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Executive Summary 

Introduction 
Unexploded ordnance (UXO) are munitions that were armed and fired but did not 

explode. Their risk of detonation remains, even decades after initial use. Thousands of 
sites in the United States are suspected of UXO contamination and require remediation. 
As much as 75% of current remediation costs may be associated with digging up 
nonhazardous scrap metal called “clutter,” instead of UXO. The development, validation, 
and acceptance of reliable technologies to correctly classify buried targets as UXO or 
clutter could lead to a significant reduction in UXO remediation costs, allowing more 
land to be cleared for the same amount of funding. 

The Environmental Security Technology Certification Program (ESTCP) carried out 
the third live-site UXO classification demonstration at the former Camp Butner, NC in 
2010. The main goal of the demonstration was to test and validate currently available and 
emerging classification technologies on a live site under operational conditions. Another 
goal was to involve environmental regulators, program managers, and other stakeholders 
in the design, execution, and evaluation of the demonstration to better understand what 
might be required in a real-world remediation project if detected targets were classified as 
clutter and therefore left in the ground. 

Methods 
The former Camp Butner was chosen to provide a greater challenge than the 

previous two demonstration sites. Historical records showed that a variety of munitions 
had been fired at Butner, including 37 mm projectiles similar in size to clutter. Thus, the 
estimated size of the buried target was not likely to be a discriminating feature in this 
demonstration, unlike in the previous two. 

Although this was a live-site demonstration, 160 inert UXO were seeded at the site, 
as in the previous two demonstrations. Clutter is common at live sites, but UXO is rare. 
Additional UXO must be seeded to confidently assess classification capabilities against a 
well-characterized and statistically significant set of targets. 

Three electromagnetic induction (EMI) instruments were used to collect data. The 
traditional EM61-Mk2 cart consists of one electronic coil that transmits an 
electromagnetic field and another coil that receives a secondary field. The more advanced 
MetalMapper consists of three orthogonal transmit coils as well as seven tri-axial receive 
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coils. Similarly, the Time-domain Electromagnetic Multi-Sensor Towed Array Detection 
System (TEMTADS) consists of a 5  5 array of transmit and receive coils. Both the 
traditional EM61-Mk2 cart and the more advanced MetalMapper collected data in 
dynamic mode. Anomalies were selected in these data based on geophysical models of 
the smallest expected UXO buried at its deepest expected depth and most unfavorable 
orientation. The MetalMapper and TEMTADS then collected high-resolution static data 
for every detected anomaly.  

Ground truth was carefully compiled. A commercial UXO remediation company 
recovered all targets from all anomalies. The ground truth label of “TOI” for target of 
interest was assigned to all anomalies from which at least one seeded or native UXO was 
recovered. All other anomalies (those with only clutter) were labeled “Non-TOI.” 

Six teams performed classification analyses as part of the demonstration. These 
included commercial geophysics companies (CH2M HILL and NAEVA Geophysics 
Inc.), as well as organizations involved in the research and development of advanced 
UXO classification technologies (Dartmouth College, Geometrics Inc., SAIC, and Sky 
Research Inc.). Two other companies (Parsons and Signals Innovations Group) 
performed retrospective analyses after ground truth had been released to all participants. 

Different teams classified the detected anomalies using different methods applied to 
different data sets. Several different software suites were used to analyze the data, 
including UXOLab and the UX-Analyze module of Oasis montaj. Each classification 
analysis resulted in one ranked anomaly list. Anomalies were listed in rank order, from 
most to least likely Non-TOI. A “don’t dig threshold” was then selected. In a real 
remediation project, all targets below threshold would be recovered, or “dug,” while all 
targets surpassing threshold would not have to be dug and could remain in the ground. 

IDA scored 54 ranked anomaly lists by comparing them to full ground truth. A 
curve was created for each list, similar to the receiver-operating characteristic (ROC) 
curves used in general classification problems. The curves and resulting statistics led to 
the findings and recommendations of this demonstration.  

Key Findings 

 The EM61-Mk2 cart showed better detection performance than the 
MetalMapper in dynamic mode. The EM61-Mk2 cart detected all seeded 
UXO, resulting in a probability of detection (Pd) of 100%. In comparison, the 
MetalMapper failed to detect two 37 mm projectiles seeded at 30 cm, resulting 
in a Pd of 99%. Although the differences in Pd were not statistically significant, 
had this been a real remediation project, stakeholders would have been troubled 
by the MetalMapper’s failure to detect two seeds. 



v 

 The EM61-Mk2 cart showed poor classification performance. The EM61-
Mk2 analyses led to the incorrect classification of many TOIs and/or small 
reductions in Non-TOI digs.  

 The MetalMapper in dynamic mode showed better classification 
performance than the EM61-Mk2 cart. The MetalMapper analyses often led 
to more TOIs correctly classified and/or greater reductions in Non-TOI digs.  

 The MetalMapper in static mode produced better classification 
performance than in dynamic mode. Some of the static analyses led to the 
correct classification of most or all TOIs while reducing Non-TOI digs by over 
50%.  

 The TEMTADS outperformed the MetalMapper in static mode. Most of the 
TEMTADS analyses led to the correct classification of most or all TOIs while 
reducing Non-TOI digs by over 90%.  

 Advanced geophysical models led to excellent classification results. At this 
challenging site, high-quality data did not consistently lead to excellent results—
high-quality data processing was also needed. Use of advanced geophysical 
models on the MetalMapper and TEMTADS static data led to the correct 
classification of all TOIs while reducing Non-TOI digs by 92% and 95%, 
respectively. 

 Second-pass analyses improved classification performance. A ranked 
anomaly list was created in the first pass. Ground-truth labels were then 
provided for those anomalies classified as “dig”. The labels were compiled by 
digging up the buried targets and identifying them as true TOI or Non-TOI. In 
the second pass, the ground truth labels were used to refine the classification 
algorithms and reclassify some anomalies that had originally been classified as 
“don’t dig.” This mimicked what could occur in a real remediation project, 
where ground truth could be considered as it becomes available. 

 Commercial geophysics companies performed well. With appropriate 
training, non-experts satisfactorily used the UX-Analyze and UXOLab software 
to process EM61-Mk2 and MetalMapper data. In fact, the commercial 
geophysics companies outperformed the more experienced organizations that 
mentored them. 

Key Recommendations 

 Future demonstrations should plan time and resources for sufficient quality 
control. In this demonstration, quality-control checks promptly caught and 
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addressed problems with data collection and anomaly detection. This is 
especially important when using dual-mode instruments like the MetalMapper. 

 All classification analyst teams should be given the opportunity to perform 
multiple-pass analyses. This will help ESTCP better understand the ground 
truth feedback processes that could be used in a real remediation project to give 
stakeholders more confidence in the final don’t dig threshold. 

 Classification analyst teams should be limited to only a few different types 
of analyses. In this demonstration, commercial geophysicists with little to no 
experience in UXO classification outperformed their mentors. This may be 
because the mentors performed many different types of analyses, spreading their 
time and resources thin. 

 Commercial geophysics companies should be encouraged to take part in 
future demonstrations. This could jump-start technology transfer because the 
demonstrations provide an excellent opportunity for commercial firms to receive 
training on UXO classification technologies. 
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1. Introduction 

Unexploded ordnance (UXO) are explosive, propellant, or chemical-containing 
munitions that were armed and fired but remain unexploded [27]. UXO continues to pose 
a risk of detonation, sometimes decades after initial use [27]. Many sites contaminated 
with UXO are used or intended for civilian purposes, often with no restrictions [24][27]. 
To eliminate the risk of unintended detonation, the UXO must be identified and removed 
from these sites, in a process known as “UXO remediation” [24][27]. 

UXO often becomes buried in the ground and can therefore be impossible to 
identify by eye. Instruments have been developed to detect buried metallic targets; all 
detected targets must then be dug up using expensive, safety-oriented procedures in case 
one or more of them turn out to be UXO. Most targets turn out to be “clutter,” however, a 
term describing nonhazardous items such as fragments from already-exploded munitions, 
other scrap metal, etc. [24]. 

In 2003, the Defense Science Board (DSB) released a study on UXO [24]. It found 
that in the United States alone, over 10 million acres of land are suspected of UXO 
contamination due to their prior uses as battlegrounds, military test sites, or military 
training camps. Tens of billions are dollars are necessary to remediate these sites; at 
current funding rates, this will likely take several decades. In a typical remediation 
project, as much as 75% of remediation costs are associated with recovering targets that 
in retrospect could have been left safely in the ground, since they turned out to be clutter. 
In fact, more than 99% of recovered targets turn out to be false alarms. The DSB pointed 
out that reducing the false-alarm rate (FAR) from 99% to a lower, yet still relatively high, 
rate could significantly reduce the costs of UXO remediation. This would allow a larger 
expanse of land to be cleared with the same amount of funding. Classifying a buried 
target as either UXO or clutter before recovery is even attempted could reduce the false-
alarm rate while still ensuring the recovery of most or all hazardous items. 

UXO classification technologies have been developed under the Strategic 
Environmental Research and Development Program (SERDP) and refined under the 
Environmental Security Technology Certification Program (ESTCP) [23]. Before 2007, 
testing of these technologies was limited to artificially constructed, standardized test sites 
such as those at the Aberdeen and Yuma Proving Grounds. Demonstrations carried out at 
standardized sites have proven to be useful for research and development purposes. 
However, the results of standardized site demonstrations are not always directly 
applicable to real remediation projects, as both UXO and clutter are emplaced at the 
standardized sites according to preconceived notions of which particular types and sizes 
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of targets should be buried at which particular locations, depths, and orientations. Since 
2007, then, demonstrations have also been conducted at live sites [33][34]. Live sites are 
locations suspected of UXO contamination due to their previous military uses. The 
results of live-site demonstrations can be more readily extrapolated to real remediation 
projects because the results are based on real-world targets under real-world conditions. 
In particular, live sites can be used to demonstrate the performance of not only individual 
classification technologies, but also an entire decision-making process that mimics what 
could occur in a real remediation project. This is crucial for gaining acceptance of 
classification technology in the UXO community.  

ESTCP has designed a series of increasingly challenging live-site demonstrations to 
validate and gain acceptance of UXO classification technologies. The first demonstration 
was at the former Camp Sibert, AL, in 2007. Results showed that UXO classification was 
possible at a site with benign terrain and geology that was contaminated with a single, 
large munition type. The estimated size of the buried target proved to be the single most 
discriminating feature between the large UXO and the small clutter [33]. The second 
demonstration was held in 2009 at the former Camp San Luis Obispo, CA, a site with 
more challenging terrain and geology, as well as a variety of munition types, all in the 
medium-to-large size range. Results of this second demonstration showed that with the 
use of more advanced data-collection instruments, UXO classification was still possible 
under these more difficult conditions. Once again, size was the most discriminating 
feature, separating the medium-to-large UXO from the predominantly small clutter [34]. 
The third demonstration, held in 2010, was designed to be even more challenging. The 
former Camp Butner, NC, was specifically chosen for its wide variety of munition types, 
some of which were very small and of a comparable size to clutter. Size was not expected 
to be a discriminating feature, pushing the participants to explore other features on which 
classification could instead be based. 

One of the two main goals of this third demonstration was to test and validate, on a 
more challenging site, the instruments and software that had proved successful in the first 
two demonstrations [2]. To that end, both currently available and emerging 
electromagnetic induction (EMI) instruments were used to collect data, and both 
commercially available and custom-built software were used to process and classify the 
data. The EM61-Mk2 cart was used to collect data in dynamic mode. Built by Geonics 
Ltd., this instrument consists of one coil that can transmit an electromagnetic field, as 
well as a second receive coil. The EM61-Mk2 cart has become the standard instrument 
for UXO remediation. The more advanced MetalMapper, built by Geometrics Inc., was 
used to collect data in both dynamic and static modes. This instrument consists of three 
orthogonal transmit coils as well as seven triaxial receive coils. Similarly, the Time-
domain Electromagnetic Multi-Sensor Towed Array Detection System (TEMTADS) 
consists of a 5  5 array of transmit and receive coils. This instrument was developed by 
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the Naval Research Laboratory (NRL) and was used to collect static data. Several 
different software packages were used to process the collected data, including the 
commercially available UX-Analyze module to Oasis montaj, the UXOLab software 
developed by the University of British Columbia, and other custom-built software 
packages.  

The second goal of this demonstration was to involve the regulatory community in 
the design, implementation, and evaluation of the demonstration in an effort to better 
understand what might be required in a real remediation project if buried targets were 
classified as clutter and therefore left in the ground [2]. To that end, state regulators, 
representatives of the Environmental Protection Agency, members of the U.S. Army 
Corps of Engineers, and other stakeholders were invited to participate in an Advisory 
Group. This group strongly influenced the design, execution, and evaluation of the 
demonstration, as had been done for the previous two demonstrations. 

The Institute for Defense Analyses (IDA) was assigned responsibility for assisting 
with the design, execution, and evaluation of the demonstration under a task entitled 
“ESTCP/SERDP: Assessment of Traditional and Emerging Approaches to the Detection 
and Identification of Surface and Buried Unexploded Ordnance.” In support of ESTCP, 
IDA created a protocol for seeding inert UXO in the demonstration area at the former 
Camp Butner, as well as a second protocol for scoring the final classification deliverables 
against ground truth [31][32]. Finally, IDA scored the 54 separate deliverables submitted 
by the 8 classification analyst teams: CH2M HILL, Dartmouth College, Geometrics Inc., 
NAEVA Geophysics Inc., Parsons Inc., SAIC, Signals Innovation Group (SIG), and Sky 
Research Inc. This comprehensive report describes the demonstration in detail and serves 
as a complement to the more concise report produced by ESTCP [29]. 

The following sections describe the site preparations and data-collection procedures 
used at the former Camp Butner. The methods used to classify the collected data and the 
process used to score the classification deliverables are also described. The final sections 
present the results of the scoring, summarize the findings of the demonstration, and make 
recommendations for future demonstrations. 
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2. Site Preparation 

Careful preparations were made for the third live-site UXO classification 
demonstration. This section describes the steps that were taken before data collection, 
including the methods used to select a site for the study, select a particular section of the 
site for the demonstration area, and seed the demonstration area with inert UXO. 

A. Selecting a Site 
The former Camp Butner was selected for its challenging variety of munitions. This 

site had been used as a military training camp during World War II [19]. Historical 
records showed that multiple munition types had been fired at the site, ranging from large 
105 and 155 mm projectiles to small 37 mm projectiles comparable in size to clutter [19]. 
Based on input from the Advisory Group, ESTCP intentionally chose a site with such 
small UXO in order to challenge the classification technologies, pushing the 
demonstration participants to base their classifications on features other than the 
estimated size of the buried target. Figure 1 shows an aerial photograph of the site, and 
Figure 2 shows a photograph from the ground. The former Camp Butner is grassy and 
relatively flat.  

 

 
Figure 1: An aerial photograph of the former Camp Butner. Taken from [29]. 
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Figure 2: A photograph of the former Camp Butner. Taken from [29]. 

B. Selecting the Demonstration Area 
Transects were taken to select sections of the former Camp Butner that were 

potentially suitable for the demonstration. As shown in Figure 3, HydroGeoLogic Inc. 
(HGL) used an EM61-Mk2 sensor to collect transects over four separate sections of the 
site, with a 20 m separation between transect lines [8]. Peaks were identified in the 
collected data. A threshold of 20 mV was applied to the sum of the four sensor channels, 
each channel representing the signal received by the sensor at one of four points in time 
after exciting the buried target with an electromagnetic field pulse. Each peak above 
threshold was considered an “anomaly” with respect to background. The anomaly 
densities were calculated for each section of the site, and 24 specific acres were chosen 
for further investigation. 

An initial survey was then done to select the final demonstration area. Under 
subcontract to HGL, NAEVA Geophysics Inc. collected survey data over the 24 acres 
selected from the transects [7]. An EM61-Mk2 sensor was used here as well, this time 
with a line spacing of 0.5 m. Figure 4 shows another aerial photograph of the site, this 
time overlaid with a map of the EM61-Mk2 survey data. Anomalies were identified by 
applying a threshold of 5 mV to the second sensor channel, as this channel often shows 
the largest signal-to-noise ratio (SNR). The site was separated into 30 m  30 m grids, 
and the anomaly density was calculated for each grid. ESTCP then visually inspected the 
data map along with the anomaly densities. A total of 20 contiguous grids (4.4 acres in 
total) in the northeast section of the site were selected for the demonstration area. This 
area is outlined in blue in Figure 4. These 20 grids exhibited anomaly densities high 
enough to sufficiently challenge the classification methods but low enough to allow the 
recovery of all buried targets to use as ground truth in scoring. 
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Figure 3: An aerial photograph of the former Camp Butner. Transect lines are marked in 
brown. Green squares mark potential grids for intrusive investigation. Taken from [29]. 

 

 
Figure 4: An aerial photograph of the former Camp Butner. The initial EM61-Mk2 data map 
(lower coil, second time gate) is overlaid before seeding. The selected demonstration area 

is outlined in blue in the northeast section of the site. Taken from [29]. 
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C. Seeding the Demonstration Area 
The purpose of conducting a UXO classification demonstration on a live site is to 

make use of the site’s native targets. In contrast, standardized sites, such as the Aberdeen 
and Yuma Proving Grounds, are first cleared of all native targets and then seeded with 
preselected UXO and clutter before a demonstration begins. Although standardized sites 
allow more control over the demonstration, the results can be difficult to extrapolate to a 
real remediation project. In contrast, live-site demonstrations have the credibility of 
mimicking the real world—classification results are based on real-world targets native to 
real-world sites. 

Native clutter items are common at live sites, but native UXO items are rare. For 
example, thousands of clutter items were found at both the former Camp Sibert and the 
former Camp San Luis Obispo [33][34]. This led to a high statistical confidence in the 
demonstration results, which were that approximately 30%–50% of anomalies produced 
by native clutter items could be correctly classified. This was not the case for native 
UXO, however. At the former Camp San Luis Obispo, only 44 native UXO were found 
in the 10 acres assigned to the demonstration area [34]. Furthermore, zero native UXO 
were found in the former Camp Sibert’s demonstration area [33]. 

A demonstration cannot assess, with confidence, the ability to correctly classify 
anomalies produced by UXO if there is not an adequate number of UXO to begin with. 
Therefore, inert UXO were seeded at all three demonstration sites to provide statistical 
confidence in the classification performance metrics. The locations and identities of the 
seeded UXO were kept hidden from the demonstration participants until after scoring was 
complete. In contrast, no clutter items were seeded, since a very large number of clutter 
items were already native to the site. 

The reliance on seeded UXO was the main limitation of this series of 
demonstrations. Ideally, the demonstration area would have been sufficiently large such 
that valid statistics could have been calculated from only UXO that were native to the 
site. Such a large area would have also included an extremely large number of native 
clutter items, however. In this type of demonstration, all targets must be recovered to 
constitute ground truth for scoring. Yet the cost of recovering all targets from such a large 
area would have been prohibitively high. Budget constraints limited the size of the 
demonstration areas at the former Camp Sibert, former Camp San Luis Obispo, and 
former Camp Butner. This resulted in few recovered targets that turned out to be native 
UXO and so warranted the need for seeded UXO. Future demonstrations will also have 
limited budgets, and so future demonstration areas will also be limited in size, leading to 
the recovery of few native UXO. Therefore, the seeding of UXO will remain necessary. 

The seeding of UXO influenced only some of the metrics calculated in this series 
of demonstrations. Only those metrics that were based on UXO were influenced, such as 
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the number or percentage of UXO that could be correctly classified and must therefore be 
recovered in a real remediation project. In contrast, the seeded UXO did not influence 
those metrics that were based on the clutter items, such as the number or percentage of 
clutter items that were incorrectly classified and must therefore be unnecessarily 
recovered in a real remediation project—that is, the metrics describing the false alarms.  

1. Selecting UXO for Seeding 

ESTCP gave considerable thought for choosing the types of UXO to seed at the 
former Camp Butner. To keep the demonstration as close as possible to a real-world 
situation, the desired seeds must be as similar as possible to the UXO previously fired at 
the site. Historical records showed that several types of munitions had been fired at the 
former Camp Butner, including 37, 105, and 155 mm projectiles [19]. 

An intrusive investigation was performed over a small section of the site to confirm 
the historical records [21]. HGL, together with Ordnance Explosive Remediation Inc. (a 
commercial UXO remediation company), recovered all metallic objects within a 100 ft  
65 ft area of the southernmost section of the site, the southernmost green square in Figure 
3. A total of 593 items were recovered, all consisting of debris from previously exploded 
UXO or other metallic items. No items were found deeper than 50 cm (20 in). The most 
common UXO debris was from 105 and 155 mm projectiles, along with some fragments 
of 37 mm projectiles. 

Based on the historical records and the results of the intrusive investigation, ESTCP 
decided to seed three types of UXO at the former Camp Butner: 37 mm projectiles, 
105 mm projectiles, and M48 fuzes. 155 mm projectiles were not seeded because their 
extremely large size made them too easy a target for UXO classification. On the other 
hand, 37 mm projectiles and M48 fuzes (fuzes detached from their parent 105 mm 
projectiles) were small enough to challenge UXO classification methods. The Advisory 
Group noted that 105 mm projectiles are often found with their M48 fuzes detached and 
lying nearby; the detached fuzes remain filled with explosive material and can still pose a 
risk of detonation.  

ESTCP queried munitions stores across the United States for inert munitions of 
these three types. A total of 112 inert 37 mm projectiles were accumulated from different 
sources, along with 27 inert 105 mm projectiles. Because few detached M48 fuzes could 
be found, ESTCP contracted with the Naval Research Laboratory (NRL) to manufacture 
24 metallic objects of the same size, shape, material composition, and wall thickness as 
an M48 fuze. 

With the input of the Advisory Group, ESTCP also determined the depths of interest 
for the seeded UXO. These were based on the maximum depth at which each UXO type 
might be typically found, along with the site conditions specific to the former Camp 
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Butner that might affect the likely depths. Table 1 provides the depths of interest used for 
the UXO types expected at Butner. 

Table 1: Depths of interest for the UXO types expected at the former Camp Butner. 

UXO Depth of Interest 

105 mm projectile 60 cm (2 ft) 

37 mm projectile 30 cm (1 ft) 

M48 fuze 30 cm (1 ft) 

2. Creating the Seed Plan 

The seed plan consisted of a list of locations for seeding the UXO, along with 
instructions for interpreting the list [32]. The list was separated into three sections: (1) the 
demonstration area, (2) the instrument verification strip (IVS), and (3) the training pit. 
The first 160 UXO were seeded in the demonstration area, including 110 inert 37 mm 
projectiles, 26 inert 105 mm projectiles, and 24 inert M48 fuzes. The purpose of these 
seeds was to guarantee the existence of a large number of UXO to ensure sufficient 
statistical confidence in the classification performance metrics. The second, much shorter 
section listed six targets for the IVS: two 37 mm projectiles, two spherical shot puts, and 
two 1 in  4 in pipe nipples called “Industry Standard Objects (ISOs)” that were 
approximately the same size and shape as 37 mm projectiles. These six targets were 
emplaced in the IVS after clearing the IVS of all other targets. The purpose of the IVS 
was to allow the data-collection teams to recalibrate their instruments on a daily basis 
using known targets. The final section listed the location of the training pit. Data-
collection teams used the training pit to collect data from expected UXO types to learn 
their expected signatures at different depths and orientations. To that end, one 37 mm 
projectile, one 105 mm projectile, and one M48 fuze were reserved for data collection in 
the training pit. (Section 2.c.3 details deviations made to the original seed plan.) 

a. Demonstration Area 

IDA selected the intended locations of all 160 UXO to be seeded in the 
demonstration area [32]. First, the thresholded EM61-Mk2 data map was visually 
examined. It was assumed that all anomalies in the map were produced by native targets 
or geology. The 160 selected seed locations were far from each other and far from any 
native anomaly. When selecting the locations of the seeded UXO, anomalies were 
avoided since multiple, closely spaced targets, such as a UXO seeded next to a piece of 
native scrap metal, had generally been difficult to separate and classify in previous 
classification studies [34]. Figure 5 is a close-up view of one 30 m  30 m grid of the 
thresholded EM61-Mk2 data map. Colored circles indicate the intended seed locations; 
all were far from each other and any native anomaly. 
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Figure 5: A close-up view of one 30 m  30 m grid in the initial EM61-Mk2 data map (lower 
coil, second time gate) before seeding. Native anomalies exceeding the threshold of 5 mV 

are shaded in color, and the background is shaded in gray. Pink, orange, and yellow 
circles of radius 1.2 m, 1.5 m, and 2.0 m mark the intended locations of 37 mm projectiles, 
105 mm projectiles, and M48 fuzes, respectively. All intended seed locations are far from 

each other and any native anomaly. Taken from [32]. 

 
Analysts at SAIC assisted in determining the minimum spacing between intended 

seed locations [40][41]. Using a geophysical model, the analysts estimated the signal that 
would be measured by the EM61-Mk2 from each expected UXO buried at its depth of 
interest and each of three orthogonal orientations. Then, they traced a 3.0 mV contour in 
the estimated data and calculated the diameter of the contour. The left side of Figure 6 
shows the contours traced for a 105 mm projectile buried at its 60 cm (2 ft) depth of 
interest and in three different orientations. The average diameter of the contours was 3.07 
m. Similar plots are shown for a 37 mm projectile and M48 fuze, both buried at their 30 
cm depths of interest, with average contour diameters of 1.80 m and 2.20 m, respectively. 
IDA applied a 33% safety margin to the estimated contour diameters and then used these 
final numbers to determine the minimum spacing between seeded UXO. Specifically, all 
locations assigned to 105 mm projectiles were spaced at least 4.0 m away from native 
anomalies and other seed locations. All locations assigned to 37 mm projectiles were 
spaced at least 2.4 m away, and all locations assigned to M48 fuzes were spaced at least 
3.0 m away.  

IDA randomly assigned each seeded UXO to a specific depth (up to the depths of 
interest), inclination angle, and azimuth angle [32]. For example, as 30 cm was the depth 
of interest for 37 mm projectiles, all seeded 37 mm projectiles were randomly assigned to 
depths ranging from 10 to 30 cm. M48 fuzes were also randomly assigned to depths of 10 
to 30 cm, because 30 cm was their depth of interest as well. The 105 mm projectiles were 
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randomly assigned to depths of 20 to 60 cm, as their depth of interest was 60 cm. 
Inclination angles were assigned by considering the Advisory Group’s comments that in 
real remediation projects, most UXO of these types are found in horizontal orientations. 
Therefore, most of the seeded UXO at the former Camp Butner were assigned inclination 
angles within 45 degrees of horizontal. Finally, the seeded UXO were randomly assigned 
to different azimuth angles with respect to north. 

 

 
Figure 6: 3 mV contours traced along the estimated EM61-Mk2 signal amplitudes (lower 

coil, second time gate) for different UXO types seeded at their depths of interest, 
including: (left) a 105 mm projectile at 60 cm (2 ft), (middle) a 37 mm projectile at 30 cm (1 

ft), and (right) an M48 fuze at 30 cm (1 ft). Contours were estimated for each of three 
orthogonal orientations. Taken from [40]. 

 
The seed plan instructed the emplacement team to bury each UXO as close as 

possible to its intended location, depth, inclination, and azimuth [32]. The plan did allow 
for minor deviations if needed. For example, the emplacement team was instructed to 
survey the area around an intended location with a hand-held EMI detection device. The 
purpose of this step was to check for native targets or geology that for any reason had 
failed to produce an anomaly on the initial EM61-Mk2 data map. If no anomalies were 
detected, then the emplacement team was instructed to proceed with seeding the UXO. 
On the other hand, if an anomaly was detected, then the emplacement team was 
instructed to choose a nearby location to seed the UXO. In another example of a 
deviation from plan, the emplacement team was instructed to alter the depth and 
orientation of a seeded UXO if its intended burial parameters did not allow at least 10 cm 
of dirt over the top of the buried seed. 

b. Instrument Verification Strip 

The emplacement team was instructed to manually select the intended locations for 
the six targets seeded in the IVS [32]. The main purpose of the IVS was to recalibrate the 
instruments on a daily basis. ESTCP recommended situating the IVS directly west of the 
demonstration area. This area exhibited few anomalies representing native targets or 
geology. Furthermore, the data-collection teams could easily access this area with their 
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instruments at the beginning and ending of each day for calibration. Based on this 
guidance, a strip of land was chosen that was parallel to and 5 m away from the western 
boundary of the demonstration area [32]. The emplacement team was instructed to first 
search for and clear any native metallic items from this area before seeding the targets 
5 m apart from each other. 

Target depths, inclinations, and azimuths were selected for each target seeded in the 
IVS [32]. Both the 37 mm projectiles and the ISOs (1 in  4 in pipe nipples roughly the 
same size and shape as 37 mm projectiles) were assigned horizontal cross-track 
orientations, a directly horizontal inclination angle with an azimuth angle perpendicular 
to the length of the strip. This orientation was chosen to allow instrument calibration in a 
worst-case scenario—horizontal cross-track generally provides the weakest signal for 
EMI sensors. One 37 mm projectile and one ISO were assigned a depth of 15 cm, with 
the other of each type assigned to 30 cm. The two shot puts were assigned depths of 45 
cm; orientation was irrelevant because these were spheres. 

c. Training Pit 

The seed plan also instructed the emplacement team to dig a training pit 8 m north 
of the IVS [32]. First, this area was to be cleared of all metallic items within a 5 m radius. 
Then, a pit was to be dug in the center of the cleared area, 0.50 m in radius and 0.60 m in 
depth. One 37 mm projectile, one 105 mm projectile, and one M48 fuze were reserved so 
that data could be collected from these UXO at different depths and orientations 
requested by the classification analyst teams. These data could later assist the teams in 
learning the expected signatures of the UXO, such that better classification decisions 
could then be made within the demonstration area. 

3. Seeding the UXO 

UXO were seeded at the site according to the seed plan. First, HGL performed a 
surface clearance to remove any metallic items resting on the ground [20]. Then, Parsons 
Inc., a commercial geophysics company, buried the UXO at or near the intended 
locations, depths, and orientation angles. 

Some deviations from the plan were made. In the demonstration area, the plan 
specified one more M48 fuze than was available. Therefore, Parsons removed the fuze 
from one of the 105 mm projectiles and used that instead. In the IVS, the plan specified 
one more 37 mm projectile than was available. Therefore, Parsons used a third ISO in 
place of the deepest intended 37 mm projectile.  

After placing each target in the ground, but before covering it with dirt, Parsons 
recorded several pieces of information: 

 The identification number of the seeded target. 
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 The type of the target (e.g., “37 mm projectile,” “105 mm projectile,” “M48 
fuze”).  

 The easting, northing, and depth coordinates for the nose, center, and tail of the 
target, with depth measured with respect to the average of one or more surveyed 
points on the lip of the hole. 

 The azimuth and inclination angles of the target. 

 A photograph of the target, with the identification number clearly written on the 
target and a ruler clearly placed next to the target. 

The emplacement team also completed final preparations to the site. They replaced 
dirt in the holes and leveled the final burial locations of the seeds. They also attempted to 
replace the grass plug over the burial locations. Several weeks then passed before data 
collection began. 
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3. Collecting Data 

Two types of data can be collected for UXO remediation: dynamic data and static 
data. Dynamic data are collected at a relatively steady rate as the data-collection 
instrument travels over the ground. The main purpose of collecting dynamic data is to 
detect individual anomalies indicating buried targets. In some cases, dynamic data can 
also be used to classify the buried targets into two groups: those that must be recovered 
(likely UXO) and those that may remain in the ground (likely clutter). In contrast, static 
data are collected at one particular location at a time as the data-collection instrument 
remains at rest. The locations must be known in advance; they are typically the locations 
of the anomalies detected in previously collected dynamic data. In general, static data 
have a higher resolution and SNR than dynamic data and can therefore be much more 
useful for UXO classification.  

Both types of data were collected at the former Camp Butner, once seeding was 
complete. This section describes the instruments and methods used to collect dynamic 
data, the methods used to detect anomalies in the dynamic data, the results of scoring the 
detected anomalies against the seeded UXO, and the instruments and methods used to 
collect static data at the locations of the detected anomalies. Table 2 summarizes the three 
EMI instruments used for data collection at the former Camp Butner. 

Table 2: Data collection instruments at the former Camp Butner. 

Instrument Sensor Mode Status 

EM61-Mk2 cart Standard transmit/receive coil Dynamic Industry standard 

MetalMapper 
Three orthogonal transmit coils 
with seven triaxial receive coils 

Dynamic and static 
(dual-mode, self-cued) 

Emerging 

TEMTADS 5  5 array of transmit/receive 
coils 

Static Emerging 

A. Collecting Dynamic Data 
Two EMI instruments collected dynamic data at the former Camp Butner: the 

EM61-Mk2 (the same instrument used to collect transects and the initial survey data 
before seeding) and the MetalMapper. Each instrument is described briefly below. More 
detail can be found in the documents written by the data-collection teams 
[3][47][48][53][54][60][61]. 
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1. EM61-Mk2 Cart 

The EM61-Mk2 cart is the most commonly used EMI instrument for UXO 
remediation. It consists of a standard EM61-Mk2 sensor mounted on a two-wheeled cart. 
Sold by Geonics Ltd. since the 1990s, the sensor consists of a 1 m  0.5 m receive coil 
mounted 30 cm above another similar sized structure containing both a transmit coil and 
second receive coil. As shown in Figure 7, current passing through the lower coil 
transmits an electromagnetic field. Changes in this primary field, such as when the 
current is turned on and off, induce eddy currents in the buried target, a process known as 
“illuminating” the target. The eddy currents give rise to a secondary electromagnetic field 
that, in turn, induces a secondary current through both the upper and lower coils of the 
sensor. The secondary current induced in each coil passes through a known resistance, 
resulting in a measurable change in voltage. The EM61-Mk2 cart can be configured to 
measure either (1) the voltage change in the lower coil at four time gates (geometrically 
spaced in time from 216 s to 1.3 ms) immediately after the primary current is turned off 
or (2) the voltage change in the upper coil at the first time gate and in the lower coil at 
three time gates. The operator of the instrument wears a backpack with a battery and 
other electronics [17][48]. 

 
Figure 7: The EM61-Mk2 sensor consists of a lower coil that transmits a primary 

electromagnetic field. Changes in the primary field induce eddy currents in the buried 
target. The eddy currents give rise to a secondary electromagnetic field. At the former 

Camp Butner, the strength of the secondary field through a second lower coil was 
measured at four time gates after the primary field was turned off. Taken from [48]. 

 
NAEVA Geophysics Inc. operated the EM61-Mk2 cart at the former Camp Butner 

[47][48], as shown in Figure 8. NAEVA configured the instrument to measure the 
strength of the secondary field through the lower receive coil at four time gates. This was 
done to provide the maximum temporal extent for assessing the decay of the secondary 
field over time because this decay is known to be a discriminating feature in UXO 
classification [33][34]. NAEVA used the IVS to calibrate the sensor at the beginning and 
end of each day. In the demonstration area, the NAEVA operator pulled the cart over the 
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ground in straight lines that were 0.5 m apart. Although UXO remediation projects often 
use a line spacing as wide as 1.0 m, NAEVA used the closer line spacing to enable the 
collection of high-resolution data that could support classification. Finally, NAEVA used 
the training pit to collect data from the expected UXO at different depths and 
orientations, as requested by the classification analyst teams. In all cases, the NAEVA 
operator used a Trimble 5700 real time kinematic differential global positioning system 
(RTK DGPS) to track the position of the sensor as the cart was pulled over the ground. 

 

 
Figure 8: NAEVA Geophysics Inc. operated the EM61-Mk2 cart at the former Camp Butner. 

Taken from [51]. 

 
The EM61-Mk2 cart has both advantages and disadvantages for UXO classification. 

On the positive side, this instrument is inexpensive compared with more advanced 
systems. Furthermore, the instrument is well known to commercial companies involved 
in UXO remediation; many commercial geophysicists know how to operate the 
instrument and analyze its data. On the negative side, it uses a mono-static sensor, 
meaning that it measures the strength of the secondary field in only one direction (the 
direction through the receive coil). However, to estimate the characteristics of a target 
buried at a particular spot in the ground, the analyst must consider the strength of the 
secondary field in all directions. To do this, the analyst must patch together data collected 
as the cart was pulled directly over the target (where the receive coil is directly above the 
target), as well as over separate, nearby lines (where the receive coil is above and to the 
side of the target). Inaccurate measurements of the cart’s position from line to line can 
introduce errors into this process, resulting in a mischaracterization of the buried target. 
Another limitation of the EM61-Mk2 cart is that it measures the strength of the secondary 
field at only four time gates, the latest occurring only 1.3 ms after the primary field is 
turned off, a much shorter span of time in comparison to the advanced instruments. Thus 
the secondary field’s decay over time is more difficult to assess, leading to further 
difficulties in characterizing the buried target. 
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2. MetalMapper 

The MetalMapper is an advanced EMI instrument developed by Geometrics Inc. 
under ESTCP funding. As shown in Figure 9, it consists of three 1 m  1 m orthogonal 
transmit coils, as well as seven triaxial receive coils. A case contains the battery and other 
electronics, including a RTK DGPS and an inertial measurement unit to resolve the 
sensor’s yaw, pitch, and roll. The MetalMapper can be operated in both dynamic and 
static modes [53][54][60]. 

 
Figure 9: The MetalMapper consists of three orthogonal transmit coils, as well as seven 

triaxial receive coils. Only one transmit coil is used in dynamic mode, with all seven 
receive coils used to sense the secondary electromagnetic field. In static mode, all 

transmit coils and all receive coils are used. Taken from [29]. 

 
In dynamic mode, the MetalMapper functions slightly differently from the EM61-

Mk2 cart. Current is passed through only the horizontal transmit coil, creating a vertically 
oriented primary field that, as with the EM61-Mk2 cart, illuminates the buried target in 
only one direction. Unlike the cart, however, the MetalMapper senses the secondary field 
on each of the seven triaxial receive coils, resulting in 21 separate measurements. The 
voltage change in each axis of each receive coil is measured at different time gates after 
the primary field is turned off; the operator can specify the exact time gates used [53]. 

Geometrics collected MetalMapper dynamic data at the former Camp Butner. Its 
subcontractor, Sky Research Inc., also collected dynamic data with a second, newer 
system in the northwest portion of the demonstration area. Both organizations configured 
their time gates from 24 s to 904 s and used a line spacing of 0.75 m. Figure 10 shows 
the MetalMapper deployed on the front lift of a Kubota tractor. Like NAEVA, both 
organizations used the IVS to calibrate their instruments at the beginning and end of each 
day. In addition, the team collected the training pit data requested by the classification 
analyst teams [53]. 

There are advantages and disadvantages to collecting dynamic data with the 
MetalMapper. The main advantage is that the MetalMapper is a multi-static sensor: at 
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any particular time gate, the strength of the secondary field is sensed on seven triaxial 
receive coils. Because each receive coil actually consists of three separate orthogonal 
coils, each coil can measure the strength of the secondary field in three orthogonal 
directions. Furthermore, the seven receive coils are mounted at a fixed distance from each 
other, leading to a very high relative position accuracy of the seven locations at which the 
field is measured. All of this reduces errors in the characterization of the buried target. 
On the other hand, the latest time gate was configured to only 904 s in this 
demonstration, even earlier than the latest time gate of the EM61-Mk2 cart (1.3 ms). 
Thus, it was even more difficult to assess the decay of the secondary field using the 
MetalMapper in dynamic mode than with the EM61-Mk2 cart; these difficulties may 
have degraded the characterization of the buried target. Finally, the MetalMapper is a 
new instrument and fewer people are familiar with its operation. 

 

 
Figure 10: Geometrics Inc. and Sky Research Inc. operated the MetalMapper at the former 

Camp Butner. Taken from [51]. 

B. Detecting Anomalies 
The primary purpose of collecting dynamic data in a UXO remediation project is to 

detect anomalies indicating buried targets. To that end, each data collection team created 
a map of the dynamic data collected at the former Camp Butner. NAEVA plotted the 
signal (the change in voltage) measured in the lower coil of the EM61-Mk2 cart at the 
second time gate, as was done before seeding [47][48]. Figure 11 shows NAEVA’s 
dynamic data map for the EM61-Mk2 cart after seeding, superimposed on an aerial 
photograph of the site. Similarly, Geometrics created a similar map for the MetalMapper 
dynamic data by plotting a combination of the signals measured in the MetalMapper’s 
seven different receive coils at different time gates [53]. Each team then applied a 
threshold to its map to detect individual anomalies. 
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Figure 11: An aerial photograph of the former Camp Butner. The final EM61-Mk2 data map 

(lower coil, second time gate) is overlaid after seeding. Areas exceeding the detection 
threshold of 5.2 mV are shaded in color, while all areas below threshold are shaded in 

gray. Taken from [47].  

 
Both data-collection teams used similar methods to choose their detection 

thresholds. Using a geophysical model, NAEVA estimated the amplitude of the signal 
that would be sensed by the EM61-Mk2 cart (lower coil, second time gate) from different 
UXO buried at different depths and orientations [47][48]. The detection threshold was 
then set at 5.2 mV, the estimated signal amplitude sensed from a 37 mm projectile (the 
smallest expected UXO) at its 30 cm depth of interest and its least favorable orientation 
(that which would lead to the lowest signal amplitude). For example, the red curve in 
Figure 12 plots the estimated signal amplitude versus depth for a standard 37 mm 
projectile in the horizontal cross-track orientation. An orange × marks the detection 
threshold, the signal expected from the 37 mm projectile at its depth of interest of 30 cm 
and its least favorable orientation. Based on the geophysical model, it was estimated that 
other expected UXO buried at their maximum depths of interest and least favorable 
orientations would produce signal amplitudes exceeding the detection threshold. 
Furthermore, the root-mean-square (RMS) noise floor of the site was much lower than 
the detection threshold, making it unlikely that any anomalies detected with this threshold 
would have been caused by noise alone. Geometrics used a similar technique for the 
MetalMapper, although it applied a 50% safety margin to reduce the original detection 
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threshold from 4.0 mV down to 2.0 mV [53]. The final MetalMapper detection threshold 
was much closer to the noise floor than that of the EM61-Mk2, making noisy detections 
more likely in the MetalMapper dynamic data than in the EM61-Mk2. 

 

 
Figure 12: Detection curve for the EM61-Mk2 cart. An orange × marks the EM61-Mk2 

detection threshold (5.2 mV) at the former Camp Butner, the estimated amplitude of the 
signal sensed from a 37 mm projectile (the smallest expected UXO) at its 30 cm depth of 
interest (70 cm below the sensor platform) and its least favorable orientation. The noise 
floor in the demonstration area is well below this detection threshold. Taken from [29]. 

 
NAEVA used a two-step process for applying its detection threshold to the EM61-

Mk2 data map. First, the data was gridded in Oasis montaj, a commercially available 
software package sold by Geosoft. The software’s gridpeak function was used to identify 
peaks in the gridded data exceeding the detection threshold. No smoothing filters were 
applied to the gridded data before the peaks were identified. Next, NAEVA focused on 
each pair of peaks that were closer than 0.60 cm (2 ft) from each other. For each pair of 
peaks, the analyst determined if it was likely that (1) a single buried target produced both 
peaks (in which case only the highest peak was retained on the EM61-Mk2 anomaly list) 
or (2) more than one buried target produced the peaks (in which case both peaks were 
retained on the list). A total of 2304 peaks were listed on the final EM61-Mk2 anomaly 
list. Each peak was intended to represent one distinct anomaly likely produced by one 
buried target. 

Geometrics used a similar two-step process for detecting anomalies in the 
MetalMapper dynamic data. In the first step, Oasis montaj was used to automatically 
identify over 5000 peaks above the final detection threshold (2.0 mV, taking into account 
the 50% safety margin). In the second step, the analyst inspected the data surrounding 
each pair of peaks closer than 0.60 m to each other and determined which pairs were 
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likely produced by one buried target. Geometrics reported that this step was difficult due 
to the large number of closely spaced pairs [53]. In the end, a total of 3765 peaks were 
listed on the final MetalMapper anomaly list. Many more anomalies were detected in the 
MetalMapper data (3765) than in the EM61-Mk2 data (2304), likely due to the 50% 
safety margin that Geometrics applied to its detection threshold, lowering it closer to the 
noise floor. As stated in the Geometrics data-collection report [53], had a safety margin 
not been employed, roughly half as many anomalies would have been detected.  

C. Scoring the Detected Anomalies 
The primary purpose of this demonstration was to assess the classification 

performance of different instrument/algorithm combinations. However, it was also 
important to assess the detection performance of the different instruments alone. 
Detection results in an anomaly list. In this series of demonstrations, classification 
resulted in a ranked anomaly list, with the detected anomalies ordered according to their 
estimated likelihood of being clutter. In short, the output of detection is the input to 
classification; one cannot classify a buried target until or unless it has been detected. (In 
fact, one cannot even collect static data from a buried target until it has been detected.) 
To achieve buy-in from the UXO community, then, one must ensure a reasonable 
detection performance before classification can even be considered. Therefore, early in 
the demonstration, IDA performed a quick assessment of the detection capabilities of the 
two dynamic instruments.  

Two metrics were estimated for each instrument, the probability of detection (Pd) 
and the false-alarm rate (FAR). Pd gives the percentage of UXO that were detected and 
FAR gives the number of anomalies per unit area that did not detect any UXO. Each 
threshold crossing that might represent a UXO should be analyzed during classification, 
and that is where the ultimate number of false alarms is set. However, as the detection 
threshold is lowered toward the noise floor, the number of detected anomalies will 
increase rapidly. Hence, for our purposes, the relative FAR of two sensors at the 
detection stage is a measure of the margin above noise each sensor has against the 
smallest signal of interest. For single-pass detection and classification based upon 
dynamic data only, this margin is critical to classification success, as accurate 
classification requires high SNR. However, even where classification is based upon static 
data, higher SNR at the detection threshold produces shorter anomaly lists, thereby 
reducing the costs to acquire and analyze the static data. 

Ideally, full ground truth must be known so that one can determine what percentage 
of seeded and native UXO were detected (Pd) and how many anomalies per unit area did 
not detect either a seeded or native UXO (FAR). Full ground truth was not yet known at 
this point in the demonstration, though, since none of the detected anomalies had been 
excavated and so none of the buried targets had been recovered from the ground. 
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Although the locations of the seeded UXO were known, the locations of any native UXO 
were not known. Therefore only estimates of Pd and FAR could be calculated at this 
point in the demonstration, based on the seeded UXO only. It was likely that these 
estimates would turn out to be fairly accurate, though, since native UXO are so rare. 

A two-step method was used to estimate Pd for the EM61-Mk2 cart. First, the 
distance between each seed and its closest EM61-Mk2 anomaly was measured. Table 3 
summarizes these measured distances, and Figure 13 is a histogram of the distances. 
Second, these distances were assessed to determine whether any exceeded 0.60 m. The 
Advisory Group explained that in real remediation projects, UXO technicians reacquire 
the location of an anomaly with a global positioning system (GPS) unit and then often 
use a hand-held magnetometer or EMI instrument to investigate an area within 
approximately 0.60 m (2 ft) around that location. This allows the technicians to better 
pinpoint the spot on the ground at which they should dig to recover the buried target. 
Bearing this in mind, a seed was considered “detected” in this demonstration if it was 
within approximately 0.60 m of its closest anomaly, close enough to be recovered in a 
real remediation project. As shown in the histogram, all 160 seeds were within 0.60 m of 
their closest EM61-Mk2 anomaly, indicating that all seeds were detected by the EM61-
Mk2 cart. In fact, the maximum distance between a seed and its closest anomaly was only 
0.46 m, well below the 0.60 m distance threshold. The Pd of the EM61-Mk2 cart was 
therefore estimated as Pd = 160 / 160 = 100%. The 95% confidence interval around this 
Pd was estimated as 98%–100%, based on the exact binomial distribution. That is to say, 
if this demonstration could be repeated at 100 different sites exactly like the former Camp 
Butner, then 95 times out of 100, the EM61-Mk2 cart would exhibit a Pd between 98% 
and 100%, with respect to the seeded UXO. 

The FAR was also estimated for the EM61-Mk2 cart. A total of 2304 anomalies had 
been listed on the EM61-Mk2 anomaly list. Of these 2304 anomalies, 160 detected the 
seeded UXO, while the remaining 2144 did not. Had this been a real remediation project, 
UXO technicians would have attempted to recover a target from these 2144 remaining 
anomalies. It is possible that some native UXO would have been recovered. At this point 
in the process, though, the locations of native UXO were not yet known. As a worst-case 
estimate, it was assumed that there were no native UXO, such that all remaining 
anomalies were false alarms. Therefore, FAR was estimated as the number of remaining 
anomalies divided by the acreage of the demonstration area: FAR = 2144 / 4.4 acres = 
487/acre. 
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Table 3: Distances between seeds and their closest EM61-Mk2 and MetalMapper 
anomalies. 

Summary Statistic EM61-Mk2 Cart MetalMapper 

N 160 160 

Minimum (m) 0.02 0.02 

Maximum (m) 0.46 3.08 

Mean (m) 0.20 0.20 

Standard deviation (m) 0.10 0.27 

Median (m) 0.19 0.16 

Inter-quartile range (m) 0.13 0.14 

 

 
Figure 13: Distances between seeds and their closest EM61-Mk2 anomalies. All seeds 

were closer than 0.60 m (2 ft) to their closest anomaly. 

 
A two-step process was also used to estimate Pd for the MetalMapper. Figure 14 is a 

histogram of the distances between the seeds and their closest MetalMapper anomalies, 
with these distances summarized in Table 3. Three seeds were flagged as being farther 
than 0.60 m from their closest MetalMapper anomaly. ESTCP closely investigated the 
MetalMapper dynamic data collected around each of these three seeds to determine if 
these seeds could be considered “detected” (i.e., if these seeds would have been 
recovered in a real remediation project). 
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Figure 14: Distances between seeds and their closest MetalMapper anomalies. Three 

seeds were farther than 0.60 m (2 ft) from their closest anomaly. 

 
Further investigation showed that the MetalMapper did in fact detect seed #152, the 

first of the three seeds farther than 0.60 m from its closest MetalMapper anomaly. This 
seed was a 37 mm projectile buried at 30 cm. Figure 15(a) shows a photograph of the 
seed immediately before burial, and Figure 15(b) shows a 10 m  10 m grid of the 
MetalMapper dynamic data collected around the seed after burial. A purple circle of 
radius 0.30 m (1 ft) indicates the seed location. Black circles, also with radii of 0.30 m, 
indicate the locations of the detected MetalMapper anomalies. By definition, all detected 
anomalies had amplitudes greater than 2.0 mV, the final MetalMapper detection 
threshold. As shown in the figure, seed #152 was only 0.62 m from its closest 
MetalMapper anomaly. Had this been a real remediation project, UXO technicians would 
have been able to recover this seed with the use of a hand-held instrument. 

The MetalMapper did not detect seeds #101 and #104, the two other seeds farther 
than 0.60 m from their closest MetalMapper anomalies. Both seeds were 37 mm 
projectiles buried at 30 cm. Figure 15(c) and (e) show photographs of the seeds 
immediately before burial, and Figure 15(d) and (f) show 10 m  10 m grids of the 
MetalMapper dynamic data surrounding the seeds after burial. In both cases, the seeds 
gave rise to weak anomalies whose amplitudes did not surpass the MetalMapper 
detection threshold, as is indicated by the small gray blobs directly underneath the purple 
seed circles in the figures. Had this been a real remediation project, these seeds would not 
have been recovered. Thus the Pd of the MetalMapper was estimated as: Pd = 158 / 160 = 
99%. The 95% confidence interval was calculated as 96%–100%. 
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The FAR of the MetalMapper was calculated as follows. Of the 3765 anomalies on 
the final MetalMapper anomaly list, 158 of them had detected a seeded UXO. Assuming 
that the remaining 3607 anomalies did not detect native UXO, then FAR = 3607 / 4.4 
acres = 819/acre. 

 

 
Figure 15: (a, c, e) Photographs of three seeds. (b, d, f) 10 m  10 m grids of MetalMapper 
dynamic data surrounding the seeds. All three seeds were farther than 0.60 m (2 ft) from 

their closest MetalMapper anomaly. Purple circles indicate the seed locations while black 
circles mark the anomaly locations. All circles have radii of 0.30 m (1 ft). All detected 

anomalies (black circles) had amplitudes greater than the final MetalMapper detection 
threshold of 2.0 mV. 
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In summary, the EM61-Mk2 cart exhibited a better detection performance than the 

MetalMapper, based on the seeded UXO. The cart detected even the smallest seeds (37 
mm projectiles) buried at the greatest depths (30 cm), leading to a Pd of 100% (98%–
100%) and a FAR of 487/acre. In contrast, the MetalMapper failed to detect two 37 mm 
projectiles at 30 cm depths, leading to a Pd of 99% (96%–100%) with a FAR of 819/acre, 
almost twice that of the EM61-Mk2 cart. The difference in Pd between the two 
instruments was not statistically significant, as there was overlap between the two 95% 
confidence intervals. However, the Advisory Group commented that had this been a real 
remediation project, stakeholders would have been troubled by the MetalMapper’s 
inability to detect two seeds. These two seeds gave rise to weak anomalies that did not 
surpass the MetalMapper detection threshold, even though a 50% safety margin had been 
used to lower the threshold from its original level, resulting in the high FAR. 
MetalMapper used a wider line spacing than the EM61-Mk2 cart (0.75 m versus 0.50 m), 
and one of the triaxial receive coils on one of the MetalMapper instruments functioned 
only intermittently at best [47][50][53]. It is possible that these factors resulted in the 
MetalMapper’s poorer detection performance.  

D. Collecting Static Data 
Once anomalies were detected in the dynamic data, two types of EMI instruments 

were used to collect static data: the TEMTADS and two MetalMapper systems (the same 
MetalMappers that were used to collect dynamic data). Brief descriptions of the 
instruments and data-collection methods are given below, with more detail available in 
the documents written by the data-collection teams [3][53][54][60][61]. 

1. TEMTADS 

The TEMTADS is an advanced instrument developed by NRL [3][61]. Its design is 
based on the Advanced Ordnance Locator system, developed by G&G Sciences under 
Navy funding. As shown in Figure 16, the TEMTADS employs 25 sensors arranged in a 
5  5 array. Each sensor consists of a 35 cm square outer transmit coil and a 25 cm square 
inner receive coil. The coils are mounted with their centers 40 cm apart, producing a 2 m 
 2 m square array. Each transmit coil is pulsed in sequence, and the secondary field 
induced by a buried target is sensed simultaneously by all 25 receive coils. As the 
TEMTADS is deployed in static mode, it rests at any given location for several seconds 
while successive measurements are “stacked,” or averaged, over time. Measurements are 
sampled at a rate of 500 kHz and then grouped into 115 time gates ranging from 42 s to 
25 ms. The TEMTADS also employs three GPS antennas to determine the location and 
orientation of the sensor array. 
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Figure 16: The TEMTADS consists of 25 sensors arranged in a 5  5 array. Each sensor 

consists of an outer transmit coil and an inner receive coil. Each transmit coil is pulsed in 
sequence to produce a primary electromagnetic field, after which all receive coils 

simultaneously sense the secondary electromagnetic field induced in the buried target. 
Taken from [29]. 

 
Nova Research Inc. collected static data with the TEMTADS at the former Camp 

Butner, as shown in Figure 17 [3][61]. The instrument was calibrated at the IVS at the 
beginning and end of each day. The training pit was used to collect data from the 
expected UXO at the different depths and orientations requested by the classification 
analyst teams. In the demonstration area, Nova drove the TEMTADS to a location on the 
EM61-Mk2 anomaly list, visually checked contour plots of the sensed signal to make 
slight adjustments to the position of the sensor such that it was more likely to be located 
directly above the buried target, acquired static data from the buried target, and then 
moved on to the next location on the list. Later, the data-collection team “inverted,” or 
analyzed, each static data set to characterize the buried target. If this process failed for 
any reason (e.g., the SNR was too low, the sensor had been incorrectly positioned, etc.), 
then the data-collection team returned to that location and reacquired static data. Thus, 
each EM61-Mk2 anomaly corresponded to one or more TEMTADS static data sets.  

 

 
Figure 17: Nova Research Inc. operated the TEMTADS at the former Camp Butner. Taken 

from [51]. 
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There are advantages and disadvantages of using the TEMTADS for UXO 
classification. One advantage is that the 5  5 sensor array provides spatial diversity for 
both transmitting and receiving, allowing the primary field to illuminate the buried target 
in all directions and allowing the secondary field to be sensed in all directions. 
Furthermore, because the coils are mounted a fixed distance from each other, their 
relative position accuracy is very high. In addition, stacking boosts the SNR of the signal. 
Finally, the time gates for the TEMTADS stretch out to 25 ms, much longer than either of 
the instruments used in dynamic mode, allowing a longer temporal extent for assessing 
the decay of the secondary field over time. All of this results in a much more accurate 
characterization of the buried target, in comparison to either of the two dynamic 
instruments. However, the TEMTADS does have some limitations. As a static sensor, it 
is slower to deploy; the operator is required to park the instrument over each location for 
several seconds at a time. Also, the operator must be told in advance at which locations to 
collect data; another instrument operating in dynamic mode is required to detect the 
anomalies in the first place. Finally, the TEMTADS is a new instrument that has not been 
transferred to the commercial pipeline. Few individuals know how to operate the 
instrument or analyze its data. 

2. MetalMapper 

The MetalMapper can be used in dynamic or static mode. In static mode, each of the 
three orthogonal transmit coils are excited in sequence, illuminating the buried target 
from three orthogonal directions, one at a time. (In dynamic mode, only one transmit coil 
is used.) As in dynamic mode, the strength of the secondary field is measured 
simultaneously in each of the seven triaxial receive coils. The latest time gate is generally 
set much later in static mode than in dynamic mode, as the MetalMapper can afford to 
wait several seconds for data collection when deployed in static mode [53].  

Geometrics Inc. operated the MetalMapper in static mode at the former Camp 
Butner. Its subcontractor, Sky Research Inc., simultaneously collected static data using a 
second, newer system [53][54][60]. Both organizations configured their time gates from 
106 s to 7.9 ms. The instruments were calibrated daily at the IVS. Static data were 
collected in the training pit, as had been done by the other instruments. In the 
demonstration area, the team attempted to collect one static data set for each anomaly 
detected in the MetalMapper dynamic data, as well as one static data set for each EM61-
Mk2 anomaly farther than 0.60 m from any MetalMapper anomaly. The team 
experienced many difficulties in the field, however, leading to questions about which 
static data sets corresponded to which MetalMapper anomalies and which EM61-Mk2 
anomalies. These ambiguities could have caused significant problems in the eventual 
scoring of the classification analyses. Therefore, Geometrics identified which of its static 
data sets corresponded to which EM61-Mk2 anomalies, such that all static data analyses 
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could be tied to the EM61-Mk2 anomaly list only, as opposed to both the EM61-Mk2 and 
MetalMapper lists. In the end, all EM61-Mk2 anomalies corresponded to one or more 
MetalMapper static data sets. 

There are advantages and disadvantages to using the MetalMapper in static mode 
for UXO classification. As with the TEMTADS, MetalMapper’s multiple coils provide 
spatial diversity for transmitting and receiving. The relative position accuracy between 
coils is very high because the coils are mounted at fixed distances with respect to each 
other. Stacking boosts the SNR of the signal. All of this leads to an excellent 
characterization of the buried target. In addition, although the MetalMapper is a new 
instrument, commercial sales have already begun, and more and more individuals are 
becoming familiar with its operation. The MetalMapper in static mode does have some 
limitations, however. In this study, its longest time gate (7.9 ms) occurred sooner than 
that of the TEMTADS (25 ms), making it more difficult to assess the secondary field’s 
decay over time. In addition, like the TEMTADS, the MetalMapper in static mode is 
slower to operate than either the EM61-Mk2 cart or itself in dynamic mode. Finally, the 
MetalMapper in static mode requires a list of locations at which to collect static data 
(although as a dual-mode instrument, it could help provide this information by first 
collecting data in dynamic mode). 
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4. Collecting Ground Truth 

Scientific demonstrations often require ground truth. In a live-site UXO 
classification demonstration, all targets that gave rise to a detected anomaly must be 
recovered and catalogued. A fraction of the catalogued information can be used as 
training data to optimize the algorithms that classify the detected anomalies. The 
remainder of the catalogued information can be used as ground truth to score the 
classification analyses. This section describes the methods used at the former Camp 
Butner to create a list of locations from which to recover buried targets, the methods used 
to recover the targets, and the philosophy used to assign ground-truth labels to the 
detected anomalies based on their recovered targets.  

A. Creating the Recovery List 
The recovery team required a list of easting and northing coordinates from which to 

recover buried targets. These targets were meant to be those that gave rise to all EM61-
Mk2 anomalies, since these were the only anomalies considered in the classification 
analyses. Therefore, ESTCP briefly considered guiding the recovery with the list of 
EM61-Mk2 anomaly locations (the same list that was used to guide the collection of 
static data). However, the EM61-Mk2 anomalies were merely the peaks in the gridded 
dynamic data and were not necessarily located directly above the buried targets. As was 
discussed in detection scoring, recovery teams often use a GPS unit to reacquire the 
location of a detected anomaly and then use a hand-held magnetometer or EMI 
instrument to probe the ground within 0.60 m (2 ft) to pinpoint the exact location of the 
buried target. Indeed, Table 3 showed that the EM61-Mk2 anomalies were a mean 
distance of 0.20 m from the seeded UXO. Furthermore, the anomalies at the former 
Camp Butner were quite dense, with many anomalies only slightly farther than 0.60 m 
from each other. Using the EM61-Mk2 anomaly list to guide the recovery could therefore 
have led to some ambiguities in recovering the buried targets, since holes could have 
been dug in a slightly different location than was intended. This could have resulted in a 
nearby target mistakenly recovered in place of the target that had produced the anomaly 
in the first place.  

Other lists were used to guide the recovery of buried targets. The TEMTADS and 
MetalMapper data-collection teams had already “inverted,” or processed, each static data 
set to characterize the buried target’s size, shape, material composition, and wall 
thickness, as well as to provide a better estimate of the target’s location. IDA assessed the 
position accuracy of the TEMTADS and MetalMapper static inversion locations by 
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comparing them to the locations of the seeded UXO. The distance between each seed and 
its closest static inversion was measured, similar to the process used to score the 
detection performance of the dynamic instruments (summarized in Table 3, Figure 13, 
and Figure 14). Table 4 summarizes these measured distances, and Figure 18 and Figure 
19 show histograms of them. The inversion locations from both static instruments 
displayed better position accuracy than the anomaly locations from either dynamic 
instrument, exhibiting tighter histograms and shorter mean and median distances. This 
result was expected for two reasons: (1) When collecting static data, both data-collection 
teams inspected real-time data (e.g., contour plots, etc.) to better position the sensor 
directly over the buried target. (2) Data inversions are known to produce better position 
estimates of the buried target than the raw data themselves. The TEMTADS exhibited the 
best position accuracy, likely due to the careful field technique exhibited by its data-
collection team.  

Table 4: Distances between seeds and their closest TEMTADS and MetalMapper static 
inversions. 

Summary Statistic TEMTADS MetalMapper 

N 160 160 

Minimum (m) 0.00 0.02 

Maximum (m) 0.45 0.43 

Mean (m) 0.05 0.10 

Standard Deviation (m) 0.05 0.07 

Median (m) 0.03 0.07 

Inter-Quartile Range (m) 0.03 0.10 

 
Based on these results, ESTCP relied heavily on the TEMTADS static inversion 

locations to create the recovery list. The EM61-Mk2 dynamic data map from Figure 11 
was overlaid with the locations of the EM61-Mk2 anomalies, as well as the TEMTADS 
and MetalMapper static inversion locations. For each anomaly, ESTCP visually inspected 
the surrounding EM61-Mk2 data and subjectively determined which specific easting and 
northing coordinates should be entered on the recovery list. For most of the 2304 
anomalies, the location of the closest TEMTADS static inversion was used. In a few 
hundred cases, though, it appeared that the TEMTADS had not succeeded in collecting 
static data directly above the target. In these cases, the EM61-Mk2 anomaly locations 
were entered on the recovery list instead. In only one case was the MetalMapper static 
inversion location used. Finally, in 120 cases, the TEMTADS static inversion location 
was farther than 0.60 m from the EM61-Mk2 anomaly location. Both locations were 
included on the recovery list, in case two targets were actually buried in the ground.  
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Figure 18: Distances between seeds and their closest TEMTADS static inversions.  

 

 
Figure 19: Distances between seeds and their closest MetalMapper static inversions.  
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B. Recovering Buried Targets 
Parson Inc. recovered all targets buried at each location on the recovery list. In most 

cases, a single target was recovered from each location. In some cases, though, multiple 
targets were recovered from the same location, and other locations had no targets. (In 
situations where no target was found, ESTCP instructed Parsons to use a hand-held 
instrument to probe the inside of the dug hole, and to cease digging only if no anomaly 
was detected.) Upon uncovering a target, but before removing it from the ground, Parsons 
catalogued the following information: 

 The easting, northing, and depth coordinates of the center of the target, with 
depth measured with respect to the average of one or more surveyed points on 
the lip of the hole. 

 A description of the target (e.g., “105 mm HEAT,” “Frag,” “Metal Plow,” etc.). 

 A photograph of the target alongside a ruler and a whiteboard listing the Target 
ID. Figure 20 shows photographs of six different recovered targets. 

C. Assigning Ground Truth Labels to the Recovered Targets 
ESTCP assigned a single ground-truth label to each anomaly based on its recovered 

targets. Specifically, an anomaly was labeled “TOI” if any of its recovered targets was a 
seeded or native UXO of any type, such as those shown in Figure 20(a)–(e). Conversely, 
an anomaly was labeled as “Non-TOI” if none of its recovered targets were seeded or 
native UXO, such as that shown in Figure 20(f). 

All 160 seeded UXO were recovered, along with 11 native 37 mm projectiles found 
at depths of 2–18 cm. Seven of the native UXO posed a risk of detonation. The remaining 
four were empty shells with hazardous material already spent. Although these four could 
not have exploded, ESTCP deemed them TOIs because in a real-world situation, they 
would appear to be hazardous, and safety-oriented procedures would be used for their 
recovery. 

Because each UXO was recovered from a different anomaly, 171 of the 2304 
anomalies were labeled “TOI.” Another 2121 anomalies were labeled as “Non-TOI.” 
Most of the recovered Non-TOIs were munitions debris, but some were cultural debris 
(e.g., wrenches, pieces of fencing, etc.) and others were labeled “No contact” (i.e., no 
targets were found for recovery, indicating that the anomalies had been produced by 
either geology or noise). 

No attempts were made to recover targets from 12 of the 2304 anomalies. Two of 
these anomalies had been inadvertently left off of the recovery list. Due to lack of 
ground-truth information, these two anomalies were removed from all further analyses. 
The final 10 anomalies had been purposely left off the recovery list, since visual 
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inspection of the EM61-Mk2 data maps had indicated that they had likely been produced 
by the same buried targets as neighboring anomalies. Therefore, these 10 anomalies were 
also removed from all further analyses. In the end, classification was attempted for only 
those 2292 anomalies for which ground truth was known. Table 5 gives the details. 

 

(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 20: Photographs of recovered targets: (a) 105 mm projectile, (b) 105 mm HEAT 
projectile, (c) 37 mm projectile with driving band, (d) 37 mm projectile without driving 

band, (e) M48 fuze, and (f) scrap metal from a previously exploded munition. The targets in 
(a)–(e) were labeled “TOI”; the target in (f) was labeled “Non-TOI.” 

 



38 

Table 5: Ground truth at the former Camp Butner: 2292 of the 2304 anomalies detected in 
the EM61-Mk2 data were excavated. TOIs were recovered from 171 anomalies, including 
the 160 seeded UXO plus 11 native 37 mm projectiles. No TOIs were recovered from 2121 

anomalies. The remaining 12 anomalies were not excavated.  

Seeded TOIs 

Type Number Depth 

37 mm projectile 110 3–35 cm 

105 mm projectile 26 10–62 cm 

M48 fuze 24 7–33 cm 

Native TOIs 

Type Number Depth 

37 mm projectile 11 2–18 cm 

Native Non-TOIs 

Type Number Depth 

Munitions debris 2041 0–155 cm 

Cultural debris 41 0–20 cm 

No contact 39 Not applicable 
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5. Classifying Data 

UXO classification is a multistep process. First, the collected data are analyzed to 
estimate the characteristics of the buried target (e.g., features related to the size, shape, 
material composition, and wall thickness of the buried target). Next, the estimated 
characteristics are used to classify the buried targets as either likely UXO or likely 
clutter. Computer-based algorithms are used to perform both the target characterizations 
and classifications.  

Six different classification analyst teams participated in the demonstration: CH2M 
HILL, Dartmouth College, Geometrics Inc., NAEVA Geophysics Inc., SAIC, and Sky 
Research Inc. NAEVA and SAIC also performed retrospective analyses after the 
demonstration was completed and full ground truth was released to the public. Two 
additional organizations, Parsons Inc. and Signals Innovations Group (SIG), performed 
retrospective analyses only. CH2M HILL, NAEVA, and Parsons are commercial 
geophysics companies that often perform UXO remediation in real-world situations. 
Dartmouth, Geometrics, SAIC, and SIG are organizations involved in the research and 
development of advanced UXO classification technologies. Sky is involved in real-world 
remediation projects, as well as research and development efforts. As shown in Table 6, 
each team used different methods for classifying the detected anomalies. This section 
gives a brief description of these methods. More detail can be found in the documents 
written by the classification analyst teams [35][39][42][46][47][50][54][56]. 
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A. Requesting Static Data 
Classification can require different types of data, some of which can be expensive to 

collect. While dynamic data can be used to classify the detected anomalies under benign 
conditions, the higher quality static data are often required when target types become 
more challenging. Collecting high-quality static data is expensive because advanced 
instruments are expensive to purchase or lease and their operation is time consuming. 
Therefore, classification methods that rely on only a small amount of static data could be 
advantageous to the UXO community. 

Each classification analyst team determined for itself which anomalies required 
static data. Different teams used different criteria for making this determination. The 
teams submitted their static data requests to ESTCP, and ESTCP distributed the static 
data to the teams only upon request. Some teams, such as CH2M HILL, Dartmouth, and 
Geometrics, requested static data for all anomalies, regardless of the quality of the 
dynamic data [28][42][52]. (SIG also requested static data for all anomalies in its 
retrospective analysis, once the demonstration was complete and ground truth had been 
released to the public [35].) NAEVA did the opposite; this team did not request static 
data for any anomalies and analyzed only the EM61-Mk2 dynamic data [18]. (NAEVA 
also performed retrospective analyses of the MetalMapper static data for all anomalies 
[47].) SAIC and Sky did both; in one set of analyses, they analyzed only the EM61-Mk2 
dynamic data; in another set, they analyzed only the TEMTADS or MetalMapper static 
data [1][22]. In addition, these two teams also performed a third type of analysis, in 
which they first analyzed the quality of the EM61-Mk2 dynamic data and then requested 
static data for only a subset of the anomalies for which the dynamic data was not 
adequate [1][22]. (Likewise, Parsons performed some retrospective analyses using both 
the EM61-Mk2 dynamic data and some requested MetalMapper static data [44][45]. 
They also performed other retrospective analyses using only the EM61-Mk2 dynamic 
data [46].) Sky also performed a fourth type of analysis, in which they analyzed only the 
MetalMapper dynamic data [22]. 

Teams with more than one type of analysis made efforts to keep their analyses 
“blind.” To do this, they implemented internal firewalls between their individual team 
members. For example, SAIC reported that the analyst processing the TEMTADS data 
did not share any data, results, or insights with any other analysts processing the EM61-
Mk2 or MetalMapper data [1]. In this way, information gleaned from one data set did not 
bias other analyses using other data sets. 

B. Requesting Ground Truth 
In a real remediation project, the purpose of ground truth during classification is to 

“train,” or optimize, the parameters on which the classification algorithms are based. 
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However, collecting ground truth is expensive because time-consuming, safety-oriented 
precautions must be followed when recovering targets, since any one of them could turn 
out to be UXO. As such, the UXO community desires classification methods that require 
little to no new ground truth for training. Bearing this in mind, this demonstration was 
designed such that the classification analyst teams could make their own decisions 
regarding what ground truth was needed for training.  

The classification analyst teams were allowed to train their algorithms using little to 
no ground truth collected from the former Camp Butner. Instead, many teams used 
ground truth collected in the previous two demonstrations at the former Camp Sibert and 
former Camp San Luis Obispo, as well as other previous studies at Aberdeen and Yuma 
Proving Grounds. In addition, the teams were also given the option to use the limited 
ground truth collected from the IVS and training pit at the former Camp Butner. The 
teams could input the data into their classification algorithms and then automatically and 
systematically adjust the parameters of the algorithms to give results as close as possible 
to the known ground truth. Some teams, such as SAIC and Sky, were able to optimize 
their algorithms using ground truth from only the IVS, training pit, and previous studies 
[1][22]. Other teams required more extensive information from the Butner demonstration 
area itself. 

IDA compiled a “Standard Training Set” for more site-specific training. The set was 
composed of all anomalies in a 30 m  30 m grid. There were 179 anomalies in this grid, 
173 of which had been assigned the ground-truth label of Non-TOI. Only six had been 
labeled TOI. Four of the TOIs were 37 mm projectiles, and two were M48 fuzes. IDA 
chose this section of the site for the Standard Training Set because it was located in an 
obvious section of the demonstration area (one of the two most southern grids) and was 
suitably dense to provide a sufficient number of anomalies that were adequately spaced 
from each other. Two classification analyst teams, Geometrics and NAEVA, chose to use 
the Standard Training Set to train their classification algorithms [18][52]. SAIC also used 
the Standard Training Set in its retrospective analysis. 

Other teams chose to compile their own custom-built training sets. Each of these 
teams assessed the data collected for each anomaly in the Butner demonstration area and 
determined which anomalies could best optimize their classification algorithms. They 
submitted their requests to ESTCP, and ESTCP distributed the ground truth (identities, 
photographs, locations, depths, and orientations) upon request. Some requests were made 
in series; a team first submitted a request for only a handful of anomalies, optimized their 
classification algorithms based on this set, decided that additional ground truth was 
needed, and then submitted a second (and third and fourth, etc.) request for additional 
anomalies. CH2M HILL and Dartmouth requested custom training sets for all of their 
classification analyses, as did Parsons and SIG in their retrospective analyses 
[35][42][44][45][52]. SAIC and Sky performed several different types of analyses. 
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Although some of these analyses used algorithms optimized over only the ground truth 
collected in the IVS, training pit, and previous studies, other analyses used algorithms 
optimized over a custom training set consisting of a subset of the anomalies from the 
Butner demonstration area [1][22]. 

Teams with more than one type of training set made efforts to keep their analyses 
blind. For example, SAIC reported that the analyst using an algorithm optimized over 
only the IVS, training pit, and previous studies first submitted his original classification 
deliverable to ESTCP. Only then did he request a custom training set consisting of 
anomalies from the Butner demonstration area. The analyst used the custom training set 
to re-optimize his classification algorithm and create a final classification deliverable [1]. 

All anomalies that were not assigned to the training set were assigned to the 
complementary test set, as illustrated in Figure 21. For example, both Geometrics and 
NAEVA used the Standard Training Set to optimize their classification algorithms. All 
other anomalies in the demonstration area were therefore assigned to the test set. In 
another example, one of Sky’s analyses used only information from the IVS, training pit, 
and previous studies for algorithm optimization. All anomalies from the demonstration 
area, then, were assigned to the test set. In a final example, each of Sky’s remaining 
analyses used a custom training set consisting of some anomalies from the demonstration 
area. All anomalies in the demonstration area not assigned to the custom training set were 
assigned to the complementary custom test set. Regardless of how the anomalies were 
assigned to the training or test sets, each team was required to classify each anomaly in 
the test set. The following sections describe how this was accomplished. 

 

 
Figure 21: Each classification analyst team separated the EM61-Mk2 anomalies into 

complementary training and test sets.  

C. Defining “Cannot Analyze” 
The classification analyst teams separated the test set anomalies into two groups, 

“Can Analyze” and “Cannot Analyze,” as shown in Figure 22. This was done based on 
the quality of the collected data (both the dynamic data and, where available, the static 
data). For most anomalies, the collected data were of sufficient quality to accurately 
characterize the buried targets. These anomalies were put into the “Can Analyze” group. 
For some anomalies, however, the collected data suffered from geolocation errors, spotty 
coverage, low data density, or low SNR, making it difficult, if not impossible, to 
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accurately characterize the buried targets. These anomalies were put into the “Cannot 
Analyze” group. 

 
Figure 22: Each classification analyst team further separated the test set anomalies into 

“Can Analyze” and “Cannot Analyze” groups. 

 
Different classification analyst teams used different criteria to separate the “Can 

Analyze” and “Cannot Analyze” anomalies. Some teams, such as Dartmouth, 
Geometrics, NAEVA, and SAIC, used quantitative criteria, such as the match score of 
how well the collected data fit to a geophysical model [6] [10] [11] [12] [13] [14] [15] 
[16] [22] [55]. Other teams, such as Parsons, used subjective criteria, such as visual 
analysis of the collected data [44][45][46]. Furthermore, in many cases, the same team 
put an anomaly into the “Can Analyze” group based on one instrument’s data, but into 
the “Cannot Analyze” group based on another instrument’s data because different 
instruments have different resolutions, SNR, etc. 

D. Characterizing the Buried Targets 
The classification analyst teams estimated the characteristics of the buried targets 

that produced the “Can Analyze” anomalies. Most teams estimated physical properties of 
the targets based on a geophysical model of the collected data. In contrast, one team 
made direct measurements of the data itself. In either case, each team then selected 
features on which classification would be based. 

1. Model-driven Characterizations 

Five teams—CH2M HILL, Dartmouth, Geometrics, SAIC, and Sky 
[3][22][28][42][46]—used geophysical models to process the available data. (NAEVA, 
Parsons, and SIG also used geophysical models in their retrospective analyses 
[6][35][44][45].) A geophysical model is a set of equations that estimate the data that 
would be produced by a target of known size, shape, material composition, and wall 
thickness buried at a known depth and orientation. Many models assume that the target 
can be represented as one or more point dipole sources, an accurate assumption when the 
target is isolated from other targets and when the target is not within the near field of the 
sensor. More advanced models recently introduced to the UXO community do not 
assume dipole sources.  
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Geophysical models can be used to estimate the characteristics of a buried target. To 
do this, the target characteristics are first assumed to coincide with a set of initial 
conditions, and the model estimates the data that would be produced by such a target. 
Changing any one of these conditions can lead to a change in the modeled data. This is 
called the “forward model.” The analyst then inputs the actual data collected for an 
anomaly into a computer-based algorithm. The algorithm compares the collected data to 
the modeled data and calculates a match score. Using an optimization procedure, the 
algorithm adjusts one or more of the modeled target’s characteristics, re-estimates the 
data that the modeled target would produce, and compares the re-modeled data to the 
collected data. The process iterates until the match score is optimized. At that point, the 
characteristics of the buried target are estimated to be the characteristics of the most 
recently modeled target. This process is known as “inversion” because it uses at the 
forward model in a reverse, or “inverse,” manner. For example, Figure 23(a) shows the 
EM61-Mk2 data collected for one anomaly at the former Camp Butner. The color scale 
indicates the voltage measured in the sensor’s receive coil. SAIC inverted this data using 
a geophysical model. Figure 23(b) shows the data that the final estimated target would 
produce, based on the model. The estimated data in Figure 23(b) closely matches the 
collected data in Figure 23(a), giving confidence in the target’s final estimated 
characteristics [36]. 

 

 
Figure 23: Geophysical inversion. Left: The EM61-Mk2 data collected for one anomaly at 
the former Camp Butner. The color scale indicates the voltage measured in the sensor’s 
receive coil, related to the strength of the secondary electromagnetic field induced in the 
buried target. The data were inverted to estimate the characteristics of the target. Right: 

The data that the final modeled target would produce, based on a geophysical model. The 
final modeled data closely matches the collected data, giving confidence in the target’s 

final estimated characteristics. Taken from [36]. 
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Different teams used different software packages for inversion. For some of its 
analyses, SAIC used custom-built software written in Interactive Data Language (IDL). 
The IDL software assumed only one dipole source per anomaly [37]. For other analyses, 
SAIC used the UX-Analyze package of Oasis montaj. This software called a custom-built 
module written in IDL that used an iterative process to estimate the number of dipole 
sources per anomaly [37]. (NAEVA and Parsons also used UX-Analyze for their 
retrospective analyses. While Parsons configured the software to assume multiple sources 
per anomaly, the NAEVA configurations assumed both a single source and multiple 
sources per anomaly [44][46][47].) CH2M HILL and Sky used UXOLab for inversion, a 
proprietary software package written by the University of British Columbia. UXOLab 
can also assume one or multiple dipole sources per anomaly [42][49]. Geometrics also 
used its own software; this software assumed a single dipole source [52][55]. SIG used 
custom-built software to perform inversions for its retrospective analyses [35]. Each of 
these software packages is based on a similar geophysical model, as they all assume 
dipole sources. They differ, though, in their routines for calculating match scores, finding 
an optimum solution, and adjusting the characteristics of the modeled target.  

The final team, Dartmouth, used custom-built software employing much more 
advanced models that do not assume dipole sources [28][56][57][58][59]. These models 
were inspired by targets with nonhomogeneous material compositions situated in the near 
field of the sensor. The models are also appropriate for analyzing overlapping anomalies 
generated by multiple, closely spaced anomalies. Although overlapping anomalies can 
constitute only a fraction of the anomalies seen on a site, they are often the most 
challenging anomalies to classify. For example, at the former Camp San Luis Obispo, 
frequent classification errors resulted from the effects of multiple targets situated within 
the sensor field of view [34]. 

Despite their differences, all models can be used to estimate the intrinsic and 
extrinsic characteristics of the buried targets. Extrinsic characteristics include a target’s 
location (relative easting and northing coordinates with respect to the sensor platform), as 
well as its depth and orientation. These characteristics can be used to help guide the 
recovery of buried targets, as was done when creating the recovery list during the 
collection of ground truth. In contrast, intrinsic characteristics are related to the physical 
properties of the target (e.g., size, shape, material composition, wall thickness, etc.) 
regardless of where or how the target is situated. Successful classification exploits the 
known differences in the intrinsic characteristics between TOIs and Non-TOIs. 

Geophysical models can be used to estimate many intrinsic characteristics of a 
buried target. For example, the models can be used to estimate the polarizability of the 
buried target along each of its three major axes at each time gate, often denoted 1(ti), 
2(ti), and 3(ti) for a particular time gate ti. Figure 24(a) and (b) show photographs and 
plots of the polarizability curves for an M48 fuze (TOI) and a piece of scrap metal (Non-
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TOI), as estimated from the MetalMapper data. At a given time gate ti, the amplitudes of 
the polarizabilities provide a measure of the target’s size, while ratios of the 
polarizabilities provide a measure of the target’s aspect ratio or shape. TOIs tend to be 
bodies of revolution with one large axis and two equal, smaller axes. Thus, TOIs usually 
exhibit one large polarizability, along with two equal, smaller ones. In contrast, Non-
TOIs such as cultural debris may be small and are not often bodies of revolution. 
Therefore, Non-TOIs often exhibit three different polarizabilities. Attempts can also be 
made to estimate the decays of the polarizabilities over time (denoted 1, 2, and 3). TOIs 
tend to be ferrous in composition and have thicker walls than Non-TOIs, leading to 
slower decay rates. Decay rates can be difficult to estimate using dynamic data, however, 
because the time gates of the dynamic sensors do not extend far enough in time to capture 
the late differences in decay rates between TOIs and Non-TOIs. More advanced 
instruments, such as the TEMTADS and the MetalMapper in static mode, sample the 
received signal at later time gates than the dynamic instruments. Models applied to the 
static data can therefore produce more accurate estimates of 1, 2, and 3. 

2. Data-Driven Characterizations 

NAEVA was the only team that did not use a geophysical model to characterize the 
buried targets [5][18][25][26][47][48]. Instead, this team measured the characteristics of 
the EM61-Mk2 data using functions embedded in the UX-Detect and UX-Process 
modules of the Oasis montaj software. An example of these measurements includes the 
peak amplitude of the received signal, which is a very rough estimate of the size of the 
buried target. Target depth can confound this estimate, however, because a large, deep 
target can give a similar amplitude as a small, shallow target. In addition, NAEVA also 
estimated the decay rate of the signal amplitude, similar to the polarizability decay rates 
(1, 2, and 3) estimated by the other teams using geophysical models. 

3. Selecting Features for Classification 

Each team decided which target characteristics to use for classification. Some 
teams, such as Sky, input the full polarizability curves, 1(ti), 2(ti), and 3(ti) for all time 
gates ti, into their classification algorithms [50][51]. Other teams measured features from 
the curves (or from the data themselves) that they believed were most likely to exploit the 
known differences between TOIs and non-TOIs. Only these measured features were input 
into the classification algorithms. For example, in one of its analyses, NAEVA chose a 
single feature, the decay rate of the peak amplitude of the detected anomaly (related to 
the material composition and wall thickness of the buried target) [25]. This resulted in a 
one-dimensional classification analysis. Sky performed two-dimensional analyses, based 
on the sum of the polarizabilities at the first time gate i(t1) (related to the target’s size), 
as well as the ratio of the primary polarizability at the first to the fourth time gates 
1(t1)/1(t4) (one way to calculate 1, related to the target’s wall thickness) [22][50][51]. 
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Figure 25 shows a plot of these two features with respect to each other. Points shaded in 
red, blue, and yellow were estimated from anomalies with TOI ground-truth labels; points 
shaded in black were estimated from Non-TOI anomalies. The TOI and Non-TOI 
anomalies occupy somewhat different regions of feature space, suggesting that these two 
features could be used to classify the anomalies.  

 

(a)  

(b)  

Figure 24: Photographs and estimated polarizability curves for (a) an M48 fuze (TOI) and 
(b) a piece of scrap metal (Non-TOI), as inverted from MetalMapper static data. The TOI has 

one large polarizability along with two smaller and relatively equal polarizabilities, 
indicating a body of revolution with one large axis and two equal, smaller axes. The TOI’s 
polarizabilities decay at a slow rate, indicating a ferrous composition and thick walls. In 

contrast, the Non-TOI has three polarizabilities of different amplitudes, all of which decay 
more quickly. This indicates a nonferrous, thin-walled object that is not a body of 

revolution. Taken from [51]. 
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Figure 25: A two-dimensional plot of features estimated from the MetalMapper dynamic 
data collected for all anomalies in the demonstration area. The horizontal axis indicates 
the sum of the polarizabilities of the buried target (related to size), while the vertical axis 

indicates the decay rate of the principal polarizability (related to material composition and 
wall thickness). In general, the red, blue, and yellow TOI anomalies cluster in different 
regions of feature space than the black Non-TOI anomalies, indicating that these two 

features could be used for classification. Taken from [51].  

E. Classifying the Buried Targets 
The classification analyst teams designed algorithms to classify the anomalies based 

on the selected features. Different teams used different algorithms. NAEVA used rule-
based decision trees implemented in custom-built software [5][18][25][26][47][48]. 
SAIC used a library-matching algorithm built in to UX-Analyze to compare each 
anomaly to a library of known TOIs and Non-TOIs [2][10][11][12][13][14][38][39]. 
(NAEVA and Parsons also used the UX-Analyze library-matching algorithm in their 
retrospective analyses [6][15][16][44][45][46][47].) Sky used a library-matching 
algorithm for some of its analyses and a statistical classifier for other analyses. Both 
algorithms were implemented in UXOLab [22][50][51]. A final Sky analysis was based 
on the library-matching algorithm coupled with input from a human expert. CH2M HILL 
did the same [42]. Dartmouth and SIG used statistical classifiers implemented in custom-
built software [35][57][58]. Geometrics performed three analyses, all implemented in 
custom-built software, as well [55]. One analysis was based on a neural network (a type 
of statistical classifier), a second was based on a neural network coupled with a set of 
rules, and a third was based on a neural network, rules, and a library-matching algorithm 
[52]. 
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Despite their differences, most of the classification algorithms functioned in similar 
ways: First, the features estimated for each anomaly were input into the algorithm. The 
algorithm output the anomaly’s likelihood of being a Non-TOI or another similar 
decision statistic. The classification analyst team used the decision statistic to create a 
ranked anomaly list, the final product of the classification analysis. A ranked anomaly list 
is an ordered list of all anomalies in the test set. Ranked anomaly lists were constructed in 
three distinct steps. 

In the first step, the analysts ranked the test set anomalies assigned to the “Can 
Analyze” group. The ranks were based on the decision statistics estimated by the 
classification algorithm. The anomalies were ordered on the list from most to least likely 
to be Non-TOIs, as shown in Figure 26. That is to say, the first anomaly on the list (with 
a rank of 1) was the anomaly deemed most likely to be a Non-TOI, and the last anomaly 
on the list was the one deemed most likely to be a TOI. 

 

 
Figure 26: A sketch of a ranked anomaly list in its first stage of construction. “Can 

Analyze” anomalies in the test set are ranked according to their estimated likelihoods of 
being Non-TOIs or a similar decision statistic. The first anomaly on the list (with a rank of 
1) was the anomaly deemed to be most likely to be a Non-TOI. The last anomaly was the 

one deemed most likely to be a TOI. 

 
In the second step, the analysts further classified the anomalies on the list. As shown 

in Figure 27, the “Can Analyze” anomalies were further separated into three classes, 
“Likely TOI,” “Cannot Decide,” “Likely Non-TOI.” Analysts chose the boundaries 
between the different classes by assessing the information available in the training set. 
The boundary between the green “Likely Non-TOI” and yellow “Cannot Decide” classes 
was the most important boundary because it constituted the analyst’s “don’t dig 
threshold” (see Figure 28). 
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Figure 27: Each classification analyst team further separated the “Can Analyze” test set 

anomalies into “Likely TOI,” “Cannot Decide,” and “Likely Non-TOI” categories. 

 

 
Figure 28: A sketch of a ranked anomaly list in its second stage of construction. “Can 

Analyze” anomalies in the test set are further separated into three categories based on 
their estimated likelihoods of being Non-TOIs, or another similar decision statistic. 

Anomalies classified as “Likely Non-TOI,” “Cannot Decide,” and “Likely TOI” are colored 
in green, yellow, and red, respectively. A thick blue line indicates the don’t dig threshold, 
the boundary between the green and yellow categories. In a UXO remediation project, the 
recovery team would begin recovering targets from the bottom of the list and work its way 

up until it reached the don’t dig threshold. Targets above threshold could be dug using 
more relaxed safety-oriented precautions or could simply remain in the ground. 

 
The don’t dig threshold informs stakeholders which anomalies must be excavated. 

In a UXO remediation project, the recovery team could be instructed to recover the most 
dangerous targets first, those that produced anomalies classified as “Likely TOI.” The 
recovery team would have to err on the side of caution, though, and also recover targets 
that produced the anomalies classified as “Cannot Decide.” At that point, stakeholders 
could instruct the recovery team to leave presumably innocuous targets in the ground, 
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those that produced anomalies classified as “Likely Non-TOI.” Stakeholders could 
instruct the team to cease recovery upon reaching the don’t dig threshold, as evidence 
exists that the buried targets consist of clutter only. Alternatively, the team could be 
instructed to continue digging but with more relaxed safety-oriented precautions.  

In the third and final step of creating a ranked anomaly list, the analysts focused on 
the test set anomalies in the “Cannot Analyze” group. In a UXO remediation project, the 
recovery team must err on the side of caution and recover all possibly dangerous targets, 
including those that produced anomalies that could not be analyzed. This means that all 
“Cannot Analyze” anomalies must be inserted into the ranked anomaly list at a point 
below the don’t dig threshold. ESTCP instructed the analysts to append the “Cannot 
Analyze” anomalies to the bottom of the ranked anomaly list, as shown in Figure 29. The 
“Cannot Analyze” anomalies were arranged in no particular order with respect to each 
other because, by definition, no further information could be learned about them, 
including their likelihoods of being Non-TOIs. 

 

 
Figure 29: A sketch of a ranked anomaly list in its third and final stage of construction. 

“Cannot Analyze” anomalies in the test set have been appended to the bottom of the list in 
no particular order with respect to each other. 

 
At first glance, the order of the anomalies on the ranked anomaly list may seem 

reversed. In real remediation projects, anomaly lists are often ordered in the reverse, with 
anomalies at the top of the list most likely to be TOIs and those at the bottom most likely 
to be Non-TOIs. In this demonstration, though, the reverse is true. ESTCP intentionally 
chose to order the ranked anomaly lists this way to remind the UXO community that the 
purpose of UXO classification is to correctly identify Non-TOIs, such that only those 
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targets would be left in the ground (or recovered using more relaxed safety-oriented 
precautions). To that end, the threshold separating the green “Likely Non-TOI” 
anomalies from all other anomalies is referred to as the “don’t dig threshold.” All 
anomalies surpassing this threshold do not have to be dug. 

Each classification analyst team created one ranked anomaly list for each one of its 
analyses. A total of 54 ranked anomaly lists from 8 different teams was submitted to 
ESTCP and scored by IDA. (Twenty-two of the 54 lists were the products of 
retrospective analyses, submitted after the demonstration was complete and ground truth 
had been released to the public.)  
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6. Scoring the Ranked Anomaly Lists 

One of the main goals of this demonstration was to evaluate the performance of 
different types of UXO classification analyses. The final products of the analyses were 
ranked anomaly lists. IDA scored each ranked anomaly list by comparing it to ground 
truth, calculating performance metrics based on this comparison, and plotting the metrics 
with respect to each other to form a classification performance curve, similar to a 
receiver-operating characteristic (ROC) curve. This section describes how these curves 
were formed. 

Performance metrics were calculated for each ranked anomaly list. Counts were 
made of the number of true-positive (TP), false-positive (FP), true-negative (TN), and 
false-negative (FN) anomalies on the list. As shown in Figure 30, these counts were 
based on (1) the anomalies’ ground-truth labels and (2) where the anomalies fell on the 
ranked anomaly list with respect to the don’t dig threshold: 

 Number of TOIs dug = TP 

 Number of Non-TOIs dug = FP 

 Number of TOIs not dug = FN 

 Number of Non-TOIs not dug = TN 

 

 
Figure 30: Metrics used to score the classification performance of a ranked anomaly list. 

True-positive (TP) and false-positive (FP) anomalies are those that correctly and 
incorrectly fell below the don’t dig threshold, respectively—their buried targets must be 

dug. These metrics were plotted with respect to each other to form a classification 
performance curve. True-negative (TN) and false-negative (FN) anomalies are those that 
correctly and incorrectly rose above the don’t dig threshold, respectively—their buried 

targets could remain in the ground. 

 
IDA included each anomaly on the ranked anomaly list into one of these four 

counts. There were some nuances to this process, however. When recovering all buried 
targets to produce ground truth, Parsons Inc. reported that two anomalies, #2409 and 
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#3721, had been caused by the same piece of munitions debris and must therefore “share” 
the same buried target. To avoid double-counting this target during scoring, IDA included 
in the tallies only that anomaly classified as most likely to be TOI, ignoring the other 
anomaly. An identical situation occurred with two other anomalies caused by the same 
piece of munitions debris, #1019 and #2144.  

The four counts of TP, FP, FN, and TN behave in the following ways:  

 Total number of TOIs (dug and not dug) = TP + FN 

 Total number of Non-TOIs (dug and not dug) = FP + TN 

 Total number of targets dug (TOIs and Non-TOIs) = TP + FP 

 Total number of targets not dug (TOIs and Non-TOIs) = FN + TN 

In many general classification problems, summary metrics are often calculated 
based on the four counts. For example, the probability of detection (Pd) and the 
probability of false alarm (Pfa) are often calculated as Pd = TP / (TP + FN) and Pfa = FP 
/ (FP + TN). Note, however, that the Pd calculated for classification problems is different 
than the Pd calculated for detection problems. For example, Pd was calculated during 
detection scoring to estimate the percentage of TOIs that were correctly detected. Here, 
though, Pd describes a slightly different metric related to classification performance: the 
percentage of all detected TOIs that were correctly dug. Similarly, Pfa describes the 
percentage of all detected Non-TOIs that were incorrectly dug. ESTCP considered using 
these metrics in this demonstration. After further consideration, though, the decision was 
made to use different summary metrics instead. 

This demonstration used the raw counts of TP and FP in place of the summary 
metrics Pd and Pfa. Stakeholders in UXO remediation projects are often interested in the 
total number of targets dug (TP + FP) because this number drives much of the cost of the 
project. TP represents the number of digs to recover TOIs. This count can be easily 
multiplied by the cost per dig to arrive at the necessary dig costs of UXO remediation. 
(These dig costs are necessary because TOIs must be recovered.) In contrast, FP 
represents the number of digs to recover Non-TOIs. This value can be easily translated 
into the unnecessary dig costs of UXO remediation. (These digs costs are unnecessary, 
since the Non-TOIs could have remained safely in the ground.) Stakeholders would like 
as many TOIs to be recovered as possible. Therefore, the number of TOI digs (TP) 
should be as near as possible to the total number of TOIs (FN + TP). (In other words, FN 
should be as near as possible to zero.) Stakeholders also want to reduce unnecessary costs 
as much as possible. Therefore, the number of Non-TOI digs (FP) should be as low as 
possible. 

IDA plotted the number of TOI digs (TP) versus the number of Non-TOI digs (FP) 
for each ranked anomaly list. Figure 31 shows a sketch of such a plot. The vertical axis 
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ranges from zero to the maximum possible number of TOI digs, that is, the total number 
of TOIs (TP + FN). The horizontal axis ranges from zero to the maximum possible 
number of Non-TOI digs, that is, the total number of Non-TOIs (FP + TN). The plotted 
point (large blue dot) illustrates the classification performance that results when the 
analyst’s don’t dig threshold is applied to the ranked anomaly list. A vertical gray bar 
passing through the large blue dot estimates the 95% confidence interval through the 
point. 

 
Figure 31: A sketch illustrating the results of applying the analyst’s don’t dig threshold to 
a ranked anomaly list. The large blue dot indicates the number of TOI versus Non-TOI digs 
(TP versus FP) resulting from the analyst’s don’t dig threshold. The vertical and horizontal 

axes range from zero to the maximum possible number of TOIs and Non-TOIs, 
respectively. The vertical gray bar passing through the large blue dot estimates the 95% 

confidence interval around the number of TOI digs (TP). 

 
This plot was used to revisit the choice of don’t dig threshold. The analysts had 

prospectively chosen one particular don’t dig threshold to apply to the ranked anomaly 
list. Other don’t dig thresholds could have been chosen instead. This was illustrated by 
retrospectively applying all possible don’t dig thresholds to the ranked anomaly list, one 
by one, as shown in Figure 32. In the most extreme cases, the don’t dig threshold could 
have been placed at the top or bottom of the list. In between the two extremes, the don’t 
dig threshold could have been placed in the green, yellow, or red parts of the list.  

For each possible don’t dig threshold, TP, FP, FN, and TN were re-counted and TP 
(the number of TOI digs) was re-plotted against FP (the number of Non-TOI digs). 
Figure 33 shows a sketch of this plot. Each point (black dot) corresponds to one possible 
don’t dig threshold. Together, the points form a classification performance curve. This 
curve is similar to the ROC curves of Pd versus Pfa that are often used in general 
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classification problems. Vertical gray bars indicate the 95% confidence intervals through 
the points. 

 

 
Figure 32: A sketch of a ranked anomaly list, indicating all possible don’t dig thresholds. 

All anomalies would have fallen below the most extreme don’t dig threshold at the very top 
of the list. In contrast, no anomalies would have fallen below the other extreme threshold 
at the very bottom of the list. In between the two extremes, there is one possible don’t dig 
threshold for each unique rank in the green, yellow, and red parts of the list. The don’t dig 

threshold could not have been placed in the gray part of the list because “Cannot 
Analyze” anomalies share the same rank (which happens to be “Unknown”). 

 
A two-step process was used to estimate the 95% confidence interval through every 

point. First, for each don’t dig threshold, the exact binomial distribution was used to 
estimate CIPd, the 95% confidence interval around Pd, where Pd = TP / (TP + FN). In the 
second step, CIPd was converted into CITP, the 95% confidence interval around TP. Since 
TP is the numerator of Pd, CITP was calculated by multiplying CIPd by (TP + FN), the 
denominator of Pd. 

The 95% confidence interval was calculated independently for each possible don’t 
dig threshold, without any adjustments for multiple comparisons. This means that one 
cannot infer that 95 times out of 100, every point on the curve will simultaneously lie 
within its own 95% confidence interval. That is, one cannot infer that 95 times out of 
100, the entire curve will lie within the band generated by “smearing” the individual 
confidence intervals [43]. However, the confidence intervals are still a useful means of 
assessing the confidence around an individual point, such as when comparing the same 
point on two different curves. For example, if the vertical gray bar passing through the 
dark blue dot on one curve (representing one analyst’s don’t dig threshold) does not 
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overlap vertically with the bar passing through the dark blue dot on another curve 
(representing another analyst’s don’t dig threshold), then evidence exists that the 
analysts’ thresholds are statistically different from each other. On the other hand, if the 
two confidence intervals do indeed overlap, then there is no evidence that the two 
thresholds are statistically different [43]. 

 

 
Figure 33: A sketch of a classification performance curve, illustrating the results of 
applying all possible don’t dig thresholds to a ranked anomaly list. Small black dots 

indicate the number of TOI digs (TP) versus the number of Non-TOI digs (FP) from the 
different don’t dig thresholds. The black dot in the upper right corner represents the 

extreme case in which the don’t dig threshold is placed at the very top of the list, such that 
all anomalies fall below. The black dot in the lower left corner represents the other extreme 

case in which the don’t dig threshold is placed at the bottom of the list, such that no 
anomalies fall below. The gap between the lower left corner and the next closest point 

represents the “Cannot Analyze” anomalies. 

 
As with ROC curves, the points on a classification performance curve are not 

always equally spaced. All points on the curve lying between the lower left and upper 
right corners represent possible don’t dig thresholds, with one don’t dig threshold per 
each unique rank on the ranked anomaly list. Not all ranks are unique, however. Some 
anomalies on the list may share the same rank if they were considered equally likely to be 
Non-TOIs. Therefore, these anomalies must fall together either above or below any given 
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don’t dig threshold; a don’t dig threshold cannot be placed between them. These groups 
of identically ranked anomalies lead to gaps between points in the curve.  

The gap is particularly noticeable for the anomalies deemed “Cannot Analyze” and 
appended to the bottom of the ranked anomaly list. By definition, the data collected for 
these anomalies could not be analyzed. Specifically, the buried target could not be 
characterized, and the classification algorithm could not estimate the anomalies’ 
likelihoods of being Non-TOIs nor any other decision statistic. Therefore, all “Cannot 
Analyze” anomalies share the rank of “Unknown.” Because they share the same rank, a 
don’t dig threshold cannot be placed between them. This causes a gap between the lower 
left corner of the plot and the next closest point, as shown in Figure 33. This next point 
represents the case where the don’t dig threshold is placed directly between the “Can 
Analyze” and “Cannot Analyze” anomalies. Only the “Cannot Analyze” anomalies fall 
below this don’t dig threshold. In this case, if Y of the TOI anomalies are deemed 
“Cannot Analyze” and therefore fall below the don’t dig threshold, then the number of 
TOI digs (TP) is equal to Y. Similarly, if X of the Non-TOI anomalies are deemed 
“Cannot Analyze” and therefore fall below threshold, then the number of Non-TOI digs 
(FP) is equal to X.  

Figure 34 shows a similar sketch of the curve, this time with the points plotted in 
color. The analysts had separated the “Can Analyze” anomalies into three categories on 
the ranked anomaly list. A point on the curve was colored in red, yellow, or green if the 
anomaly directly above the corresponding don’t dig threshold was classified into the 
“Likely TOI,” “Cannot Decide,” or “Likely Non-TOI” category, respectively. By 
definition, the analyst’s don’t dig threshold (large blue dot) lies between the green and 
yellow points, the boundary between the “Cannot Decide” and “Likely Non-TOI” 
categories on the ranked anomaly list.  

Each classification performance curve was then examined to identify the best 
possible choice of don’t dig threshold. Choosing the don’t dig threshold is a critical step 
in UXO classification. A don’t dig threshold placed near the top of the ranked anomaly 
list will lead to a large number of TOI digs (a desirable outcome) but also a large number 
of Non-TOI digs (an undesirable outcome). Conversely, placing the don’t dig threshold 
near the bottom of the list will lead to a small number of TOI digs (an undesirable 
outcome) but also a small number of Non-TOI digs (a desirable outcome). The best don’t 
dig threshold lies somewhere in between. 
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Figure 34: A sketch of a classification performance curve, noting into which categories the 
possible don’t dig thresholds fell on the ranked anomaly list. Points colored in red, yellow, 

and green correspond to don’t dig thresholds that fell in the “Likely TOI,” “Cannot 
Decide,” and “Likely Non-TOI” categories, respectively. By definition, the analyst’s don’t 

dig threshold lies between the yellow and green points. 

 
IDA retrospectively identified the “best” don’t dig threshold for each ranked 

anomaly list. The “best” threshold was defined as that which would have resulted in the 
smallest number of Non-TOI digs (i.e., minimum FP) while the number of TOI digs was 
held at its maximum possible value (i.e., Pd = 100%). This don’t dig threshold would 
have minimized the cost of recovering targets while leaving no TOIs in the ground. All 
TOI anomalies would have been correctly classified, with the fewest Non-TOI anomalies 
incorrectly classified. The large light blue dot in Figure 35 indicates this “best” don’t dig 
threshold.  

A second don’t dig threshold was also identified retrospectively. This threshold 
would have resulted in the smallest number of Non-TOI digs (i.e., minimum FP) while 
the number of TOI digs was held at no less than 95% of its maximum possible value (i.e., 
Pd  95%). At least 95% of the TOI anomalies would have been correctly classified, with 
the fewest Non-TOI anomalies incorrectly classified. This don’t dig threshold would have 
minimized the cost of recovering targets while leaving in the ground only 5% of the TOIs 
(the most difficult to identify). Figure 35 indicates this second don’t dig threshold with a 
large pink dot. 
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Figure 35: A sketch of a classification performance curve, indicating the retrospectively 

chosen don’t dig thresholds. The large light blue dot represents the “best” don’t dig 
threshold, that which would have minimized the number of Non-TOI digs while the number 
of TOI digs was held at its maximum value, leaving no TOIs in the ground. The large pink 

dot represents a second retrospectively chosen threshold, that which would have 
minimized the number of Non-TOI digs while ensuring that the number of TOI digs was no 
less than 95% of its maximum possible value, leaving no more than 5% of the TOIs in the 

ground. 

 
The classification performance curves were then further adjusted to take the training 

sets into consideration.  The purpose of a classification performance curve is to illustrate 
the performance of a classification analysis, that which includes methods for 
characterizing the buried targets, classifying the targets based on their characteristics, and 
optimizing the classification algorithm over a training set. The classification performance 
curve illustrated in Figure 35 does not take the training set into account, however. This 
curve is based only on the ranked anomaly list, and the ranked anomaly list consists only 
of anomalies assigned to the test set. Curves like this can be compared to each other only 
if they are based on the same test set. In this demonstration, however, different 
classification analyst teams chose different training and test sets. Test sets differed in 
both size and character, leading to inherent differences in the TP and FP counts. For 
example, a classification analysis could have more easily achieved a small number of 
Non-TOI digs (a low FP) if the test set contained few Non-TOI anomalies in the first 
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place. Similarly, a classification analysis could have exhibited a small number of TOI 
digs (a low TP) if the test set contained few TOI anomalies in the first place. 

To address this issue, the classification performance curves were altered so that they 
could be compared to each other regardless of which training and test sets were used. In a 
real remediation project, all targets producing anomalies assigned to the training set must 
be recovered to obtain ground truth for algorithm optimization. This is true regardless of 
which don’t dig threshold is eventually applied to the ranked anomaly list. Therefore, the 
training set anomalies were treated as though they had been appended to the very bottom 
of the ranked anomaly list, below even the most extreme don’t dig threshold, as shown in 
Figure 36. The number of TOI and Non-TOI digs were re-counted and re-plotted to 
incorporate the training set, as shown in Figure 37. 

 

 
Figure 36: A sketch of a ranked anomaly list, altered to allow comparisons between 

different training and test sets. Training set anomalies have been appended to the bottom 
of the list, below even the most extreme don’t dig threshold.  

 
Training set anomalies were reflected in the recalculated counts of the number of 

TOI and Non-TOI digs. This led to a uniform shift of the classification performance 
curve away from the origin, as shown in Figure 37. The shape of the curve was not 
altered. For example, if Y of the TOI anomalies had been assigned to the training set, 
then these Y anomalies must always fall below the don’t dig threshold, regardless of 
which don’t dig threshold was used. Therefore, the number of TOI digs must always start 
at Y. Similarly, if X of the Non-TOI anomalies had been assigned to the training set, then 



66 

these X anomalies must also always fall below the don’t dig threshold. In this way, the 
number of Non-TOI digs must always start at X. Thus, the gap between the origin and the 
lower left end of the shifted curve represents the training set anomalies. The smaller the 
gap, the smaller the training set. The more vertically oriented the gap, the more the 
training set consisted of TOI anomalies, rather than Non-TOI anomalies. All curves 
adjusted in this manner were now based on the same total number of TOI and Non-TOI 
anomalies, regardless of how the anomalies were distributed between the training and test 
sets. This allowed an “apples-to-apples” comparison between all classification analyses. 

 

 
Figure 37: A sketch of a classification performance curve, where the training set 

anomalies have been included in scoring. The curve has been shifted away from the 
origin, its shape left intact. The gap between the origin and the lower left end of the curve 

represents the training set anomalies. The 5% most difficult TOIs are listed to the side. 
TOIs listed in blue and pink fell above and below the analyst’s don’t dig threshold, 

respectively. 

 
Different classification analyses were challenged by different anomalies. Figure 37 

also lists those TOI anomalies that were the most difficult to classify. Specifically, of the 
171 TOI anomalies at the former Camp Butner, the list included the 8 (5%) TOI 
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anomalies listed furthest up the ranked anomaly list. These TOI anomalies had the 
highest estimated likelihood of being Non-TOIs (i.e., they were classified “the most 
wrong”). By definition, all eight of these TOI anomalies rose above the second 
retrospectively chosen don’t dig threshold, marked with a large pink dot on the 
classification performance curve (i.e., the minimum FP while Pd  95%). Some of these 
eight TOI anomalies also incorrectly rose above the analyst’s prospectively chosen don’t 
dig threshold, marked with a large dark blue dot on the curve; these TOI anomalies were 
listed in blue. The TOI anomalies listed in pink are those that fell below the dark blue dot 
but above the pink dot.  

ESTCP considered the shapes of the classification performance curves when 
assessing the performance of the classification analyses. In general classification 
problems, the area under the curve (AUC) is used to quantitatively describe the shape of 
the classification performance curve [30]. A curve with a sharp angle near the upper left 
corner of the plot has a large AUC. In UXO remediation, this would indicate that most 
Non-TOI anomalies were arranged higher on the ranked anomaly list than most TOI 
anomalies. That is, the classification algorithm correctly classified most Non-TOI 
anomalies and most TOI anomalies because the estimated target characteristics 
overlapped little in multidimensional feature space. However, in UXO remediation, a 
classification performance curve can indicate good or even excellent performance 
without a large AUC, since a TOI mistakenly left in the ground (an FN) is considered 
much worse than a Non-TOI unnecessarily recovered (an FP).  

Figure 38 show sketches of two classification performance curves. The left sketch 
exhibits a large AUC, with a very sharp angle near the upper left corner. Even in 
retrospect, however, no don’t dig threshold could have been chosen to achieve a small 
number of Non-TOI digs while all TOIs were recovered. In contrast, the right sketch 
exhibits a smaller AUC, but a don’t dig threshold could have been chosen to halve the 
number of Non-TOI digs while still recovering all TOIs. As the DSB pointed out in its 
2003 report, even a small reduction in the number of Non-TOI digs can lead to a 
substantial reduction in the costs of UXO remediation [24]. Thus, although a large AUC 
is evidence of an algorithm’s ability to accurately discriminate between TOIs and Non-
TOIs, the true test of an algorithm’s performance in UXO remediation is to reduce the 
number of Non-TOI digs while still recovering all TOIs. 
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Figure 38: Sketches of two classification performance curves. Left: The large area under 
the curve indicates a strong ability to discriminate between TOIs and Non-TOIs, but no 

don’t dig threshold could have been chosen to reduce the number of Non-TOI digs while 
still recovering all TOIs. Right: The smaller area under the curve indicates a weaker ability 

to discriminate between TOIs and Non-TOIs, but a don’t dig threshold could have been 
chosen to halve the number of Non-TOI digs while still recovering all TOIs. This curve 

more closely addresses the needs of the UXO community. 

 
In this demonstration, ranked anomaly lists were ultimately judged as follows. First, 

ESTCP assessed the placement of the analyst’s don’t dig threshold (dark blue dot) by 
considering the resulting number of TOI and Non-TOI digs (TP and FP). Ranked 
anomaly lists with near-maximal TPs and low FPs were desired. As stated in the ESTCP 
Demonstration Plan [2], a successful classification analysis was defined as one where, at 
the analyst’s don’t dig threshold, the number of Non-TOI digs was reduced by at least 
30% while all TOIs were correctly classified. Second, ESTCP then assessed what would 
have been the “best” don’t dig threshold (light blue dot). To do this, the minimum 
number of Non-TOI digs was considered when TP was held at its maximum possible 
value. This second assessment was made because an otherwise excellent classification 
analysis (data collection, target characterization, algorithm optimization, etc.) could be 
marred simply by an inappropriate choice of don’t dig threshold. That is, a classification 
analysis could also be deemed successful if, in retrospect, a don’t dig threshold could 
been have chosen to reduce the number of Non-TOI digs by at least 30% while correctly 
classifying all TOIs [2]. 
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7. Classification Performance Results 

This section describes the main results of the UXO classification demonstration at 
the former Camp Butner. Results are first presented for the EM61-Mk2 cart, since this is 
currently the standard EMI instrument used for UXO remediation. Results for the 
TEMTADS and the MetalMapper are presented next; these advanced instruments are not 
yet well known to the UXO community. Comparisons are made between the different 
methods used to characterize and classify the buried targets, including the use of 
commercial versus custom-built software and standard dipole versus more advanced 
geophysical models. Each comparison is illustrated by a representative set of 
classification performance curves. A full set of curves, 1 for each of the 54 ranked 
anomaly lists, can be found in Appendix A. Appendix B lists the classification metrics 
calculated for each ranked anomaly list at the analyst’s don’t dig threshold and the 
retrospective “best” don’t dig threshold. Finally, an accompanying DVD contains digital 
copies of all metrics and curves. 

A. Traditional Instrument: EM61-Mk2 Cart 
Classification based on the EM61-Mk2 dynamic data exhibited consistently poor 

performance. Due to the limitations of the EM61-Mk2 cart, size is the only target 
characteristic that can be accurately estimated from the EM61-Mk2 data. Shape and 
limited information about material composition and wall thickness can also be estimated, 
although typically with less accuracy than size. Unfortunately, size was not a strong 
discriminating feature at the former Camp Butner because many of the TOIs (e.g., 37 mm 
projectiles and M48 fuzes) were approximately the same size as Non-TOIs (e.g., scrap 
metal from exploded 105 and 155 mm rounds).  

1. No Model 

NAEVA, a commercial geophysics company, collected and analyzed the EM61-
Mk2 dynamic data. This team’s analysis was the most simple and straightforward. Unlike 
the other classification analyst teams, NAEVA did not invert the EM61-Mk2 data to 
estimate the polarizabilities of the buried target. Instead, the analyst simply took 
measurements of the data itself. To do this, she used functions built in to UX-Detect and 
UX-Process, modules of the Oasis montaj commercial software package sold by Geosoft 
[5][18][25][26][47][48].  

In one analysis, the NAEVA analyst measured the decay rate of the peak amplitude 
of each detected anomaly [25]. (In contrast, other teams performed geophysical 
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inversions to estimate the decay rates of the principal polarizabilities of each buried 
target). NAEVA’s measurement was a rough estimate of the target’s material 
composition and wall thickness. Slower decay rates were intended to indicate thicker 
walled, ferrous targets, such as TOIs, while faster decay rates were intended to indicate 
thinner walled, nonferrous targets, which Non-TOIs often are.  

Results were poor. As shown in Figure 39, 6 TOIs were misclassified at the 
analyst’s don’t dig threshold (dark blue dot): the number of TOI digs was 165, 6 short of 
171, the total number of TOIs. Furthermore, even at the retrospective “best” don’t dig 
threshold (light blue dot), the number of Non-TOI digs could be reduced by only 303 (a 
reduction of only 14%, from 2120 to 1817) while still digging all TOIs. These results 
were not unexpected, for two reasons. First, the decay rates were calculated from the data 
themselves, rather than from polarizabilities inverted from the data using a geophysical 
model. Second, the short decay interval covered by the time gates of the EM61-Mk2 is 
often insufficient for classification, regardless of how the decay is calculated (direct 
measurements versus geophysical inversions). The differences in material composition 
and wall thicknesses between TOIs and Non-TOIs often do not become apparent until 
several milliseconds or even tens of milliseconds after the primary field is turned off. 
This often does not occur until after the latest time gate of the EM61-Mk2. 

 
Figure 39: NAEVA’s performance based on the decay rates of the peak amplitudes of the 
anomalies, measured from the EM61-Mk2 dynamic data with UX-Detect and UX-Process 

and classified with rules optimized over the standard training set. 

 
NAEVA also used an alternative method for classification. With UX-Detect and 

UX-Process, the analyst measured the peak amplitude of each detected anomaly at the 
second time gate [5]. This measurement was meant to be an estimate of the size of the 
buried target. Signal amplitude is only a very rough estimate of size, however, as it can 
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be confounded by target depth. That is to say, a large, deep target can produce the same 
signal amplitude as a small, shallow target. Recognizing this limitation, the analyst was 
unable to set a don’t dig threshold. Instead, she simply classified all anomalies as 
“Cannot Decide.” This is equivalent to setting the don’t dig threshold at the very top of 
the ranked anomaly list, such that all anomalies fall below threshold. As a result, all 
points of the classification performance curve in Figure 40 are colored in yellow, and the 
dark blue dot rests at the upper right end of the curve. 

 
Figure 40: NAEVA’s performance based on the peak amplitudes of the anomalies, 

measured from the EM61-Mk2 dynamic data with UX-Detect and UX-Process and classified 
with rules optimized over the standard training set. All anomalies in the standard test set 

were declared “Can’t Decide” (yellow), as the don’t dig threshold could not be set 
prospectively. 

 
The retrospective results were better than expected, however. The number of Non-

TOI digs could have been reduced by 756 (a reduction of 36%, from 2120 to 1364) while 
still digging all TOIs. This result is illustrated by the light blue dot in Figure 40. 
Surprisingly, peak signal amplitude, although confounded by depth, still proved to have 
some discriminating power at the former Camp Butner. This result has not been seen in 
other studies, however. Furthermore, these results can only be considered favorable in a 
retrospective sense; due to the uncertainties inherent in using signal amplitude as the sole 
feature for classification, the NAEVA analyst could not prospectively set the don’t dig 
threshold and therefore would not have been able to use this method to reduce the 
number of unnecessary digs in a real remediation project. 
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2. Dipole Model 

Other teams used geophysical models to invert the EM61-Mk2 data. SAIC used the 
commercially available UX-Analyze software to perform the inversions while Sky used 
the UXOLab software developed by the University of British Columbia 
[1][22][38][39][50][51]. Both teams estimated the three polarizabilities of the buried 
target and then calculated features related to the target’s size and material 
composition/wall thickness. While their size feature was based on the sum of the three 
polarizabilities, their material composition/wall thickness feature was based on the decay 
rate of the principal polarizability. Neither SAIC nor Sky calculated a feature related to 
the shape of the buried target for their EM61-Mk2 analyses. An estimate of shape would 
have involved the ratio of one polarizability to another, requiring accurate estimates of 
each individual polarizability. This is difficult to reliably achieve with the EM61-Mk2 
dynamic data because the cart’s line-to-line position uncertainty makes it difficult to 
constrain the individual polarizabilities during the inversion process. Instead, only the 
sum of the polarizabilities can be well constrained (an indication of size). This sum is the 
trace of the diagonalized polarizability matrix, which is tensor invariant. 

Results were poor for both teams. Figure 41 shows that at SAIC’s don’t dig 
threshold, 1 TOI was misclassified while the number of Non-TOI digs could be reduced 
by only 319 (a reduction of only 15%, from 2120 to 1801). This reduction was even 
smaller at the retrospective “best” don’t dig threshold. Figure 42 shows similar results for 
Sky. Here, 2 TOIs were misclassified at Sky’s don’t dig threshold; the number of Non-
TOI digs could be reduced by 510 (a reduction of 24%, from 2120 to 1610). As with 
SAIC, Sky’s reduction in Non-TOI digs was much smaller at the retrospective “best” 
don’t dig threshold. 
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Figure 41: SAIC’s performance for a retrospective analysis based on amplitudes and 

decay rates of polarizabilities inverted from the EM61-Mk2 dynamic data using the UX-
Analyze/IDL multi-source dipole model and classified with a rules-based library matcher 

optimized over the standard training set. 

 

 
Figure 42: Sky’s performance based on amplitudes and decay rates of polarizabilities 
inverted from the EM61-Mk2 dynamic data using the UXOLab single-source and two-

source dipole models and classified with a statistical classifier optimized over an existing 
library. 

B. Advanced Instruments: TEMTADS and MetalMapper 
Classification based on the TEMTADS and MetalMapper data exhibited good and 

sometimes excellent results. The MetalMapper in dynamic mode shares many of the 



74 

same limitations as the EM61-Mk2 cart; size therefore is the main target characteristic 
that can be estimated from the MetalMapper dynamic data. (Limited information about 
shape and material composition/wall thickness can also be estimated, although not as 
accurately as size). Neither the TEMTADS nor the MetalMapper in static mode is limited 
to such a degree. The target’s size, as well as its shape and material composition/wall 
thickness, can be accurately estimated from these static data. This led to good and 
sometimes excellent results because shape and material composition/wall thickness were 
strong discriminating features at the former Camp Butner (size was not). All analyses of 
the TEMTADS and MetalMapper data used geophysical models for inversion. The 
models varied in complexity. The analyses also varied in other ways, such as in the 
algorithms used for classification and the training sets used to optimize the algorithms. 

1. Dipole Model 

Sky was the only team to analyze the MetalMapper dynamic data. This team used 
UXOLab to invert the data, estimating the polarizabilities of each buried target. Analysts 
selected a subset of features related to the targets’ sizes and material compositions/wall 
thicknesses and then used a statistical classifier to classify the targets based on the 
selected subset of features [22]. 

Results were better than those based on the EM61-Mk2 dynamic data. Figure 42 
showed the classification performance curve for Sky’s EM61-Mk2 analysis, and Figure 
43 now shows the corresponding curve for Sky’s dynamic MetalMapper analysis. The 
analyst’s don’t dig threshold was poorly set for the MetalMapper curve, resulting in the 
misclassification of 19 TOIs. However, the MetalMapper curve exhibited a better shape 
than the EM61-Mk2 curve. In fact, at the MetalMapper curve’s retrospective “best” don’t 
dig threshold, the number of Non-TOI digs could have been reduced by 717 (a reduction 
of 34%, from 2120 to 1403). This is a much larger reduction than what was shown in the 
EM61-Mk2 curve. This shows, at least in the retrospective sense, that aside from the 
selection of the don’t dig threshold, all other aspects of Sky’s MetalMapper classification 
analysis performed reasonably well.  
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Figure 43: Sky’s performance based on amplitudes and decay rates of polarizabilities 

inverted from the MetalMapper dynamic data using the UXOLab single-source and two-
source dipole models and classified with a statistical classifier optimized over a custom 

training set. 

 
The MetalMapper in dynamic mode exhibited a better position accuracy than the 

EM61-Mk2 cart due to its seven triaxial receive coils. The individual polarizabilities 
were better constrained during inversion, resulting in more accurate estimates of the 
targets’ sizes. Useful polarizability decay rates were more difficult to estimate, however. 
Because the MetalMapper in dynamic mode was configured to use an even a shorter time 
interval than the EM61-Mk2, the polarizability decays were not assessed for a long 
enough time to make them very useful for classification. One could attempt to improve 
the classification performance of the MetalMapper in dynamic mode by extending its 
time gates; this would lead to better calculation of the polarizability decay rates, which in 
turn would lead to more accurate estimates of the target’s material composition/wall 
thickness. However, extending the time gates would also slow the data collection 
procedure. Thus, a trade-off must be made [51]. 

Sky also analyzed the MetalMapper static data, as did many other classification 
analyst teams. Sky input the full polarizability curves (containing information about size, 
shape, material composition, and wall thickness) into a statistical classifier [50][51]. 
Figure 44 shows Sky’s classification performance curve. Four TOIs were misclassified at 
the analyst’s don’t dig threshold. All four were 37 mm projectiles, the smallest and 
therefore most difficult TOIs to classify. The number of Non-TOI digs was reduced by 
1983 at the analyst’s don’t dig threshold, a full 94% (from 2120 to 137). The reduction in 
Non-TOI digs was much smaller at the retrospective “best” don’t dig threshold, however. 
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Figure 44: Sky’s performance based on full polarizability curves inverted from the 

MetalMapper static data using the UXOLab single-source and two-source dipole models 
and classified with a statistical classifier optimized over a custom training set. 

 
The MetalMapper in static mode led to good classification performance because it 

did not suffer from the same limitations as the dynamic instruments. In static mode, all 
three transmit coils were used, fully illuminating the target in all three directions. The 
three individual polarizabilities were therefore well constrained during the inversion 
process, leading to very accurate estimates. Furthermore, successive measurements of the 
received signal were stacked, increasing the SNR of the received signal and further 
increasing the accuracy of the estimated polarizabilities. Finally, the time gates in static 
mode were set much longer than in dynamic mode. This provided a longer expanse of 
time over which the polarizabilities’ decay rates could be assessed, allowing the 
differences between TOIs and Non-TOIs to become more evident. 

Finally, Sky analyzed the TEMTADS static data, as did many other classification 
analyst teams. Once again, Sky input the full polarizability curves into a statistical 
classifier [50][51]. This analysis led to excellent performance, as illustrated by the curve 
in Figure 45. The analyst’s don’t dig threshold was appropriately set, leading to a near 
maximal reduction in Non-TOI digs (1941, a reduction of 92% from 2120 to 179) while 
correctly classifying all TOIs. The TEMTADS shares many of the same advantages of 
the MetalMapper in static mode, including the ability to illuminate the target in all three 
directions and stacking to improve SNR. In addition, the excellent performance of the 
TEMTADS is likely due to its very long time gates (25 ms), leading to material 
composition/wall thickness estimates with very fine resolution. Its improvement in 
performance over the MetalMapper in static mode may also be due to the careful field 
technique exhibited by the TEMTADS data-collection team.  
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Figure 45: Sky’s performance based on full polarizability curves inverted from the 

TEMTADS static data using the UXOLab single-source and two-source dipole models and 
classified with a statistical classifier optimized over a custom training set. 

a. Differences in MetalMapper Systems 

Some classification analyst teams commented on the differences in SNR between 
the MetalMapper static data collected by Geometrics and those collected by Sky [47][50]. 
Sky used a newer MetalMapper system, which used better cabling, was positioned lower 
to the ground, and was pulled by a tractor with an electromagnetically quieter engine. As 
part of the failure analysis after the end of the demonstration, Sky investigated how these 
differences affected classification performance. They performed one classification 
analysis using only those data collected by the newer Sky system. Then they 
independently performed a second analysis using only those data collected by the older 
Geometrics system [50].  

Figure 46 shows the classification performance curves resulting from the two 
analyses. Sky plotted these curves using slightly different metrics than the other curves 
presented this far. The percentage of TOI dug (i.e., Pd) is plotted on the vertical axis 
while the horizontal axis plots the percentage of Non-TOI dug (i.e., Pfa, but called FAR 
in this analysis). The newer Sky system (red curve) outperformed the older Geometrics 
system (black curve). At the retrospective “best” don’t dig threshold (arrows), the Sky 
system could have reduced the number of Non-TOI digs by 99%, leading to a FAR of 
only 1%. In contrast, the Geometrics system could have reduced this number by only 
63%, leading to a FAR of 37%. Both Sky and NAEVA recommended using more 
conservative classification approaches for data with low SNRs, such as the data collected 
with the older MetalMapper system. For Sky, this meant choosing a different subset of 
target characteristics on which classification would be based, that is, size and material 
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composition/wall thickness features only, rather than the full polarizability curves [50]. 
For NAEVA, this meant relaxing some rules for classifying a target as “Likely TOI” [47]. 

 
Figure 46: Sky’s performance based on data collected from its newer MetalMapper system 
(red) and Geometrics’ older system (black). The percentage of TOIs dug (i.e., Pd) is plotted 

versus the percentage of Non-TOIs dug (i.e., Pfa or FAR). Arrows mark the retrospective 
“best” don’t dig thresholds. Taken from [50]. 

b. Static Data Requests 

Some classification analyst teams requested static data for only some anomalies, 
those for which the EM61-Mk2 dynamic data were deemed inadequate for analysis. 
Other teams requested no static data, relying solely upon the EM61-Mk2 dynamic data. 
Still other teams requested static data for all anomalies. SAIC and Sky performed all 
three types of analyses [1][22]. Figure 41 has already illustrated the poor performance of 
SAIC’s analysis of the EM61-Mk2 dynamic data. Figure 47 and Figure 48 now show the 
performance of SAIC’s analyses of TEMTADS static data for some and all anomalies, 
respectively. The analysis based on only some static data (Figure 47) also exhibited poor 
performance, as 10 TOIs were misclassified at the analyst’s don’t dig threshold, including 
at least 1 M48 fuze. Furthermore, even retrospectively, the don’t dig threshold could not 
be adjusted to reduce the number of Non-TOI digs while correctly classifying all TOIs, as 
evidenced by the light blue dot resting at the upper right end of the curve. As part of its 
failure analysis, SAIC discovered that some TOIs had been misclassified based solely on 
the EM61-Mk2 dynamic data, before the static data were even requested. Had the static 
data been available, these TOIs would not have been misclassified [38]. In fact, the 
analysis based on all static data (Figure 48) exhibited much better classification 
performance—as only three TOIs were misclassified at the analyst’s don’t dig threshold. 
Furthermore, the retrospective “best” don’t dig threshold could have reduced the number 
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of Non-TOI digs by 433 (a reduction of 20%, from 2120 to 1687) while correctly 
classifying all TOIs. 

These results were disappointing. This demonstration was specifically designed so 
that analysts could choose which anomalies required static data, in the hopes that fewer 
static data would be needed to produce the same classification performance. 
Unfortunately, this did not turn out to be the case. The analyses based on only some static 
data resulted in a much poorer performance, even though the amount of static data was 
reduced only minimally. For example, SAIC requested TEMTADS static data for 86% of 
the anomalies. In a real remediation project, collection of static data for the remaining 
14% would not have greatly increased the cost of the project—but would have greatly 
improved performance. Other teams also requested large amounts of static data—Sky and 
Parsons requested static data for 78% and 69% of the anomalies, respectively. Neither of 
these analyses exhibited particularly good performance either. 

c. Training Data Requests 

Some classification analyst teams requested custom training sets, based on those 
anomalies in the demonstration area that they deemed most likely to optimize their 
classification algorithms. In general, the custom training sets were smaller and consisted 
of a larger percentage of TOIs than the Standard Training Set did. For example, Figure 39 
and Figure 40 showed classification performance curves for two of NAEVA’s analyses 
based on the EM61-Mk2 dynamic data. In each case, the gap between the origin and the 
lower left end of the curve represents the training set. The gap is larger in size and more 
horizontally oriented than the other curves shown so far. This occurs because NAEVA 
used the Standard Training Set to optimize its algorithms; the other curves were based on 
either a custom training set (leading to a smaller, less horizontally oriented gap) or 
existing data from the IVS, training pit, and previous studies only (leading to no gap at 
all). Specifically, the Standard Training Set consisted of 179 anomalies (3% of which 
were TOIs); the custom training sets (mean and standard deviation) consisted of only 108 
 71 anomalies (20%  12% of which were TOIs). In a real remediation project, a smaller 
training set would lead to lower costs because fewer targets would have to be recovered 
to provide ground truth for optimizing the classification algorithms. 
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Figure 47: SAIC’s performance based on amplitudes, ratios, and decay rates of 

polarizabilities inverted from the EM61-Mk2 cart dynamic data and requested TEMTADS 
static data using the UX-Analyze/IDL multi-source dipole model and classified with a rules-

based library matcher optimized over an existing library. 

 

 
Figure 48: SAIC’s performance based on amplitudes, ratios, and decay rates of 

polarizabilities inverted from the TEMTADS static data using the UX-Analyze/IDL multi-
source dipole model and classified using a rules-based library matcher optimized over an 

existing library. 

 
UXO classifications algorithms can often be satisfactorily optimized using only a 

very small training set because the classification is based on quantifying the boundaries 
around clusters of TOIs, rather than Non-TOIs, in multidimensional feature space. Then, 
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all test set anomalies that fall within these boundaries can be classified as “Likely TOI,” 
and all that fall outside can be classified as “Likely Non-TOI.” Analysts do not have to 
use data and ground truth collected from the demonstration area to set these boundaries. 
Instead, they can simply use the data and ground truth collected from the TOIs seeded in 
the IVS and training pit. They can also use data and ground truth collected from TOIs in 
previous analyses at other sites.  

There is one caveat, however: Some TOIs in the demonstration area may turn out to 
be of an unexpected munition type. As a result, TOIs of that type would not have been 
seeded in the IVS and training pit, and the analyst would not have known to use data and 
ground truth collected in previous studies from that TOI type. Therefore, there is a risk 
that the analyst may not realize that a cluster in multidimensional feature space represents 
TOIs. To mitigate this risk, some analysts choose to use a small custom training set 
consisting of a subset of anomalies in the demonstration area. These anomalies are 
carefully chosen to sample every cluster in multidimensional feature space. Once the 
anomalies are recovered and their ground truth is available as training data, the analyst 
can then properly identify which clusters represent TOIs and which represent Non-TOIs 
and therefore more appropriately set the boundaries encircling the TOI clusters. 

For example, historical records showed that 37 mm projectiles had been previously 
fired at the former Camp Butner [19]. Therefore, ESTCP seeded one 37 mm projectile in 
both the IVS and training pit, as well as 110 in the demonstration area. Data and ground 
truth for the IVS and training pit seeds were made available to the classification analyst 
teams for their algorithm optimization. Some targets in the demonstration area exhibited 
polarizabilities similar to those estimated from the 37 mm projectiles seeded in the IVS 
and training pit. Therefore, many analysts correctly concluded that these demonstration 
area targets were 37 mm projectiles as well. For example, Figure 49(a) shows the 
polarizabilities estimated from three targets in the demonstration area (black, pink, and 
light blue); these polarizabilities were very similar to those estimated from a 37 mm 
projectile obtained from the U.S. Army Corps of Engineers (dark blue), as well as the 37 
mm projectiles seeded in the IVS and training pit. Figure 49(b) shows photographs of 
these three demonstration area targets; indeed, all turned out to be 37 mm projectiles. In 
fact, all turned out to have driving bands, just as those seeded in the IVS and training pit. 
On the other hand, some targets in the demonstration area exhibited polarizabilities that 
were different from those in the IVS and training pit, such as those shown in Figure 49(c) 
(dashed red, blue, and green). Targets like these formed a new “mystery” cluster in 
multidimensional feature space. Some classification analyst teams chose to include some 
of these targets in their custom training sets, so that their ground-truth labels could be 
learned and the new cluster could be better understood. Figure 49(d) shows photographs 
of these three targets, all of which turned out to be 37 mm projectiles without driving 
bands. In addition, a third type of 37 mm projectile was also found to be native to the site. 
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These native TOIs had driving bands but were of a slightly different size and shape than 
their seeded counterparts. Thus their estimated polarizabilities were also slightly 
different, forming a third cluster in multidimensional feature space.  

 

(a)  (b)  

(c)  (d)  

Figure 49: The effect of driving bands on target characterization. (a) Polarizabilities 
estimated from three targets in the demonstration area (black, pink, and light blue), all 

similar to the polarizabilities estimated from a 37 mm projectile like those seeded in the 
IVS and training pit (dark blue). (b) Photographs of the three demonstration area targets, 
all 37 mm projectiles with driving bands like those seeded in the IVS and training pit. (c) 

Polarizabilities estimated from three other targets in the demonstration area (dashed red, 
green, and dark blue), all similar to each other but different from the polarizabilities 

estimated from a 37 mm projectile like those seeded in the IVS and training pit (dark blue). 
(d) Photographs of the three other demonstration area targets, all 37 mm projectiles 

without driving bands. Taken from [4]. 
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d. Second-Pass Analyses 

SAIC and Sky experimented with re-optimizing their classification algorithms in 
what became known as “second-pass” analyses. In the first pass, the analyst optimized 
his classification algorithm using a small training set. The analyst created the ranked 
anomaly list and submitted it for scoring. He then requested the ground truth for all 
anomalies classified as “Likely TOI,” which, by definition, fell below the don’t dig 
threshold. This mimicked what could occur in a real remediation project, where all 
anomalies that fell below the don’t dig threshold would be dug, and the resulting ground 
truth could be made available to the classification analyst. The analyst could then use this 
additional ground truth to assess how well his classification methods had performed so 
far. If necessary, revisions could be made to those anomalies that had not yet been dug. 

In the second pass, then, the analyst re-optimized his classification algorithm based 
on the additional ground truth of those anomalies that had already been “dug.” He then 
revised his ranked anomaly list based on the newly re-optimized classification algorithm. 
Some restrictions were imposed, however, to mimic the logical flow of a real remediation 
project. The analyst could re-rank and reorder only those anomalies that had risen above 
the first-pass don’t dig threshold. All other anomalies must remain unchanged—in a real 
remediation project, they would have already been dug by this point. Similarly, the 
analyst could move the don’t dig threshold up, but not down, the ranked anomaly list. In 
a real remediation project, stakeholders could decide to dig more anomalies that had not 
yet been dug, but could not decide to un-dig anomalies that had already been dug. 

Results were promising. Figure 50 and Figure 51 show the classification 
performance curves for SAIC’s first- and second-pass analyses of MetalMapper static 
data. The first-pass results are poor: 13 TOIs were misclassified at the analyst’s don’t dig 
threshold and the retrospective “best” don’t dig threshold could reduce the number of 
Non-TOI digs by only 447 (a reduction of 21%, from 2120 to 1673) while correctly 
classifying all TOIs. The effects of the second pass of analysis are clearly evident in the 
second curve. First, the training set is much larger, as evidenced by the very large gap 
between the origin and the lower left end of the curve. This was expected, as the second-
pass training set consisted of all anomalies classified as “Likely TOI” in the first-pass 
analysis. Second, the curve more closely tracks the upper edge of the plot because some 
of the TOI anomalies that had initially been misclassified as “Likely Non-TOI” were now 
more accurately reclassified as “Cannot Decide” or “Likely TOI.” Finally, the analyst’s 
don’t dig threshold was moved in the upper right direction along the curve, as the analyst 
had moved the threshold up the ranked anomaly list. These effects improved results. At 
the analyst’s revised don’t dig threshold, only 7 TOI were misclassified, as opposed to 
the 13 that had been misclassified in the first-pass analysis. Furthermore, at the 
retrospective “best” don’t dig threshold, the number of Non-TOI digs could be reduced 
by over 150 more than in the first-pass analysis. 
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Figure 50: SAIC’s performance based on amplitudes, ratios, and decay rates of 

polarizabilities inverted from the MetalMapper static data using an IDL single-source 
dipole model and classified with a rules-based library matcher optimized over an existing 

library. 

 

 
Figure 51: SAIC’s performance based on amplitudes, ratios, and decay rates of 

polarizabilities inverted from the MetalMapper static data using an IDL single-source 
dipole model and classified with a rules-based library matcher optimized over a custom 

training set. The custom training set was built from the “Likely TOI” anomalies in the 
previous figure. 

 
Second-pass analyses, combined with seeded UXO, could give stakeholders more 

confidence in the final don’t dig thresholds used in real remediation projects. That is, 
classification analysts could submit their first-pass ranked anomaly lists, and stakeholders 
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could then ascertain, before digging even begins, how many of the seeded UXO had been 
correctly classified. For example, the anomalies that SAIC classified as “Likely TOI” in 
the first-pass analysis included all 26 of the seeded 105 mm projectiles, but only 22 of the 
24 seeded M48 fuzes and only 88 of the 110 seeded 37 mm projectiles. Even in the 
absence of information about native UXO, the stakeholders would already know that the 
don’t dig threshold was not correctly set because not all the seeded projectiles were 
correctly classified. At this point, the stakeholders could require the classification 
analysts to perform a second-pass analysis, and possibly a third- and fourth-pass analysis. 
That is, this process could iterate until stakeholders had confidence in the don’t dig 
threshold (e.g., all seeded UXO had been correctly classified). At that point, the digging 
could finally begin. Of course, in a real remediation project, the number of seeds could be 
much smaller than in this demonstration, but the principle illustrated above would still 
hold. 

Further passes could also occur, as well. As the anomalies are dug, ground truth 
could be recovered and made available to the classification analyst. The analyst could 
further re-optimize his classification algorithm, as was done in this demonstration. This 
process could also iterate several times, until the stakeholders decide that no further 
improvement could be made (e.g., the last several dozen digs resulted in no native UXO, 
etc.). At this point, remediation could finally be considered complete. 

e. Analysts’ Classification Experience 

In this demonstration, teams new to classification were mentored by more 
experienced teams. Sky mentored CH2M HILL, and SAIC mentored NAEVA and 
Parsons. CH2M HILL, NAEVA, and Parsons are commercial geophysics companies that 
often perform real survey or remediation projects. Their expertise lies in more hands-on 
fieldwork. In contrast, Sky and SAIC have been involved with the research and 
development of classification technologies over the past several years. 

SAIC gave NAEVA brief instructions on how to use UX-Analyze to invert and 
classify MetalMapper static data [47]. (NAEVA had previous experience using UX-
Analyze with EM61-Mk2 data). The training proved successful. Figure 50 and Figure 51 
showed SAIC's first- and second-pass analyses of the MetalMapper static data. Although 
the first-pass results were poor, the second-pass results were better (at least at the 
retrospective “best” don’t dig threshold). NAEVA’s results were even better. Figure 52 
now shows results of one of NAEVA’s retrospective analyses of the MetalMapper static 
data. The curve exhibits a sharp angle, indicating a fairly accurate ranking of the 
anomalies on the ranked anomaly list. Furthermore, the analyst’s don’t dig threshold is 
nearly optimally placed, correctly classifying all TOIs while reducing the number of 
Non-TOI digs by 1115 (a reduction of 53%, from 2120 to 1005), almost the maximum 
amount possible for this curve. 
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Figure 52: NAEVA’s performance for a retrospective analysis based on polarizabilities 
inverted from the MetalMapper static data using the UX-Analyze single-source dipole 
model and classified with a rules-based library matcher optimized over the standard 

training set. 

 
CH2M HILL, who had not previously participated in a live-site demonstration, 

received more extensive training from Sky. An analyst from CH2M HILL spent time at 
the Sky offices learning how to invert and classify the MetalMapper static data with the 
UXOLab software [42]. This training also proved to be successful. Figure 53 and Figure 
54 illustrate the performance of Sky’s and CH2M HILL’s analyses of MetalMapper static 
data, respectively. The curves are approximately the same shape, indicating that the 
anomalies were ranked and ordered in approximately the same way. The dark blue dots 
fall at approximately the same points along the curves, indicating that the analysts’ don’t 
dig thresholds were set at approximately the same places on the ranked anomaly lists. In 
one sense, though, the CH2M HILL curve is actually better than the Sky curve because 
the retrospective “best” don’t dig threshold is better placed. That is, CH2M HILL’s 
analysis could have reduced the number of Non-TOI digs by 1135 (a reduction of 54%, 
from 2120 to 985) while correctly classifying all TOIs. In contrast, Sky’s analysis could 
have reduced this number by only 14 (a reduction of less than 1%), as evidenced by the 
light blue dot placed near the upper right end of the curve. 
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Figure 53: Sky’s performance based on full polarizability curves inverted from the 

MetalMapper static data using the UXOLab single-source and two-source dipole models 
and classified with a library matcher optimized over a custom training set. 

 

 
Figure 54: CH2M HILL’s performance based on full polarizability curves inverted from the 
MetalMapper static data using the UXOLab single-source and two-source dipole models 

and classified with a library matcher optimized over a custom training set. 

 
In both cases, then, the commercial geophysics companies outperformed the more 

experienced organizations. This may be because NAEVA and CH2M HILL performed 
fewer different types of analyses, allowing them to focus on, and devote more time and 
resources to, each individual analysis. In contrast, SAIC and Sky performed several 
different types of analyses, experimenting with different data sets, classification 
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algorithms, software tools, etc. It may have been difficult for SAIC and Sky to devote the 
same time and resources to each individual analysis.  

Regardless, results show that trained geophysicists with minimal experience in this 
particular area can perform UXO classification. With some training, analysts from 
commercial geophysics companies can become familiar with the data collected by the 
more advanced instruments, such as the MetalMapper, and can learn how to use new 
software tools, such as the inversion and classification modules embedded within UX-
Analyze and UXOLab. That is to say, tech transfer appears very feasible. 

f. Classification Algorithms 

Some analyst teams experimented with different classification algorithms in an 
effort to determine which algorithms performed better. In most cases, all algorithms 
performed similarly under similar conditions. For example, Figure 43 showed the 
classification performance curve for Sky’s analysis of MetalMapper dynamic data when a 
statistical classifier was used. Sky also experimented with other classification algorithms. 
Figure 55 now illustrates Sky’s performance when a library-matching algorithm was 
used, and Figure 56 shows the performance of the library-matcher in conjunction with a 
human expert. All three curves are similar to each other. These results show that when all 
other factors were equal, the classification algorithm itself did not have a large effect on 
performance. Of prime importance, then, must have been the other factors of analysis, 
such as the criteria used to make the Can vs. Cannot Analyze decision, the geophysical 
inversions, the selection of which features to input into the classification algorithm, 
and/or the training set on which the algorithm was optimized.  

g. Number of Dipole Sources 

Most classification analyst teams used dipole models to perform geophysical 
inversions. While some teams assumed only one dipole source per anomaly, others 
assumed multiple dipole sources. For example, Figure 48 showed SAIC’s performance 
when analyzing the TEMTADS data with the UX-Analyze software. The software called 
a custom-built IDL module that used an iterative process to arrive at the number of dipole 
sources that best fit the data. In contrast, Figure 57 now illustrates a second analysis by 
SAIC, one based on custom-built software that assumed only one dipole source per 
anomaly. All other factors in the analysis remained the same, including the Can vs. 
Cannot Analyze criteria, the classification algorithm, and the training set [37].  
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Figure 55: Sky’s performance based on the sum and decay rates of polarizabilities 

inverted from the MetalMapper dynamic data using the UXOLab single-source and two-
source dipole models and classified with a library matcher optimized over a custom 

training set. 

 

 
Figure 56: Sky’s performance based on the sum and decay rates of polarizabilities 

inverted from the MetalMapper dynamic data using the UXOLab single-source and two-
source dipole models and classified with a library matcher optimized over a custom 

training set, coupled with a human expert. 
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Figure 57: SAIC’s performance based on amplitudes, ratios, and decay rates of 

polarizabilities inverted from the TEMTADS static data using an IDL single-source dipole 
model and classified with a rules-based library matcher optimized over an existing library. 

 
A comparison of the two figures shows that the difference in dipole models did not 

affect the classification performance. The curves exhibit very similar shapes, indicating 
that the classification algorithms output very similar decision statistics and that the 
anomalies were ranked in very similar ways on the ranked anomaly lists. The one 
difference between the curves was the placement of the analyst’s don’t dig threshold. In 
the single-source analysis (Figure 57), seven TOIs were incorrectly classified at the 
analyst’s don’t dig threshold, while the number of Non-TOI digs was reduced by 1601 
(76%, from 2120 to 519). In the multi-source analysis (Figure 48), three TOIs were 
incorrectly classified at this threshold, although the number of Non-TOI digs could be 
reduced by only 878 (41%, from 2120 to 1242). Different analysts performed these two 
analyses, however. The difference in the placement of the analyst’s don’t dig threshold is 
likely due to the more or less conservative nature of the analysts themselves, rather than 
any inherent differences in the estimated target characteristics. 

2. Advanced Model 

Dartmouth was the only team to use advanced, non-dipole geophysical models for 
inversion [28][56][59]. Targets that have a nonhomogeneous material composition or are 
in the near field of the sensor inspired these models. In these cases, the target 
heterogeneity and the sensor-target near-field effects are not well fit by a standard dipole 
model. In addition, the advanced, non-dipole models can be easily extended to handle 
overlapping anomalies caused by multiple, closely spaced targets. [34].  
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For each anomaly, the Dartmouth analyst estimated characteristics of the target 
using the advanced models and then input these characteristics into a statistical classifier 
trained over a small custom training set [55]. Results were excellent. Figure 58 and 
Figure 59 show the performance of the TEMTADS and MetalMapper static analyses, 
respectively. Both curves exhibit near-right angles, indicating that almost all Non-TOI 
anomalies were listed further up the ranked anomaly list than almost all TOI anomalies. 
In addition, the analysts’ don’t dig thresholds were nearly optimally chosen, placed very 
close to the retrospective “best” don’t dig thresholds. In the TEMTADS analysis, the 
analyst’s don’t dig threshold correctly classified all TOIs while reducing the number of 
Non-TOI digs by 2004, a reduction of 95%. Similarly, the analyst’s don’t dig threshold 
also correctly classified all TOIs in the MetalMapper analysis, all while reducing the 
number of Non-TOI digs by 1946, a reduction of 92%. These were the two best results 
seen at the former Camp Butner. 

 
Figure 58: Dartmouth’s performance based on full curves inverted from the TEMTADS 

static data using the OVNMS non-dipole model and classified with a statistical classifier 
optimized over a custom training set. 
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Figure 59: Dartmouth’s performance based on full curves inverted from the MetalMapper 
static data using the OVNMS non-dipole model and classified with a statistical classifier 

optimized over a custom training set. 
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8. Conclusions 

The results of the three successive live-site UXO classification demonstrations have 
built upon each other. The results from the first study, conducted at the former Camp 
Sibert, showed that good classification performance was possible using almost all types 
of data when conditions were benign, that is, when there was only one expected munition 
type and that munition was large compared with clutter. The results from the former 
Camp San Luis Obispo showed that classification was possible even when conditions 
were more challenging—that is, when multiple types of munitions were expected and 
some of those munitions were only slightly larger than clutter. In that case, high-quality 
data were necessary to achieve good classification performance. At the former Camp 
Butner, results showed that good classification performance was still possible in even 
more difficult conditions, those where many munitions were of the same size, or even 
smaller, than clutter. Both high-quality data and advanced processing techniques were 
needed to produce excellent results. The following sections summarize the findings of 
this demonstration and offer recommendations for future demonstrations. 

A. Findings 

1. The EM61-Mk2 cart showed better detection performance than the 
MetalMapper in dynamic mode. The EM61-Mk2 cart detected all seeded 
UXO, resulting in a Pd of 100% and a FAR of 487/acre. In comparison, the 
MetalMapper failed to detect two 37 mm projectiles seeded at 30 cm depths, 
resulting in a Pd of 99% and a FAR of 819/acre. Although the differences in Pd 
were not statistically significant, the MetalMapper’s FAR was almost twice as 
high as the EM61-Mk2 cart’s because its detection threshold was set much 
closer to the noise floor. Furthermore, had this been a real remediation project, 
stakeholders would have been troubled by the MetalMapper’s inability to detect 
two seeds. The somewhat wider lane spacing used by the MetalMapper (0.75 m 
versus the 0.5 m for the EM61-Mk2) and the presence of one degraded 
MetalMapper triaxial receive coil may have contributed to the missed 
detections. 

2. The EM61-Mk2 cart exhibited poor classification performance. The EM61-
Mk2 analyses resulted in the incorrect classification of many TOIs and/or only a 
small reduction in the number of Non-TOI digs. This was likely because size is 
the only target characteristic that could be accurately estimated from the EM61-
Mk2 data. Unfortunately, size was not a particularly useful feature at the former 
Camp Butner because so many TOIs were the same size as Non-TOIs.  
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3. The MetalMapper in dynamic mode showed better classification 
performance than the EM61-Mk2 cart. In comparison to the EM61-Mk2 
analyses, the dynamic MetalMapper analyses often led to more TOIs correctly 
classified and/or greater reductions in the number of Non-TOI digs. The 
multiple, triaxial receive coils employed by the MetalMapper in dynamic mode 
likely led to a better relative cross-track position accuracy in the collected data, 
which led to more constrained estimates of the individual polarizabilities of the 
buried target. This, in turn, led to more accurate estimates of the target’s size, as 
well as its shape and material composition/wall thickness. (The material 
composition/wall thickness estimate, however, was not a particularly 
discriminating feature for this instrument, given the short time window over 
which the received signal was sampled.) 

4. The MetalMapper in static mode provided more accurate classification 
than in dynamic mode. Some static MetalMapper analyses led to the correct 
classification of most or all TOIs while reducing the number of Non-TOI digs 
by over 50%. This was likely due to three reasons:  

a. In static mode, the buried target was fully illuminated by all three 
orthogonal transmit coils, leading to more accurate estimates of the 
individual polarizabilities of the buried target, which in turn led to more 
accurate estimates of the target’s size, shape, and material composition/wall 
thickness.  

b. The extended time gates used in static mode allowed a more accurate 
estimate of the decays of the target’s polarizabilities at the later times where 
differences in material composition and wall thickness between TOIs and 
Non-TOIs become more evident.  

c. The static data used a larger stacking factor than the dynamic data, resulting 
in a higher SNR. 

5. The TEMTADS outperformed the MetalMapper in static mode. Most 
TEMTADS analyses resulted in the correct classification of all TOIs while 
reducing the number of Non-TOI digs by more than 90%. This is likely due to 
the extended time gates used by the TEMTADS, as well as the careful field 
technique of the TEMTADS data-collection team. 

6. Classification algorithms did not have a large effect on classification 
performance, all other factors being equal. Analyses based on the same data 
sets, geophysical inversions, feature selections, and training sets often led to 
very similar results, even when different classification algorithms were used 
(e.g., statistical classifier, library matcher, library matcher coupled with human 
expert, etc.).  
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7. Partial static data requests were not helpful. Analyses based on static data 
from only some anomalies exhibited much poorer performance than those based 
on static data from all anomalies, with what would be very little reduction in 
cost in a real remediation project. In some cases, TOIs were misclassified based 
solely on the EM61-Mk2 dynamic data, before the higher resolution static data 
were even requested. 

8. Custom training data requests were helpful. In general, custom training sets 
were smaller than the Standard Training Set. This would reduce costs in a real 
remediation project, since fewer targets would have to be recovered to provide 
training data for algorithm optimization. Furthermore, custom training sets 
generally consisted of a larger percentage of TOIs than the Standard Training 
Set because the classification analyst teams often requested ground truth on 
representative anomalies from each cluster in multidimensional feature space. 

9. Commercial geophysics companies performed well. The commercial 
companies were mentored by organizations with more experience in UXO 
classification. In two cases, the commercial companies outperformed their 
mentors. This may have been because the commercial companies focused their 
time and resources on fewer types of analyses. 

10. Second-pass analyses led to improvements in classification performance. 
Two classification analyst teams refined their classification algorithms once 
ground truth became known for anomalies that were dug based on the first pass 
of analyses. This more closely mimics what could occur in a real remediation 
project. Second-pass analyses, coupled with UXO seeding, could allow 
stakeholders to have more confidence in the final don’t dig threshold. 

11. The number of dipole sources assumed by geophysical inversion routines 
did not have a large effect on classification performance. Analyses based on 
the same data sets, dipole models, feature selections, classification algorithms, 
and training sets often led to very similar results, even when different 
assumptions were made about the number of dipole sources per anomaly.  

12. Advanced geophysical models led to excellent results. These models were 
inspired by nonhomogeneous targets in the near field of the sensor, as well as 
multiple, closely spaced targets leading to overlapping anomalies. These models 
assumed multiple non-dipole sources for each anomaly. The former Camp 
Butner was a challenging enough site such that high-quality data alone did not 
consistently lead to excellent results—advanced data-processing techniques 
were also necessary.  
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B. Recommendations 

1. Sufficient time and resources for quality control should be built in to future 
demonstration plans. At the former Camp Butner, quality control checks at 
ESTCP and IDA promptly caught problems related to data collection and 
anomaly detection, such that those problems could be swiftly addressed. This is 
especially important for dual-mode instruments like the MetalMapper, in which 
stakeholders may feel tempted to schedule little time between collecting 
dynamic and static data.  

2. Custom training data requests should be used in future demonstrations. At 
the former Camp Butner, these requests led to smaller and more TOI-laden 
training sets than the Standard Training Set, which would reduce costs in a real 
remediation project. The custom training data requests also allowed the 
classification analysts teams to identify the ground-truth labels of unknown 
clusters in multidimensional feature space. 

3. The classification analysis teams should be given the opportunity to 
perform multiple-pass analyses in future demonstrations. In the first few 
passes, ESTCP could provide feedback to the analyst regarding which seeded 
UXO were incorrectly classified at the analyst’s most recent don’t dig threshold. 
In essence, these seeded UXO would be added to the training set for the next 
pass of analysis. Once all seeded UXO were correctly classified, ESTCP could 
then begin providing feedback regarding the ground-truth labels of all anomalies 
that fell below the analyst’s most recent don’t dig threshold. The analyst could 
use this ground truth to re-optimize his or her classification algorithms and then 
apply these re-optimized algorithms to only those anomalies that rose above the 
most recent don’t dig threshold. This would mimic what could occur in a real 
remediation project, where feedback over multiple passes could give 
stakeholders more confidence in the final don’t dig threshold. 

4. Future demonstrations should seed UXO in randomly selected locations. In 
the past three demonstrations, IDA took care to select seed locations that were 
far from large anomalies representing native targets because classification 
technologies had not yet been shown to properly address overlapping anomalies. 
Advanced geophysical models are now being developed to address this issue. 

5. Future demonstrations should rank anomalies in reverse order on the 
ranked anomaly lists. The first anomaly on the list should be the first anomaly 
that is dug (i.e., the anomaly most likely to be a TOI). This would reduce 
confusion during tech transfer to stakeholders in real remediation projects. 

6. Classification analyst teams should be limited to only a handful of different 
types of classification analyses in future demonstrations. At the former Camp 



97 

Butner, commercial geophysics companies with little to no experience in UXO 
classification outperformed their mentors, even though their mentors had several 
years of experience in UXO classification. This is likely because the mentors 
performed too many types of analyses, spreading their time and resources too 
thin. 

7. More commercial geophysics companies should be encouraged to take part 
in future demonstrations. Participation in the demonstrations will be an 
excellent opportunity for training in UXO classification technology. This will 
jump-start tech transfer. 
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Appendix A. Classification Performance Curves 

EM61-Mk2 Dynamic Data 

 
Figure 60: NAEVA’s performance based on the decay rates of the peak amplitudes of the 
anomalies, measured from the EM61-Mk2 dynamic data with UX-Detect and UX-Process 

and classified with rules optimized over the standard training set. Identical to Figure 39 in 
the text. 

 
Figure 61: NAEVA’s performance based on the decay rates and footprints of the 

anomalies, measured from the EM61-Mk2 dynamic data with UX-Detect and UX-Process 
and classified with rules optimized over the standard training set. 
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Figure 62: NAEVA’s performance based on the peak amplitudes of the anomalies, 

measured from the EM61-Mk2 dynamic data with UX-Detect and UX-Process and classified 
with rules optimized over the standard training set. All anomalies in the standard test set 
were declared “Can’t Decide” (yellow) because the don’t dig threshold could not be set 

prospectively. Identical to Figure 40 in the text. 

 
Figure 63: Parson’s performance for its first retrospective analysis based on the decay 
rates of polarizabilities inverted from the EM61-Mk2 dynamic data using the UX-Analyze 

dipole model and classified with rules optimized over a custom training set. 
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Figure 64: Parson’s performance for its second retrospective analysis based on the decay 

rates of polarizabilities inverted from the EM61-Mk2 dynamic data using the UX-Analyze 
dipole model and classified with rules optimized over a custom training set. 

 
Figure 65: Parson’s performance for its third retrospective analysis based on the decay 
rates of polarizabilities inverted from the EM61-Mk2 dynamic data using the UX-Analyze 

dipole model and classified with rules optimized over a custom training set. 
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Figure 66: Parson’s performance for its fourth retrospective analysis based on the decay 
rates of polarizabilities inverted from the EM61-Mk2 dynamic data using the UX-Analyze 

dipole model and classified with rules optimized over a custom training set. 

 
Figure 67: Parson’s performance for its fifth retrospective analysis based on the decay 
rates of polarizabilities inverted from the EM61-Mk2 dynamic data using the UX-Analyze 

dipole model and classified with rules optimized over a custom training set. 
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Figure 68: Parson’s performance for its sixth retrospective analysis based on the decay 
rates of polarizabilities inverted from the EM61-Mk2 dynamic data using the UX-Analyze 

dipole model and classified with rules optimized over a custom training set. 

 
Figure 69: Parson’s performance for its seventh retrospective analysis based on the decay 

rates of polarizabilities inverted from the EM61-Mk2 dynamic data using the UX-Analyze 
dipole model and classified with rules optimized over a custom training set. 
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Figure 70: Parson’s performance for its eighth retrospective analysis based on the decay 
rates of polarizabilities inverted from the EM61-Mk2 dynamic data using the UX-Analyze 

dipole model and classified with rules optimized over a custom training set. 

 
Figure 71: Parson’s performance for its ninth retrospective analysis based on the decay 
rates of polarizabilities inverted from the EM61-Mk2 dynamic data using the UX-Analyze 

dipole model and classified with rules optimized over a custom training set. 
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Figure 72: Parson’s performance for its 10th retrospective analysis based on the decay 
rates of polarizabilities inverted from the EM61-Mk2 dynamic data using the UX-Analyze 

dipole model and classified with rules optimized over a custom training set. 

 
Figure 73: SAIC’s performance for a retrospective analysis based on amplitudes and 

decay rates of polarizabilities inverted from the EM61-Mk2 dynamic data using the UX-
Analyze/IDL multi-source dipole model and classified with a rules-based library matcher 

optimized over the standard training set. Identical to Figure 41 in the text. 
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Figure 74: Sky’s performance based on amplitudes and decay rates of polarizabilities 
inverted from the EM61-Mk2 dynamic data using the UXOLab single-source and two-

source dipole models and classified with a statistical classifier optimized over an existing 
library. Identical to Figure 42 in the text. 

MetalMapper Dynamic Data 

 
Figure 75: Sky’s performance based on amplitudes and decay rates of polarizabilities 

inverted from the MetalMapper dynamic data using the UXOLab single-source and two-
source dipole models and classified with a library matcher optimized over a custom 

training set. Identical to Figure 55 in the text. 
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Figure 76: Sky’s performance based on the sum and decay rates of polarizabilities 

inverted from the MetalMapper dynamic data using the UXOLab single-source and two-
source dipole models and classified with a library matcher optimized over a custom 

training set, coupled with a human expert. Identical to Figure 56 in the text. 

 
Figure 77: Sky’s performance based on amplitudes and decay rates of polarizabilities 

inverted from the MetalMapper dynamic data using the UXOLab single-source and two-
source dipole models and classified with a statistical classifier optimized over a custom 

training set. Identical to Figure 43 in the text. 
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Figure 78: Sky’s performance based on amplitudes and decay rates of polarizabilities 

inverted from the MetalMapper dynamic data using the UXOLab single-source and two-
source dipole models and classified with a statistical classifier optimized over a custom 
training set. This second-pass custom training set consisted of those anomalies that fell 
below the don’t dig threshold in the previous figure, as well as (in error) some anomalies 

that rose above threshold. 

MetalMapper Static Data 

 
Figure 79: CH2M HILL’s performance based on polarizabilities inverted from the 

MetalMapper static data using the UXOLab single-source and two-source dipole models 
and classified with a library matcher optimized over a custom training set. Identical to 

Figure 54 in the text. 
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Figure 80: CH2M HILL’s performance based on polarizabilities inverted from the 

MetalMapper static data using the UXOLab single-source and two-source dipole models 
and classified with a library matcher optimized over a custom training set, coupled with a 

human expert. 

 
Figure 81: Dartmouth’s performance based on full curves inverted from the MetalMapper 
static data using the OVNMS non-dipole model and classified with a statistical classifier 

optimized over a custom training set. Identical to Figure 59 in the text. 
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Figure 82: Geometrics’ performance based on polarizabilities inverted from the 

MetalMapper static data using the MMRMP single-source dipole model and classified with 
an artificial neural network optimized over the standard training set. 

 
Figure 83: Geometrics’ performance based on polarizabilities inverted from the 

MetalMapper static data using the MMRMP single-source dipole model and classified with 
an artificial neural network and rules optimized over the standard training set. 
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Figure 84: Geometrics’ performance based on polarizabilities inverted from the 

MetalMapper static data using the MMRMP single-source dipole model and classified with 
an artificial neural network, rules, and a library matcher optimized over the standard 

training set. 

 
Figure 85: NAEVA’s performance for a retrospective analysis based on polarizabilities 

inverted from the MetalMapper static data using the UX-Analyze single-source and multi-
source dipole model and classified with a rules-based library matcher optimized over the 

standard training set. Only one stage of rules was used. 
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Figure 86: NAEVA’s performance for a retrospective analysis based on polarizabilities 

inverted from the MetalMapper static data using the UX-Analyze single-source and multi-
source dipole model and classified with a rules-based library matcher optimized over the 

standard training set. Two stages of rules were used; the second stage used only the 
polarizability amplitudes. 

 
Figure 87: NAEVA’s performance for a retrospective analysis based on polarizabilities 

inverted from the MetalMapper static data using the UX-Analyze single-source and multi-
source dipole model and classified with a rules-based library matcher optimized over the 

standard training set. Two stages of rules were used; the second stage used only the 
polarizability amplitudes and ratios. Identical to Figure 52 in the text. 
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Figure 88: SAIC’s performance based on amplitudes, ratios, and decay rates of 

polarizabilities inverted from the MetalMapper static data using an IDL single-source 
dipole model and classified with a rules-based library matcher optimized over an existing 

library. Identical to Figure 50 in the text. 

 
Figure 89: SAIC’s performance based on amplitudes, ratios, and decay rates of 

polarizabilities inverted from the MetalMapper static data using an IDL single-source 
dipole model and classified with a rules-based library matcher optimized over a custom 

training set. This second-pass custom training set was built from the “Likely TOI” 
anomalies in the previous figure. Identical to Figure 51 in the text. 
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Figure 90: SAIC’s performance based on amplitudes, ratios, and decay rates of 

polarizabilities inverted from the MetalMapper static data using an IDL single-source 
dipole model and classified with a rules-based library matcher optimized over a custom 

training set. Two polarizability ratios were used. 

 
Figure 91: SAIC’s performance based on amplitudes, ratios, and decay rates of 

polarizabilities inverted from the MetalMapper static data using an IDL single-source 
dipole model and classified with a rules-based library matcher optimized over a custom 

training set. One polarizability ratio was used. 
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Figure 92: Sky’s performance based on full polarizability curves inverted from the 

MetalMapper static data using the UXOLab single-source and two-source dipole models 
and classified with a library matcher optimized over a custom training set. Identical to 

Figure 53 in the text. 

 
Figure 93: Sky’s performance based on full polarizability curves inverted from the 

MetalMapper static data using the UXOLab single-source and two-source dipole models 
and classified with a statistical classifier optimized over a custom training set. Identical to 

Figure 44 in the text. 
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Figure 94: Sky’s performance based on full polarizability curves inverted from the 

MetalMapper static data using the UXOLab single-source and two-source dipole models 
and classified with a statistical classifier optimized over a custom training set. This 

second-pass custom training set consisted of those anomalies that fell below the don’t dig 
threshold in the previous figure, as well as (in error) some anomalies that rose above 

threshold. 

EM61-Mk2 Dynamic Data with MetalMapper Static Data Requests 

 
Figure 95: Parsons’ performance based on polarizabilities inverted from the EM61-Mk2 
dynamic data and requested MetalMapper static data using the UX-Analyze multisource 

dipole model and classified with a library matcher optimized over an existing library. The 
library included all targets (TOI and Non-TOI) built in to UX-Analyze. 
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Figure 96: Parsons’ performance based on polarizabilities inverted from the EM61-Mk2 
dynamic data and requested MetalMapper static data using the UX-Analyze multisource 

dipole model and classified with a library matcher optimized over an existing library. The 
library included all targets (TOI and Non-TOI) built in to UX-Analyze, except for 20 mm 

projectiles.  

 
Figure 97: Parsons’ performance based on polarizabilities inverted from the EM61-Mk2 
dynamic data and requested MetalMapper static data using the UX-Analyze multisource 

dipole model and classified with a rules-based library matcher optimized over an existing 
library. The library included M48 fuzes, 2.36 in rockets, 37 mm projectiles, 40 mm 

projectiles, 81 mm mortars, 105 mm projectiles, and 155 mm projectiles, as well as all Non-
TOIs built in to UX-Analyze. 
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Figure 98: Parsons’ performance based on a revised version of the analysis illustrated in 

the previous figure. 

 
Figure 99: Parsons’ performance based on polarizabilities inverted from the EM61-Mk2 
dynamic data and requested MetalMapper static data using the UX-Analyze multisource 

dipole model and classified with a library matcher optimized over an existing library. The 
library included M48 fuzes, 2.36 in rockets, 37 mm projectiles, 40 mm projectiles, 81 mm 

mortars, 105 mm projectiles, and 155 mm projectiles; no Non-TOIs were included. 
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Figure 100: SAIC’s performance based on amplitudes, ratios, and decay rates of 

polarizabilities inverted from the EM61-Mk2 dynamic data and requested MetalMapper 
static data using the UX-Analyze/IDL multisource dipole model and classified with a rules-

based library matcher optimized over an existing library. 

 
Figure 101: Sky’s performance based on polarizabilities inverted from the EM61-Mk2 

dynamic data and the requested MetalMapper static data using the UXOLab single-source 
and two-source dipole models and classified with a statistical classifier optimized over a 

custom training set. 
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TEMTADS Static Data 

 
Figure 102: Dartmouth’s performance based on full curves inverted from the TEMTADS 
static data using the OVNMS non-dipole model and classified with a statistical classifier 

optimized over a custom training set. Identical to Figure 58 in the text. 

 
Figure 103: SAIC’s performance based on amplitudes, ratios, and decay rates of 

polarizabilities inverted from the MetalMapper static data using the UX-Analyze/IDL 
multisource dipole model and classified with a rules-based library matcher optimized over 

an existing library. Identical to Figure 48 in the text. 
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Figure 104: SAIC’s performance based on amplitudes, ratios, and decay rates of 

polarizabilities inverted from the MetalMapper static data using an IDL single-source 
dipole model and classified with a rules-based library matcher optimized over an existing 

library. Identical to Figure 57 in the text.  

 
Figure 105: SAIC’s performance based on amplitudes, ratios, and decay rates of 

polarizabilities inverted from the MetalMapper static data using an IDL single-source 
dipole model and classified with a rules-based library matcher optimized over a custom 

training set. This second-pass custom training set was built from the “Likely TOI” 
anomalies in the previous figure. 
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Figure 106: SAIC’s performance based on amplitudes, ratios, and decay rates of 

polarizabilities inverted from the MetalMapper static data using an IDL single-source 
dipole model and classified with a rules-based library matcher optimized over a custom 

training set. Two polarizability ratios were used. 

 
Figure 107: SAIC’s performance based on amplitudes, ratios, and decay rates of 

polarizabilities inverted from the MetalMapper static data using an IDL single-source 
dipole model and classified with a rules-based library matcher optimized over a custom 

training set. One polarizability ratio was used. 
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Figure 108: SIG’s performance based on its first retrospective analysis of polarizabilities 
inverted from a dipole model and classified with a statistical classifier optimized over a 

custom training set. 

 
Figure 109: SIG’s performance based on its second retrospective analysis of 

polarizabilities inverted from a dipole model and classified with a statistical classifier 
optimized over a custom training set. 
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Figure 110: Sky’s performance based on full polarizability curves inverted from the 

TEMTADS static data using the UXOLab single-source and two-source dipole models and 
classified with a library matcher optimized over a custom training set. 

 
Figure 111: Sky’s performance based on full polarizability curves inverted from the 

TEMTADS static data using the UXOLab single-source and two-source dipole models and 
classified with a statistical classifier optimized over a custom training set. Identical to 

Figure 45 in the text. 
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Figure 112: Sky’s performance based on full polarizability curves inverted from the 

TEMTADS static data using the UXOLab single-source and two-source dipole models and 
classified with a statistical classifier optimized over a custom training set. This second-

pass custom training set consisted of those anomalies that fell below the don’t dig 
threshold in the previous figure, as well as (in error) some anomalies that rose above 

threshold. 

EM61-Mk2 Dynamic Data with TEMTADS Static Data Requests 

 
Figure 113: SAIC’s performance based on amplitudes, ratios, and decay rates of 

polarizabilities inverted from the EM61-Mk2 dynamic data and requested TEMTADS static 
data using the UX-Analyze/IDL multisource dipole model and classified with a rules-based 

library matcher optimized over an existing library. Identical to Figure 47 in the text. 
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Figures 

Figure 1: An aerial photograph of the former Camp Butner. Taken from [29]. ..................7 

Figure 2: A photograph of the former Camp Butner. Taken from [29]. ..............................8 

Figure 3: An aerial photograph of the former Camp Butner. Transect lines are marked in 
brown. Green squares mark potential grids for intrusive investigation. Taken from 
[29]. .............................................................................................................................9 

Figure 4: An aerial photograph of the former Camp Butner. The initial EM61-Mk2 data 
map (lower coil, second time gate) is overlaid before seeding. The selected 
demonstration area is outlined in blue in the northeast section of the site. Taken 
from [29]. ....................................................................................................................9 

Figure 5: A close-up view of one 30 m  30 m grid in the initial EM61-Mk2 data map 
(lower coil, second time gate) before seeding. Native anomalies exceeding the 
threshold of 5 mV are shaded in color, and the background is shaded in gray. Pink, 
orange, and yellow circles of radius 1.2 m, 1.5 m, and 2.0 m mark the intended 
locations of 37 mm projectiles, 105 mm projectiles, and M48 fuzes, respectively. 
All intended seed locations are far from each other and any native anomaly. Taken 
from [32]. ..................................................................................................................13 

Figure 6: 3 mV contours traced along the estimated EM61-Mk2 signal amplitudes (lower 
coil, second time gate) for different UXO types seeded at their depths of interest, 
including: (left) a 105 mm projectile at 60 cm (2 ft), (middle) a 37 mm projectile at 
30 cm (1 ft), and (right) an M48 fuze at 30 cm (1 ft). Contours were estimated for 
each of three orthogonal orientations. Taken from [40]. ..........................................14 

Figure 7: The EM61-Mk2 sensor consists of a lower coil that transmits a primary 
electromagnetic field. Changes in the primary field induce eddy currents in the 
buried target. The eddy currents give rise to a secondary electromagnetic field. At 
the former Camp Butner, the strength of the secondary field through a second lower 
coil was measured at four time gates after the primary field was turned off. Taken 
from [48]. ..................................................................................................................18 
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