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This paper is concerned with the in-field autonomous operation of unmanned marine
vehicles in accordance with convention for safe and proper collision avoidance as pre-
scribed by the Coast Guard Collision Regulations �COLREGS�. These rules are written to
train and guide safe human operation of marine vehicles and are heavily dependent on
human common sense in determining rule applicability as well as rule execution, espe-
cially when multiple rules apply simultaneously. To capture, the flexibility exploited by
humans, this work applies a novel method of multiobjective optimization, interval pro-
gramming, in a behavior-based control framework for representing the navigation rules,
as well as task behaviors, in a way that achieves simultaneous optimal satisfaction. We
present experimental validation of this approach using multiple autonomous surface
craft. This work represents the first in-field demonstration of multiobjective optimization
applied to autonomous COLREGS-based marine vehicle navigation.
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1. INTRODUCTION

1.1. Motivation

Mobile robotic platforms deployed in the marine en-
vironment offer substantial benefits to society while
bringing a multitude of policy and legal challenges.
Introducing mobile robotic vessels into navigable
waterways presents the risk of collision with other
vessels �both manned and unmanned�, personal in-
jury and property damage. Until policy, law and
specifications evolve to address these issues, one can
only speculate on the requirements imposed on de-
velopers, owners, and operators of mobile robotic
marine vehicles. However, an inspection of the rel-
evant legal standards concerning safe operation of
vessels in navigable waters reveals the likely need of
owners, operators, and programmers to abide by the
current “rules of the road” given by the “Interna-
tional Regulations for Prevention of Collision at
Sea,” or the “COLREGS” �Commandant, 1999�. It is
likely that as the use of mobile robotics continues to
proliferate within the marine environment a new le-
gal framework will evolve to address the ramifica-
tions of ownership and operation of these assets. A
prudent operator might take the stance that, until
the law catches up with the operation of these ve-
hicles, the smart move is to make the vehicles com-
pliant with the existing standards applicable to safe
navigation �Brown & Gaskell, 2000; Showalter, 2004�.

1.2. Solution Framework

Although the COLREGS is a document suitable for
guiding human behavior, it is not suitable for direct
input into a vehicle control system. In practice, there
are often multiple rules simultaneously in effect, and
to varying degrees. This is particularly true in con-
gested waters. In many situations there are also mul-
tiple distinct vehicle maneuvers that would satisfy a
given rule. Humans are fairly good at dealing with
conflicting rules and capitalizing on the flexibility of
the written language, but these situations present
the harder challenges for autonomous vehicle
control.

To address this problem, we have used a novel
method of multiobjective optimization, interval pro-
gramming �IvP� �Benjamin, 2004�, within a behavior-
based architecture for capturing COLREGS rules.
Each COLREGS rule corresponds to a behavior that
produces an objective function over the vehicle’s de-

cision, i.e., actuator, space. The objective functions
capture the behavior prescribed by the COLREGS
rule �in the peak areas of the function�, but also cap-
ture its flexibility �in the nonpeak areas�. Each itera-
tion of the vehicle control loop then involves the cre-
ation and solution of a multiobjective optimization
problem, where each module contributes one func-
tion. This approach is suitable for building addi-
tional mission modules, on top of a COLREGS foun-
dation where the mission modules also produce
additional functions alongside the COLREGS mod-
ules. Results from simulation and results from in-
field experiments with multiple autonomous surface
craft are reported to validate these algorithms and
architecture.

2. BACKGROUND

2.1. Behavior-Based Control

In behavior-based systems, robot or vehicle control
is the result of set of independent, specialized mod-
ules working together to choose appropriate vehicle
actions. It can be viewed as an alternative to the tra-
ditional sense-plan-act control loop as shown in Fig-
ure 1, where decision making and planning are per-
formed on a single world model that is built up and
maintained over time.

Commonly cited virtues of behavior-based sys-
tems include: the ease of development of the inde-
pendent modules, the lack of a single complex world
model, and the potential for a highly reactive vehicle

Figure 1. Behavior-based control differs from conven-
tional control by composing overall vehicle behavior into
distinct modules that are developed and operate largely in
isolation, and coordinated through an action selection
mechanism. In this case, action selection is in the form of a
new multiobjective optimization technique to overcome
known difficulties associated with behavior-based control.
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with certain behaviors triggered by the appropriate
events in a dynamic environment. The origin of such
systems is commonly attributed to Brooks’ “sub-
sumption architecture” in Brooks �1986�. Since then,
it has been used in a large variety of applications
including: indoor robots �e.g., Arkin, 1987; Arkin,
Carter & Mackenzie, 1993; Hoff & Bekey, 1995;
Lenser, Bruce & Veloso, 2002; Pirjanian, 1998; Riekki,
1999; Saffiotti, Ruspini & Konolige, 1999; Tunstel,
1995; Veloso, Winner, Lenser, Bruce & Blach, 2000�,
land vehicles �e.g., Rosenblatt, 1997�, planetary rov-
ers �e.g., Ju, Cui & Cui, 2002; Pirjanian, Huntsberger
& Schenker, 2001; Singh et al. 2000�, and marine ve-
hicles �e.g.,Lee, Kwon & Joh, 2004; Benjamin, 2002b;
Bennet & Leonard, 2000; Carreras, Batlle & Ridao,
2000; Kumar & Stover, 2001; Rosenblatt, Williams &
Durrant-Whyte, 2002; Williams, Newman, Dissanay-
ake, Rosenblatt & Durrant-Whyte, 2000�. Action se-
lection, as indicated in Figure 1, is the process of
choosing a single action for execution, given the out-
puts of the behaviors. The “action space” is the set of
all possible distinct actions. For example, all combi-
nations of rotational and linear velocity for a robot,
or all speed, heading, and depth combinations for a
marine vehicle.

2.2. Known Difficulties in Behavior-Based Control

The primary difficulty often associated with
behavior-based control concerns action selection—
namely how to ensure the chosen action really is in
the best overall interest of the robot or vehicle. An
action generally is a vector of values, one for each
actuator being controlled. For example, the rota-
tional and angular velocity for a land robot, or head-
ing, speed, and depth for a marine robot.

Generally there are two techniques used in prac-
tice. The simplest method is to pick �at every itera-
tion of the control loop� a single behavior to have
exclusive control of the vehicle. Some approaches,
like Bennet & Leonard �2000�, Brooks �1986�, and
Newman �2003� assign a set of fixed priorities to be-
haviors, and conditions for their activation. The pri-
orities do not change dynamically. In other imple-
mentations, like Kumar & Stover �2001�, priorities
may be determined dynamically. Although using a
strict priority scheme is appealing due to its simplic-
ity, it is problematic in applications where the out-
right ignoring of the “secondary” behaviors leads to
gross vehicle inefficiency, as is the situation with the
task described in this work.

The other common form of action selection,
known variably as “action averaging,” “vector sum-
mation,” etc., takes the output of each behavior in
the form of a vector and uses the average numerical
value as the action sent to the vehicle’s actuators.
Summation is typically weighted to reflect behavior
priority. This method has been used effectively in a
number of applications �Arkin, 1987; Arkin & Balch,
1997; Balch & Arkin, 1998; Carreras, Batlle & Ridao,
2000; Khatib, 1985�.

When the preferred actions of two distinct be-
haviors disagree, this approach rests on the idea that
the alternative actions degrade in effectiveness in a
manner depicted in Figure 2.

In such a case, the action, or actuator setting, in
between the two individually preferred actions may
indeed be the most effective action overall. How-
ever, action averaging is problematic in cases when
alternative actions degrade in effectiveness in a man-
ner depicted in Figure 3, where the numerical aver-
age does not represent an effective compromise be-
tween two behaviors that are, in effect, mutually
exclusive.

3. THE “IVP” ARCHITECTURE

3.1. Behavior-Based Control with Interval
Programming

By using multiobjective optimization in action selec-
tion, behaviors produce an objective function rather

Figure 2. In action averaging, each behavior outputs a
single best action. The best action presumably is the most
effective among alternative actions for that particular be-
havior. The effectiveness levels of alternative actions are
rendered here only for illustration and do not participate
in the action averaging process. When two behaviors are
nonmutually exclusive and share common action choices
with high levels of effectiveness, as shown here, then ac-
tion averaging typically reflects an appropriate compro-
mise between behaviors.
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than a single preferred action �Pirjanian, 1998; Ben-
jamin, 2002a; Rosenblatt, 1997�. In the examples in
Figures 2 and 3, the objective functions are what dis-
tinguish opportunities for compromise. Note the
overall preferred action in Figures 2 and 3 are virtu-
ally the same despite the differences in utility of sec-
ondary alternatives.

An interval programming problem consists of a
collection of IvP functions, each with an associated
priority weighting. Each function typically corre-
sponds to an aspiration of the decision maker, or
autonomous agent, and maps each point in the de-
cision space to a value that reflects the degree to
which that decision supports the corresponding as-
piration. The priority weightings reflect the degree
to which the decision maker is willing to trade off
achievement in one aspiration for another based on
the overall context at the moment.

For a problem defined over a decision space
with n decision variables �x1 , . . . ,xn�, and having k
objective functions f1�x1 , . . . ,xn� , . . . , fk�x1 , . . . ,xn�,
with k priority weights �w1 , . . . ,wk�, the general form
is given by

maximize w1f1�x1, . . . ,xn� + . . . + wkfk�x1, . . . ,xn�
such that fi is an IvP piecewise defined function,

wi is a positive number.

The k objective functions are effectively combined
into a single objective function, which begs the ques-

tion as to whether or not this constitutes “multiob-
jective” optimization. This term is applied here to
discern a subclass of single-objective optimization
problems where the single objective function to be
optimized is composed of components that are
themselves meaningful objective functions. By tak-
ing the sum of the set of contributing objective func-
tions, the pitfall of action averaging shown in Figure
3 is avoided, but the benefit of combining behavior
output shown in Figure 2 is captured.

There are two practical challenges in producing
and using objective functions as the primary behav-
ior output: �1� the method must be fast enough to
accommodate the vehicle control loop, typically
1–20 Hz. On each iteration new functions are cre-
ated and a new problem solved. �2� if the method of
solving the optimization problem depends on a
strict type of objective function �such as linear or
quadratic�, then either certain behaviors cannot plug
in, or such behaviors must produce an objective
function of the right type that approximates its true
objective function.

This work differs from Pirjanian �1998� and
Rosenblatt �1997� in that the process of multiobjec-
tive optimization is not handled by a brute force
evaluation of all possible decisions. The use of brute
force is typically too slow and poorly scalable, and
often, as in Rosenblatt �1997�, is only practically
achievable by decoupling control variable decisions,
i.e., first deciding the best heading of a vehicle and
then based on that heading, then deciding the best
speed and so on for other variables. In this work the
IvP model is used to implement multiobjective opti-
mization over a coupled n-dimension action space,
by letting each behavior contribute an IvP objective
function over this space.

3.2. Interval Programming Functions

The interval programming model specifies �1� a
scheme for representing functions of unlimited form
and �2� a set of algorithms for finding a globally op-
timal solution. All functions are piecewise linearly
defined, and thus are an approximation of a behav-
ior’s true underlying utility function. The piecewise
functions need not use uniform shaped pieces be-
tween functions or even within a single function.
The quality of the approximation is primarily deter-
mined by the number of pieces one chooses to gen-
erate as well as the algorithms for refining and allo-
cating pieces to areas of the underlying function that

Figure 3. The average of the best action produced by two
behaviors may have poor value for both behaviors. The
chooser of the action is oblivious to the error since the
behaviors output a single preferred action and do not
communicate the underlying effectiveness of their alterna-
tives, rendered here only for illustration. In this case, in-
terests being pursued by the two behaviors are mutually
exclusive, and the “compromise” is detrimental to both.
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are less amenable to local linear approximation. Fur-
thermore, the function produced by a behavior need
only be defined over the subset of the decision or
action space relevant to the behavior.

Practically speaking, there are two IvP C++ li-
braries. The core library defines the data structures
for representing IvP functions and problems, and the
solution algorithms for solving syntactically legal in-
stances of an IvP problem. The second library is
more dynamic and contains a growing set of tools
for casting or converting the utility functions native
to a vehicle behavior into IvP functions. Each behav-
ior produces an IvP function on each iteration of the
control loop, so this process needs to be fast, and the
behavior designer needs to be mindful about the
tradeoff of function quality and CPU time. The ex-
isting library utilities for building an IvP function
from an underlying function rely only on access to a
function call for sampling or evaluating any point in
the decision space for the underlying utility func-
tion. The underlying utility function is something
unique to each vehicle behavior module. For the de-
veloper of the behavior, the utility function is the
primary thing to determine and implement. To sum-
marize, the behavior developer using the IvP model
needs to address the following four aspects:

1. Define the underlying utility function corre-
lating vehicle actions to the utility with re-
spect to the overall behavior goal.

2. Provide a method �in our case in C++� for
rapidly evaluating a given point in the func-
tion domain given certain current informa-
tion about the world in which the vehicle is
operating.

3. Make a decision about what is typically a
good enough approximation of this utility
function with an IvP function.

4. Determine a policy for how the priority of
that behavior changes with respect to aspects
in the world.

Examples of this process are given with behavior de-
scriptions in Section 4.

3.3. Action Selection with Interval Programming

The action taken by the vehicle in each iteration of
the control loop is the solution to the interval pro-
gramming problem instance composed of the

objective functions from each behavior. The IvP
search is over the weighted sum of individual func-
tions and uses branch and bound to search through
the combination space of pieces rather than the de-
cision space of actions. The only error introduced is
in the discrepancy between a behavior’s true under-
lying utility function and the piecewise approxima-
tion produced to the solver. This error is preferable
compared with the error of restricting all behaviors
to a quadratic function for example. Furthermore,
the search is much faster than brute force evaluation
of the decision space, as done in Rosenblatt �1997�,
since each piece implicitly evaluates many points in
the decision space. The larger the piece size, the
greater it will outperform brute force in terms of
speed, but at a cost of accuracy. The choice of piece
size and distribution is a tradeoff between speed and
accuracy. The solution speed is primarily correlated
to the number of pieces contributed from each objec-
tive function, but as the number of dimensions or
variables grow, more pieces are likely to be needed
to achieve a satisfactory function approximation.
The decision regarding function accuracy is a local
decision to the behavior designer, who typically has
insight into what is sufficient. The solver guarantees
a globally optimal solution and this work validates
that such search is feasible in a vehicle control loop
of 4 Hz on a 600 MHz computer.

Like many branch and bound algorithms, the
search can be greatly enhanced by seeding the prob-
lem with a good initial solution. The solution algo-
rithms implemented for the IvP model employ a few
application-independent heuristics such as examin-
ing first the best decision in the highest weighted
function. When using IvP for autonomous vehicle
control, the initial solution used is always the best
decision derived from the previous control cycle—
typically what was a good decision a fraction of a
second prior is also a pretty good �if not best� deci-
sion in the present unless something has changed in
the world in the meanwhile. In fact, when some-
thing does change dramatically in the world, such as
hitting a waypoint or a nearby vehicle changes tra-
jectory, the solve time has been observed to be
roughly 50% longer �but still comfortably under
practical constraints�. See Benjamin �2004� for more
on IvP and search algorithms.
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4. THE VEHICLE HELM AND “BREAD
AND BUTTER” BEHAVIORS

A primary motivation for applying multiobjective op-
timization to the COLREGS navigation problem is
that COLREGS behaviors serve to augment other be-
haviors without mutual design consideration. We
present here two bread and butter behaviors suffi-
cient for illustrating the subsequent description of the
COLREGS behaviors. We also describe the decision
space used in our particular helm and behaviors, and
describe the notion of “closest point of approach,” a
key element of utility functions related to relative ve-
hicle motion.

4.1. The Decision Space and Vehicle Helm

The helm is the module consisting of the behaviors
and the optimization �action selection� engine. The
action space in our helm consists of deciding the
variables, heading ���, speed ���, and time-on-leg �t�.
The latter is the “intended” duration of the chosen
action. The helm is not committed to executing an
action �� ,v , t� for the intended time, but the time du-
ration is used to further distinguish the utility of ac-
tions. The helm produces a tuple �� ,v , t� on every
iteration of the control loop, and the values of head-
ing and speed are fed into proportional integral dif-
ferential �PID� control to produce rudder and thrust
commands.

The helm, through the Global Positioning Sys-
tem �GPS�, has access to its own position and trajec-
tory �x ,y ,� ,v�, and through wireless communication
has access to the position, heading, and speed of a
given vehicle �xb ,yb ,�b ,vb�. Each helm behavior has
access to these variables if need be, and they com-
prise all the necessary input to the behaviors de-
scribed below for this work.

Helm behaviors can be configured with initial
priority weight values that may stay constant during
the execution of a mission. A behavior may also use
world state information garnered from the
MOOSDB to calculate its own priority dynamically,
perhaps in combination with its original configura-
tion weight. A priority weight of zero effectively dis-
ables influence of a behavior. Although the use of
objective functions is designed to coordinate mul-
tiple simultaneously active behaviors, helm behav-
iors can be easily conditioned on variable-value
pairs in the MOOS database to run at the exclusion
of other behaviors. Likewise, behaviors can produce

variable-value pairs upon reaching a conclusion or
milestone of significance to the behavior. In this way,
a set of behaviors could be run in a plan-like se-
quence, or run in a layered relationship as originally
described in Brooks �1986�. If two behaviors are both
simultaneously active, with competing or conflicting
objective functions, resolution is achieved via the
multiobjective optimization solver.

4.2. Closest Point of Approach

For COLREGS behaviors, an important quality of a
candidate action �� ,v , t�, is the closest point of ap-
proach �CPA� between two vehicles during a candi-
date leg. A behavior producing an objective function
with CPA as a component of its utility function
needs to perform many variations of this calculation
on each new call to generate an IvP objective func-
tion. Thus, the algorithm with notes on efficiency
measures are given here.

Our own current position is known and given
by �x ,y�, and the other vehicle’s current position and
trajectory is given by �xb ,yb ,�b ,vb�. To compute the
CPA distance for a given �� ,v , t�, first the time tmin
when the minimum distance between two vehicles
occurs is computed. The distance between the two
vehicles at the current time can by determined by
the Pythagorean theorem. Generally, for any given
time t �where the current time is t=0�, and assuming
the other vehicle stays on a constant trajectory, the
distance between the two vehicles for any chosen
�� ,v , t� is given by

dist2��,v,t� = k2t2 + k1t + k0, �1�

where

k2 = cos2���v2 − 2 cos���v cos��b�vb + cos2��b�vb
2

+ sin2���v2 − 2 sin���v sin��b�vb + sin2��b�vb
2,

k1 = 2 cos���vy − 2 cos���vyb − 2y cos��b�vb

+ 2 cos��b�vbyb + 2 sin���vx − 2 sin���vxb

− 2x sin��b�vb + 2 sin��b�vbxb,
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k0 = y2 − 2yyb + yb
2 + x2 − 2xxb + x2

b .

The stationary point is obtained by taking the first
derivative with respect to t:

dist2��,v,t�� = 2k2t + k1.

Since there is no “maximum” distance, this station-
ary point always represents the closest point of ap-
proach, and therefore

t� =
− k1

2k2
.

The value of tmin may be in the past, i.e., less than
zero, if the two vehicles are currently opening range.
Or tmin may be well beyond t, the time length of the
candidate maneuver �� ,v , t�. Therefore the value tmin
is clipped by �0, t�. Furthermore tmin is zero when the
two vehicles have the same heading and speed �the
only condition where k2 is zero�. The actual CPA
value is then obtained by plugging tmin into �1�,

CPA��,v,t� = �k2tmin
2 + k1tmin + k0. �2�

As mentioned before, this calculation is a com-
mon component in the underlying utility function
for behaviors dealing with relative vehicle motion. A
behavior, within a single iteration of the control
cycle, will perform a sequence of calculations on dif-
ferent �� ,v , t� values. However, all calculations have
the same values of current vehicle position �x ,y�,
and current position and trajectory of the other ve-
hicle �xb ,yb ,�b ,vb�. To make this overall sequence of
calculations faster, all terms in �1� comprised exclu-
sively of x ,y ,xb ,yb ,�b ,vb are calculated once and
cached for later calculations.

4.3. A Collision Avoidance Behavior

Each of the COLREGS behaviors described in the
next section are also collision avoidance behaviors,
each based on a particular COLREGS protocol re-
garding the relative position and trajectory between
two vehicles. The collision avoidance behavior de-
scribed here differs from the COLREGS behaviors
only in that it does not care how collisions are
avoided. Such a behavior may be used in an envi-
ronment where the other vehicles are not following

COLREGS protocol for example. �We use this behav-
ior to describe general aspects of behavior creation
as well as to provide a head start for later descrip-
tions of the COLREGS behaviors.�

The underlying utility function, f�� ,v , t� utilized
by this behavior, is based on the CPA distance for a
candidate decision �� ,v , t�:

f��,v,t� = g�CPA��,v,t�� .

The utility varies linearly between a parameter-
izable “inner” distance and an “outer” distance. CPA
distances lower than the inner distance are treated as
collisions, and values greater than the outer distance
have a plateau utility nominally set to 100. �Func-
tions are normalized prior to the application of the
priority weight, so actual utility ranges are insignifi-
cant.� CPA distance in between the outer distance
and inner distance degrade linearly, illustrated by
the example in Figure 4.

The priority of the behavior is determined by the
CPA distance of a hypothetical continuation of the
current heading and speed out another n seconds. A
simulation track is shown in Figure 5.

4.4. A Waypoint Behavior

The waypoint behavior is populated with a set of
�xi ,yi� waypoints, and has access to the vehicle’s cur-
rent position �x ,y� via GPS. It ranks candidate legs
�� ,v , t� based on the proximity of the resulting posi-
tion to the next waypoint. An example objective
function is shown in Figure 6. The series of waypoint
could be the result of either direct human entry at
launch time, or the result of a your favorite path
planning algorithm that runs either prior to launch
or dynamically. This behavior also can be configured
to perform a track line by specifying a moving point
on the track line between the current waypoints to
steer toward, rather then steering directly toward
the next waypoint. This behavior currently has no
temporal aspect, but is rather guided solely by the
deviation from the current calculated shortest path
to the waypoint �or the track-line point�.

5. THE COLREGS BEHAVIORS

There are nearly 40 rules that comprise the
“COLREGS,” nearly half of which concern lighting
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and sounds. We focus our attention on the four most
challenging rules, from an autonomous navigation
perspective, that cover “head-on” situations and
“crossing” situation, rules 14–16. It is also worth not-
ing rules 8�b�, 8�d� which address collision avoidance
generally �all excerpts are from Commandant �1999��:

Rule 8: “Action to Avoid Collision”
�b� Any alteration of course and/or speed to avoid

collision shall, if the circumstances of the case admit, be
large enough to be readily apparent to another vessel ob-
serving visually or by radar; a succession of small alter-
ations of course and/or speed should be avoided.

�d� Action taken to avoid collision with another vessel

shall be such as to result in passing at a safe distance. The
effectiveness of the action shall be carefully checked until
the other vessel is finally past and clear.

This rule reveals a measure of the flexibility common
in the rules, suitable for humans, but tricky for ro-
bots, such as “large enough to be readily apparent,”
and “small alterations of course.” Generally, the flex-
ibility is found in both the condition of the rule and
the application of the rule. Exploiting the latter is of
paramount importance, since the rules need to at
times coexist with other rules as well as the efforts of
the vehicle to complete its task.

5.1. The Head-On Behavior

The rule regarding two vessels approaching head-on
is Rule 14 in Commandant �1999�:

Figure 4. The objective functions produced by the AvoidCollision behavior for two situations. In both cases, the con-
trolled vehicle has a top speed of 4 m/s with the contact moving on the indicated heading. These are radial plots over
heading and velocity. Darker colors represent more favorable actions, and larger radii on the plot indicate higher candi-
date speeds. The vehicles are 200 m apart. CPA distances less than 10 m are considered collisions �in white� and those
greater than 75 m are neutral �in black�. Distances in between degrade linearly. In �a� the contact is moving at 3 m/s and
in �b� the contact is moving at 5 m/s.

Figure 5. In simulation, the lefthand vehicle is guided by
a waypoint and collision avoidance behavior to the point
on the right. �Note this vehicle passes to the opposite side
as would be prescribed by the COLREGS. Compare this
trajectory with Figure 11.� The righthand vehicle is execut-
ing a waypoint behavior with no collision avoidance to the
waypoint on the left. The function rendered represents the
addition of the two objective functions at that point in
time.

Figure 6. The objective function produced for the way-
point behavior rates decisions higher that bring the vehicle
closer to the next waypoint and do not add detour dis-
tance. The utility drops linearly. This is a radial plot over
heading and velocity. Darker shades represent higher util-
ity. Typically about 600 linear pieces are used to represent
this function.
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Rule 14: “Head-on Situation”
�a� Unless otherwise agreed, when two power-driven

vessels are meeting on reciprocal or nearly reciprical
courses so as to involve risk of collision each shall alter
her course to starboard so that each shall pass on the port
side of the other.

�b� Such a situation shall be deemed to exist when a
vessel sees the other ahead or nearly ahead and by night
she could see the mast-head lights of the other in a line or
nearly in a line or both sidelights and by day she observes
the corresponding aspect of the other vessel.

�c� When a vessel is in any doubt as to whether such
a situation exists she shall assume that it does exist and
act accordingly.

The objective function produced by this behavior is
also based on the closest point of approach for a
given candidate maneuver leg �� ,v , t�. The “head-
on” condition referred to in the rule is interpreted to
be in effect when the relative bearing between the
two vehicles is within 15 deg of the heading of the
contact. To achieve the desired effect, the candidate
heading is compared against the current relative
bearing and starboard maneuvers are rated higher,
and likewise lower for port maneuvers, as shown in
Figure 7.

In addition, the behavior is given a range out-
side of which the priority of the behavior is zero and
is inactive �see Figure 11�a��.

5.2. The Crossing Behaviors

COLREGS Rules 15 and 16 serve to define a crossing
situation. These roles are depicted in Figure 8.

Rule 15: “Crossing Situation”
�a� When two power-driven vessels are crossing so as

to involve risk of collision, the vessel which has the other
on her starboard side shall keep out of the way and shall,
if the circumstances of the case admit, avoid crossing
ahead of the other vessel.

Rule 16: “Action by Give-way Vessel”
Every vessel which is directed to keep out of the way

of another vessel shall, so far as possible, take early and
substantial action to keep well clear.

The objective function produced by this behav-
ior also utilizes closest point of approach for a given
candidate maneuver leg �� ,v , t� in its objective func-
tion formulation. The crossing condition referred to
in the rule is interpreted to be in effect when the
relative bearing between the two vehicles is greater
than 15 deg of the heading of the contact, but less
than 90 deg. According to Rule 15, crossing ahead of
the other vessel is to be avoided. To represent this
preference in the objective function, a candidate leg,
�� ,v , t�, is further evaluated to determine if it crosses
ahead or behind the other vessel. The ranking of
utility of an action is penalized further if it crosses
ahead, as shown in Figure 9.

6. EXPERIMENTS

Testing is done both in simulation and on two kayak-
based autonomous surface crafts depicted in Figure
10. Each vehicle had access to a compass and Garmin
18 GPS, the latter with updates of 1 Hz.

The GPS also provided the vehicle speed infor-
mation, and at sufficiently high enough speed
��0.5 m/s�, the GPS was preferred over the compass
for heading measurements. Each vehicle communi-
cated its position, heading and speed to the other ve-
hicle at a rate of 4 Hz, via a 802.11b wireless link. Each
vehicle also had a unique identification �ID� that was

Figure 7. The head-on behavior produces objective func-
tions based in part on the closest point of approach for a
candidate maneuver and in part on a preference for star-
board maneuvers passing the contact on the port side.
Darker colors represent more favorable actions, and larger
radii on the plot indicate higher candidate speeds. Com-
pare against Figure 4�b� where maneuvers to either side of
the contact are nearly equal in preference.

Figure 8. The give-way vessel yields to the stand-on
vessel.
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known at launch time. For example, the Rule 14 col-
lision avoidance behavior described in Figure 11 be-
low, was parameterized explicitly with the ID of the
other vehicle. A contact management module that au-
tomatically sorts incoming track data into distinct ve-
hicle IDs is part of ongoing work. This feature we be-
lieve is orthogonal to testing the viability of the
COLREGS behaviors.

Each vehicle is running MOOS, described in
Newman �2003�, which provides among other things
the important capability of launching separate dis-
tinct on-board processes that communicate through a
common database using sockets. Individual pro-
cesses communicate in a subscribe and publish man-
ner through this database. The database is a distinct

process always running on-board. The helm that
comprises the individual behaviors and the multiob-
jective optimization engine is a single process in a
MOOS community of processes. In experiments re-
ported here, the helm runs at 4 Hz, and also contains
the vehicle PID controllers. There is a PID controller
for both “rudder” and “thrust.” The helm passes con-
trol decisions in terms of “heading” and “speed” to
the PID controllers.

Figure 11 shows a representative in-field experi-
mental result that we have achieved using the behav-
iors and multiobjective optimization algorithms de-
scribed in the previous section. This experiment was
designed to test “Rule 14 �Head-on Collision�.” The
caption in the figure provides a detailed step-by-step
account of how the correct behavior emerges based
on the IvP optimized action selection strategy de-
scribed above in Section 3. Each point on the plot rep-
resents a GPS entry in the vehicle log file.

Figure 12 shows a representative experimental
result regarding the Rule 15 �Crossing� behavior. In
this experiment, vehicle 2 is controlled by both the
waypoint and COLREGS Rule 15 behavior. The way-
point behavior is configured to only penalize devia-
tions from the shortest path to the next waypoint. It
is not penalized for time delays. For this reason, the
vehicle, when presented with a collision avoidance
situation, simply slows down to let the situation re-
solve before resuming normal speed to the next
waypoint.

Figure 9. The crossing behavior produces objective func-
tions based in part on the closest point of approach for a
candidate maneuver and in part on a preference maneu-
vers that do not cross ahead of the other vessel. Darker
colors represent more favorable actions, and larger radii
on the plot indicate higher candidate speeds. �Compare
with Figure 4�b�.�

Figure 10. Two kayak-based autonomous surface craft for used for in-field experiments. Each had access to GPS and
shared their current position and trajectory with the other.
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7. CONCLUSION

This paper has investigated the problem of autono-
mous collision avoidance and navigation for un-
manned marine surface craft. We have presented a
novel method using IvP-based multiobjective optimi-
zation to coordinate distinct vehicle behaviors repre-
senting both task execution and established human

protocol for safe navigation. This paper also pro-
vides, to our knowledge, the first ever demonstration
of such a system on a physical marine platform.

An important goal in this work is to implement a
technique capable of capturing the flexibility in the
COLREGS rules. Not just the flexibility of when a rule
is applied, but also how it is applied. We believe we
have demonstrated such a technique by using objec-

Figure 11. In-field experiments with two autonomous kayaks verifying the COLREGS “Head-on” Rule 14 behavior.
Vehicles 1 and 2 are put on a head-on collision course through a series of waypoints. Vehicle 1 is utilizing a waypoint
behavior and a Rule 14 behavior. Vehicle 2 is only using a waypoint behavior and does not make any attempt at collision
avoidance with vehicle 1. In �a� the two vehicles are on a head-on collision course with vehicle 1 heading to waypoint
�105,−35�, and vehicle 2 heading to waypoint �−50,−110�. Waypoints are shown in circles. In �a� only the waypoint
behavior is active in vehicle 1 because vehicle 2 is still outside the activation range. In �b� vehicle 1 is within the activation
range and within the activation angle specified to the Rule 14 behavior and is thus making a starboard maneuver to avoid
collision. In �c� vehicle 1 has just moved outside the activation angle and thus the Rule 14 behavior becomes inactive, and
the influence of the waypoint behavior begins to dominate again. In �d� vehicle 1 is proceeding uninhibited toward its
destination. The image is from video shot during the experiment that produced the data shown here.
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tive functions to represent not only the preferred
choice for a rule �the peak� but also the compromise
choices �the off-peak areas of the function�. A tech-
nique that allows the simultaneous influence of mul-
tiple behaviors also allows for tying the weight of that
influence to the perceived developing situation.

The level of experimentation in this work has

convinced us of the viability of this technique in
terms of full end-to-end implementation of the algo-
rithms on physical marine platforms in certain ca-
nonical collision risk situations. The current experi-
mental results, however, do not yet suffice for
claiming a “COLREGS compliant” system. A proof to
support this claim may be as elusive as a proof that

Figure 12. In-field experiments with two autonomous kayaks verifying the COLREGS “Crossing” Rule 15 behavior.
Vehicles 1 and 2 are put on a collision course through a series of waypoints. Vehicle 2 is utilizing a waypoint behavior and
a Rule 15 behavior. Vehicle 1 is only using a waypoint behavior and does not make any attempt at collision avoidance
with vehicle 2. In �a� the two vehicles are on a collision course with vehicle 1 heading to waypoint �100,−175�, and vehicle
2 heading to waypoint �0,−200�. Waypoints are shown in circles. In �a� only the waypoint behavior is active in vehicle 2
because vehicle 1 is still outside the activation range. In �b� vehicle 1 is within the activation range specified to the Rule
15 behavior and vehicle 2 thus begins to slow down to avoid collision. In �c� vehicle 1 has just progressed far enough so
as to no longer be at risk for collision, and the Rule 15 behavior becomes inactive, and the influence of the waypoint
behavior begins to dominate again. In �d� vehicle 2 is proceeding uninhibited toward its destination.
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a human passing a written COLREGS test will never
cause a collision. It is however an objective in this
project to build a COLREGS compliant system and
provide strong support for that claim.

To this end, our current work �summer 2006� fo-
cuses on using six vehicles deployed to neighboring
regions on the water with a shore link that generates
simultaneous randomly generated redeployment
commands that direct the vehicles to new deploy-
ment areas, causing vehicles to cross paths �in a wide
variation of circumstances� to arrive at their new de-
ployment area. We will log the trajectories for post-
analysis detection of collision, very near collision,
near collision, and so on. We can then compare per-
formance between using �a� no collision avoidance,
�b� nonprotocol collision avoidance, and �c�
COLREGS collision avoidance with different param-
eter settings. We expect to augment the on-water tests
with simulation tests. While the on-water tests are
more realistic, the simulation tests can be run for
many more hours with little effort.

In this work we relied on GPS on all vehicles for
sharing very accurate information about position and
trajectory over an 802.11b link. This allowed us to
avoid fitting the vehicles with further sensors and
implementing the algorithms to generate vehicle po-
sition from raw sensor data. At the conception of this
project this was purely a decision of convenience to
allow us to focus on decision making. In the mean-
while, automatic information systems �AIS� have be-
come cheaper and more prevalent on �manned� ma-
rine vehicles. These systems broadcast position,
trajectory, and vehicle identification to neighboring
vehicles fitted with the proper receiver equipment.
We are currently considering outfitting our platforms
with such systems. We can envision the day when de-
ployment of unmanned surface craft are limited to
zones where all vehicles are AIS-compliant and
COLREGS-compliant.
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