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SUMMARY 

The stability and thermochemistry of a proposed insensitive high energy density material 
(IHEDM) - 2-(nitroaminomethylene)-4,5-dinitrocyclopenta-3,5-diene-1,3-di-nitroamine (NDDN) - is 
assessed using the Density Functional Theory (DFT) as implemented in Gaussian03. The optimized 
structure of the proposed energetic, NDDN, is illustrated in fig. 1a and b. The DFT results demonstrate 
that NDDN is indeed stable on the molecular potential energy surface with energy density and heat of 
detonation characteristics superior to FOX-7, RDX, and HMX. In particular, NDDN possesses a 
molecular energy density 47% greater than 2,4-dinitroimidazole (2,4-DNI) and 19% greater than RDX, 
and a heat of detonation 38% greater than HMX. Gas-phase thermochemistry results and volumetric 
energy density calculations indicate that this molecule is superior overall to HMX; FOX-7; RDX; 2- 
methyl-4,5-dinitro-1,2,3-triazole-2-oxide (MDNTO); and 2,4-DNI and may also possess significant 
potential for applications where explosive or propellant properties may be pursued and tuned in a single 
molecular configuration. 

Top view of initial (unoptimized) NDDN structure 

Figure 1 
NDDN 



Top view of NDDN B3LYP/6-31g(d)-optimized structure 

Figure 1 
(continued) 

INTRODUCTION 

In organic chemistry, the structures of some rings of atoms are unexpectedly stable. Aromaticity 
is a chemical property in which a conjugated ring of unsaturated bonds, lone pairs, or empty orbitals 
exhibit stabilization stronger than would be expected by the stabilization of conjugation alone. It can 
also be considered a manifestation of cyclic delocalization and of resonance. Moreover, the presence of 
hydrogen bonding in molecules also signals greater stability than what would be expected. These 
characteristics ultimately equate to a general trend toward decreased impact and friction sensitivity 
when present in energetic materials. 

The NDDN is expected to possess equivalent insensitivities due to availability of inter- and intra- 
molecular hydrogen bonds and electron delocalization with enhanced volumetric power characteristics 
due to the additional molar volume of decomposition products. 



METHODS, ASSUMPTIONS, AND PROCEDURES 

Computational details: DFT was applied in this study as implemented in Gaussian03. For the 
Kohn-Sham Hamiltonian, a generalized gradient approximation is included in Becke's exchange 
correlation functional B3LYP. This three-parameter hybrid functional was paired with a valence double- 
zeta polarized basis set; i.e., 6-31g(d). This pairing represents a reasonable level of theory and basis 
set complexity that duplicates gas-phase heats of formation and heats of reaction for CNOH-containing 
molecules with good to excellent accuracy and precision. 

For calculation of the oxygen balance (OB), the following approach was used: for an explosive 
that contains some or all of the following atoms: aluminum, boron, carbon, calcium, chlorine, fluorine, 
hydrogen, potassium, nitrogen, sodium, and oxygen (with the formula AL Bb, Cc, Caca, Cld, Ff, Hh, Kk, 
Nana, O0), the oxygen balance (OB%) will be 

32{0.75al + 0.75b + lc + 0.5ca - 0.25cl - 0.25f + 0.25h + 0.25k + On + 0.2na - 0.5o} 
 • r- ;—; r-r  x 100 explosive molecular weight 

where the indices - al, b, c, ca, cl, f, h, k, n, na, and o - denote the number of atoms of each element in a 
mole of the explosive composition. The contribution of nitrogen to the oxygen balance is zero, since it 
does not bind to the other elements. 

The heats of reaction (i.e., detonation - AH°det) for the respective molecules were determined as 
AH°f (products) - AH°f (reactants) using the thermochemical output from the Gaussian DFT calculations. 

The molecular energy density values were calculated from the heats of reaction results and the 
molecular masses: Energy Density (KJ/gram) (KJ/mole) (moles/gram). 

The explosion of one mole of NDDN produces 12-molar volumes, as can be seen from the 
stochiometrically balanced equation shown in the next section. These molar volumes at 0°C and 
atmospheric pressure form an actual volume of (12 moles)(22.4 L/mole) = 268.8 L. Using Charles' law, 
this volume can be calculated for other temperatures; for example, at 15°C (288.15K), V15°c (22.4 
L/mole)(288.15/273.15) = 23.64 L/mole. Therefore, at 15°C, the volume of gas produced by the 
explosive decomposition of one mole of NDDN is: V15°c = (23.64 L/mole)(12 moles) = 283.7 L. As a 
measure of performance, the composite volumetric energy density (CVED, KJ-L/gram) = (Energy 
Density)(Volume of gas produced) was introduced. The CVED results are tabulated in table 2. 

RESULTS AND DISCUSSION 

The results of the normal mode analysis (fig. 2) for the proposed IHEDM structure yielded no 
imaginary frequencies for the 3N-6 vibrational degrees of freedom, where N is the number of atoms in 
the system. This indicates that the structure of the NDDN molecule corresponds to at least a local 
minimum on the potential energy surface. Figure 2 also includes the specific infrared and Raman 
frequencies for future reference should the synthesis and characterization of NDDN be pursued. 

In order to estimate the amount of energy available for release upon detonation, we need to 
apply the Kistiakowsky-Wilson rules, which state that (for an explosive with an oxygen balance (OB) not 
below -40%): 

1. Carbon atoms are converted to CO 
2. Any remaining oxygen is used to convert hydrogen atoms to H20 
3. Any oxygen remaining after no. 2 is satisfied is used to convert CO to C02 

4. All nitrogen atoms are converted to N2 
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Frequencies — 40.2205 
Red. masses — 12.8220 
Frc consts — 0.0122 
IR Inten 0.2696 
Raman Activ — 0.6378 
Depolar (P) — 0.5935 
Depolar (U) — 0.7449 

4 
A 

Frequencies — 65.2403 
Red. masses — 14.1189 
Frc consts — 0.0354 
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Raman Activ — 3.3768 
Depolar (P) — 0.4950 
Depolar (U) — 0.6622 
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Raman Activ — 0.8561 
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Figure 2 
Vibrational frequencies (normal modes) of NDDN 
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Frequencies  — 327.4994 333.1447 
Red.  masses  — 8.5377 11.5637 
Frc consts    — 0.5395 0.7562 
IR Inten 8.9168 1.9057 
Raman Activ -- 1.6950 8.8357 
Depolar   (P)   — 0.7295 0.2276 
Depolar   (U)   — 0.8436 0.3709 
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Frequencies  — 367.3987 384.6006 
Red.   masses — 10.9440 13.0952 
Frc consts 0.8704 1.1413 
IR Inten 2.8630 0.5872 
Raman Activ — 8.2802 1.8960 
Depolar   (P)   — 0.6060 0.4633 
Depolar   (Ü)   — 0.7546 0.6333 
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Frequencies  — 431.4174 456.6865 
Red.  masses — 5.0364 10.7273 
Frc consts 0.5523 1.3182 
IR Inten 10.9569 0.6149 
Raman Activ — 3.1202 0.3971 
Depolar   (P)   — 0.7467 0.3796 
Depolar   (U)   — 0.8550 0.5503 

28 29 
A A 

Frequencies — 562.0950 588.1004 
Red.  masses  — 10.3783 9.3183 
Frc  consts 1.9320 1.8989 
IR  Inten 5.8570 9.1201 
Raman Activ — 2.7047 2.6404 
Depolar   (P)   — 0.6981 0.5289 
Depolar   (U)   — 0.8222 0.6918 
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Frequencies  — 634.8467 649.8708 
Red.  masses  — 4.4393 2.2021 
Frc  consts 1.0541 0.5479 
IR Inten 11.9570 91.1772 
Raman Activ — 4.9116 3.6268 
Depolar   (P)   — 0.7335 0.7327 
Depolar   (U)   — 0.8463 0.8457 

Figure 2 
(continued) 
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Frequencies — 685.6373 702.5895 
Red. masses — 2.5096 6.0411 
Frc consts — 0.6951 1.7570 
IR Inten 65.3439 9.4549 
Raman Activ — 1.1579 8.7904 
Depolar (P) — 0.6684 0.3625 
Depolar (Ü) — 0.8013 0.5321 
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Frequencies — 731.2313 750.4892 
Red. masses — 2.9369 11.8731 
Frc consts — 0.9252 3.9401 
IR Inten 37.5275 26.4467 
Raman Activ — 6.9169 0.4674 
Depolar (P) — 0.6545 0.7493 
Depolar (Ü) — 0.7912 0.8567 
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Frequencies — 767.4133 773.4091 
Red. masses — 9.0291 11.7888 
Frc consts  — 3.1329 4.1547 
IR Inten 25.8503 8.2245 
Raman Activ — 13.5921 5.8327 
Depolar (P) — 0.6634 0.5018 
Depolar (U) — 0.7976 0.6683 
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Frequencies — 804.7028 815.4206 
Red. masses — 8.1800 4.4824 
Frc consts 3.1209 1.7560 
IR Inten 3.4175 27.7492 
Raman Activ — 1.7660 30.4917 
Depolar (P) — 0.6322 0.1226 
Depolar (U) — 0.7746 0.2184 
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Frequencies — 852.6867 861.4947 
Red. masses — 3.2893 2.1627 
Frc consts 1.4091 0.9457 
IR Inten 64.3149 68.2299 
Raman Activ — 5.9736 10.9597 
Depolar (P) — 0.1297 0.0845 
Depolar (U) — 0.2296 0.1559 

Figure 2 
(continued) 
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Frequencies — 931.7512 1015.7531 
Red. masses — 5.5198 3.5300 
Frc consts 2.8234 2.1459 
IR Inten 74.1715 99.3594 
Raman Activ — 18.1742 17.2519 
Depolar (P) — 0.1022 0.7275 
Depolar (U) — 0.1854 0.8423 
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Frequencies — 1044.7612 1131.1733 
Red. masses — 4.9420 6.2876 
Frc consts 3.1782 4.7401 
IR Inten 67.0061 0.5181 
Raman Activ — 18.1619 12.9082 
Depolar (P) — 0.1566 0.5318 
Depolar (Ö) — 0.2708 0.6943 
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Frequencies — 1277.9646 1327.6400 
Red. masses — 5.4339 11.5920 
Frc consts 5.2288 12.0384 
IR Inten 116.8081 457.7979 
Raman Activ — 59.8540 50.9228 
Depolar (P) — 0.6111 0.7499 
Depoiar (U) — 0.7586 0.8571 
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Frequencies — 1357.1637 1358.3239 
Red. masses — 6.4026 5.2155 
Frc consts 6.9482 5.6696 
IR Inten 174.1773 253.4733 
Raman Activ — 256.1593 40.2693 
Depolar (P) — 0.2153 0.6082 
Depolar (U) — 0.3544 0.7564 
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A A 

Frequencies — 1389.4797 1419.3324 
Red. masses — 4.0400 9.8149 
Frc consts 4.5955 11.6494 
IR Inten 112.8569 90.3230 
Raman Activ — 58.7947 180.2683 
Depolar (P) — 0.6246 0.7064 
Depolar (U) — 0.7690 0.8279 

Figure 2 
(continued) 
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Frequencies — 1467.5196 1498.0370 
Red. masses — 2.3115 4.2112 
Frc consts 2.9330 5.5680 
IR Inten 78.4187 136.6105 
Raman Activ — 38.8669 153.4496 
Depolar (P) -- 0.2708 0.7335 
Depolar (U) — 0.4262 0.8463 
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Frequencies — 1567.6053 1578.9661 
Red. masses — 5.3999 1.9092 
Frc consts 7.8182 2.8044 
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Raman Activ — 35.2618 128.7755 
Depolar (P) — 0.1963 0.1474 
Depolar (U) — 0.3282 0.2570 
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Raman Activ — 28.1588 4.0576 
Depolar (P) — 0.2861 0.7377 
Depolar (U) — 0.4449 0.8490 
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Red. masses — 4.6617 3.7255 
Frc consts 8.1366 6.5938 
IR Inten 211.2769 331.6401 
Raman Activ — 2.1084 1.5244 
Depolar (P) — 0.7467 0.7498 
Depolar (U) — 0.8550 0.8570 
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Frequencies — 3441.0439 3456.7584 
Red. masses — 1.0749 1.0795 
Frc consts 7.4990 7.6002 
IR Inten 97.8640 134.8380 
Raman Activ — 55.6355 75.7838 
Depolar (P) — 0.1247 0.1134 
Depolar (U) — 0.2217 0.2037 

Figure 2 
(continued) 
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NDDN: C6N8O10H4 

FOX-7: C2N4O4H4 

2,4-DNI: C3N404H2 

RDX: C3N606H6 

HMX: C405N5H3 

MDNTO: C3O5N5H3 

Applying these rules to NDDN, FOX-7, RDX, and HMX, the following ratios of detonation 
products are predicted: 

4CO + 2H20 + 2C02 + 4N2 

2CO + 2H20 + 2N2 

3CO+ 1H20 + 2N2 

3CO + 3H20 + 3N2 

4CO + 4H20 + 4N2 

2CO + 3/2(H20) + 5/2(N2) + 3/4(C02) + %(C) 

From this information and the DFT calculated heats of formation of the reactants and products, 
the heat of reaction (i.e., detonation) can be determined as follows: 

AH°det(NDDN) = [4AH°f(CO) + 2AH°f(H20) + 2AH°f(C02) + 4AH°f(N2)] - [-AH°f(NDDN)] 

AH°det(FOX-7) = 2AH°f(CO) + 2AH°f(H20) + 2AH°,(N2) - [-AH°f(FOX-7)] 

AH°de,(2,4-DNI) = 3AH°f(CO) + 1 AH°f(H20) + 2AH°,(N2) - [-AH°f(2,4-DNI)] 

AH°de,(RDX) = 3AH°,(CO) + 3AH°f(H20) + 3AH°f(N2) - [-AH°f(RDX)] 

AH°det(HMX) = 4AH°f(CO) + 4AH°f(H20) + 4AH°,(N2) - [-AH°f(HMX)] 

AH°de,(MDNTO) = 2AH°,(CO) + 3/2AH°,(H20) + 5/2AH°f(N2) + 3/4AH°,(C02) + %(C) - [-AH°,(MDNTO)] 

The heats of detonation for these molecules, as well as their products, are reported as the "sum 
of electronic and thermal energies" in atomic units (i.e., Hartrees) via the thermochemistry output 
calculated at the B3LYP/6-31g(d) level of theory (tables 1 and 2). 

Table 1 
Thermochemistry output for detonation products 

MW AH°,(au)* 
co2 44 -188.567 
CO 28 -113.302 
H20 18 -76.385 
N2 28 -109.516 
C 12 -37.844 

*Sum of electronic and thermal energies as reported from the Gaussian03 DFT thermochemistry results. 



Table 2 
ADAND, FOX-7, RDX, HMX, MDNTO, and 2,4-DNI thermochemistry output and theoretical 

performance parameters 

AH°f (au)* MW OB (%) 
AH det 

(au/KJ/mole) 
Energy density 

(KJ/g) Volume (L) 
CVED 

(KJ-Ug) 
ADAND -1420.518 348 -27.6 -0.658/-1728 5.0 283.68 1418 
FOX-7 -598.208 148 -21.6 -0.198/-519 3.5 141.84 496 
2,4-DNI -635.118 158 -30.4 -0.205/-538 3.4 141.84 482 
RDX -897.253 222 -21.6 -0.356/-935 4.2 212.76 894 
HMX -1196.336 296 -21.6 -0.476/-1250 4.2 283.68 1191 
MDNTO -765.549 189 -1.3 -0.310/-814 4.3 159.57 686 

*Sum of electronic and thermal energies as reported from the Gaussian03 DFT thermochemistry results. 

Note: Volume of gases calculated at 15°C. 

Note that these calculations are based on rather idealized gas-phase enthalpies, and in reality, 
other factors such as phase transition from solid state to gaseous state, crystal and crystal packing 
density will be important. The point is that the AH°det calculations are not necessarily to be taken in the 
absolute sense, but considered as a relative trend. In this way, more meaningful conclusions can be 
extracted from the data. 

CONCLUSIONS 

The Density Functional Theory results of this study indicate that the newly proposed high energy 
density material, 2-(nitroaminomethylene)-4,5-dinitrocyclopenta-3,5-diene-1,3-di-nitroamine (NDDN), 
has a molecular energy density nearly 43% greater than FOX-7 and 19% greater than either RDX or 
HMX. Further, the composite volumetric energy density of NDDN is approximately 194% greater than 
2,4-dinitroimidazole, 186% greater than FOX-7, and 19% greater than HMX. The optimized structure is 
stable on the molecular potential energy surface, as evidenced by the absence of any imaginary 
frequencies. 
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