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INTRODUCTION 

The U.S. Army Armament Research, Development and Engineering Center (ARDEC), 
Picatinny Arsenal, New Jersey setback test collapses a planer air gap against an explosive 
sample in a manner to mimic what could happen during launch of a projectile with a base gap 
(ref. 1). The machine action is essentially one dimensional, where the insulated steel "drift pin" 
moves towards an explosive sample. The initial space between drift pin and bottom of the 
explosive constitutes the air gap under test. These are aligned inside a confinement cylinder, 
with tolerances selected to produce minimal air leakage. The drift pin is set into rigid body 
motion to close the gap by impact of an air gun driven hammer. The air gun uses various 
numbers of shear rods to achieve short release times at the two operating pressures available. 
Hammer velocity at impact is also controlled by allowing it to accelerate across a precise 
distance called the "free run." Free run is set by the operator and is determined from the 
formulas shown in the next section. For one dimensional action to occur precisely, a number of 
details during setup have to be carefully addressed. Precision during setup minimizes scatter in 
the results. Comments on where special care is needed are included throughout. The test is 
amiable to performing a statistical test, as any size gap can easily be set up in real time. It is 
also sufficiently efficient to operate so shots can be fired with minimal time between them. 

PRELIMINARY CALCULATIONS 

A trial consists of closing a certain size gap using a predetermined closing velocity. The 
correlating parameter between velocity and gap size is the acceleration as requested by the 
customer. Acceleration is kept constant while gap size is varied to generate data to which a 
statistical model (normal curve) is fit. At the end of a test, the mean and standard deviation 
should be known to 95% confidence. From this, the one-in-a-million point can be easily 
calculated. 

The statistical test design will supply various gap sizes to be tested. Usually, the next 
gap size to be tested will be determined by the sum total of all results already in hand. The 
operator must calculate a free run based on gap size and acceleration. Free run correlates with 
closing velocity according to known empirical relations. These determine the correct free run to 
close the gap with the velocity appropriate for the particular gap size/acceleration combination. 
Formulas for calculating the free run are: 

Six shear rods: 

1459.8 psi , , 
x(inches) = : [(4.3881 x 1CT4 * 5inches * G) - (1.5935 x 10"2)] 

^anticipated Psl 

Four shear rods: 

1075.8 psi , , 
x(inches) = • [(6.9869 x KT4 * Sinches * G) - 9.6302 x 10"2)] 

"anticipated Vsl 

where x = free run to be set by operator (plus add 0.040 in. for the drift pin protrusion) 
G = desired acceleration (in terms of gravity) 
8 = desired gap for this shot. 
P'anticipated psi= expected release pressure for this shear rod 



USE THE FORMULA THAT GIVES FREE RUN > 1/2 IN. 
FREE RUN CANNOT EXCEED 0.9085 IN. 

Examples: 

A new 0.180-in. diameter by 36-in. long shear rod is prepared 
according to the procedure in the following section, and the 
preliminary dummy shot gave a release pressure of 1130 psi. The 
anticipated six shear rod release pressure is thus 1695 psi. The 
customer wants setback testing at an acceleration of, say, 17,000 G's. 
The test design dictates the next shot needs to be at a gap of 0.095 in. 
The six pin formula determines a free run of 0.597 in. This is a valid 
setting for the tester and the shot is set up according to the following 
procedure. The distance between the hammer and confinement 
cylinder (total standoff) is adjusted to 0.597 in. + 0.040 in. = 0.0637 in. 
total. The 0.040 in. accounts for the 0.040-in. drift pin protrusion. 

The customer wants setback testing at an acceleration of 15,000 G's 
and the next gap is 0.075 in. The six pin formula gives 0.412 in. 
Since this is below Vz in., it isn't recommended. Instead, use the four 
pin formula to get 0.657 in. and total standoff of 0.697 in. This is a 
valid setting, so use four pins for this shot. 

PROCEDURE FOR FIRING A SHOT 

Prepare Shear Rods 

A shear rod is selected and cut into sections as described in reference 2. For both four 
and six pin shots, there needs to be a four pin dummy shot to calibrate the particular shear rod 
chosen.   Thus, a shot is fired using an expendable (likely an empty, used cylinder in reverse 
orientation) cylinder to stop the hammer. For this shot, the cylinder is pushed up against the 
face of the hammer, then backed off slightly (about 1 mm). This allows the rods to shear, the 
hammer to move freely, and the cylinder to stop the hammer. The air gun armor can be omitted 
during this operation, reducing the effort somewhat. The release pressure is noted and this is 
taken as the reference value for this particular shear rod. A correction that takes into account 
that individual shear rods have different release pressure is included in the formulas used to 
calculate the free run for a particular gap size at given acceleration. Applying this correction is 
important to reducing scatter in results that occur simply because several different shear rods 
will be needed during a complete test of a single material. Release pressure should be noted 
for every shot, and if not characteristic for the shear rod being employed, the shot should be 
considered invalid because velocity achieved will not be appropriate for that gap at the desired 
acceleration. This occurs when pressure is off by more than +/- 30 psi from what is expected. 
Typically, there is no problem staying within this range, but occasional outliers have occurred. 



Prepare the Air Gun 

Decide what velocity range is needed for the upcoming shot and select four or six shear 
rods previously prepared and calibrated as described. As described in the reference 2, the air 
gun should be used with free runs between Vi in. and 0.9085 in. Free runs less than 1/i in. are 
restricted because small free runs are under the influence of the breaking process in the shear 
rods and beyond that, some peculiarity exists in the bore. Both these factors act to reduce 
reproducibility for free runs < V2 in. Free runs greater than 0.9085 in. allow the front guide ring to 
scrape over the shear rod holes potentially damaging the ring. Calibrations were based on data 
for free run >1/2 in. where shot-to-shot variations were around +1-2%. 

Pin the Piston in its Initial Position 

Push in hammer fully rearward, keeping alignment of the marks on piston face 
and on barrel. There is only one azmuthal orientation that allows the intended fit between holes 
in the piston face and in the gun barrel. Insert shear rods from outside through aligned shear 
rod holes or, if a subsequent shot on the same shear rods, simply lower them in their respective 
holes. Allow tips of rods to extend so -1/8 in. to 3/16 in. is visible near the hammer. Do not 
insert the rods any deeper otherwise it will be difficult to extract the broken off "nubs" after a 
shot, and a single shear rod will not last for as many shots. Rubber bands stretched between 
pairs of the external ends of the shear rods are used to keep the rods in position through friction 
in their holes. Shear rods are a loose fit, so must be restrained from sliding. This fit is dictated 
by a compromise between close tolerances to attempt to get the rods to fail in shear only, and 
loose tolerances so the broken nubs, which have a burr afterwards, will still slide through and 
not jam (fig. 1). Note: shear rods are to be installed in a symmetrical pattern to reduce any 
"cocking" forces on the internal guide rings. 

Figure 1 
Air gun ready for four pin shot 



Prepare the Hammer 

Remove the hammer and insert a new impact washer (washers are not reusable), 
then tighten hammer just enough that the washer and hammer come up snug against the air gun 
piston face. This causes the hammer to line up with the axis of the machine. Excess tension in 
the mounting stud is not necessary and too much tightening can compromise the shear rods by 
distorting them after they are in place. A loose fitting thread for the hammer mounting stud is 
beneficial. It will still go into tension as needed, but will resist being jammed as the hammer 
mounting system goes into compression at the hit. A hammer, used for about 30 shots where 
some of the responses were strong, showed a 0.001 in. deep dent had formed. It was easily 
ground flat again. It is good practice to flatten the hammer face occasionally and check it if an 
especially strong explosive reaction occurs. This will be indicated by mushrooming of the drift 
pin as it is thrown back against the hammer. 

Align the V-block Support 

Place a cylinder with drift pin inserted so only a few millimeters protrude on the v- 
block support and slide forward enough that the drift pin and hammer come into contact. Check 
that this contact is flat, using a suitable light source from the opposite side. Any light between 
the two parts means misalignment and needs to be corrected by shimming the v-block. 
Misalignment of 0.001 in. or so is easily detectable with this procedure. The contact should be 
observed from two perpendicular directions. When the v-block is aligned, remove and set aside 
this cylinder with drift pin. The v-block is often knocked out of alignment during a shot, so needs 
to be checked for each shot. 

Replace the Air Gun Armor 

There are four steel parts to support and brace the bottom of the armor against 
the back of the receiver, and a bolt-in-tube arrangement that goes over the top of the barrel 
housing to hold the top. After making sure the armor is seated properly, especially the plate 
over the back of the barrel housing, tighten the bolt-in-tube assembly to a tight fit. Armor 
protects the air gun and prevents the piston from launching in the event the explosive destroys 
the confinement cylinder during reaction. The piston is heavy and there is a lot of gas pressure 
behind it. More damage is possible from an errant piston than from the explosive itself. 

Check that the Wood Backstop is in Place 

Insure that a wood "cushion" is in place in the holder on the blast tank door (fig. 
2). The explosive sample can get high velocities exiting from the confinement. In fact, a sample 
has penetrated about V* in. into the wood and stuck in place. Wood reduces the shock 
associated with such an event and is easily replaceable as needed. 



Figure 2 
Wood backstop in place 

Prepare the Sample 

Ensure the explosive sample meets dimensions. It is important that the end of the 
sample that is to become one side of the gap have accurate diameter for the first inch. If the 
other end is slightly undersize by less than 0.003 in., the sample will still be acceptable. A 
fixture consisting of steel confinement cylinder and drift pin is selected. Clean out the 
confinement cylinder bore using an acetone wetted gun patch; a convenient plastic "ramrod" is 
available to push the patch through. Generally, a few passes will be needed until a last patch 
finally comes out clean. As a last check on how the pieces fit, the operator will make sure the 
drift pin can slide freely through the cylinder bore and yet will hold a vacuum against its weight 
when the opening at one end is plugged with a finger. Tolerance is less than 0.001 in., so 
vacuum should last (pin doesn't fall out other side) for several minutes in this test. The gap end 
of the drift pin is covered with double sided tape of thickness 0.007 in., and by this means a 
0.001 in. thick piece of Teflon• is affixed to the pin face (fig. 3). Thus, the tape and Teflon• 
together are 0.008 in. thick. After application, the edge is trimmed flush to the edge of the drift 
pin with a blade. This Teflon• performs the role of insulating the end of the pin and its Poisson 
effect under pressure contributes to reducing air leakage from the gap. Glue a copper "dummy 
liner" disc onto the back of the explosive sample. This act is a historical relic from the warhead 
program that financed building of the tester. However, the database only has tests where the 
dummy liner was included, so it is retained to be consistent with the data base. 



Figure 3 
Insulation on end of drift pin 

A tare measurement of the length of the particular drift pin with insulation and an 
explosive sample is obtained with the setup fixture using a half-cylinder specially cut for the 
purpose (fig. 4). Note this length and retract the micrometer sufficiently to replace the half 
cylinder with actual cylinder. 

Figure 4 
Setup fixture with explosive in position to make tare reading 



At this point, the drift pin is painted with grease (Dow Corning Compound 111, valve 
lubricant and sealant), but the leading edge of the grease is kept about %-in. back from the 
insulated end. It is inserted partially into a cylinder and the cylinder placed in the setup fixture 
with the protruding pin towards the fixed end. Pushing the cylinder until it hits its stop, inserts 
the pin further into the cylinder until it protrudes precisely 1 mm. The explosive sample is 
similarly painted with grease (fig. 5) and initially partially inserted into the open end of the 
cylinder. Make sure the end inserted has no chips or visible defects around the edge. 

Figure 5 
Applying grease to explosive sample 

The fixture micrometer is then used to insert the explosive until precisely the chosen gap 
exists between the drift pin insulation and the explosive sample (fig. 6). You cannot backup, so 
this operation requires attention. Pulling the explosive back, even a small amount, risks getting 
grease in the gap and that will compromise the test.   Allow the assembly to set for sufficient 
time that there can be no rebound from trapped air pressure, typically 15 min. Then retract the 
micrometer plunger and the specimen is ready for test. Be aware that sudden, large changes in 
room pressure or temperature can upset the gap dimension at this point, so avoid opening or 
closing the blast doors too rapidly. 

Figure 6 
Setting the gap 



Load the Tester 

Carefully place the loaded cylinder and pin on the v-block support so the hammer will 
strike the protruding drift pin. The intended free run for the shot, plus 0.040 in. to account for the 
protrusion of the drift pin, is set up as a "standoff' gage. The threaded rear stop is turned until 
the proper free run exists between the hammer and the drift pin (fig. 7). The threaded rear stop 
is locked by screwing the locking nut against the support. 

Figure 7 
Setting the standoff 

Gently insert the pull-out sled into the containment tank until it contacts the metal blocks 
set up against the back side of the tank. Wedge in place. When the shear pins break, there is 
considerable force that can move a loose sled quicker than the hammer can get to the drift pin. 
This can cause the sample to move before being hit, contributing unnecessary scatter in the 
results. If the sled is tight against the rear metal blocks, such motion is minimized. Close and 
secure the door (fig. 8). Remove the safety interlock plug from its storage position on the 
interlock board and then plug into the armed connections on the board. Exit the test bay and 
seal the door. This completes the last electrical connection. Tester can now fire. 

Figure 8 
Closing the tank/ready for a shot 



Hearing protection is required in the Standard Operating Procedure (SOP), so don 
proper hearing protection. A nonconductive rubber floor mat is provided for the operator to stand 
on in order to prevent potential problems when energizing the safety interlock system. The 
building floor is conductive. Check that there is a sufficient nitrogen supply remaining to 
complete the shot. Tare the digital pressure gage. Arm the interlock by applying power to the 
unit and then holding the safe/arm switch in the armed position. With the other hand, slowly 
open the valve supplying nitrogen pressure to the air gun (fig. 9). Gas can be supplied at a 
goodly rate, but as pressure nears the release value, throttle gas supply so remaining pressure 
rise occurs gently. This helps with accuracy on the pressure gage reading, and prevents any 
differences in pressure between the gage and the reservoir in the air gun due to high flow speed 
through the small diameter tubing leading into the reservoir. 

Figure 9 
Firing the setback test 

The sound of the air gun release is unmistakable. Immediately stop the flow of gas to 
the air gun (close the valve you are using to control the flow to the reservoir). Open the purge 
valve (slowly) to depressurize the system. Note the peak pressure reading that was trapped on 
the pressure gage; it must be within +/- 30 psi of the expected value for the shot to be 
considered valid. 

Always follow the SOP. Sometimes a "GO" is obvious from the sound; sometimes not. 
A 1-hr wait is called out for a no-go. For a GO, allow time for the venting system to remove 
fumes from the tank (at least 10 min). Then, open the outside bay doors first. Some fumes 
often get in the room, and these can be kept out of the interior of the building by letting them 
escape to the outside. Open the tank door slowly as debris may fall out. Remains of the 
hardware and test explosive are then cleaned out and the device is made ready for the next trial. 



LIMITATIONS OF THE TESTER 

The testing machine has a maximum safe value of free run at 0.9805 in. This takes into 
account the depth of dent that forms in the confinement cylinder (maximum is 0.091 in. deep) 
and the 0.040-in. initial protrusion. Limiting to this free run keeps the guide on the piston from 
scraping across the shear rod holes, which could damage the guide. Thus, maximum hammer 
velocity (using six shear rods) is 20.246 ms. After accounting for the transfer from hammer to 
drift pin, this sets a maximum velocity possible for closing the base gap of 32.4 ms. Eight shear 
rods are possible, but several trials indicated only a modest increase in velocity was achieved. 
Not enough to be worth the considerable effort to place the other two shear rods and the loss of 
shots from each nitrogen bottle since higher pressure is required to activate the air gun. No 
calibration with eight shear rods has been performed. 

The test actually gives pairs of points; velocity and associated gap size. Pairs of points 
are interpreted in terms of acceleration through the simple formula [close enough to results from 
full computer simulations of gap collapse (ref. 2)] 

U = 2(acceleration)(gap) 

Thus, acceleration is the correlation parameter, and both velocity and gap size are varied 
together to keep the parameter constant during a test. This strategy is changed when the 
formula would indicate a velocity larger than 32.4 ms was needed. When velocity is maxed out, 
a maximum gap size is calculated commensurate with this velocity and the desired acceleration 
(fig. 10). Five trials at this condition with no reaction indicate the mean is at a larger unknown 
gap size. Basically, it is beyond the capability of the apparatus. Using a larger acceleration in 
the formula only produces a smaller gap at the same maximum velocity and thus a less severe 
test stimulus, adding no new information. Just increasing the gap size while holding velocity 
maxed out, gives a result that really relates to a lower acceleration. Even if a big gap gives 
reaction, it has to be interpreted as something that happens at low acceleration. Results have 
always supported the concept that increasing acceleration (i.e., increasing the velocity) reduces 
the gap size. So a big gap obtained in this way is a lot larger than the value at the desired 
higher acceleration. Since the relation between gap size and various accelerations is not known 
a priori, a big gap cannot be related back to the initially desired acceleration. It may set an 
upper limit, but is of little practical use and has never been pursued. 
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Figure 10 
Maximum gap versus acceleration 
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The test relies on the equivalence between a gap closing at constant velocity and one 
closing because the drift pin is accelerating smoothly towards the explosive. That is how the 
apparatus avoids having to precisely generate various high accelerations on demand, a difficult 
task. This equivalence was established during initial computer modeling in support of designing 
the test, showing the important part of the resulting gap pressure pulse is the same for either 
event. But, closing the gap by instantaneously applying a velocity to the drift pin with hammer 
impact actually sets up reverberating shock waves in the gap. These reverberate hundreds of 
times as the gap closes. Smoothly accelerating the drift pin does not produce such waves; 
instead the gap sees basically an isentropic compression. This difference causes error if the 
drift pin velocity is large enough. But estimates of the error using an ideal gas law for the air 
indicate drift velocity would need to be around 60 ms before the difference exceeds 0.5%. At 
100 ms, the difference between reverberating shocks and isentropic compression is near 1 %. 
At 30,000G's, a drift velocity of 61.1 ms would be needed for a 0.250-in. gap and 86.4 ms for a 
0.500-in. gap. A hammer driven machine can satisfactorily cover the range of gaps and 
accelerations usually found in artillery. 

The test is not intended to crush cavities. The equivalence alluded to previously will not 
work if something in the gap besides air "pushes back" on the advancing drift pin. An annular 
column of explosive, as exists when cylindrical cavities in the explosive are envisioned, will exert 
such a force opposing the drift pin. The pin may still crush the cavity, but probably not in a 
realistic manner. The test was intended for the case where the explosive is temporarily 
supported until acceleration has built up, then, the support instantaneously gives way. The 
worse case is when this happens just as maximum acceleration is obtained, as assumed for the 
test. 

DATA REPORTED FROM A TEST 

Most tests were performed using a Langlie procedure, modified by the "what if analysis 
of a statistician in real time. The goal always is to find the mean gap and standard deviation to 
95% confidence level with the minimum number of trials. Any test designed to accomplish this 
can be used. Probably the Neyer program would be a good choice to guide the test if available. 
A good estimate of the standard deviation is important, because it will be used to find the one-in- 
a-million point gap size. Depending on the standard deviation, very small gaps may be 
indicated at such a low probability. The mean value gaps have generally been fairly large. The 
mean and standard deviation of a well known reference material (likely TNT or Comp B) should 
be reported along with data on a new material. 

Tested explosives have given a wide range of violence when they ignite. None have 
detonated. LX-14 is the only explosive that consistently split open the steel confinement, but 
without detonating. The problem is with explosives where the ignition is feeble and doesn't have 
time to propagate in the short duration available in the tester. Defining a "go" response 
becomes more difficult. Many such explosives produce enough gas to eject the remaining 
explosive sample strongly from the confinement. These are "go's" because they have a 
probability of more extensive reaction if the explosive is in a pressure tight vessel like a 
projectile. Some formulations have only produced surface discoloration of the explosive at the 
gap. There is no evidence of gas generation, and changes are mainly heating effects on the 
binder. For example, melted wax showed up on the gap surface of Comp A-3 after a shot, and 
there was only insignificant evidence of any RDX crystals actually reacting. This is a "no-go." A 
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more complex case is where the binder itself is an explosive, like a formulation that was tested 
based on DNAN as binder. Discoloration was not accompanied by any sign of gas generation. 
These were "no-go's." Subsequent experiments compressing this material in closed containers 
and keeping them under pressure ~10 ms or so, verified that discoloration without any sign 
indicative of eventual burning or gas generation does occur for this material. Of course, at 
higher stimuli, this material did burn, although slowly and incompletely after a delay. 

Clearly, there will be cases where judgment is required on whether ignition occurred or 
not. These guidelines are intended to help with those judgments. 

CALIBRATION 

Calibration has been done with a 100 kHz laser interferometer. The unit employed was 
designated "LXS-range" from "LMI Sensors95," and claimed accuracy of 0.23 mm. It could 
measure 45 mm of travel, more than enough for the 25.4 mm stroke of the air gun. Mounting 
hardware is available so the unit sets in the proper relation to measure the motion of the 
hammer towards it. After installation, various distances between hammer and interferometer are 
manually set and the output voltage obtained. When plotted, this constitutes the voltage versus 
distance for the unit. It should resemble the plot in the instruction book for the interferometer. 
But, use the actual measured numbers. Obviously, during a shot, the hammer must be stopped 
before hitting the laser unit. Our procedure is to use the armor shield to stop the hammer and 
piston. Care must be exercised to prevent piston damage from occurring in this process. 

First, examine the 3/8-in. stud attaching the hammer and its crush washer to the face of 
the piston. The problem is that a loose hammer can fly off from the stud when the piston is 
stopped and impact the interferometer. Threads must be in very good condition. No root cracks 
or worn threads. Hammer must be tight, but do not put the stud into excessive tension. Use 
moderate torque when tightening. The sudden stopping puts the stud into tension, so you don't 
want excessive tension initially. Looseness creates an impact situation, then, can strip threads. 
When properly tightened, no problem occurs (fig. 11). 

^Br(f^) 

E 
^^^B 

Figure 11 
Six shear rods installed, hammer tightened 

The air gun piston must be protected. To this end, circular discs of %-in. natural latex 
rubber are punched so they are an exact fit to the bore of the air gun (fig. 12). 
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• 
Rubber Pad 

* ^H 

Figure 12 
Add rubber pad 

A central hole is cutout to let it slip over the hammer. Unfortunately, this means the last 
%-in. of hammer stroke is influenced by compressing the rubber. So the data must be 
interpreted accordingly. Basically, a curve is generated for the first %-in. of travel and 
extrapolated to 1 in. An aluminum 0.10 in. or so thick crush plate is placed in front of the air gun 
as in figure 13. 

Crush Plate 

Figure 13 
Add crush plate 

This is the final cushion between the air gun piston and the armor stopping plate. The 
aluminum will be destroyed each shot as considerable cratering will occur. Use a fresh one for 
each shot. Lastly the armor is put in place. It sets on a plate that just slides under the bore with 
the step towards the front. Armour plate sets on the step. Then the heavy steel support bars 
are placed before tightening the bolts over the air gun. Figure 14 shows the five pieces of the 
support system in place. Push right longitudinal bar against the laser mount. Then the two 
spacer pieces align the other bar symmetrically with respect to the hammer. 

13 



Armour Shield Installed 

Interferometer 

I  Longitudinal bars 

Backup Bar 

Figure 14 
Ready for firing 

At this point, tighten the bolts over the air gun. These bolts pass through compression 
tubes (heavy wall pipes) of the proper length. It is good practice to lift these tubes as high as 
possible against the interior bolts before tightening. This will reduce the stress they see when 
stopping the hammer. Make sure these tubes tighten against the armor and don't have some of 
the aluminum crush plates caught in the gap. 

Nominally 10 shots are usually fired. Try to get as many as possible from the same 
shear rod so release pressure stays consistent at least over a few shots. Data was recorded at 
100 kHz. It only takes 2.6 ms for the hammer to finish its stroke, so high frequency data 
acquisition is indicated. Raw data is noisy, the interferometer manufacturer claims that is 
endemic for instruments capable of such high speed measurements. Significant averaging was 
done to get the derivative (velocity) from basic position data. Attempts at Fourier transform 
filtering failed; there was no dominant frequency to the noise. The procedure used was to 
employ a large number of points to either side of the current point to determine a linear 
regression line for that point, and take the slope of this line as the derivative at that point. A 
check was to integrate the derivative as determined and see if the resulting position curve is a 
good fit to the original. The most satisfactory fit to the velocity versus piston position data was a 
linear regression to the data plotted as velocity squared verses piston position (stroke). The goal 
is to have velocity versus stroke curves fall within +/- 2% of the average; otherwise the 
correlation to acceleration will have errors over +/- 5%. More details are in reference 1. 
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DRAWINGS 

The sample must meet drawing 1. This insures the face of the gap is parallel to the drift 
pin and air leakage along the sample is minimal. The length was designed according to the 
original warhead effort that funded development of the tester. It has been kept constant and a 
database has accumulated for this length. Length of sample can affect the results. Likewise, a 
copper disk (drawing 2) has traditionally been attached to the sample opposite the gap end, 
originally to mimic the geometry of the original warhead. 
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3.232+/-0.010 

0.001 

V 2 PLACES .002 MAX BREAK 

n A      +0.0000 
* °-499-0.0015 

•A- 

Drawing 1 
Explosive sample 

NOTE: Material : copper bar 

$/ 

h 

-A- 
+0.000 

+ °-490 -0.003 

0.003 A 

*— 0.193   +/-0.003 

0.003 A 

Drawing 2 
Dummy liner 
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The sacrificial washer is specified in drawing 3. Sides need to be parallel as alignment 
of the hammer depends on being tightened up against this washer. Washers cannot be 
hardened steel as their role is to absorb impact deformation and protect the face of the air gun 
piston. They must be the softest element in the hammer attachment setup. 

Material: 12L14 steel at 92 
Rockwell B or equivalent. 

Sides parallel within 0.002 
4» 1.375+/-0.010 

4> 0.515 +0.010/- 
0.000 

187+/-0.010 

Drawing 3 
Sacrificial crush washer 
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