  

These tools should also be able to accept data on the clandestine sensors and radios that 

the UUV will be communicating with so that their placement can also be planned 

appropriately, or if they are already in place, to help inform the placement decisions of 

the UUV. 

b. Deployment Testing 

The four deployment methods listed in Chapter II need to be tested with 

either a functional prototype of the UUV or, at the very least, a properly weighted mock 

up.  With the portage method being the limiting factor in the size, shape, and weight of 

the UUV, collecting actual data from simulated portage deployments is vital to validate 

the size and shape assumptions made in this thesis.  Additionally, the airborne method 

also requires testing in order to collect more accurate circular error probable data that can 

be added to the mission planning tools. 
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2. Design Work 

Since the design presented in Chapter III has no prototype, a number of the design 

decisions need to be validated to ensure the proper trade-offs were made. 

a. The Mission Planning Application 

The idea of a mission planning application needs to be validated to see if it 

is possible to develop an application that is portable from the (presumably) Windows 

machines of the mission planners, to the smart phones of the operators, to the operating 

system of the UUV to enable a seamless communications chain between the three 

devices. 

Besides the application’s portability, its security must also be verified so 

that the use of commercial networking protocols such as Bluetooth can be used in a 

system containing classified information. 

b. Submerged Deployment Communications 

The use of a high powered Bluetooth connection being used over water to 

control a semi-submersible is untested, but using a single wireless standard and 

application to both upload data to the UUV, and control it underway is a vital cost cutting 

measure that prevents having to develop a unique, stove piped, control system that will 

experience only minimal use. 

Being able to determine the power requirements as well as effective data 

throughput to a semi-submerged system will influence the final design of the UUV’s 

navigation system. 

c. Power System Specifications 

The ability of the UUV to draw power from the river environment is vital 

to the success of the design.  To that end, an explicit design that balances power 

requirements, battery size, motor size, and propeller geometry so that the UUV can most 

efficiently generate electrical power while anchored and still be able to conduct a 

submerged deployment is vital. 
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Additionally, while there have been a number of UUV’s that have been 

able to draw power from the environment, but none have used stream generation 

methods.  Significant engineering work would be required to modify the exiting 

propulsion system of whatever UUV model is chosen so that it can generate power. 

d. Network Integration 

This work focused almost exclusively on the design of the UUV itself; 

however, it is only a small portion of the communications and collections network it is 

relaying data for.  The UUV must be interoperable with existing sensors and radios that 

would be deployed in the jungle environment.  In order to ensure this happens testing 

should be conducted with a number of these existing systems to find which radio systems 

can communicate effectively with them in order to determine the best model for 

installation of the UUV.  Additionally, these radios should be tested in dynamic 

environments where they have to communicate with a number of different sensors 

simultaneously to ensure the UUV can handle communicating in a complex environment 

with multiple channels. 
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