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MOTIVATION 

• High bending stiffness and strength to weight ratio 

 

• Excellent thermal and sound insulation 

 

• Increased durability under a thermo-mechanical loading 

  environment 

 

• Tight thermal distortion tolerances 

 

• Lightweight in structure 
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BASIC ASSUMPTIONS AND PRELIMINARIES 

1. The face sheets fulfill the Love-Kirchoff  assumptions and are thin  

    compared with the core.  

  

2. The bonding between the face sheets and the core is assumed to be  

    perfect. 

 

3. The kinematic boundary conditions at the interfaces between the core  

    and the facings are satisfied. 

  

4. The core is assumed to be a weak orthotropic transversely  

    compressible core carrying only the transverse strains and the normal  

    strain. 

  

5. The shock wave pressure is uniformly distributed on the front face of  

    the sandwich plate. 
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Fig 1b. An asymmetric sandwich plate under blast loading  
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THEORETICAL DEVELOPMENTS 

d
α

t
fca

α

t
fcd

α
a
α

t
α u

tt
xu

tt
xuuυ ,33,33

22 











 














 


dat uuυ 333 

d
α

b
fca

α

b
fcd

α
a
α

b
α u

tt
xu

tt
xuuυ ,33,33

22 











 














 


dab uuυ 333 

c
α

c

d
α

c

b
f

t
fa

α
c

b
f

t
fd

α
c

d
α

b
f

t
fa

α

b
f

t
fa

α
c
α

t

x
ux

t

tt
ux

t

tt
u

t

x
u

tt
u

tt
uυ Φ1

4

22

2

44 2

2
3

,33,33
3

,3,3 


























 














 














 














 


d

c

ac u
t

x
utzyxυ 3

3
33

2
),,,( 

Top Face 

Bottom Face 

Core 

Physics-Based Modeling in Design & 

Development for U.S. Defense Conference 

 

Displacement Field 

8 UNCLASSIFIED 

UNCLASSIFIED 



Note: 

 

the Greek indices have the range 1, 2, while the Latin indices have the range 1, 2, 3 and  

unless otherwise stated, Einstein’s summation convention over the repeated indices is  

assumed. Also, denotes partial differentiation with respect to the coordinates , while  

superscripts t and b indicate the association with the top and bottom facings respectively. 

 

 

Also, 
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represent the average and the half difference of the face sheet mid-surface displacements while, the core  

displacements,  c
αΦ warping functions of the core. 
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Non-Linear Strain-Displacement Relationships 
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The strain-displacement relationships given by the Lagrangian Strain-Displacement 

Relationships used in conjunction with the Von-Karman assumptions is given in  

indicial notation as 

Physics-Based Modeling in Design & 

Development for U.S. Defense Conference 

 

10 UNCLASSIFIED 

UNCLASSIFIED 



Substitution of the displacement relationships gives: 
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In the above expressions,            are referred to as the average and half difference of  

tangential or membrane strains of the top and bottom facings; while,          are referred to as  

the average and half difference of the bending strains of the top and bottom facings. The 

expressions for the membrane and bending strains are not provided here.  

),( da
αβγ

),( da
αβκ

For the core, the strain-displacement relationships take the form  

333
c
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c
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c
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In these expressions,      and      are the membrane and bending strains, respectively. These  

expressions are not provided here. 

c
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c
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Both the top and bottom face sheets are considered to be constructed from unidirectional  

fiber reinforced anisotropic laminated composites, the axes of orthotropy not necessarily  

being coincident with the geometrical axes. The stress-strain relationships for each lamina  

of the facings becomes 
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Where,      for  i, j = (1, 2, 6) are the Transformed plane-stress reduced stiffness measures.  ijQ

The stress-strain relationships for the orthotropic core with the geometrical and material 

axes coincident are expressed as 
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Hamilton’s Variational Principle 

0)(
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0

 dtTδWδUδ
t

t

U  = strain energy,  

 

W  = represent the work done by external forces  

 

T  = represent the kinetic energy 

Physics-Based Modeling in Design & 

Development for U.S. Defense Conference 

 

14 UNCLASSIFIED 

UNCLASSIFIED 



dAdxδγτdxδγτdxδγτUδ
b
fc

c

c

c

c

t
fc

tt

t

b
αβ

b
αβ

t

t

c
i

c
iA

t

tt

t
αβ

t
αβ 









  









2

2 3

2

2 333

2

2 3

  
A

bbbccctttbbtt dAδυυCδυυCδυυCδυtxxqδυtxxqWδ 33333332133213 222),,(ˆ),,(ˆ 

dAdtdxδυυρdxδυυρdxδυυρTdtδ
b
fc

c

c

c

c

t
fc

tt

t

bbb
f

t

t A

t

t

ccct

tt

ttt
f

t

t 







   









2

2 333

2

2 333

2

2 333
1

0

1

0



Where      are the tensorial components of the second Piola-Kirchoff stress tensor, while 

A is attributed to the area of the sandwich plate.  
ijτ

Where                   denotes the transverse pressure loading from a spherical air-blast 

and C is the structural damping coefficient per unit area of the plate.  

),,( 21 txxqt

Where      and            are the mass densities of the core and the top and bottom face 

sheets, respectively,    and denotes the transverse acceleration. 
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Eqs.  (1) , (2) 

Eqs.  (3) , (4) 

Eqs.  (5) , (6) 

Eq.  (7)  
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Where the local stress resultants and stress couples are given as: 
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For the case of simply supported boundary conditions, the boundary conditions become:  

Along the edges  ),0( nn Lx 

033  dad
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nt
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n and t are the normal and tangential directions to the boundary. When  ,1n 2t
and when  ,2n 1t
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Special Case: Symmetric orthotropic single layer facings 

In fulfillment of the geometric boundary conditions, a suitable representation for  
da uu 33 and,

is given by: 
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The transverse explosive loading is represented as 

),sin()sin()(),,( 2121 xμxλtqtxxq nmmnt 

Physics-Based Modeling in Design & 

Development for U.S. Defense Conference 

 

Solution Mthodology 

20 UNCLASSIFIED 

UNCLASSIFIED 



which implies through integration of both sides over the plate area that  
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The first two Equations of Motion can be satisfied by a stress potential in conjunction with a 

compatibility equation not provided here. Equations of Motion (3) through (6) can be shown 

to be satisfied by expressing these equations of motion in terms of displacements and 

assuming appropriate functional forms in terms of unknown constant coefficients and the 

amplitudes as a function of time. The unknown constants are determined by substitution 

and comparing coefficients. 

 

At this point the Extended-Galerkin Method is utilized by retaining the last two Equations of 

Motion within the energy functional and carring out the indicated integrations results in two 

nonlinear coupled second order ordinary differential equations in terms of the modal 

amplitudes. These are given as: 
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The coefficients  21200301301210 ,,,, CCCCCCC  are expressions which depend on the 

material and geometrical properties of the structure. 

These two governing differential equations are then solved using the 4th Order runge-Kutta  

Method. 
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For a free in-air spherical air burst, the pressure profile over time is given 

in figure 2 as 

Fig 2. Incident Profile of a blast wave 
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The wave form shown in figure 4 is given by an expression known as 

The Friedlander equation and is give as 
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For conditions of STP at sea level, the time of arrival and the positive  

phase duration can be determined from 

scaling root Cube
3
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It should be noted that the standoff distances are themselves scaled 

According to the cube root law 
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To validate the present approach, the dynamic response of a simply supported plate 

impacted by a uniform pressure pulse was chosen from R.S. Alwar et Al. 
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Results-Validation 

Fig 3. The nondimensional global deflection-time response of  

a simply supported sandwich plate impacted by a uniform  

pressure pulse 
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Results-Present 

Fig. 4 The effect of the transverse modulus of the core on the global  

response of a sandwich plate with orthotropic facings. 
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Fig. 5 The counterpart of Fig. 4 for the wrinkling response of a 

sandwich plate. 
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Fig. 6 The effect of the rate-of-decay parameter on the global  

response of a sandwich plate with orthotropic facings. 
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Fig. 7  The counterpart of Fig. 6 for the wrinkling response. 
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Fig. 8 The effect of the core thickness on the global deflection-time  

history of a sandwich plate with orthotropic facings. 
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Fig. 9 The counterpart of Fig. 8 for the wrinkling response. 
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Fig. 10  The effect of the stacking sequence of the facings on  

the global response of a sandwich plate. 
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Fig. 11 The counterpart of Fig. 10 for the wrinkling 

response. 
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Fig. 12 The effect of the core shear modulus ratio on the deflection-time  

history of cross-ply laminated sandwich plate. 
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Fig. 13 The counterpart of Fig. 12 for the wrinkling response. 
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Concluding Remarks 
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The governing theory of asymmetric sandwich plates with a first-order compressible core  

impacted by a Friedlander-type of blast has been presented and simplified for the case of  

symmetric cross-ply and single-layered orthotropic facings. In all cases, it was mentioned  

that all four edges are simply supported and freely movable.  Results were then presented  

for this simplified case and validated against results found in the literature from  

R. S. Alwar et al.  It was found that for the incompressible core case that there was close  

agreement among the results. In regards to the compressible core case, no appropriate  

results have been found in the literature for the theory presented in this paper for the  

simply supported case with all edges freely movable. The effect of a number of important  

geometrical and material parameters were analyzed with conclusions drawn. Some of the  

important conclusions were that wrinkling response seems to be diminished as the young’s  

modulus of the core is increased. The same is the case for larger rates of decay. Also, for  

thicker cores, both the global and wrinkling responses are less severe. It was also revealed 

that the compressibility of the core has only a marginal effect upon the global response of  

the sandwich plate. Finally, the cross-ply type layup when compared with single-layered  

facings seemed to have a large effect on the global response and less effect on the  

wrinkling response.  

   One should keep in mind that both the stress and strain profiles should be determined to  

determine possible failure of the structure. 
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