Vorticity and Turbulent Properties in Tidal and Shelf Bottom Boundary Layers

Thomas B. Sanford, PI
University of Washington
Applied Physics Laboratory
1013 NE 40th St.
Seattle, WA 98105-6698
phone: (206) 543-1365; fax (206) 543-6785; email: sanford@apl.washington.edu
Award #: N00014-95-1-0222

Ren-Chieh Lien, Co-PI
University of Washington
Applied Physics Laboratory
1013 NE 40th St.
Seattle, WA 98105-6698
phone: (206) 685-1079; fax (206) 543-6785; email: lien@apl.washington.edu
Award #: N00014-95-1-0222
http://www.apl.washington.edu/~lien/vdsweb

LONG-TERM GOAL

Our goal is to contribute to a better understanding of small-scale processes in shallow water and coastal flows, in order to provide better, more physically based parameterizations for coastal models. We seek to understand how high Reynolds’ number coastal flows interact with boundaries producing tangential stress, dissipation, mixing, and secondary circulation. Detailed comparison of our field observations with direct numerical simulations will hopefully improve contemporary model parameterization schemes.

OBJECTIVES

The objective is to observe mean and turbulent flow quantities in an energetic tidal channel over a flat, smooth channel bottom and over topography, and various stratification conditions. These observations throughout the water column are being contrasted with published results from current meters on tripods, from wind tunnel experiments, and theory. Particular emphasis is placed on the observation and interpretation of small-scale vorticity in conjunction with other mean and turbulent flow quantities.

APPROACH

The approach is to measure vorticity, velocity, dissipation and water properties within bottom boundary layers in local tidal channels with variable bottom topography. The most notable sensor is an electromagnetic vorticity detector, which determines a component of relative vorticity based on the principles of motional induction. An experimental site in Pickering Passage in the South Puget Sound has been selected based on a detailed multi-beam bathymetry survey. Topographic relief is less than 0.3 m for distances of 200 m upstream of the measurement site. Other locations offer regular patterns of bedforms, such as waves with heights of 0.5-1 m and wavelengths of 20-30 m, and a prominent ridge.
Vorticity and Turbulent Properties in Tidal and Shelf Bottom Boundary Layers

Title: Vorticity and Turbulent Properties in Tidal and Shelf Bottom Boundary Layers
Author: University of Washington, Applied Physics Laboratory, 1013 NE 40th Street, Seattle, WA, 98195

Dates Covered: 00-00-1998 to 00-00-1998

Report Number:

DISTRIBUTION/AVAILABILITY STATEMENT:
Approved for public release; distribution unlimited

ABSTRACT:
See also ADM002252.

SUBJECT TERMS:

SECURITY CLASSIFICATION:
- a. REPORT: unclassified
- b. ABSTRACT: unclassified
- c. THIS PAGE: unclassified
- 17. LIMITATION OF ABSTRACT: Same as Report (SAR)
- 18. NUMBER OF PAGES: 4

OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
about 500-m long, rising 10 m above a flat bottom. In addition to velocity and vorticity, observations of
temperature, electrical conductivity, pressure, altitude above the bottom, and turbulent kinetic energy
dissipation rate are obtained. Vehicle attitude (i.e., pitch, roll, yaw, pitch-rate and roll-rate) is measured
to correct vorticity and velocity for vehicle motion and to rotate observations in true horizontal and
vertical components. The instrument can be slowly winched vertically while the vessel is anchored or
slowly moving.

WORK COMPLETED

We have conducted several experiments measuring vorticity and other turbulent properties in Pickering
Passage, Washington. Several technical reports have been published. We began scientific analysis last
year. One paper describing the details of instrument is in press (Sanford et al. 1998). Another paper
presenting some interesting results of data taken in a homogeneous turbulent boundary layer has also
been accepted (Sanford and Lien, 1998).

RESULTS

Our profiling method of EMVM allows us to compare estimates of friction velocity based on the profile
method, eddy-correlation method, and dissipation method. We observe two distinct log layers in the
bottom boundary layer (Fig. 1). The friction velocity estimated in the upper log layer (Z > 5 meter
above bottom (m.a.b.)) is 1.8 times of that in the lower log layer (Z < 3 m.a.b.). A transition layer exists
between 3-5 m.a.b. The friction velocity estimated in the lower log layer based on the profile method
(i.e., log-layer fit) agrees with that estimated by the dissipation method using the observed TKE
dissipation rate and by the eddy-correlation method using estimated turbulent Reynolds stress in the
constant-stress layer. The stress estimated from the upper log layer may not reflect the local bed stress.
Many researches have shown that the stress calculated by the profile method, often based on
measurements above the lower log layer, is greater than stresses estimated by other methods using
measurements closer to the bottom.

Our vorticity measurements in the turbulent bottom boundary layer reveal some important results:

- Eddy diffusivity of vorticity estimated from the observed vorticity flux is similar to the eddy
 viscosity of momentum estimated from the observed momentum flux (Fig. 2).
- A new method to estimate the bed stress is suggested using the vorticity flux.
- Our simultaneous measurements of turbulent kinetic energy dissipation rate ε and enstrophy confirm
 their “text-book” relation, i.e., $\varepsilon = \nu <\zeta^2>$.
Fig. 1. Log-layer fits to the mean streamwise velocity. The mean streamwise velocity is plotted as a function of (a) \(\ln(Z) \) and (b) \(Z \). Note the physical height is indicated on the right hand ordinate of Fig. 1 (a). Circles are observed mean streamwise velocity and shading is the 95% confidence interval. The blue line indicates the log-layer fit in the upper log layer and the red line is the fit in the lower log layer. The log-layer fits are conducted in \(\ln(Z) \) space and the fit parameters (i.e., \(u^* \) and \(Z_0 \)) are applied to obtain the model velocity profiles in panel (b). The shading at the top of each panel represents the range of surface elevations during the 2-3 hours of profiling.

Fig. 2. Vertical profiles of eddy diffusivity for vorticity and eddy viscosity for momentum. Blue dots and light shading are the mean eddy diffusivity of vorticity and its 95% confidence interval calculated using the observed vorticity flux. Red dots and darker shading are the mean and the 95% confidence interval of eddy viscosity for momentum. The black curve is the eddy diffusivity prediction used in some turbulence boundary layer models with \(u^* = 0.024 \text{ m s}^{-1} \).
IMPACT/APPLICATION

Our instrument provides the first field measurements of turbulent vorticity and vorticity flux in a tidal turbulent boundary layer. Vorticity is the most fundamental variable of turbulence. Therefore, our measurements open up new ways to study turbulence. There are varieties of potential application of our measurements in the ocean. In particular, our instrument is suitable for measuring the vortex force, which is a major driving mechanism of Langmuir circulation and sediment suspension. The instrument can be used to measure potential vorticity providing additional density sensors. Since internal waves do not carry potential vorticity, it is the key quantity to distinguish internal waves and turbulence in a stratified flow.

Further study of form drag in the turbulent boundary layer is needed. We demonstrate that the profile method may yield a non-local stress estimate, which depends crucially on the upstream condition of bottom topography. To study the turbulent boundary layer, it is important to know the surrounding bathymetry. Previous researches have often shown that the profile method yields an excess stress. Form drag has been suggested for the excess stress. We need direct evidence for the suggested form drag.

TRANSITIONS

There are several possible transitions to Naval applied projects in the field of wake studies and EM signals in the ocean.

RELATED PROJECTS

It is certain that the sensor is appropriate for participation with many science projects now underway in shallow water bottom boundary layers, such as the CMO project, to study mixing, internal waves, and bottom stress.

REFERENCES

PUBLICATIONS
