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Abstract. The sample average approximation approach to solving stochastic programs

induces a sampling error, caused by replacing an expectation by a sample average, as well

as an optimization error due to approximating the solution of the resulting sample average

problem. We obtain an estimator of the optimal value of the original stochastic program after

executing a finite number of iterations of an optimization algorithm applied to the sample

average problem. We examine the convergence rate of the estimator as the computing budget

tends to infinity, and characterize the allocation policies that maximize the convergence rate

in the case of sublinear, linear, and superlinear convergence regime for the optimization

algorithm.

1 Introduction

Sample average approximation (SAA) is a frequently used approach to solving stochastic

programs where an expectation of a random function in the objective function is replaced

by a sample average obtained by Monte Carlo sampling. The approach is appealing due

to its simplicity and the fact that a large number of standard optimization algorithms are

often available to optimize the resulting sample average problem. It is well known that

under relatively mild assumptions global and local minimizers as well as stationary points

of the sample average problem and the corresponding objective function values tend to the

corresponding points and values of the stochastic program almost surely as the sample size

increases to infinity. The asymptotic distribution of minimizers, minimum values, and related

quantities for the sample average problem are also known under additional assumptions. We

refer to Chapter 5 of [30] for a comprehensive presentation of results and [32, 29] for recent

advances.
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In view of the prevalence of uncertainty in planning problems, stochastic programs

are formulated and solved by the SAA approach in a broad range of applications such as

stochastic vehicle allocation and routing [21, 31, 20], electric power system planning [21, 20],

telecommunication network design [21, 20], financial planning [28, 1, 32], inventory control

[32], mixed logit estimation models [4], search theory [29], and engineering design [27, 29].

A main difficulty with the approach concerns the selection of an appropriate sample

size. At one end, a large sample size provides small discrepancy in some sense between the

stochastic program and the sample average problem, but results in a high computational

cost as objective function and (sub)gradient evaluations in the sample average problem

involve the averaging of a large number of quantities. At the other end, a small sample

size is computationally inexpensive as the objective function and (sub)gradient evaluations

in the sample average problem can be computed quickly, but yields poor accuracy as the

sample average only coarsely approximates the expectation. It is usually difficult to select a

sample size that balances accuracy and computational cost without extensive trial and error.

This paper examines different policies for sample-size selection given a particular computing

budget.

The issue of sample-size selection arises in most applications of the SAA approach.

In this paper, however, we focus on stochastic programs where the corresponding sample

average problems are solvable by a deterministic optimization algorithm with known rate

of convergence such as in the case of subgradient, gradient, and Newtonion methods. This

situation includes, for example, two-stage stochastic programs with continuous first-stage

variables and a convex recourse function [15], conditional value-at-risk models [28, 32], and

programs with convex smooth random functions. We do not deal with integer restrictions,

which usually imply that the sample average problem is solvable in finite time, and random

functions whose evaluation, or that of its subgradient, gradient, and Hessian (when needed),

is difficult due to an unknown probability distribution or other complications. We also do

not deal with chance constraints, i.e., situations where the feasible region is given in terms

of random functions; see for example Chapter 4 of in [30]. We observe that there are several

other approaches to solving stochastic programs (see for example [10, 14, 13, 17, 2, 3, 16, 24,

22]). However, this paper deals with the SAA approach exclusively.

There appears to be only a few studies dealing with the issue of determining a com-

putationally efficient sample size within the SAA approach. Sections 5.3.1 and 5.3.2 of [30]

provide estimates of the required sample size to guarantee that a set of near-optimal solu-

tions of the sample average problem is contained in a set of near-optimal solutions of the

stochastic program with a given confidence. While these results provide useful insights about

the complexity of solving the stochastic program, the sample-size estimates are typically too

conservative for practical use. The authors of [5] efficiently estimate the quality of a given
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sequence of candidate solutions by Monte Carlo sampling using heuristically derived rules for

selecting sample sizes, but do not deal with the sample size needed to generate the candidate

solutions.

In the context of a variable SAA approach, where not only one, but a sequence of

sample average problems are solved with increasing sample size, [26] constructs open-loop

sample-size control policies using a discrete-time optimal control model. That study deals

with linearly convergent optimization algorithms and cannot guarantee that the sample-size

selections are optimal in some sense. However, the resulting sample-size control policies

appear to lead to substantial computational savings over alternative selections.

The recent paper [25] also deals with a variable SAA approach. It defines classes of

“optimal sample sizes” that best balance, in some asymptotic sense, the sampling error due

to the difference between the stochastic program and the sample average problem with the

optimization error caused by approximate solution of the sample average problems by an

optimization algorithm. If the rate of convergence of the optimization algorithm is high,

the optimization error will be small relative to that generated by an optimization algorithm

with slower rate for a given computing budget. The paper [25] gives specific guidance how to

select sample sizes tailored to optimization algorithm with sublinear, linear, and superlinear

rate of convergence.

The simulation and simulation optimization literature (see [7] for a review) deals with

how to optimally allocate effort across different task within the simulation given a specific

computing budget. The allocation may be between exploration of different designs and

estimation of objective function values at specific designs as in global optimization [9, 12],

between estimation of different random variables nested by conditioning [19], or between

estimation of different expected system performances in ranking and selection [8]. These

studies typically define an optimal allocation as one that makes the estimator mean-squared

error vanish at the fastest possible rate as the computing budget tends to infinity.

The present paper is related to these studies from the simulation and simulation opti-

mization literature, and in particular the recent paper [25]. As in [25], we consider optimiza-

tion algorithms with sublinear, linear, and superlinear rate of convergence for the solution

of the sample average problem. However, we adopt more specific assumptions regarding

these rates than in [25] and consider errors in objective function values instead of solutions,

which allow us to avoid the potentially restrictive assumption about uniqueness of optimal

solutions. Our assumptions are satisfied by standard optimization algorithms such as many

subgradient, gradient, and Newtonian methods and allow us to develop refined results re-

garding the effect of various sample-size selection policies. For algorithms with a sublinear

rate of convergence with optimization error of order n−p, where n is the number of itera-

tions, we examine the effect of the parameter p > 0. For linear algorithms with optimization
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error of order θn, we study the influence of the rate of convergence coefficient θ ∈ (0, 1).

For superlinear algorithms with optimization error of order θψ
n
, the focus is on the power

ψ > 1 and also the secondary effect due to θ > 0. We determine the rate of convergence of

the SAA approach as the computing budget tends to infinity, accounting for both sampling

and optimization errors. Specifically, we view the value obtained after a finite number of

iterations of an optimization algorithm as applied to a sample average problem with a finite

sample size as an estimator of the optimal value of the original stochastic program, and

examine the convergence rate of the estimator as the computing budget tends to infinity.

To our knowledge, there has been no systematic study of this estimator, its convergence

rate, and the influence of various sample-size selection policies on the rate. We determine

optimal policies in a sense described below that lead to rates of convergence of order c−ν for

0 < ν < 1/2, (c/ log c)−1/2, and (c/ log log c)−1/2 as the computing budget c tends to infinity

for sublinear, linear, and superlinear optimization algorithm, respectively. In the linear case,

we also determine a policy with rate of convergence similar to the sublinear case that is

robust to parameter misspecification.

The paper is organized as follows. The next section presents the stochastic program, the

associated sample average problem, as well as underlying assumptions. Sections 3 to 5 con-

sider the cases with sublinear, linear, and superlinear rate of convergence of the optimization

algorithm, respectively. Section 6 presents numerical examples illustrating the sample-size

selection policies.

2 Problem Statement and Assumptions

We consider a probability space (Ω,F , IP), with Ω ⊂ IRk, a nonempty compact subset

X ⊂ IRd, and the function f : X → IR defined by

f(x) = IE[F (x, ω)],

where IE denotes the expectation with respect to IP and F : IRd × Ω → IR is a random

function. The following assumption, which ensures that f(·) is well-defined and finite valued

as well as other properties, is used throughout the paper.

Assumption 1 We assume that

(i) the expectation IE[F (x, ω)2] <∞ for all x ∈ X and

(ii) there exists a measurable function C : Ω → IR+ such that IE[C(ω)2] <∞ and

|F (x, ω)− F (x′, ω)| ≤ C(ω)∥x− x′∥

for all x, x′ ∈ X and almost every ω ∈ Ω.

4



In view of Theorems 7.43 and 7.44 in [30], f(·) is well-defined, finite-valued, and Lipschitz

continuous on X. We observe that weaker assumptions suffice for these properties to hold;

see [30], pp. 368-369. However, in this paper we utilize a central limit theorem and therefore

adopt these light-tail assumptions from the beginning for simplicity of presentation.

We consider the stochastic program

P : min
x∈X

f(x),

which from the continuity of f(·) and compactness of X has a finite optimal value denoted

by f∗. We denote the set of optimal solutions of P by X∗.

In general, f(x) cannot be computed exactly, and we approximate it using a sample

average. We let Ω = Ω × Ω × ... be the sample space corresponding to an infinite sequence

of sample points and let IP be the probability distribution on Ω generated by IP under

independent sampling. We denote subelements of w ∈ Ω by ωj ∈ Ω, j = 1, 2, ..., i.e., ω =

(w1, w2, ...). Then, for m ∈ IIN = {1, 2, 3, ...}, we define the sample average fm : IRd×Ω → IR

by

fm(x, ω) =
m∑
j=1

F (x, ωj)/m.

Various sample sizes give rise to a family of approximations of P. Let {Pm(ω)}m∈IIN be

this family, where, for any m ∈ IIN, the sample average problem Pm(ω) is defined by

Pm(ω) : min
x∈X

fm(x, ω).

Under Assumption 1 (and also under weaker assumptions), fm(·, ω) is Lipschitz continuous

on X for almost every ω ∈ Ω. Hence, Pm(ω) has a finite optimal value for almost every

ω ∈ Ω, which we denote by f ∗
m(ω).

The SAA approach consists of selecting a sample size m, generating a sample ω, and

then approximately solvingPm(ω) using an appropriate optimization algorithm. (In practice,

this process may be repeated several times, possibly with variable sample size, to facilitate

validation analysis of the obtained solutions and to reduce the overall computing time; see

for example Section 5.6 in [30] and [29]. However, in this paper, we focus on a single

replication.) A finite sample size induces a sampling error f∗
m(ω) − f∗, which typically is

nonzero. However, as the sample size m→ ∞, the sampling error vanishes in some sense as

the following proposition states, where N(µ, σ2) stands for a normal random variable with

mean µ and variance σ2, σ2(x) for V ar[F (x, ω)], and ⇒ for weak convergence.

Proposition 1 If Assumption 1 holds, then

m1/2(f ∗
m(ω)− f∗) ⇒ inf

y∈X∗
N(0, σ2(y)),

as m→ ∞.
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Proof: The result follows directly from Theorem 5.7 in [30] as Assumption 1 implies the

assumption of that theorem.

Unless Pm(ω) possesses a special structure such as in the case of a linear or quadratic

program, it cannot be solved in finite computing time. Hence, the SAA approach is also

associated with an optimization error. Given a deterministic optimization algorithm, let

Anm(x, ω) be the solution obtained after n ∈ IIN iterations of that optimization algorithm,

starting from x ∈ X, as applied to Pm(ω). We assume that Anm(x, ω) is a random vector

for any n,m ∈ IIN and x ∈ X, with A0
m(x, ω), ω) = x. The optimization error is then

fm(A
n
m(x, ω), ω) − f ∗

m(ω). If the optimization algorithm converges to a globally optimal

solution of Pm(ω), then the optimization error vanishes as n → ∞. However, the rate with

which it vanishes depends on the rate of convergence of the optimization algorithm.

In this paper, we examine the trade-off between sampling and optimization errors in

the SAA approach within a given computing budget c. A large sample size ensures a small

sampling error, but, due to the computing budget, restricts the number of iterations of the

optimization algorithm causing a potentially large optimization error. Similarly, a large

number of iterations may result in a large sampling error. Naturally, therefore, the choice

of sample size and number of iterations could depend on the computing budget and we

sometimes write m(c) and n(c) to indicate this dependence. We refer to {(m(c), n(c)}c∈IIN,
with n(c),m(c) ∈ IIN for all c ∈ IIN, and n(c),m(c) → ∞, as c → ∞, as an allocation policy.

An allocation policy specifies the number of iterations and sample size to adopt for a given

computing budget c. We observe that the focus on unbounded sequences for both n(c) and

m(c) is not restrictive as we are interested in situations where infinite number of iterations

and sample size are required to ensure that both the optimization and sampling errors vanish.

The specifics of the trade-off between sampling and optimization errors depends on the

computational effort needed to carry out n iterations of the optimization algorithm as a

function of m. We adopt the following assumption.

Assumption 2 For any n,m ∈ IIN, x ∈ X, and ω ∈ Ω, the computational effort to obtain

Anm(x, ω) is nm.

Assumption 2 is reasonable in view of the fact that each function, (sub)gradient, and Hessian

evaluation of the optimization algorithm when applied to Pm(ω) requires the summation of

m quantities. Hence, the effort per iteration would be proportional to m. This linear

growth in m has also been observed empirically; see, e.g., p. 204 in [30]. Assuming that

each iteration involves approximately the same number of operations, which is the case for

single-point algorithm such as the subgradient, steepest descent, and Newton’s methods, the

computational effort to carry out n iterations would be proportional to nm. We observe that

we could replace nm by γnm, where γ is a constant, in Assumption 2. However, this simply
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amounts to a rescaling of the computing budget and has no influence on the subsequent

analysis. An allocation policy {(n(c),m(c))}c∈IIN that satisfies n(c)m(c)/c → 1 as c → ∞ is

asymptotically admissible. Hence, an asymptotically admissible policy will, at least in the

limit as c tends to infinity, satisfy the computing budget.

The two kinds of errors, due to sampling and optimization, contribute to the mean-

squared error MSE(fm(c)(A
n(c)
m(c)(x, ω)) = E[(fm(c)(A

n(c)
m(c)(x, ω), ω) − f ∗)2]. In view of the

discussion above, the MSE vanishes, in some sense, under mild assumptions as c tends to

infinity. Of course, there is a large number of asymptotically admissible allocation policies,

and ensuing convergence rates. In the next three sections we analyze the estimator conver-

gence rate under the assumption of sublinear, linear, and superlinear rate of convergence of

the optimization algorithm.

We use the following standard ordering notation in the remainder of the paper. A

sequence of random variables {ξn}n∈IIN is Op(1) if for all ζ > 0 there exists a constant ϵ

such that P (|ξn| > ϵ) < ζ for all n sufficiently large. Similarly, the sequence is Op(0) if for

ϵ > 0 arbitrary P (|ξn| > ϵ) → 0, as n → ∞. A deterministic sequence {ξn}n∈IIN is O(αn),

for {αn}n∈IIN a positive sequence, if |ξn|/αn is bounded by a finite constant. We also write

ξn ∼ αn if ξn/αn tends to a finite constant as n→ ∞.

3 Sublinearly Convergent Optimization Algorithm

Suppose that the deterministic optimization algorithm used to solve Pm(ω) converges sub-

linearly as stated in the next assumption.

Assumption 3 There exists a p > 0 and a family of measurable functions Km : Ω → IR+,

m ∈ IIN, such that Km(ω) ⇒ K ∈ [0,∞), as m→ ∞, and

fm(A
n
m(x, ω), ω)− f ∗

m(ω) ≤
Km(ω)

np

for all x ∈ X, n,m ∈ IIN, and almost every ω ∈ Ω.

Several standard algorithms satisfy Assumption 3 when Pm(ω) is convex. For example, the

subgradient method satisfies Assumption 3 with p = 1/2 and Km(ω) = DX

∑m
j=1C(ω

j)/m,

where C(ω) is as in Assumption 1 and DX = maxx,x′∈X ∥x−x′∥; see [23], pp. 142-143. When

F (·, ω) is Lipschitz continuously differentiable, Nesterov’s optimal gradient method satisfies

Assumption 3 with p = 2 and Km(ω) proportional to the product of the average Lipschitz

constant of ∇xF (·, ω) on X and D2
X ; see p. 77 of [23].

In view of Assumption 3 and the optimality of f ∗
m(ω) for Pm(ω),

f∗
m(ω)− f ∗ ≤ fm(A

n
m(x, ω), ω)− f ∗ ≤ f ∗

m(ω)− f ∗ +Km(ω)/n
p, (1)
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for every n,m ∈ IIN, x ∈ X, and almost every ω ∈ Ω. It follows that MSE(fm(A
n
m(x, ω), ω)) ≤

max{MSE(f ∗
m(ω)),MSE(f ∗

m(ω) +Km(ω)/n
p)}. This suggests that a good allocation policy

should balance the sampling error f ∗
m(ω) − f ∗, which contributes to both maximands and

decays at rate m−1/2, and the bias term Km(ω)/n
p due to the optimization. More precisely,

since under Assumption 2 increasing n and m are equally computationally costly, we would

like to select an asymptotically admissible allocation policy {(n(c),m(c))}c∈IIN such that

m(c)−1/2 ∼ n(c)−p. This discussion is formalized in the next theorem, where to simplify the

notation we write n and m instead of n(c) and m(c), respectively.

Theorem 1 Suppose that Assumptions 1, 2, and 3 hold, x ∈ X, {(n(c),m(c))}c∈IIN is an

asymptotically admissible allocation policy, and n(c)/c1/(2p+1) → a, with a ∈ (0,∞), as

c→ ∞. Then

cp/(2p+1)(fm(A
n
m(x, ω), ω)− f∗) = Op(1).

Proof. By assumption, m → ∞, as c → ∞, and hence, in view of Proposition 1,

m1/2(f ∗
m(ω) − f ∗) ⇒ infy∈X∗ N(0, σ2(y)), as c → ∞. Let r(c) = cp/(2p+1). In view of

Eq. (1),

r(c)(f∗
m(ω)− f ∗) ≤ r(c)(fm(A

n
m(x, ω), ω)− f∗) ≤ r(c)(f ∗

m(ω)− f∗ +Km(ω)/n
p) (2)

for all c ∈ IIN and almost every ω ∈ Ω.

Since the policy is asymptotically admissible, mn/c → 1, as c → ∞. Moreover,

n/c1/(2p+1) → a ∈ (0,∞), as c→ ∞, by assumption. We find that

r(c)

m1/2
=

( c

nm

)1/2 ( n

c1/(2p+1)

)1/2

→ a1/2,

as c→ ∞. Similarly,
r(c)

np
=

(
c1/(2p+1)

n

)p

→ a−p,

as c→ ∞.

Then, by a convergent together argument (p. 27 of [6]),

r(c)(f∗
m(ω)− f ∗ +Km(ω)/n

p) ⇒ a−pK + a1/2 inf
y∈X∗

N(0, σ2(y)), (3)

as c→ ∞, where K is as in Assumption 3, and

r(c)(f∗
m(ω)− f∗) ⇒ a1/2 inf

y∈X∗
N(0, σ2(y)), (4)

as c→ ∞. From Eq. (2),

r(c)|fm(Anm(x, ω), ω)− f∗| ≤ max{r(c)|f∗
m(ω)− f ∗|, r(c)|f∗

m(ω)− f ∗ +Km(ω)/n
p|}
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for almost every ω ∈ Ω. Hence, in view of Eqs. (3) and (4), for any ϵ > 0 there exists a

constant C > 0 such that

IP (r(c)|f∗
m(ω)− f ∗| ≥ C) <

ϵ

2

and

IP (r(c)|f∗
m(ω)− f ∗ +Km(ω)/n

p| ≥ C) <
ϵ

2
,

for all sufficiently large c. Therefore,

IP (r(c)|fm(Anm(x, ω), ω)− f ∗| ≥ C)

≤ IP (max{r(c)|f∗
m(ω)− f ∗|, r(c)|f∗

m(ω)− f ∗ +Km(ω)/n
p| ≥ C)

≤ IP (r(c)|f∗
m(ω)− f∗| ≥ C) + IP (r(c)|f∗

m(ω)− f∗ +Km(ω)/n
p| ≥ C)

<
ϵ

2
+
ϵ

2
= ϵ,

for c sufficiently large.

We see from Theorem 1 that for any finite p > 0, the convergence rate of fm(c)(A
n(c)
m(c)(x, ω)

is worse than the canonical rate c−1/2 when only sampling is considered; see Proposition 1.

Hence, c1/2−p/(2p+1) = c(1/2)/(2p+1) is the “cost of optimization.” Of course, if p is large,

that cost is moderate. However, if p = 1/2 as for the subgradient method, then the cost of

optimization is c1/4 and the convergence rate is of order c−1/4.

It follows from the proof of Theorem 1 that if n grows slower or faster than c1/(2p+1) then

the convergence rate is slower than cp/(2p+1). Indeed, it is easy to see that n ∼ c1/(2p+1)+ϵ,

for ϵ > 0, results in a convergence rate of order cp/(2p+1)−ϵ/2, while n ∼ c1/(2p+1)−ϵ, for

0 < ϵ < 1/(2p + 1), leads to a convergence rate of order cp/(2p+1)−pϵ. This lends support to

our statement that n ∼ c1/(2p+1) is the optimal allocation rule. Conveniently, however, the

rate of convergence is robust to the choice of a.

4 Linearly Convergent Optimization Algorithm

Suppose that the deterministic optimization algorithm used to solve Pm(ω) converges lin-

early with a rate of convergence coefficient independent of ω and m as stated in the next

assumption.

Assumption 4 There exists a θ ∈ (0, 1) such that

fm(A
n
m(x, ω), ω)− f ∗

m(ω) ≤ θ(fm(A
n−1
m (x, ω), ω)− f∗

m(ω))

for all x ∈ X, n,m ∈ IIN, and almost every ω ∈ Ω.
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Assumption 4 is satisfied by many gradient methods such as the steepest descent method

and projected gradient method when applied to Pm(ω) under the assumption that F (·, ω) is
strongly convex and twice continuously differentiable for almost every ω ∈ Ω and that X is

convex. Moreover, the requirement in Assumption 4 that the rate of convergence coefficient

θ holds “uniformly” for almost every ω ∈ Ω follows when the largest and smallest eigenvalue

of the Hessian of F (·, ω) are bounded from above and below, respectively, with bounds

independent of ω. The requirement of a twice continuously differentiable random function

excludes at first sight two-stage stochastic programs with recourse [15], conditional Value-at-

Risk minimization problems [28], inventory control problems [32], complex engineering design

problems [27], and similar problems involving a nonsmooth random function. However,

these nonsmooth functions can sometimes be approximated with high accuracy by smooth

functions [1, 32, 29]. Hence, the results of this section as well as the next one, dealing with

superlinearly convergent optimization algorithms, may also be applicable in such contexts.

In view of Assumption 4, we find that

f ∗
m(ω)− f∗ ≤ fm(A

n
m(x, ω), ω)− f∗ ≤ f ∗

m(ω)− f∗ + θn(fm(x, ω)− f ∗
m(ω)) (5)

for every n,m ∈ IIN and almost every ω ∈ Ω. As in the sublinear case, a judicious approach

to ensure that MSE(fm(A
n
m(x, ω), ω)) decays at the fastest possible rate is to equalize the

sampling and optimization error decay rates. Since the first term decreases at a rate m−1/2

and the second term at a rate θn, an allocation with n(c) ∼ log c and m(c) ∼ c/ log c meets

this criterion. The following theorem makes rigorous this argument.

Theorem 2 Suppose that Assumptions 1, 2, and 4 hold, x ∈ X, {(n(c),m(c))}c∈IIN is an

asymptotically admissible allocation policy, and n(c)− a log c→ 0, with a > 0, as c→ ∞.

(i) If a ≥ (2 log(1/θ))−1, then, as c→ ∞,(
c

a log c

)1/2

(fm(A
n
m(x, ω), ω)− f∗) ⇒ inf

y∈X∗
N(0, σ2(y)).

(ii) If 0 < a < (2 log(1/θ))−1, then

ca log(θ
−1)(fm(A

n
m(x, ω), ω)− f ∗) = Op(1).

Proof. Since the policy is asymptotically admissible, mn/c → 1, and also m → ∞, as

c → ∞. This fact and the Central Limit Theorem imply that m1/2(fm(x, ω) − f(x)) ⇒
N(0, σ2(x)), as c→ ∞. Proposition 1 results in m1/2(f ∗

m(ω)− f ∗) ⇒ infy∈X∗ N(0, σ2(y)), as

c→ ∞.

For any r : IIN → IR+,

r(c)(f∗
m(ω) + θn(fm(x, ω)− f∗

m(ω))− f ∗)

= r(c) [(f ∗
m(ω)− f ∗) + θn(fm(x, ω)− f(x) + f ∗ − f ∗

m(ω)) + θn(f(x)− f∗)] (6)

10



for every ω ∈ Ω.

First we consider part (i) and let r(c) = (c/(a log c))1/2, with a ≥ (2 log(1/θ))−1. By the

assumption on a,

r(c)θn = r(c)e(n−a log c) log θea log c log θ =

(
1

a log c

)1/2

c1/2−a log(θ
−1)e(n−a log c) log θ → 0,

as c→ ∞, so that r(c)θn/m1/2 → 0. Analogously,

r(c)

m1/2
= r(c)

( c

mn

)1/2 (n
c

)1/2

=
( c

mn

)1/2
(
n− a log c

a log c
+ 1

)1/2

→ 1,

as c→ ∞.

Then, by Eq. (6) and a converging together argument (p. 27 of [6]),

r(c) (f ∗
m(ω)− f ∗ + θn(fm(x, ω)− f ∗

m(ω))) ⇒ inf
y∈X∗

N(0, σ2(y)),

and

r(c) (f ∗
m(ω)− f ∗) = r(c)

m1/2

m1/2
(f ∗
m(ω)− f∗) ⇒ inf

y∈X∗
N(0, σ2(y)),

as c→ ∞. In view of Eq. (5), the conclusion of part (i) follows.

Second, we consider part (ii) and let r(c) = ca log(θ
−1), with 0 < a < (2 log(1/θ))−1. Then,

r(c)θn = r(c)e(n−a log c) log θea log c log θ = e(n−a log c) log θ → 1,

as c→ ∞. Also,

r(c)

m1/2
= r(c)

( c

nm

)1/2 (n
c

)1/2

= ca log(θ
−1)−1/2

( c

nm

)1/2

(a log c)1/2
(
n− a log c

a log c
+ 1

)1/2

→ 0,

as c→ ∞. Consequently,
r(c)θn

m1/2
→ 0,

as c→ ∞. By Eq. (6) and a converging together argument,

r(c) (f ∗
m(ω) + θn(fm(x, ω)− f ∗

m(ω))− f ∗) ⇒ f(x)− f ∗, (7)

and

r(c) (f ∗
m(ω)− f ∗) ⇒ 0, (8)

as c→ ∞. From Eq. (5),

|fm(Anm(x, ω), ω)− f ∗| ≤ max{|f∗
m(ω)− f ∗|, |f∗

m(ω) + θn(fm(x, ω)− f ∗
m(ω)))− f ∗|}
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for almost every ω ∈ Ω. From here on the argument follows the last part of the proof of

Theorem 1, and is omitted.

In view of Theorem 2, we see that if a ≥ (2 log(1/θ))−1, then fm(A
n
m(x, ω), ω) tends

to f ∗ at a rate (c/ log c)−1/2, which is slower than the canonical rate c−1/2 in the case of

sampling only; see Proposition 1. Hence (log c)1/2 can be viewed as the cost of optimization.

We note that the best choice of a is (2 log(1/θ))−1 and that the convergence rate worsens

significantly when a < (2 log(1/θ))−1. Specifically, for a = δ(2 log(1/θ))−1, with δ ∈ (0, 1),

the rate is c−δ/2, which is slower than (c/ log)−1/2 for all c sufficiently large.

If X∗ is a singleton and a = (2 log(1/θ))−1, then(
c

log c

)1/2

(fm(A
n
m(x, ω), ω)− f ∗) ⇒ N(0, (−2 log θ)−1σ2(x∗)),

as c→ ∞, which can be used to construct confidence interval for f ∗ if θ is known and σ2(x∗)

can be estimated.

Often the rate of convergence coefficient, θ, of the optimization algorithm is theoret-

ically known as in the case of the steepest descent and projected gradient methods with

Armijo step size rule (see Section 6) and/or it can be accurately estimated from prelimi-

nary calculations using the optimization algorithm; see [26]. If the theoretical value of θ

is excessively conservative relative to the actual progress made by the algorithm or pre-

liminary calculations are impractical or unreliable, then it may be problematic to use the

best allocation policy recommended by Theorem 2, i.e., selecting {(n(c),m(c)}n∈IIN such that

n(c) − (2 log(1/θ))−1 log c → 0 and n(c)m(c)/c → 1, as c → ∞. A slight underestimation

of θ would result in substantially slower rate as indicated by part (ii) of that theorem. In

such a situation, it may be prudent to select a more conservative allocation policy that sat-

isfies n(c) ∼ cν for 0 < ν < 1, which guarantees the same convergence rate regardless of

the value of θ; this is the same approach followed in a different context in [19]. The rate

is worse than the optimal one of Theorem 2, but better than what can occur with a poor

estimate of θ. This conservative asymptotic admissible allocation policy is discussed in the

next proposition.

Proposition 2 Suppose that Assumptions 1, 2, and 4 hold, x ∈ X, {(n(c),m(c))}c∈IIN is an

asymptotically admissible allocation policy, and n(c)/cν → a > 0, with 0 < ν < 1, as c→ ∞.

Then,
c

1−ν
2

a1/2
(fm(A

n
m(x, ω), ω)− f ∗) ⇒ inf

y∈X∗
N(0, σ2(y)),

as c→ ∞.
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Proof. Let r(c) = c
1−ν
2 /a1/2. Then,

r(c)

m1/2
= r(c)

( c

mn

)1/2 (n
c

)1/2

→ 1, (9)

and

r(c)θn =
1

a1/2
e

1−ν
2

log c− n
cν
cν log θ−1 → 0, (10)

as c→ ∞. From these results it follows that

r(c)

m1/2
θn → 0, (11)

as c→ ∞. Also, Proposition 1, Eq. (9), and a convergence together argument show that

r(c)(f ∗
m(ω)− f∗) ⇒ inf

y∈X∗
N(0, σ2(y)).

Proposition 1, the Central Limit Theorem, Eqs. (9)–(11), and a convergence together argu-

ment show that

r(c)θn(fm(x, ω)− f(x) + f∗ − f ∗
m(ω)) ⇒ 0,

and

r(c)θn(f(x)− f∗) ⇒ 0,

as c → ∞. From this point on the proof resembles that of Theorem 2, and we omit the

details.

5 Superlinearly Convergent Optimization Algorithm

In this section, we assume that the optimization algorithm used to solve Pm(ω) is superlin-

early convergent as defined by the next assumption.

Assumption 5 There exists a θ ∈ (0,∞) and a ψ ∈ (1,∞) such that

fm(A
n
m(x, ω), ω)− f ∗

m(ω) ≤ θ(fm(A
n−1
m (x, ω), ω)− f∗

m(ω))
ψ

for all x ∈ X, m,n ∈ IIN, and almost every ω ∈ Ω.

Assumption 5 holds for Newton’s method with ψ = 2 when applied to Pm(ω) with F (·, ω)
being strongly convex and twice Lipschitz continuously differentiable for almost every ω ∈ Ω,

the starting point x ∈ X is sufficiently close to the global minimizer of Pm(ω), and if the

Hessian of F (·, ω) and its Lipschitz constant are bounded in some sense as ω ranges over

Ω. Cases with ψ ∈ (1, 2) arise for example in Newtonian methods with infrequent Hessian

updates.
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For any ω ∈ Ω, it follows by induction from Assumption 5 that

f ∗
m(ω)− f∗ ≤ fm(A

n
m(x, ω), ω)− f ∗ ≤ f ∗

m(ω)− f∗ + θ−1/(ψ−1)(θ1/(ψ−1)(fm(x, ω)− f ∗
m(ω)))

ψn

.

(12)

Similar to the discussion of the past sections, in order to guarantee that MSE(fm(A
n
m(x, ω), ω))

decreases at the fastest possible rate we equalize the sampling error rate (of order m−1/2)

with the optimization error decay rate (of order (θ1/(ψ−1)(fm(x, ω) − f ∗
m(ω)))

ψn
as long as

the element within parentheses is smaller than 1). Equalizing these rates suggests an al-

location policy with n(c) ∼ log log c. The formal result is stated next, where κ(x) =

log(θ−1/(ψ−1)(f(x)− f ∗)−1), which is positive for θ1/(ψ−1)(f(x)− f ∗) < 1.

Theorem 3 Suppose that Assumptions 1, 2, and 5 hold, x ∈ X, {(n(c),m(c))}c∈IIN is an

asymptotically admissible allocation policy, and that n(c)−a log log c = O((log c)−a logψ), with

a > 0. Moreover, suppose that x is such that θ1/(ψ−1)(f(x)− f ∗) < 1, where θ and ψ are as

in Assumption 5.

(i) If a > 1/ logψ or if a = 1/ logψ and κ(x) ≥ 1/2 then, as c→ ∞,(
c

a log log c

)1/2

(fm(A
n
m(x, ω), ω)− f∗) ⇒ inf

y∈X ∗
N(0, σ2(y)). (13)

(ii) If a < 1/ logψ or if a = 1/ logψ and κ(x) < 1/2, then

exp
(
κ(x)(log c)a logψ

)
(fm(A

n
m(x, ω), ω)− f∗) = Op(1). (14)

Proof. Let x ∈ X be such that θ1/(ψ−1)(f(x)− f∗) < 1. For any r : IIN → IR+, we define

B1(c) = θ1/(ψ−1)r(c)ψ
−n

(fm(x, ω)− f(x)),

B2(c) = θ1/(ψ−1)r(c)ψ
−n

(f ∗ − f ∗
m(ω)),

b3(c) = θ1/(ψ−1)r(c)ψ
−n

(f(x)− f∗).

Then,

r(c)
[
f∗
m(ω)− f ∗ + θ−1/(ψ−1)(θ1/(ψ−1)(fm(x, ω)− f∗

m(ω)))
ψn]

= r(c)(f∗
m(ω)− f ∗) + θ−1/(ψ−1)

[
B1(c) +B2(c) + b3(c)

]ψn

. (15)

By the Mean Value Theorem, exp((a log log c−n) logψ) = 1+((a log log c−n) logψ) exp(ξc),
where ξc lies between (a log log c − n) logψ and 0. By assumption, supc{ξc} < ∞, so that

exp((a log log c− n) logψ) = 1 +O((log c)−a logψ). Therefore,

log r(c)ψ
−n

= ψ−n log r(c)

= exp((a log log c− n) logψ) exp(−a logψ log log c) log r(c)

= (1 +O((log c)−a logψ))(log c)−a logψ log r(c)

= (log c)−a logψ log r(c) +O((log c)−2a logψ log r(c)).

(16)
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We first consider part (i), where a > 1/ logψ or a = 1/ logψ and κ(x) ≥ 1/2. Let

r(c) =

(
c

a log log c

)1/2

.

In view of Proposition 1 and the fact that

r(c)m−1/2 =

(
c

nm

(
n− a log log c

a log log c
+ 1

))1/2

→ 1 (17)

as c→ ∞, we obtain by a converging together argument that

r(c)(f ∗
m(ω)− f ∗) ⇒ inf

y∈X ∗
N(0, σ2(y)), (18)

as c → ∞. By Eqs. (12), (15), and (18) as well as a sandwich argument, the proof of part

(i) will be complete once we show that (B1(c) +B2(c) + b3(c))
ψn ⇒ 0, or, what is the same,

that for an arbitrary ϵ > 0, IP(|B1(c) +B2(c) + b3(c)|ψ
n
> ϵ) → 0 as c→ ∞. To wit,

IP
(
|B1(c) +B2(c) + b3(c)|ψ

n

> ϵ
)

= IP

(
B1(c) +B2(c) + b3(c)

ϵψ−n > 1

)
+ IP

(
B1(c) +B2(c) + b3(c)

ϵψ−n < −1

)
. (19)

From Eq. (16) it follows that

log r(c)ψ
−n

= (log c)−a logψ
1

2
(log c− log(a log log c)) +O((log c)1−2a logψ)

=
1

2
((log c)1−a logψ − (log c)−a logψ log log log c) +O(1/ log c). (20)

We observe that log r(c)ψ
−n

= O(1), so that r(c)ψ
−n
/m1/2 → 0. Knowing that m1/2(f ∗

m(ω)−
f ∗) ⇒ infy∈X∗ N(0, σ2(y)) and m1/2(fm(x, ω)− f(x)) ⇒ N(0, σ2(x)), a convergence together

argument results in B1(c) ⇒ 0, and B2(c) ⇒ 0.

Looking at the b3(c) term, we obtain using Eq. (20) that

log b3(c) = −κ(x) + 1

2
((log c)1−a logψ − (log c)−a logψ log log log c) +O(1/ log c). (21)

Therefore, if a > 1/ logψ then log b3(c) → −κ(x); i.e., b3(c) → θ1/(ψ−1)(f(x)− f∗) < 1. The

fact that ϵψ
−n → 1 as c→ ∞ and a convergence together argument then lead to

B1(c) +B2(c) + b3(c)

ϵψ−n ⇒ θ1/(ψ−1)(f(x)− f∗).

Since 0 ≤ θ1/(ψ−1)(f(x)− f ∗) < 1, the latter implies that the r.h.s. of Eq. (19) converges to

0 as c→ ∞.
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If a = 1/ logψ we get from (21) that

log b3(c) = −κ(x) + 1

2
− 1

2

log log log c

log c
+O(1/ log c). (22)

Hence, if κ(x) > 1/2 we get via a convergence together argument that the r.h.s. of Eq. (19)

converges to 0. When κ(x) = 1/2, we need to treat the ϵψ
−n

term more carefully. Proceeding

as in Eq. (16) we get that log ϵψ
−n

= log(ϵ/ log c) +O((log c)−2). Hence, Eqs. (16) and (22)

yield

log

(
b3(c)

ϵψ−n

)
= −1

2

log log log c

log c
+O(1/ log c),

meaning that b3(c)/ϵ
ψ−n

< 1 eventually, so the r.h.s. of Eq. (19) converges to 0 as c→ ∞.

Next we consider part (ii), where a < 1/ logψ or a = 1/ logψ and κ(x) < 1/2, and

r(c) = exp
(
κ(x)(log c)a logψ

)
.

Then

r(c)m−1/2

= exp
(
κ(x)(log c)a logψ

) ( c

nm

)1/2
(

n

a log log c

)1/2(
a log log c

c

)1/2

= exp
(
κ(x)(log c)a logψ − (log c)/2

)
(a log log c)1/2

( c

nm

)1/2
(

n

a log log c

)1/2

(23)

→ 0,

as c→ ∞. Thus, in view of Proposition 1 and a converging together argument we get that

r(c)(f ∗
m(ω)− f∗) ⇒ 0, (24)

as c→ ∞.

Also, since exp
(
ψ−nκ(x)(log c)a logψ

)
≤ exp

(
κ(x)(log c)a logψ

)
, Eq. (23) results in

r(c)ψ
−n

m1/2
=

exp
(
ψ−nκ(x)(log c)a logψ

)
m1/2

→ 0,

as c → ∞. The Central Limit Theorem and a convergent together argument result in

B1(c) ⇒ 0, as c → ∞. Just the same, Proposition 1 and a converging together argument

show that B2(c) ⇒ 0, as c→ ∞.

Regarding the b3(c) term, we obtain from Eq. (16) that

log b3(c)

= −κ(x) + (log c)−a logψ log r(c) +O((log c)−2a logψ log r(c))

= −κ(x) + (log c)−a logψκ(x)(log c)a logψ +O((log c)−a logψ)

= O((log c)−a logψ).
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Also, an argument similar to the one leading to Eq. (16), we find that for any ϵ > 0

log ϵψ
−n

= log ϵ(log c)−a logψ +O((log c)−2a logψ).

Hence, there is a finite ϵ such that for all c sufficiently large, b3(c) < ϵψ
−n
, meaning that

(B1(c) + B2(c) + b3(c))
ψn

= Op(1). In conclusion, r(c)(fm(A
n
m(x, ω), ω) − f ∗) is bounded

below by an Op(0) term (cf., Eq. (24)), and above by an Op(1) term. The second statement

of the theorem now follows using an argument similar to the one employed in the last part

of the proof of Theorem 1.

We observe from Theorem 3 that a should be selected as 1/ logψ to obtain the most

favorable coefficient in the rate expression, assuming that the initial solution x ∈ X is suf-

ficiently close to the optimal solution of P. In this case, the convergence rate is essentially

the canonical c−1/2, only slightly reduced with a log log c term. Hence, in the case of a

superlinearly convergent optimization algorithm, the cost of optimization is essentially neg-

ligible. If a is selected smaller, the convergence rate may deteriorate, decaying at best at

rate c−κ(x) > c−1/2, as in Theorem 2.

We see from the above result that a must be chosen larger when ψ approaches one to

maintain the best rate of convergence. Consequently, n must also be chosen larger. Intu-

itively, as ψ tends to one, we expect that the above result tends to the one for the linear case.

For example, suppose that ψ is a function of c. Specifically, let ψ = exp((log log c)/ log c),

which tends to 1 as c → ∞, and θ ∈ (0, 1). Then, if a = log c/ log log c, we obtain that

a logψ = 1 and κ(x) > 1/2 for all c sufficiently large. Hence, we obtain that(
c

a log log c

)1/2

=

(
c

log c

)1/2

, (25)

which shows that the rate of Theorem 3, part (i), tends to the rate of Theorem 2 with a = 1,

assuming that θ ≤ exp(−1/2). The rate is obtain in both cases using n = log c.

6 Numerical Examples

We illustrate the above results using two problem instances. We solve the first problem

instance, which arises in the optimization of an investment portfolio, using the sublinearly

convergent subgradient method to illustrate the results of Section 3. The second problem

instance is randomly generated and we solve it using the linearly convergent steepest descent

method, to illustrate Section 4, as well as the quadratically convergent Newton’s method,

which relates to Section 5. We describe the problem instances and the corresponding nu-

merical results in turn, with Subsections 6.1, 6.2, and 6.3 illustrating the sublinear, linear,

and superlinear cases, respectively. We implement the problem instances and optimization
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algorithms in Matlab Version 7.9 and run the calculations on a laptop computer with 2.26

GHz processor, 3.5 GB RAM, and Windows XP operating system.

6.1 Subgradient Method

The first problem instance is taken from [18] and considers d − 1 financial instruments

with random returns given by the (d − 1)-dimensional random vector ω = R̄ + Qu, where

R̄ = (R̄1, R̄2, ..., R̄d−1)
′, with R̄i being the expected return of instrument i, Q is an (d−1)-by-

(d−1) matrix, and u is a standard normal (d−1)-dimensional random vector. As in [18], we

randomly generate R̄ using an independent sample from a uniform distribution on [0.9, 1.2]

and Q using an independent sample from a uniform distribution on [0, 0.1]. We would like to

distribute one unit of wealth across the d− 1 instruments such that the Conditional Value-

at-Risk of the portfolio return is minimized and the expected portfolio return is no smaller

than 1.05. We let xi ∈ IR denote the amount of investment in instrument i, i = 1, 2, ..., d−1.

This results in the random function (see [18, 28])

F (x, ω) = xd +
1

1− t
max

{
−

d−1∑
i=1

ωixi − xd, 0

}
, (26)

where x = (x1, x2, ..., xd)
′, with xd ∈ IR being an auxiliary decision variable, and t ∈ (0, 1) is

a probability level. The feasible region

X =

{
x ∈ IRd

∣∣∣∣∣
d−1∑
i=1

xi = 1,
d−1∑
i=1

R̄ixi ≥ 1.05, xi ≥ 0, i = 1, 2, ..., d− 1

}
.

We use d = 101 and t = 0.9. The random function in Eq. (26) is not continuously differ-

entiable everywhere for IP-almost every ω ∈ Ω. However, the function possesses a subdif-

ferential and we consequently use the subgradient method with fixed step size (n + 1)−1/2,

where n is the number of iterations. This step size is optimal in the sense of Nesterov; see

[23], pp. 142-143. As stated in Section 3, the subgradient method satisfies Assumption 3

with p = 1/2 and Km(ω) = DX

∑m
j=1C(ω

j)/m, where C(ω) is as in Assumption 1 and

DX = maxx,x′∈X ∥x−x′∥. Of course, as pointed out in [18], this problem instance can be re-

formulated as a conic-quadratic programming problem and solved directly without the use of

sampling. Hence, this is a convenient test instance as we are able to compute f ∗ = −0.352604

(rounded to six digits) using cvx [11]. We use initial solution x = (0, 0, ..., 0, 1, 0, 0...., 0,−1)′,

where the 65-th component equals 1. In our data, the 65-th instrument has the largest

expected return. Hence, the initial solution is the one with the largest expected portfolio

return.

Figure 1 illustrates Theorem 2 and displays MSE(fm(c)(A
n(c)
m(c)(x, ω), ω)) for the subgra-

dient method as a function of computing budget c on a logarithmic scale for the allocation
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Figure 1: Estimates of MSE((fm(c)(A
n(c)
m(c)(x, ω), ω)) for the subgradient method when applied

to the first problem instance as a function of computing budget c on a logarithmic scale for
the policy n(c) = ac1/2, with a = 20, 10, 1, 0.1, and 0.05.

policy n(c) = ac1/2, with a = 20, 10, 1, 0.1, and 0.05 as well as c = 103, 104, 105, 106,

107, and 108. Here and below, the MSE is estimated using 30 independent replications of

fm(c)(A
n(c)
m(c)(x, ω), ω). We see that the slopes of the lines in Figure 1 are approximately −1/2,

which corresponds to a rate of convergence of order c−1/2 for the MSE as predicted in The-

orem 2 for p = 1/2. While the rate of convergence in Theorem 1 is independent of a, we

do observe some sensitivity to a numerically. We find that the MSE initially decreases as a

decreases until a = 1. As a becomes less than one, the picture is less clear and there appears

to be little benefit from reducing a further. A examination of the proof of Theorem 2 shows

that such a behavior can be expected as both the upper and lower bounds on the estimator

depend on a; see (1), (3), and (4).

6.2 Steepest Descent Method

The second problem instance uses

F (x, ω) =
20∑
i=1

ai(xi − biωi)
2 (27)

where bi is randomly generated from a uniform distribution on [−1, 1] and ai is randomly gen-

erated from a uniform distribution on [1, 2], i = 1, 2, ..., 20. The vector ω = (ω1, ω2, ..., ω20)
′
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Figure 2: Estimates of MSE((fm(c)(A
n(c)
m(c)(x, ω), ω)) for the steepest descent method when

applied to the second problem instance as a function of computing budget c on a logarithmic
scale for the policy n(c) = a log c, with a = 2, 1, and 0.5 as well as the policy n(c) = cν , with
ν = 0.8, 0.4, and 0.2.

consists of 20 independent and [0, 1]-uniformly distributed random variables. This prob-

lem instance is strongly convex with an unique global minimizer x∗ = (x∗1, ..., x
∗
20)

′, where

x∗i = bi/2. The optimal value is
∑20

i=1 aib
2
i /12 = 0.730706 (rounded to six digits). We use

initial solution x = 0.

The random function in this problem instance is continuously differentiable for all ω ∈ Ω

and we adopt the steepest descent method with Armijo step size rule as the optimization

algorithm. This algorithm has at least a linear rate of convergence with rate of convergence

coefficient θ = 1−4λminα(1−α)β/λmax, where α, β ∈ (0, 1) are Armijo step size parameters.

We use α = 0.5 and β = 0.8. Moreover, λmin and λmax are lower and upper bounds on the

smallest and largest eigenvalues, respectively, of ∇2f(x) on IRd. In this problem instance,

we obtain that λmin = 1.094895 and λmax = 1.991890. Hence, the steepest descent method

with Armijo step size rule satisfies Assumption 4 with θ = 0.56.

Figure 2 illustrates Theorem 3 and displays MSE((fm(c)(A
n(c)
m(c)(x, ω), ω)) for the steepest

descent method when applied to the second problem instance as a function of computing

budget c using the policy n(c) = a log c, with a = 2, 1, and 0.5 (marked with circles) and

the alternative policy n(c) = cν , with ν = 0.8, 0.4, and 0.2 (marked with boxes). As in

the previous subsection, we consider c = 103, 104, 105, 106, 107, 108. The lines in Figure 2

marked with circles have slope quite close to −1, i.e., the MSE decays with rate of order c−1,
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which is as predicted in Theorem 2. We see that the MSE decreases for smaller a. For the

largest values of c examined, it appears that a = 1 has a slightly larger rate of decay than in

the case of a = 2 and a = 0.5. These empirical results are in close correspondence with the

asymptotic results of Theorem 2, which predict an improving rate of decay for decreasing

a for a ≥ (2 log(1/θ))−1, and a worsening of the rate for a < (2 log(1/θ))−1. In view of the

above value of θ, (2 log(1/θ))−1 = 0.86.

In the case of the alternative policy n(c) = cν (see Proposition 2), we see from the lines

marked with squares in Figure 2 that the rate of decay of the MSE improves as ν decreases.

However, the rate remains worse than the ones obtained using the policy n(c) = a log c.

These observations are consistent with the asymptotic results of Proposition 2 and Theorem

2: The policy n(c) = cν improves as ν tends to zero, but remains inferior to the policy

n(c) = a log c, with a sufficiently large. However, as this alternative policy is independent of

θ, it may be easier to use in practice.

6.3 Newton’s Method

We illustrates Theorem 3 by applying Newton’s method with Armijo step size to the second

problem instances defined in the previous subsection. On this problem instance, Newton’s

method has quadratic rate of convergence and satisfies Assumption 5, with ψ = 2 and some

θ ∈ (0,∞), when the initial solution x ∈ IRd is sufficiently close to the global minimizer of

Pm(ω). We use the same parameters in Armijo step size rule and initial solution as in the

previous subsection.

Figure 3 presents similar results as in Figures 1 and 2 and considers the policy n(c) =

a log log c, with a = 3, 2, 1.4, and 1. We again see that the slopes of the lines are close to −1,

which is as predicted by Theorem 3. We see that the MSE decreases as a decreases from 3

to 1.4. However, the rate of decays are quite comparable. When a = 1, the MSE worsens.

These empirical results are aligned with the asymptotic results of Theorem 3, which stipulate

an improving rate of decay for decreasing a for a > 1/ logψ. The quadratic convergence of

Newton’s method implies that ψ = 2 and consequently that the critical value 1/ logψ is

approximately 1.4. Moreover, Theorem 3 predicts a worsening rate of decay for a < 1/ logψ

as observed empirically.

Comparing Figures 1, 2, and 3, we see that the MSE decreases and the rate of decay of

the MSE increases as faster optimization algorithms are utilized. The improvement is most

significant when moving from a sublinearly to a linearly convergent optimization algorithm.

These results are reasonable as a faster optimization algorithm allows for fewer iterations and

a larger sample size as compared to a slower optimization algorithm. The improvement is

only slight when moving from a linearly to a superlinearly convergent optimization algorithm

21



6 8 10 12 14 16 18 20
−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

log c

lo
g 

M
S

E

 

 

a=3
a=2
a=1.4
a=1

Figure 3: Estimates of MSE((fm(c)(A
n(c)
m(c)(x, ω), ω)) for Newton’s method when applied to

the second problem instance as a function of computing budget c on a logarithmic scale for
the policy n(c) = a log log c, with a = 3, 2, 1.4, and 1.

as it only allows a decrease in number of iterations from a value proportional to log c to a

value proportional to log log c.

7 Conclusions

In this paper we characterize optimal computing budget allocation policies in the sample

average approximation approach for solving stochastic programs. We find that in the case

of a sublinearly convergent optimization algorithm for solving the sample average problem

with rate of convergence of order n−p, where n is the number of iterations and p is an

algorithm specific parameter, the best achievable convergence rate is of order c−p/(2p+1). In

the case of a linearly convergent optimization algorithm with rate of convergence of order

θn for some parameter θ ∈ (0, 1), the best overall convergence rate is of order (c/ log c)−1/2.

For a superlinearly convergent optimization algorithm with rate of convergence of order

θψ
n
, where θ > 0 and ψ ∈ (0,∞), the best convergence rate is of order (c/ log log c)−1/2.

These rates are only obtained using particular policies for the selection of sample sizes and

number of optimization iterations as identified in the paper. The policies depend on p in

the sublinear case, on θ in the linear case, and on θ and ψ in the superlinear case. Other

policies for sample size and number of iteration selection may result in substantially worse

rates of decay as quantified in the paper. These results provide a detailed insight into the
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challenging task of computing budget allocation within the sample average approximation

approach and may spur further research into the development of efficient sampling-based

algorithms for stochastic optimization.
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