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A system of dynamical equations is presented that allow micro air vehicle (MAV) or-
nithopter designers to match drive motors to loads produced by flexible flapping wing
spars. The model can be used to examine the coupled system-level behavior of brushed
DC motors, gear trains, and any number of linkages and flexible wing spars. A Lagrangian
approach is used to derive the governing differential equations of motion for a class of or-
nithopter drive systems. Methods used to determine parametric constants contributing to
generalized force components, which cannot be derived from first principles, are described.
An example is presented where simulation results are compared to experimental measure-
ments. The results show that the differential equations correctly predict major trends
in observed motor speed and wing spar structural deformation over the course of each
wingbeat. The results show that when pairing flight-weight motors and wings, significant
variations in drive motor speed occur throughout each wingbeat. It is shown that cou-
pling between motor speed, wing loads, and structural flexibility cause the aerodynamic
forces encountered by the wing spars to depart from those predicted by rigid-spar and
constant-velocity-motor-based kinematic simulations.

I. Introduction

A large class of micro-air vehicle (MAV) ornithopter flapping mechanisms consist of a brushed DC motor
and gear train in combination with linkage elements, flexible wing spars, and wing surfaces. The aerodynamic
and inertial loads produced by the wings, and the inertial loads produced by gear train and linkage elements,
can significantly affect the instantaneous speed of the motor that drives them. Improperly matched motors
and loads can result in repeated starting and stopping of the motor armature, which limits flapping frequency
and reduces system performance. Thus, a systematic procedure for modeling the dynamics of this class of
electro-mechanical aeroelastic systems is presented. One potential use for such a model is to serve as the
basis for a vehicle design tool that matches drive motors to loads produced by flexible wings. A major
objective of this exposition is to present a low-order dynamical model, of adequate fidelity, to predict the
characteristics of the motion of flexible wing spars that are driven by ornithopter linkages and brushed DC
motors.

There are three principal types of loads that a drive motor must overcome in an ornithopter application,
viz., inertial, frictional, and aerodynamic. The inertial loads arise from both rigid body elements and flexible
modes associated with the structural dynamics of the wings. The frictional loads arise from a combination
of viscous and dry friction, where the former is due to light lubricating oils on the gear train and linkage
elements. Additionally, the back-electromotive force, or back-EMF, inherent in all brushed DC motors
produces a characteristic that from the point-of-view of the motor drive torque, behaves like viscous friction.
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The Lagrangian method is used to derive a system of governing differential equations that predict the coupled
behavior of a brushed DC motor driving a gear train with an arbitrary number of stages, coupled to any
number of linkages driving any number of flexible wing spars. Methods for obtaining the generalized forces
associated with each degree-of-freedom are presented for the non-conservative forces and drive elements
within the system.

Research in the area of flapping wing flight has been conducted by both the biological and engineering
communities. These communities have leveraged one another’s work and it is not uncommon for biologists to
make use of aerodynamic theory and theoretical mechanics to characterize and understand the mechanisms
that enable flight in insects or birds.!* Likewise, the engineering community has taken advantage of the
work of biologists to both devise machines that can approximate the motion of wings observed in nature
and to control those motions in such a way as to enable a flapping winged aircraft to be stabilized and
maneuvered as desired. Shyy et. al.® provides an overview of the work of both communities and provides a
foundation for understanding the physics of flapping flight at low Reynolds numbers.

The current state of technology allows one to design and construct ornithopters using ad-hoc methods
to match loads to motors. A large amount of the work reported in the literature describes the construction
of flying prototypes. For instance, the flapping wing aircraft known as DelFly® was developed at TU Delft
in the Netherlands and is capable of controlled forward flight and hover. A similar commercially available
aircraft, known as the WowWee Dragonfly?, is an ornithopter that makes use of four flapping wing surfaces to
provide propulsion for the aircraft. Researchers at the Naval Postgraduate School developed an aircraft that
replaces conventional propulsion mechanisms’ with flapping wings. Recently, Gerdes et. al® exhaustively
enumerated the flapping wing aerial vehicles that have had at least one successful reported flight. In a
preliminary study® on tailless hover-capable ornithopter design, it was found that such aircraft present
major challenges associated with trim and control. The work presented here shows the importance of
characterizing interactions between loads and drive motors, and the effects that these interactions have
upon the aerodynamic forces. It is important for control law designers to be aware of the presence of these
interactions and their impact upon the cycle-averaged behavior of the aerodynamic forces and moments.

In terms of designing drive mechanisms for flapping wings, it is desirable to minimize the number of
on-board actuators in order to minimize gross take-off weight. Closed-loop mechanisms such as four-bar
linkages have the desirable quality of creating flapping or rocking motion using a single drive actuator.
Extensive work has been reported in this area. Researchers have used synthesis-based or optimization-based
methods to design mechanisms that match the wing motion produced by many flying biological species in
a kinematic sense. For instance, the series of designs by Agrawal, et.al.!%!! attempted to optimize various
mechanism designs, based upon kinematic or quasi-static models of the mechanism motion, in order to match
the motion generated by some of the representative flying species. Similarly, Rahmat et. al'? synthesized and
fabricated a spherical four-bar mechanism to mimic the figure-8 wing stroke motion observed in a number
of natural flyers. While they showed simulation and experimental results,' their proof-of-concept prototype
only qualitatively showed the feasibility of such design. Raney and Slominski'# developed a ground-test
apparatus that could vary the wing kinematics produced by a machine that approximated the wing motion
observed in hummingbirds. The experiment focused on the control of the wingtip trajectories by varying
the amplitude and phase of waveforms applied to two electrodynamic actuators. Chung et.al.'® investigated
the use of central pattern generators to control the three dimensional motion of the wings of a 10 degree-of-
freedom robotic bat in a wind tunnel experiment. Other researchers'®'® have investigated the problem of
optimizing wingbeat kinematics for power or aerodynamic efficiency.

In the above efforts, however, the interactions between the drive elements and wing flexibility were not
mathematically modeled when optimizing mechanisms for matching the observed motion of natural flyers.
In the present exposition, it is shown that the idealized kinematic behavior of a linkage and rigid wing spar
driven by a constant velocity DC motor is quite different from that produced by a system where a torque-
limited flight-weight motor drives flexible wing spars. As will be shown in the present work, the ability to
prescribe wingbeat kinematics in flight-weight systems will not normally be possible because of torque limits
and dynamic interactions between drive and wing components. One of the conclusions of the present study
is that the entire system, from drive motor to wing, must be integrated into the model when attempting to
match the observed motion of biological systems with a flight-weight mechanical system.

In terms of overall flight control, Deng et.al.'%20 designed, modeled, simulated, and produced a cycle-
averaged control design for a conceptual biomimetic flapping wing robotic aircraft. Khan and Agrawal?!

ahttp://www.wowwee.com/en/products/toys/flight /flytech/dragonfly
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used a time-averaged control approach in conjunction with a differential flatness based control scheme to
design a longitudinal flight controller for a flapping-wing MAV. DeLeo and Deng?? presented a four-wing
aircraft design based on a dragonfly that featured a single rotary motor that drove the wings in the stroke-
plane, a tunable phase difference between the forewings and hindwings using a variable length coupler link,
and passive wing rotation about the spar. In the above control related studies, the dynamic interactions
between the drive components and the flexible and aerodynamic loads were not considered. Because such
interactions affect the aerodynamic forces and moments produced by the wings, they will also affect one’s
ability to control the aircraft.

Finally it is worth noting that there is line of research pursued by Wood?? et.al. that has focused on
the development of piezoelectrically powered micro mechanical insects. The first takeoff of an insect-scale
flapping wing MAV was achieved by an aircraft called RoboFly that was developed at Harvard University
by Wood et.al.?* Avadhanula, et.al.?> modeled a flapping wing piezo-electrically actuated electromechanical
subsystem system using a Lagrangian approach. While, piezoelectrically actuated flapping wing aircraft are
an important class of vehicles with a promising future, the work presented here is focused on the funda-
mentally different dynamic interactions that occur between DC motor powered gear-trains, linkage-based
mechanisms, and flexible wing spars.

The remainder of the paper is structured as follows: Section II presents a description of the components
that comprise the class of systems under consideration. The Lagrangian formalism enables the analysis of the
interactions between each subsystem, in terms of energy, and is presented in Section ITI. Section IV evaluates
the equation-of-motion of the system using Lagrange’s equation. Taking advantage of the additive properties
of derivatives, the equations-of-motion are derived in a modular fashion. In Section V, nonconservative
generalized forces, such as drive-motor torque, modal damping, frictional, and aerodynamic forces are derived
using the principle of virtual work. The information required to evaluate these terms are supported, in some
cases, by experimental measurements. Finally, in Section VI, simulation results are critically compared to
experimental results generated by the system described in Section II.

II. Description of a Bench-Test Article

The framework developed in this manuscript is directly applicable to a large class of MAV ornithopter
designs; however, the simulation and experimental results that are presented, apply to a specific test article
that consists of components of a prototype aircraft considered by Doman et.al.” In order to introduce the
reader to the class of systems under consideration, a specific bench test article will now be described. The
bench-test article and some of the supporting measurement apparatus is shown in Fig. 1. For the purpose of
the analysis in this paper, the system is considered to be rigidly mounted to the bench. The system consists
of a coreless brushed DC motor driving a set of compound gears, which in-turn drives a four-bar mechanism
that imparts rocking motion to a flexible wing spar.

(a) Bench-test article (b) Enlarged view of driving mechanism (diameter of large
gear is 2.49 cm)

Figure 1. Experimental Setup
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The fuselage frame was produced from a CAD model using a 3-D printer. The gears came from a
commercial source. The linkage elements were custom machined from Delrin. The linkage pins were made
from commercially available 1/16 inch (.158 ¢m) aluminum rivets. The spar was made from commercially
available 0.037 inch (.09398) carbon fiber rod cut to 13cm in length. The spar was attached to the rocker
arm of the linkage using a Kevlar wrap that was saturated with cyanoacrylate adhesive. The fuselage frame
also incorporated a custom-made 16 slot optical encoder. The encoder meshed with the linkage crank gear
to measure the overall system’s angular velocity. Because of the choice of gear ratios, the encoder rotated
at the same velocity as the stage 1 gear. The motor power was supplied by a regulated voltage source. A
high speed camera system was used to capture the motion of the system at 2000 frames per second and
the images were used to critically compare the motion of the simulation model with that observed in the
experiments.

The development that follows applies to a general class of ornithopter flapping mechanisms. The bench-
test mechanism described above was used to experimentally validate the equations of motion for a special
case.

III. Modeling and Lagrangian Formulation of Each Subsystem

The overall system consists of the following components: a motor, gear-train, four-bar linkage, and
a flexible wing spar. For the purpose of this paper, the fuselage is assumed to be rigidly mounted to a
bench, thus a fuselage-fixed coordinate frame is taken to be an inertial frame. The motor and the linkage
line-of-centers are also taken to be fixed with respect to the fuselage frame.

In what follows, the kinetic energy (7") and/or potential energy (V') of each subsystem is considered. The
Lagrangian of a mechanical system is defined as:

LET-V (1)
In a subsequent section, the energy of all of the subsystems are summed together, and the equations-of-motion
of the overall system are determined using Lagrange’s equation.

A. DC Motor

First, a model of a brushed DC motor is considered. According to Ogata,?6 the torque produced by a motor
is proportional to the current flowing through the windings:

19 = K711, (2)

where K is the motor torque constant, and i, is the current. The back-EMF produced by the motor as a
result of its angular velocity can be described as:

ep = Kb0 (3)

where K} is the back-EMF constant, 6 is the angular position of the motor armature, and 0 is its angular
velocity. The differential equation governing the dynamics of the armature circuit is given by:

di )

LaJ + RaZa +ep =eq (4)

dt
where L, is the inductance of the motor, R, is the resistance of the armature, and e, is the voltage applied
to the armature. According to Ogata,?% motor inductance is typically very small; thus, L, ~ 0. Using the
small inductance approximation and solving for i, from Eq. (4) yields:

()

Substituting Egs. (5) and (3) into Eq. (2) allows one to solve for the net torque produced by the motor,

Kr KrKy -
= —€4 — 9 6
To Rae Ra ( )
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Note that the torque is dependent on the input voltage e,. The back-EMF and drive torques form a portion
of the total generalized force associated with the rigid body degree-of-freedom 6.
The rotation of the motor armature contributes kinetic energy to the mechanical system according to:

1 .
T = §Ja02 (7)

where J, is the mass moment of inertia of the armature and spindle about the axis-of-rotation. Since the
motor does not contribute to the potential energy of the system, the Lagrangian of the DC motor subsystem
is given by:

1.
Lo =Ty = 5Jae2 (8)

B. Gear Train

Many ornithopter designs use compound gear trains to reduce the speed of the motor to achieve a target
wing flapping frequency. The overall speed reduction and torque amplification can be tuned, within limits,
to match the torque of the motor to the loads produced by the wing and the mechanism.

Kinetic Energy of

Each Gear
Spur Gear n
or Crank Gear 1 2o
Tgng =§Jgnft9
Spur Gear n-1 15 :
Pinion n-1 Tgn,1 :_HJQHGKZQZ
254
[ J
[ J
[ J
Spur Gear 2 1
Pinion 2 = ’G?0°?
A 2 ng _EngGzGie
Spur Gear 1 #
Pinion 1 1

- S To. =5 %.G:0"
Pinion (Stage 0)
0 \, Motor

1 .
Tgo = E J 9o 02
Figure 2. Compound Gear Train Transmission

Figure 2 shows a compound gear train that consists of n, stages. The stage 0 gear in the train is a pinion
fixed to the motor armature. The armature pinion, which has py teeth, meshes with periphery of a first
stage compound gear that has t; teeth. At each stage, the pinion of each compound gear meshes with the
spur gear of the subsequent stage to incrementally increase mechanical advantage and reduce speed until the
final crank gear stage ng is reached. The crank gear stage ng then forms the crank for the four-bar linkage
portion of the drive-train. The total speed reduction from the pinion to the crank is given by:

= (H Gk> ] 9)
k=0
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where 6, is the crank angular velocity of the four-bar linkage, ng is the number of gears in the gear train,
G}, is the gear ratio of the k*" stage, which for a given gear pitch, is given by:

L k=0
Gk =1 s (10)
{ Bt k=12,

where pi_1 is the number of teeth on the pinion of compound gear k — 1, and ¢ is the number of teeth on
the spur gear k. For convenience, the overall gear ratio from the motor to the crank gear is defined as:

Ng

re [l (11)
k=0

Excluding the crank gear, the total kinetic energy and the Lagrangian of the ny — 1 gears and the pinion
attached to the motor spindle, is given by:

ng—1 g

1 .
Lg=T,= 2 Z H JoG3 | 02 (12)

k=0 j=0

where Jgo is the mass moment of inertia of the pinion, and Jg; is the mass moment of inertia of each
compound gear in the gear train. Note that the crank gear energy is not included in Ty because it is
included in the energy of the linkage that is derived in the subsequent section. Since there is no potential
energy contribution from the gear-train, the Lagrangian of the gear train subsystem is simply L, = Tj:

For the system introduced in Section II, n, = 2. Hence:

1 .
Ly =T, =5(Jgo+ JpG)E? (13)

It is worthwhile to note that the kinetic energy of other rotating components, such as encoder wheels used
to measure position or speed, can be included by lumping the mass moment of inertia of these components
with the mass moment of inertia of any gears that rotate at the same speed. For example, the encoder wheel
used in the experiments performed under this work, moves at the same speed as the first stage compound
gear. Thus, the effective mass moment of inertia can be computed from the following sum:

;1 é ng + J& + Jep (14)

where J. and J, represent the mass moments of inertia of the encoder wheel and the pinion attached to the
encoder wheel respectively.

C. Four-Bar Linkage

Figure 3 defines the elements of a four-bar linkage for the class of systems under consideration. The physical
structure of the crank gear, viz., gear stage ng, forms the crank of the four-bar linkage. A pin of mass m,
connects the crank gear to a coupler bar of mass msy and mass moment of inertia about its own center-of-
mass of Is. The coupler bar is connected to a rocker arm of mass mgz and mass moment of inertia I3 by a
pin of mass m,. The line that connects the center-of-rotation of the crank gear and the pivot point of the
rocker-arm is called the line-of-centers, whose length is denoted as ly.

Due to the closed-loop kinematic constraints formed within the linkage, the time evolution of the gen-
eralized coordinates of the crank gear angle 6;, coupler angle «;, and rocker angle ¢; are highly coupled.
However, it is well-known that a four-bar linkage is a single-degree-of-freedom system, permitting one to
express ; and ¢; in terms of #;. Hence, the objective of this section is to establish the total kinetic energy
of all the linkage elements in terms of the motor angular velocity 0.

1. Four-Bar Linkage Kinematics

To solve the kinematic problem of the four-bar linkage under consideration, the loop-closure constraint
equation is written as:

lycos; + Iy cosay =1, + I3 cos ¢y (15)
l18in0; + I3 sin oy = I3 sin ¢ (16)
6 of 28

American Institute of Aeronautics and Astronautics



Coupler Bar

Crank Gear

Figure 3. Four Bar Linkage

Solving for the terms containing «; yields:

locosay =1, + I3 cos ¢y — 11 cos b, (17)
losinag = I3sin ¢; — Iy sin §; (18)

Eliminating «; by squaring and summing Eqs. (17) and (18) yields the Freudenstein Equation:

Kl(é)l)sinqbl+K2(01)COS¢Z+K3(91) =0 (19)
where,
Kl(ﬁl) = —2l1l3 sin 91 (20)
Kg(gl) == 2lg(lo — ll COS 91) (21)
K3(0) =12 4+12 =12 +12 — 21,1, cos b, (22)

Letting 7 = tan(¢;/2), and making use of double-angle trigonometric identities yields:

. 2T
S11 d)l = 1—1_77_2 (23)
1— 72
_ 24
cos @ 2 (24)

Substituting Eqgs. (23) and (24) into Eq. (19) yields a quadratic equation in 7 for a given crank angle 6;:
(K3 — K2)7% + 2K 7 + (K3 + K3) =0 (25)

from which one can readily solve for the rocker-arm angle ¢; via:

-Ky+ K} - K2+ K3
¢l:2-arctan2< ! K31—K23+ 2) (26)

where arctan2 denotes the 4-quadrant arc-tangent function that is dependent upon the signs of the numerator
and denominator. The coupler angle a; can then be solved by dividing Eq. (17) by Eq. (18):

l3sin ¢; — [1 sin 6,
lo + I3 cos ¢y — 11 cos 6,

oy = arctan2 ( (27)

Hence, «oy(6;) and ¢;(6;) can effectively be written as functions of ;.
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_ The relationships between the crank angular velocity 6, and the dependent angular velocities, ¢&; and

¢1, can also be determined. Differentiating the loop closure equations in Egs. (15) and (16) with respect to
time yields:

—116;sin ) — lacy sinay + Iy sin gy = 0 (28)

116; cos 0 + laéy cos ay — Iy cos gy = 0 (29)

Equations (28) and (29) can be conveniently written as a linear algebra problem that can be solved for &;
and ¢; via Cramer’s rule yielding:

ll sin (qj)l — 0;) .
= —— 0 30
a lg sin (Oq — ¢l) ! ( )
. lysin(ag —6)) ;
= —— 0 31
2 I3 sin (aq — @) : (31)
Since 6; = T'0, Egs. (30) and (31) can be written as:
. . Oy,
- Ly
b1 = S2(0)0 = 20 0 (33)
where,
A 171 sin (¢l - FG)
$16) = Flz sin (au — 1) 39
2 lisin (g —T0)
52(0) = Fg sin (aq — ¢n) (%)

Therefore, the linkage element velocities ¢, gf)l, and 6; can be written in terms of a single motion variable
and its time derivative, viz. the the motor angular position # and angular velocity 6.

2. Lagrangian of Four-Bar Linkage

The kinetic energy of the linkage elements is given by:
1 . . _
T = 5 my[ve, ||2 + 11912 + 7712||7J02||2 + Iga% + m3H’UCSH2 + I3qb12 +my(||vp, H2 4 ||vp2||2) (36)

where v, ,v., and v., are the linear velocities of the centers-of-mass of the crank, coupler, and rocker
respectively; m,, is the mass of the linkage pins, and v,, and v,, are the velocities of the two pins. The
center-of-mass of the crank is constant because it is formed from the final gear, which is axis-symmetric,
thus ve, = 0 and I = Jy,,,. Expanding Eq. (36) yields:

1 R R R . . .
Ti = 5 |07 +ma(307 + 12,67 + 2ale, cos(0, — au)éuth) + Laj + (male, + Is)o} + my (1167 + l§¢%)} (37)

Collecting terms on the products of the angular velocities and substituting Egs. (9) and (11) into Eq. (37)
yields:

T, = %[Jl,,é2 + J2,67 + J3, 67 + 2P1Crovd)] (38)
where,
Ji, =T2 [I + malf + myl3] (39)
Jo, = m2132 + I (40)
Js, =mal2 +myl5 + I3 (41)
Py = mylyl,,T (42)
Cy = cos(bh — o) (43)
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Note that the linkage operates in a plane that is perpendicular to the gravitational vector, thus, there is
no change in potential energy of the linkage elements as the crank rotates. Hence, only kinetic energy
contributes to the total Lagrangian associated with the four-bar linkage subsystem. Substituting Egs. (30)
and (31) into Eq. (38) yields the complete expression for the kinetic energy and Lagrangian of the linkage
in terms of the motor angular velocity 6:

1 .
L, =T = 5[(]11 + JQlS% + J3zS22 + 2P10151]92 (44)

D. Flexible Spar

Typical MAV ornithopters use carbon fiber components for the wing structure and thin films, such as Mylar,
for the wing skin. In general, the interactions of the motor, gears, linkage, and wing are of interest. In the
analysis that follows, the structural dynamics of a wing spar are considered, since the leading edge wing spar
provides the primary resistance to wing bending in the stroke plane. Figure 4 shows a diagram of a four bar
linkage with a flexible wing spar clamped to the end of a rocker-arm.

Undeformed
Spar I\\/
\
\

Flexible \

Spar 1

w(r,,t)

Clamped Spar Root ——-/

Figure 4. Flexible spar driven by rocker arm.

An inertial frame, represented by the unit vectors ny,ns, is fixed at the center-of-rotation of the rocker-
arm. A coordinate frame that rotates with the rocker arm is denoted as §1, 82. A vector from the origin of
frame §; — S5 to the point at which the spar is clamped to the rocker arm is denoted as .. A vector from
the clamped root of the spar to an arbitrary point on the undeformed spar is denoted as 7,. A vector from
a point on the undeformed spar to a point on the deformed spar is denoted as w(ry,t) where r, £ [T -
The deformation w(r,,t) is taken to be perpendicular to the undeformed spar and therefore occurs only in
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the 3, direction. When viewed from the rocker-arm frame, the flexible spar appears as a cantilever beamP.
The motion of the rocker-arm will cause the spar to deform due to bending. Euler-Bernoulli beam theory is
used in the following analysis and the spar is taken to have uniform cross section and Young’s modulus. The
assumed modes method?” is used to describe the deformation of the spar in the stroke plane relative to the
$1 axis. The deformation is taken to be described by an infinite sum of the products of spatially dependent
mode shape functions ®;(r,) and temporal modal coordinates 7;(t), i.e.:

w(ry,t) = Z i (r)mi(t) (45)

where, for clamped-free boundary conditions, the ith mode shape function is given by:

D,(ry) = A; [a;(sin ;ry, — sinh B;7,,) + b;(cos B;r,, — cosh 5;ry,)] (46)

where,
ai 2 (sin ;L — sinh ;L) (47)
b; 2 (cos B; L + cosh 3; L) (48)

and (; is the ith solution to the frequency equation:
cos 3; L cosh ;L = —1 (49)

and A; is an arbitrary constant with units of length®. For a cantilever beam with uniform properties along
its length:

2 A
4 Wit

pi = E.I

where w; is the natural frequency of the ith bending mode, m is the mass per unit length of the beam, Ej is
the Young’s modulus of the spar, and I is the area moment of inertia of the cross section of the spar about
the neutral axis.

In the analysis that follows, the first and second bending modes are retained in the response?. Hence,

w(ry,t) = @1(ru)m(t) + Po(ru)2(t) (51)

Solving the frequency equation for the first two bending modes yields:

(50)

E I
mL*

| EST
o 2 sds

where the constants are accurate to 4 significant figures. It is also useful to note that:

w; = 1.8752

3, = 1.?75 (54)
pr= 222 (55)

1. Flexible Spar Kinetic Energy

For convenience, define r £ r, 4 r,. Note that r, extends along the rigid rocker arm from the pivot point to
the clamped end of the spar. From Fig. 4, one may write the position vector from the origin of the rocker
arm to a point on the deformed beam as:

7 = [rcos ¢y — wsin ¢y] g + [rsin ¢y + w cos ¢y Na (56)

bNote that the rocker arm angle ¢; remains a function of motor position 6

¢In the literature, the arbitrary constant associated with each mode is often used to mass normalize the mode shapes

dFor the case considered in the results section, it was found that retaining only the first bending mode yielded excellent
results; nevertheless, a more general two-mode case has been considered in the analytical development
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Substituting Eq. (51) yields:
7y = [rcos ¢y — (Pimy + Pane) sin ¢y] 1y + [rsin gy + (P11 + Pana) cos ¢y no (57)

Differentiating Eq. (57) with respect to time yields:

7%,1) = [—T(ﬁl sing; — (P11 + ‘1’2772)@ cos ¢y — (D171 + Parjz) sin ¢l] 1+

{ngl cos ¢y — (P11 + Pamz)drsin gy + (P11 + Parz) cos ¢l} fa o
The differential kinetic energy of an elemental beam segment on the deformable spar is given by:
AT, = L, - ldr (59)
or, with some mathematical manipulation,
dTs = %m [7"2@2 + (D1 + Por2)*f + (Pri + Dain)® + 2rdy (Dri + ‘1’27'72)} dr (60)
Integrating Eq. (60) from the root to the tip of the spar yields:
T, = 3 / " [0 + (@ + @) + (i + D) + 2du(@y + i) dr (6D
or
T, = ;m/oL {<7"r + 1) 207 + (Rrm + Do) dF + (Puin + Dor)® + 2(ry + 1) Gi(R1in + @27'72)} dru - (62)

Recall that the shape functions, ®;, are functions of r, only, and that ¢;, 71 and 72 are functions of time
and do not vary with r,. Carrying out the integration of Eq. (62) yields:

1, ; : . . ; .. ; ) .
T, = -1 {61@2 + ca(dint 4+ 17) + 2cadiin + 2c6(Mmnd} + Min) + cr(dinz + 05) + 208¢ﬂ72] (63)

2
where:
L L3
e = / (ry 4 1ry)?dr, = =+ L?r, + Lr? (64)
0
L
co = / d3dr, = 9.226L (65)
0
L
cy = / (ry 4 1ry)®1dr, = —L(1.728L + 2.378r,.) (66)
0
L
Cg — / (131(I)Qd7‘u =0 (67)
0
L
cr = / d2dr, = 2984.480L (68)
0
L
cs = / (ry + 74)®odr, = —L(4.959L + 23.707r,) (69)
0

Note that the decimal constants in ¢ and c¢7; have units of length squared, while the decimal constants in
¢4 and cg have units of length, and ¢ is 0 since the mode shapes are orthogonal. Substituting Eq. (35) and
Eq. (67) into Eq. (63) yields:

1. i ) ) N . . .
T, = 3 15202 4 co(S26%107 +1?) + 2¢4520m1 + c7(S260%n3 4+ 13) + 208520772} (70)

The kinetic energy of the spar is now written in terms of the three motion variables of interest, viz., 8, 71,
12, and their derivatives.
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2.  Flexible Spar Strain Energy

By definition, the strain energy due to bending of an Euler-Bernoulli beam is given by?® :

1

L
V, = 5ESIS/ w” (1ry, t)*dr, (71)
0

Retaining only the first two bending modes and setting the arbitrary constant, A;, of Eq. (46) to unity, the
second spatial derivative of the deformation becomes:

w” (ry,t) = Bf [—ai(cos By + cosh B17y,) — by (sin By, + sinh Byr,)] 71+

) . . (72)
B3 [—aa(cos Pary f + cosh Bary) — ba(sin Bary, + sinh Bary )] 12

Squaring Eq. (72) and evaluating Eq. (71) yields the strain energy of the spar due to bending deformation
from the first two bending modes:

1
‘/s = iESIs [6577% + Clong] (73)
where,
L
114.082
cs = / &, dr, = — (74)
O L
L 6
1.449 x 10
o — / O dr, — 7&? (75)
0

Integrals of the products of the two mode shapes are zero because of orthogonality. The decimal constants
in c5 and c19 have units of length squared. The contribution of the flexible spar subsystem to the Lagrangian
is:

Ls=Ts—V; (76)

or

1. ) ) ) N ) _ .
Lo = I 15202 4 co(S20%07 + 177 + 2¢4820m + c7(S26%n3 +13) + 208529772} — E.I, [0517% + clong] (77)

IV. Equations-of-Motion

In Section I1I, the Lagrangian contribution of each subsystem was evaluated. The full equations-of-motion
can now be derived using Lagrange’s equation:

d (0L oL
dt (afii> eI @ (78)

where ¢; represents the i'h generalized displacement coordinate, and @Q; the corresponding generalized forces
derived from the principle of virtual work.

For the system under consideration, there are 3 generalized coordinates, namely, 6, 77, and n,. Hence,
three coupled ordinary differential equation-of-motions are derived. The Lagrangian of the entire system can
be obtained by summing Egs. (8), (12), (44), and (77):

L=Lom+Ly+ L+ Ly (79)

While this paper studies a system where a DC motor drives a single gear train and four-bar linkage
assembled with a flexible spar attached to the rocker arm, it is straight-forward to extend the formulation
to account for systems with additional elements. For instance, it is common for ornithopters to use a
single motor to drive two linkage-spar assemblies, as presented by Doman and Regisford,” or a single linkage
assembly to drive two spars. For such cases, let n; be the number of linkage assemblies and n; be the number
of spars attached to the linkages. Assuming that only identical copies of such elements are added to the
system, the more general Lagrangian can be written as:

L=Lyn+Ly+mL +nsLs (80)
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The remainder of this section evaluates the inertial and Coriolis/centrifugal terms associated with the
left-hand side of Lagrange’s equation in Eq. (78). In the interest of establishing a general set of equations
in which components may be added or subtracted from the system, we note that the derivative of a sum is
equal to the sum of the derivatives, thus Lagrange’s equation can be evaluated for each component, and the
results can be added together to create the full equations of motion. One can derive the more general cases
using the Lagrangian shown in Eq. (80).

A. DC Motor

Referring to Eq. (8), it can be seen that the Lagrangian associated with the motor is a function of the single

motion variable 6. Hence, it is straight-forward to show that the contribution of the motor to the equation
of motion associated with the rigid body degree-of-freedom is given by:

d (0L, -
— | — ) =J.0 81

dt ( o6 ) (8
The motor also contributes to the nonconservative input torque:

Qme =T9 (82)

Recall that 7y includes the effects of the voltage applied to the armature and the back EMF damping effect,
which is a function of the motion variable 6.

B. Gear Train

The Lagrangian expression for the gear train in Eq. (12), is a function of 6 only. Hence, the contribution of
the gear train to the equation of motion of motion associated with the rigid-body degree-of-freedom can be
evaluated as:

ng—1 k
d 8£q> ' 5 =
— | =] = JoG: | 0 83
dt ( 06 kZ:O Jl;[l o (83)
For the test article considered in this manuscript, Eq. (13) yields:

d (0L,\ -
T (80) = Jgo (84)

where
Jgo = (Jgo + J),G?) (85)

in which the mass moment of inertia of the encoder is also included.

C. Four-Bar Linkage

The Lagrangian of the four-bar linkage £; is completely written in terms of 6§ and 6 as shown in Eq. (44);
however, due to the highly nonlinear couplings between the angular quantities, care must be taken to ensure
that all dependencies are considered when evaluating the derivatives associated with Lagrange’s equation.
The contribution of the four-bar linkage to the equation of motion associated with the rigid body degree-of-

freedom is given by:
d (0L oL,
P < 9 > "0 (86)

Examination of Egs. (34) and (35), and (38) reveals that S;, Sa, and C are functions of all of the
angular position variables associated with the four-bar linkage, which can be expressed in terms of the time
dependent motor angular position, i.e.:

S1(0(t), u(0(t)), &
S2 (0(1), ca(6(2)), &
Cr(0(t), cu(6(2))) (87)
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For brevity, in the subsequent development the dependence of these terms upon 6(¢) is implied rather than
explicitly written. In order to evaluate Eq. (86), it is necessary to compute the time derivatives of these
functions. Application of the multi-variable chain rule yields:

where,
Sy = :%%+gij%og+gij%ﬂ (92)
However, from Eqs. (34) and (35), it readily follows that:
Sy = :88591 + 2—35‘1 + (Z‘ZSQ] (94)
Sy = :88% %Sl + g‘ZjSQ] (95)
Cy = :a;;l + ?9351} (96)

where the full expressions for the individual partial derivatives can be found in the Appendix. Hence,
evaluating each of the terms in Eq. (86) yields:

d (0L .. .
% <89> = J199 + 20’1992 (97)
oL
g = o0 (98)
where
Jio = (J1, + Jo, 8% + J3,55 + 2P1C1.S1) (99)
Olg = ((Plcl + JQle)g1 + J3152§2 + P1516~'1> (100)
Finally, Eq. (86) becomes:
d (0L oL, . .
il vl vl 101
at ( 89) o0 Ji,0 + 01,0 (101)

D. Flexible Spar

For the Lagrangian of the flexible spar in Eq. (77), note that all three generalized coordinates, 8, 11 and 72,
are involved. Hence, the flexible spar will contribute to three equations of motion. Evaluation of Lagrange’s
equation for the coordinate 0, yields:

d (0L, oL, .. . . .
T < 89) ~ 59 :J8990+Js”91771+J;792772+03992+1189 (102)
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where

J2, = mS3(c1 + i + ep1g) (103)
Jgel = mc4S2 (104)
Jg; = ﬁngSQ (105)
05, = MS9Sy(c1 + cani 4 cyn3) (106)
Koy = 2830(caiim + crinans) (107)
Evaluation of Lagrange’s equation for the coordinate 7, yields:

d (0L oL o .
— (=) = == =J8 O+ T i+ o, 07+ ks 108
dt (3771 > 87]1 Sny + Sny n+o 1 +r n1 ( )

where,
0 A
Jsm = mC4SQ (109)
T =1 (110)
Tayy = 112(caS2 — c283) (111)
lﬁ:sm = ESISC5’I]1 (112)
Evaluation of Lagrange’s equation for the coordinate 7, yields:

d (0L oL i .
— (=) == =T 0+ TP i+ o, 07+ ks 113
dt (8772 ) o2 Sng + sny 12 T 05,07 + K, ( )

where,

‘fnz = T?LCgSQ (114)
T = ey (115)
05, = 1(csS2 = c183m2) (116)
HSTQ = EsIstTIQ (117)

E. Complete Equations of Motion

Finally, the complete equations of motion can be written as:

[(Ja+ Jog + 1y (0) + T5,0) T3 (0) TRO)] [6]  [o1,(8) + 05, (6.1, m2)
T2 (0) Jm 0 i |+ s, (0,m) 0%+ (118)
L g7 (0) 0 JE 1 Lk s,y (0,112)
Fosy (0,60, 11,701, 12, 772) Qo (€a) + Qu, (0) + Qay (0, 0,11, 171, 2, 112)
Ky, (M) = Qs,, (M) + Qa,, (0,0,m1,71,m2,72)
Ks,, (12) Qs, (12) + Qu,y, (0,0, 11,771,12,712)

which can be integrated using numerical methods. The explicit dependence of the inertial, Coriolis, and
generalized force terms upon the state variables is shown to highlight the extensive coupling present in such
a system. The forcing term that drives these equations is the armature voltage e,. Thus, these equations
can be used to predict how the system will behave when a constant or time varying voltage is applied to the
motor armature. These equations provide a powerful analysis tool for MAV system designers. They could
also be used as a model to support the design of mechanism control laws that have the potential to improve
the behavior of wing beat motion over what could be achieved by applying a constant voltage to the motor.
There are a number of generalized forces that act upon the system such as a velocity dependent frictional /back-
EMF term associated with the 6 coordinate, which can be written as @Q;, = Byb, the damping within the
flexible spar that is proportional to the modal coordinate rates QS"1 = 2Ciw1mM, QS"2 = 2(owa7)2, and the
aerodynamic drag of the spar that influences each degree of freedom via Qq,,Qq4,,, and Qq,,. Methods for
estimating each of these generalized forces will be discussed in the next two sections.
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V. Estimation of Generalized Forces

The analytical method presented thus far yields the form of the governing dynamical equations. There
are several constants that are device dependent and can only be determined experimentally. With respect
to the DC motor, the motor torque constant K7, back-EMF constant K, and armature resistance R, must
be determined experimentally or be provided by the motor manufacturer. The friction characteristics of the
gear train and linkage as well as the modal damping of the spar structural modes must also be determined
from experiments. A process for the estimating each of these terms is be presented below.

A. Motor Drive Torque

The generalized force, @y, , is the motor drive torque, which is given by:

Kr
Qme = Eea (119)
The motor torque constant K7 and armature resistance R, must be measured, or supplied by the motor
manufacturer. A description of how to estimate the motor torque constant from experiments is provided
below. The armature voltage e, forms the external input into the equations of motion.

B. Generalized Frictional Force

The overall generalized friction force ();, is a lumped parameter that includes the effects of back-EMF and
viscous friction in the gear train, linkage and the motor itself.

Qi, = Byb (120)
where ok
B(.):—< ; B+b> (121)

A description of how the terms in Eq. 120 were measured follows.

1. Determination of Motor Characteristics

The important physical properties of most small motors being used in flapping wing MAV prototypes are
not well characterized by their manufacturer. This is because many of these motors are used to power toys
or pager motors, and such detailed design information is not required for those applications. A method for
extracting estimates of the required motor parameters is presented.

First, consider the problem of extracting of the back-EMF constant of the motor. By substituting Eq. 3

into Eq. 5, one can solve for Kj:

1
Ky = 5(% — Ryig) (122)

Most of the parameters on the right hand side of the equation are measurable in the laboratory using a
digital multimeter. The measurement of 6 can be performed using a strobe light, an optical encoder, or a
visual image correlation system. Alternatively, Eq. 3 can be used directly if an active drive motor is coupled
to an optical encoder and to the test motor via an idler gear. The output voltage e, generated by the test
motor can be measured, while the period of the pulse train generated by the optical encoder can be used
to determine the motor speed. Each of the methods described above have been used by the authors and
have been found to produce nearly identical estimates of the back-EMF constant on a 7mm pager motor
manufactured by Super Slicks. The motor used in the test article is known in hobbyist circles as a Red Super
Slicks motor and has an armature resistance of 2.3 Ohms.

The estimation of the torque constant K followed the method outlined by the Didel company®. A pinion
was mounted on the motor shaft. An arm with a splined hole near one end was fitted over the pinion. A
point on the opposite end of the arm was oriented perpendicular to the longitudinal axis of the arm. The
motor was mounted securely to a laboratory bench and the point of the arm was placed on a scale with a 0.1
g resolution. Multiplying the moment arm by the force measurement yielded the stall torque. The torque

Chttp://www.didel.com/microkit/moteurs/Motors.html

16 of 28

American Institute of Aeronautics and Astronautics



constant was then be determined from Eq. 2. The resulting mean estimate for the torque constant was 6774
dyne-cm/amp with a standard deviation of 619 dyne-cm/amp. The high standard deviation was attributed
to the low resolution of the scale used in the test.

2. Determination of Mechanism Friction

An initial estimate of the friction characteristics of the mechanism was obtained by measuring the steady-
state speed of the motor, gear train, and linkage and the current flowing through the motor. Note that the
wing spar was not attached to the mechanism during this test. A viscous friction model was used to describe
the effect of all sources of mechanical friction within the subsystem, viz.,

Tp = —bf (123)
With knowledge of the motor torque constant, back EMF constant, steady state current, and steady state
speed, the viscous friction coefficient was estimated from:

_ —Kri.  Krk,

b
953 R

(124)

where 6, represents the steady state velocity of the motor. In the work presented here, the initial estimate
of the viscous friction coefficient was obtained from experimental data from a mechanism-only test. The
final adjustment of the coefficient was performed by comparing simulation time histories of crank speed to
experimental measurements of crank speed using an optical encoder. It was found that the viscous friction
coeflicient that caused the spar stroke periods of the simulation to match those observed in the experiment
was b = 0.525 dyne-cm/(rad/sec). It should be noted that this parameter, is very sensitive to the method
of construction of the overall device. For example, friction produced by the linkage rivets or pins is related
to the skill of the builder who must carefully deform the heads of the rivets to ensure planar motion of the
linkage without producing excessive friction.

C. Determination of Modal Characteristics of the Spar

An estimate of the modal damping of a spar or wing structure is not normally available. A test was conducted
to estimate the modal damping of the first bending mode the spar used in the experiment. The spar under
consideration was a carbon fiber rod that the manufacturer markets as an “0.037 inch diameter” rod. The
rod was cut to 13 c¢m in length. An infrared non-contact proximity sensor, consisting of an LED and photo
transistor, was used measure the deflection of a point on the spar, while the root was clamped. The spar was
plucked and the response was recorded at a 20 KHz sampling rate. The damping was estimated by using
the well known logarithmic decrement technique. The undamped natural frequency was also estimated from
the response. The magnitude of the initial tip displacement was purposely small, i.e. < 1 cm, in order
to minimize the impact of aerodynamic drag upon the damping estimate. The measurement of the spar
displacement in this test was limited to sensor voltage output, since the measurement of frequency and
damping is not dependent upon the actual physical units of displacement, e.g. cm.

Some important observations were made while conducting the test. First, commercially available carbon
fiber rod does not have a circular cross section. The cross section is best described as an oval, rather than
a “0.037 inch rod” with a circular cross section. The cross section measurements varied by +/- .002 inches
(4+/- .005 ¢cm). This means that “pluck” tests must be conducted with care, since an initial deformation
that is not aligned with a principal axis will produce transverse vibrations along two axes, making it difficult
for a non-contacting proximity sensor to accurately measure the time history of the displacement, which is
required for the application of the log decrement method. The best results were obtained when the initial
deformation was aligned with a principal axis. The response, as measured by the non-contact proximity
sensor, was band-pass filtered with break frequencies 2 times lower and 2 times higher than the theoretical
estimate of the first bending mode frequency for a spar with a circular cross section. The power spectral
density of the filtered response was used to estimate the actual first bending mode frequency.

Classical beam theory estimates the natural frequency of the first bending mode of a cantilever beam to
be given by Eq. 52. In order to estimate the frequency of the first bending mode of the spar from Eq. 52,
one must use estimates of the following spar properties: Young’s modulus, cross sectional area moment of
inertia , mass per unit length, and length. The mass of the spar was determined to the nearest 1 mg on a
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precision scale and the length of the rod was measured to the nearest .25 mm using a digital caliper. The
mass per unit length of the spar was determined to be i = 0.01085 g/cm. Using the above information
and the manufacturer’s specifications for B, = 1.227 x 10'2 dynes/cm?, as well as the assumption that
the cross section of the rod is circular, the idealized first bending mode frequency can be computed to be
Wipeor, = 432.88 rad/sec. Since the product E¢ I had a higher degree of uncertainty than the spar mass and
length, the measured first bending mode frequency obtained from the peak of the power spectral density was
used to estimate the uncertain product. The power spectral density of the band-pass filtered tip deflection
time history showed that the natural frequency of the first bending mode was located at 422.79 rad/sec.
For a uniform circular cross section of an 0.037 inch (.09398 cm) round rod with an area moment of inertia
about the neutral axis of I, = 3.83 x 10 %cm? , the value of Young’s modulus that matches the observed
natural frequency is given by E, = 1.1704 x 102 dyne/cm?, which is slightly lower than the manufacturer’s
specification. The lower frequency is most likely due to the departure from the ideal circular cross section
of the rod. Indeed, beam theory predicts variations of up to + 5% in first bending mode frequency for a rod
with an elliptical cross section where the major and minor axes vary by 4+ .005 cm from a nominal .09398

m (.037 inch) diameter circular cross section. The damping ratio for the first bending mode based upon the
analy51s using the log decrement method was found be (; = .0025; the damping ratio for the second bending
mode was assumed to be the same as for the first.

D. Aerodynamic Drag Forces

The standard definition for the generalized forces used in Lagrange’s equations is given by:2°

ox;
=> F aqj- (125)

Jj=1

where @; is the ith generalized force, F is the jth component of the external force applied to the system, g;
is the ith generalized coordinate, and is the jth component of the partial derivative of the position vector
to the point of application of the force with respect to the ith generalized coordinate. For the derivation of
the generalized forces acting on the flexible spar, the differential contribution to the generalized forces is first
calculated. Then the differential contributions to the generalized forces are integrated to obtain generalized
forces as a function of the angular position of the motor and the flexible modal coordinates. The derivation
that follows assumes that the only external force applied to the system is due to the aerodynamic drag
acting on the flexible spar and that the first two modal coordinates accurately represent the deformation.
The flexible spar is modeled as a cylinder and a blade element model is used to determine the aerodynamic
drag. As standard when using the blade element method, the drag over the cylinder is modeled using a
rectangle with dimensions equal to the cylinder’s length and diameter. Thus, the replacement area lies in
the s; — s3 plane. Blade element theory states:3°

1
dFp = §pCdV020 dA (126)

where V. is the magnitude of the velocity of a point on the representative area once it has been resolved into
components that lie in the plane of the blade element. dA is the differential area over which the dynamic
pressure acts. Thus dA = dr, dzs. It is convenient to describe the aerodynamic force in a frame that defines
the blade elements. The definition of each blade element along the spar should remain constant in the
coordinate frames in which they are expressed. Thus at each point in the representative area a frame can be
defined that deforms along with the spar. This deformed frame is related to the frame associated with the
undeformed motion of the spar through a single axis rotation. The deformation of the spar is described in
Eq. 45. The angle that defines the relationship between the s-frame and the deformed d-frame is described
by taking the spatial derivative of Eq. 45 with respect to the r, variable. Thus,

o0

W' (rust) = Y ®(ra)mi(t) (127)

=1

As the present analysis assumes that only two modes are retained,

w'(ru,t) = @ (ru)m (t) + P5(ru)n2(t) (128)
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Figure 5. Coordinate frames associated with undeformed and deformed spar.

$1 cosw'(ry,t) —sinw'(ry,t) 0| [di
S 0 = |sinw (ry,t)  cosw(ry,t) 0| dy (129)
33 0 0 1] |ds

The drag force acts in opposition to the direction of the velocity defined in the plane of the blade element.
Thus, the differential force vector is written in the inertial frame as:

. 1 V.
dFd = *pOdVOQO dA (—f)
2 Vool
1 _

To define Vs, begin with the definition of the velocity of the point written in terms of the deformed frame:

vy, = (— (@1(ra)m(t) + P2(ru)m2(t)) drcosw (1, t) + rdsinw’ (ry, t) + (P1(ru)in () + Po(ru)iz(t)) sinw’ (ry, t)) dq

(@10 (8) + @2 (8)) dusin ! (1, ) + 1 cosw (7 ) + (B4 (ra )i (8) + @31 (1)) cos w' (1, 1)) da
(131)

As the blade element lies in the dy — d3 plane, 170% is defined by ignoring the d; component of ﬁgT. Defining

Vooy as the dy component of ‘70‘2 and writing the resulting vector in the inertial frame yields:

Vo = (—cosgysinw (ry,t) — sin ¢y cosw’ (1, t)) Viooyftn +
(= sin ¢y sinw'(ry, t) + cos ¢y cosw' (1, 1)) Vooyha (132)

The position vector to any point on the rectangle representing the spar can be written as:

Tpr = (—rpcos¢; — 1y, cosgy —sing;®1m1 — sin ¢ Pana) My
+ (7 sin ¢y + 7y sin ¢y + cos ¢y P11 + cos ¢ Pan2) Np + 23 (133)

From Egs. 130 and 133 it is shown that both the differential force and the position vector from the origin
to the point of application of the differential force are not explicit functions of the generalized coordinate
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0; however, recall that ¢; is a function of §. Thus the chain rule for partial derivation must be used in
the determination of the differential contribution to the generalized force associated with the motor angular
position. Thus,

Orpry 901 Orpr, 061

dQg, = dFp, 134
Qao = dFpe=5 0= 50 + 4Dy =505 50 (134)
or 0Ty
d dFp, == + dF Pry 135
Qd,,l D an Dy an (135)
or or
dQu. = dFp,—= + dF, Pry 136
Qa,, D g DY G (136)
Thus I
Orpr, Oty Orpr, Oy
= dFpy—= =22 4 dF L 1
Qo /0 ( Dr 50 20 T PV o4 00 (137)
L
or or
= dFp,—= 4+ dF Pry 1
Qa,, /O ( D2 g +dFp, 8m> (138)
L
or or
= dFp, 2= 4+ dF ’””y) 139
Qa,, /0 ( D G LU (139)

Note that these generalized forces are state dependent and therefore, these spatial integrals must be
evaluated at each simulation time-step by quadrature.

E. Summary of Measured Parameters

Table 1 shows the estimates of the parameters of associated with the drive train elements. The inertias of
the gears were estimated by weighing each gear on a precision scale to the nearest 0.1 mg. The gears were
constructed in a 3D CAD program and mass moment of inertia properties were estimated using the mass
measurement and the computed volume to obtain the density of the material. The inertia of the coreless
motor armature was estimated by dissection and measurement. The inside and outside diameter of the
copper windings were measured, clipped off and weighed on a scale to the nearest 0.1 mg. Similarly the
spindle was measured and weighed separately. The armature assembly was drawn in a 3D CAD program and
the mass properties were estimated. It is important to accurately characterize the armature inertia because
there is no mechanical advantage at the motor stage to mitigate its effect.

Table 1. Parameters for the motor, gears and encoders

Descriptions Variables Values Units
Stage 1 gear ratio G4 9/48 -
Stage 2 gear ratio Go 12/81 -
Inertia of stage 1 gear Iq, 0.032334 g-cm?
Inertia of stage 2 gear Iq, 0.25515 g-cm?
Inertia of encoder 1. 0.35329 g-cm?
Inertia of 9-tooth pinion Ipg 0.00013719 g-cm?
Inertia of 12-tooth pinion Ipio 0.0076397 g—cm2
Inertia of motor armature 1, 0.015845 g-cm?
Motor torque constant Ky 6774 (dyne-cm)/A
Motor back-EMF constant K, 0.000764 V/(rad/sec)
Mechanism friction coefficient b 0.525 dyne-cm/(rad/sec)
Motor resistance R, 2.3 Q

Table 2 shows the estimates of the parameters of associated with the drive train elements. These estimates
were obtained by weighing the linkage elements on a scale to the nearest 0.1 mg and drawing the elements
in a 3D CAD package that provides mass property estimates.
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Table 2. Parameters for the four-bar linkage

Descriptions Variables | Values | Units
Line-of-centers length lo —1.936 cm
Crank length (link 1 formed by 81-tooth gear) I 0.461 cm
Link 2 pin-to-pin length lo 2.060 cm
Link 3 pin-to-pin length I3 0.670 cm
Distance to CG of link 2 from connection point at link 1 leo %lg cm
Distance to CG of link 3 from connection point at link 2 les 0.753 cm
Distance to root of spar from rocker pivot Ty 1.735 cm
Mass of pins at linkage joints my 0.025 g
Mass of link 2 mao 0.1072 g
Mass of link 3 ms 0.1513 g
Moment of inertia of link 2 about its CG I 0.06165 | g-cm?
Moment of inertia of link 3 about its CG I3 0.04283 | g-cm?

Table 3 summarizes the parameter estimates associated with the wing spar.

Table 3. Parameters for the flexible wing spar

Descriptions Variables Values Units
Spar Length L 13.0 cm
Young’s Modulus of Spar E, 1.1704 x 10'2 | dyn/cm?
Diameter of spar dg 0.0940 cm
Area moment of inertia of spar about neutral axis I 3.8292 x 1076 cm?
Mass per unit length of spar m 0.01085 g/cm
Length of spar adjoining rocker arm Iy 0.556 cm
Modal damping ratio G =4¢( 0.025 -

VI. Results

A. Experiment

A bench-test experiment was performed using the mechanism shown in Figure 1 for the purpose of providing
a point of comparison for the simulation results. Four time-based measurements were acquired from the
experiment, namely, the velocity of the first stage gear via an optical encoder, armature voltage, motor
current, and digital images from a high speed camera. Motor voltage, current, and encoder circuit waveforms
were recorded by a data acquisition (DAQ) system.

An optical encoder with 16 slots ran at the same speed as the first stage gear, which rotated at 3/16 of
the speed of the motor and 27/4 times faster than the speed of the crank gear. This arrangement yielded a
resolution of 108 pulses per crank revolution and 3.357 pulses per motor revolution. The time delay between
encoder pulses was measured by a 20 MHz clock within the data acquisition system. The pulse periods were
measured from falling edge to falling edge. The detection of falling edge pulses also triggered A/D sampling
of the instantaneous armature voltage and supply current. A 2000 frame per second camera system captured
overhead images of the system against the background of a protractor plate that was centered on the rocker
arm pivot. Protractor measurements for the spar tip could be read to the nearest 1/2° at low tip velocities;
however, the spar appeared blurred over arcs of up to 3° at high tip velocities. Precise measurements of
deflection were therefore only taken at the stroke reversal points.

The experiment proceeded by triggering the camera system, applying 2.81 V from a regulated power
supply to the motor armature, and recording a 4 second segment of the system response. The polarity of
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the voltage applied to the armature resulted in a clockwise crank rotation when viewed by the cameras,
which is important to note because the system response is direction dependent. The 4 second segment was
sufficient for the system to achieve a long period of steady state operation’ . When synchronizing the camera
clock to the data acquisition system clock, the first frame that motion was detected using the camera system
was assumed to correspond to the first frame acquired by the data acquisition system. The accuracy of the
time-base synchronization is, therefore, estimated to be within +.0005s.

B. Comparison of Simulation Results to Experimental Measurements

A segment of the simulation and experimental results for the system under steady-state operation is exam-
ined. Figure 6 shows a comparison of simulation time histories and experimental measurements that have
been synchronized based upon extremal spar tip displacements. The experimental measurements that are
presented here are typical of results that were observed over multiple experimental trials. The middle two
displacement traces show the simulated time history of the angular displacement of the rocker arm (blue)
and spar tip (green) as would be measured by the background protractor on the bench test platform. The
vertical red and blue lines indicate the times at which the extremal spar tip displacements were measured
using the high speed camera images. It can be seen that the period of the experimental results matches
the period of the simulation results. This match was achieved by fine-tuning the friction coefficient b in the
simulation until the crank rotation periods coincided, leaving all other parameters fixed at their measured
or computed values. The measured values of the spar tip deflection at the extremal points were extracted
from the camera images and appear as red and blue asterisks on the vertical lines associated with stroke
reversals. Note that the spar tip deflections associated with the blue asterisks are greater than those as-
sociated with the red asterisks. This is because the linkage produces temporally asymmetric motion that
results in a stronger reversal on one side than the other. This effect can be seen in the displacement plot
as well, where the peaks associated with strong reversals are noticeably sharper than those associated with
the weak reversals. The simulated tip deflections compare favorably with those measured by the camera
at the extremal points. Finally, the experimentally measured and simulated crank frequencies can be seen
in the top two traces. It can be seen that the characteristics of the time histories compare favorably. The
simulation slightly under-predicts the peak experimental crank frequency of 14.85 Hz by predicting a value
of 13.98 Hz for a difference of 4.9%. The simulation also slightly under-predicts the minimum experimental
crank frequency of 11.03 Hz by predicting a value of 11.66 Hz for a difference of 5.7%.

Another measure of the quality of the simulation is to compare “multi-exposure” images taken of the
spar as it traverses from one reversal point to another. Figure 7 shows a comparison of enhanced camera
images and the simulation images for the spar as it traverses from the weak to the strong reversal point for
clockwise crank rotation. Reflections and blurred images obscure the spar in some segments of the motion,
thus, the images have been enhanced by the use of a sketch overlay in order to improve the visibility of the
spar. The sketched overlay was produced by carefully tracing over the centerline of each spar image with a
solid black digital “pen” using image processing software. The images shown in Figure 7 correspond to the
portion of the time histories between 0.802 sec and 0.841 sec shown in Figure 6. The most striking feature of
the images is the “dwell” that occurs near the 60° mark. Another less significant dwell can be seen between
95° and 105°. This dwell effect is not readily discernable from time history plots of state variables; however,
the effect is a prominent feature of the motion that can be seen when viewing video images from the high
speed camera system. The appearance of the dwell phenomenon is a result of the combined motion of the
flexible structure and the rocker arm. In the dwell regions, the spar is moving backwards relative to the
rocker arm as a result of dynamic structural deformation. Clearly, the presence of such dwell regions have
a significant effect upon the local dynamic pressure experienced by the spar and the resulting aerodynamic
loads.

fDefined as a condition where the period of crank rotation is constant from one wing beat cycle to the next
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The impact of the modeling error associated with the kinematic simulation on aerodynamic loads can
be assessed by comparing the behavior of two time varying integrals over the course of a wingbeat. The
magnitude of an arbitrary aerodynamic load, F', created by a dynamic pressure distribution over the length
of the spar is given by:

1 L
F = 2 pCrd, / V21, t)dr (140)
0

If over the course of a wingbeat, the terms premultiplying the velocity squared integral are taken to be
constant, then the differences between the integrals for the kinematic simulation and the dynamic simulation
are a measure of the differences in instantaneous aerodynamic force. For the full dynamic simulation,

L
/ VQ(’I“U, t)d?”u = 015392 + 02(53927’]% + ’Iﬁ) + 2(24529’(71 + 67(52292n§ + 7’]%) + 268529772 (141)
0

whereas for the kinematic simulation,

L
/ Vi (ru, t)dry, = ¢1536 (142)
0

A plot that compares the two integrals over the course of a wingbeat is shown in Figure 10. It can be
seen that the flexible dynamics significantly influence the value of this integral and therefore the magnitude
of the aerodynamic loads. It was found that the cycle-averaged value of the integral from the dynamic
simulation was 3.1659 x 10%cm? /sec?, while the value corresponding to the kinematic simulation results was
2.5511 x 10%cm? /sec?, which indicates that the aerodynamic loads produced by the flexible spar would be
about 24% higher than those predicted by a simple kinematic simulation. It can be concluded that despite
fluctuations in the motor speed and the presence of dwell regions, the flexible spar produces higher average
aerodynamic loads than the rigid spar. The higher loads are the result of an increase in effective stroke
amplitude and velocity near the stroke reversal points.

25 of 28

American Institute of Aeronautics and Astronautics



Dynamic Simulation —_

Kinematic Simulation

L
jvz(ru,t)dru
0

cm?

sec

2

Time (sec)

Figure 10. Behavior of velocity squared integral, related to magnitude of aerodynamic forces

An additional observation was that the inclusion of the dynamics of the second bending mode, in this
particular case, was not warranted. A short study was conducted where all terms in Eq. 118 that were
associated with the second bending mode were set to zero. The simulation results generated by the model
that included the rigid body coordinate and the first bending mode were visually indistinguishable from
those shown in Figures 6, 7, 8, and 10. Furthermore the change in the cycle averaged value of the velocity
squared integral occurred in the 4" decimal place, i.e. 3.1656 x 105cm?/sec? for the single mode versus
3.1659 x 10%cm? /sec? for the second mode.

This work considers the dynamic coupling between ornithopter subsystems from the motor to the wing
spar. In order to analyze a system that includes wing ribs and membrane elements, at least two additional
degrees-of-freedom should be considered, viz., wing torsion, and out-of-plane bending. An analysis that
includes these additional wing elements is beyond the scope of the present paper and will be considered in
future work.
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VII. Conclusions

From the comparison of the simulation and experimental results, it is concluded that the Lagrangian
analysis method captures the major features and trends observed in the experiment significantly better than
constant velocity motor and rigid spar kinematic simulations used by previous investigators. Furthermore,
it is concluded that dynamic interactions between the flexible wing elements, drive-train, and motor, have a
significant effect upon both the instantaneous and cycle-averaged aerodynamic loads upon the spar. Thus,
when designing machines to optimize wing motion or attempting to match wing stroke patterns observed
in natural flyers, one must consider coupling between drive components and the wings rather than simply
prescribing wing kinematics. The validation of the equations of motion by comparing simulation results
to experimental measurements, instills confidence in the accuracy of the model. It was also found, that in
the specific case considered in the experiment, the second bending mode had little effect upon the model
predictions. It is therefore expected that in many cases, it may be possible to ignore second bending mode
effects and still maintain an adequate level of accuracy. Although the model was validated on a single test
bed, the modeling framework is applicable to a large class of MAV ornithopters. The equations of motion
presented in this paper can be used to predict how DC motor powered flapping wing micro air vehicle (MAV)
subsystem elements will behave when a constant or time varying voltage is applied to the motor armature.
These equations provide a powerful analysis tool for MAV system designers because they can be used as the
basis for a systematic method of selecting motors, drive-trains, linkage kinematics, and designing structural
and aerodynamic properties of flapping wing MAVs. They also have the potential to support mechanism
control law designs that can improve the behavior of wingbeat motion over what could be achieved by simply
applying a constant voltage to the drive motor.
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IX. Appendix

A. Differentiation of the Configuration Dependent Terms in the Four-Bar Linkage

In order to evaluate Eq. (101) the following relationships are required:

981 _ _phcos(a .—2¢z) sin(¢; — ') (144)
day I>sin(ay — ¢y)
% _ph sin(ZzS;ngfilCOS;olé)l — &) (148)
% = —T'sin(T0 — o) (149)
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