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Abstract

The goal of this work is to provide a method for choosing joining (e.g., bolt) lo-

cations for attaching structural reinforcements onto complex structures. The join-

ing locations affect structural performance criteria such as the frequency response

and the static compliance of the modified structure. One approach to finding im-

proved/optimal joining locations is to place the joints such that the total amount of

energy input into the structure (from external forces) is lowered/minimized, thus

ensuring that the performance of the structure is least affected by the structural

modifications. However, such an approach does not account for the stresses in

the joints. Therefore, in this work, the amount of strain energy concentrated in

the joints is also considered. The cost function for this optimization problem is

then composed of two energies. These energies are different for the undamped

and damped cases. Herein, the focus is on the (more realistic) damped case. The
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cost function is minimized by a modified optimality criteria method. This pro-

cess is time consuming because it requires the calculation of sensitivities of the

joint strain energy, which in turn requires the calculation of the displacements of

all candidate joint locations by using the system-level mass and stiffness matrices

and force vector (at each frequency in the range of interest). To address this is-

sue, a series of complex algebraic manipulations and approximations are used to

significantly reduce the computational cost. In addition, for the case where struc-

tural and geometrical variations are necessary, parametric reduced-order models

are used to compute the cost function with further significant gains in computa-

tional speed. Numerical results for improved/optimal joining are presented for

representative complex structures with structural variabilities.

Key words: joining locations, joint strain energy, parametric reduced-order

models

1. INTRODUCTION

Mechanical structures such as those found in automobiles and airplanes con-

sist of multiple components which are assembled using joints such as bolts, welds,

rivets, etc. The locations (assembly points) of these joints affect structural perfor-

mance characteristics such as the static compliance, the frequency response, and

the durability. To achieve high performance, the joining locations should be se-

lected by a systematic approach rather than an experience-based approach. How-

ever, this issue can be quite challenging because there are many joints and even

more possible joining locations for large scale complex structures. The number

of such joints can be as many as several thousand. The choice for joining lo-

cations can be improved/optimized by topology optimization approaches such as
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homogenization techniques [1] and density methods [2, 3, 4].Homogenization

techniques compute an optimal distribution of micro-structures in a given design

domain. Density methods compute an optimal distribution of isotropic materials,

where the material densities are design variables. Although the single-component

topology design has been extensively studied during the past two decades [5], the

amount of research done for multiple-component topology optimization is rel-

atively small. In that area of research, Chirehdast and Jiang [6] extended the

concept of topology optimization to the design of spot-weld and adhesive bond

patterns. A year later, Jiang and Chirehdast [7] proposed a theoretical framework

to determine which optimal connection points minimize the static compliance of

the given substructures. To solve the coupled problem of component topology and

joining location optimization, Chickermane and Gea [8] considered a methodol-

ogy for a multiple-component structure as a whole, in which the optimal topology

and the joint locations were computed simultaneously. More recently, Zhu and

Zhang [9] did layout optimization of structural supports using a topology opti-

mization method for free vibration analyses. All these previous efforts employed

spring elements for modeling joints. In contrast, Li et al. [10] proposed a fastener

layout/topology that achieves an almost uniform stress level in each joint, and

adopted evolutionary structural optimization [11, 12, 13, 14, 15, 16] to provide

an alternative optimization strategy to traditional gradient-based topology opti-

mization approaches. In the context of these past efforts, the focus of this work is

on the development of an efficient framework for determining improved/optimal

joining locations as to minimize the total energy input into the structure and the

strain energy in the joints of a complex structure with variability using a density-

based method.
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For general optimization processes, finite element models (FEMs) are typ-

ically used to evaluate the cost function. However, the number of degrees of

freedom (DOFs) of FEMs of complex structures are prohibitively large. So, con-

ventional FEMs are hard to employ due to the expensive time needed for each

iteration. To reduce the computational cost, Craig-Bampton component mode

synthesis (CB-CMS) was employed by Ma et al. [17] in a multi-domain topology

optimization. The CB-CMS method is one of the most well-established methods

for constructing reduced-order models (ROMs) [18, 19, 20, 21, 22]. However, if

one attempts to use CB-CMS techniques when parametric changes (such as thick-

ness and geometrical variations) are applied during the design or exist through

damage, the ROMs have to be reconstructed. This reconstruction requires other

analyses in addition to the repetitive calculation of the cost function. This is com-

putationally expensive and requires significant effort to prepare a FEM and a ROM

for each reanalysis.

These challenges are addressed in this work as follows. First, the mean com-

pliance for the dynamic case with damping is derived, and the strain energy in

the joints is added to the cost function. Second, a novel approach to calculate the

sensitivity of the strain energy in the joints efficiently is proposed. Third, the cost

function and its sensitivity are computed in optimization process by using novel

models which are able to manage structural variabilities. Recently, design oriented

parametric reduced-order models (PROMs) have been developed to avoid such

prohibitively expensive reanalyses of complex structures [23, 24, 25, 26, 27, 28].

Here, the next-generation PROMs (NX-PROMs) [28] developed by the authors

are employed to allow complex structures to be divided into several components

when determining improved/optimal joining locations.
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This paper is organized as follows. In Section 2, a design methodology for de-

termining improved/optimal joining locations is defined, which includes models

for the joints, the definition of the associated cost function, and a computationally

efficient method to determine design sensitivities for the cost function. In Sec-

tion 3, NX-PROMs used in the calculations are reviewed. In Section 4, numerical

simulations are used to demonstrate the proposed approach for the problem of at-

taching an armor plate to a structure with a V-shaped bottom. Finally, conclusions

are summarized in Section 5

2. DESIGN METHODOLOGY FOR OPTIMAL JOINING LOCATIONS

In single-component topology optimization, the primary objective is to obtain

the optimal layout of the structure. When multi-component structures are con-

sidered, the problem is extended to select the optimal joining locations between

components. This is done not only to optimize the layout of each of the subcom-

ponents, but also because the joining locations affect the structural performance.

Herein, a density-based topology optimization technique [2, 3, 4] is applied. Roz-

vany et al. [29] have defined this method as a modeling technique based on solid

isotropic material with penalization (SIMP), where the distribution of the join-

ing stiffness is optimized to improve the static or dynamic structural performance

of the entire connected structure. The SIMP method has been developed to re-

place the size and orientation variables (of the holes used in the homogenization

method [1]) with a density variable (of the finite elements) in the design domain.

Herein, the idea of SIMP is employed to select optimal joining locations for the

entire connected structure. To improve/optimize the joining locations, the stiff-

nesses of the joints are designed using density functions. Thus, the design vari-
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ables are the densities (or stiffnesses) of the joints. Thesedensities are continuous

variables varying between 0 and 1. A location where the joint has a low density

(close to 0) is not effective/adequate for joining, while a location where the joint

has a density close to 1 is best for joining.

2.1. Design Region - Models for Joints

Being one of the controversial tasks in structural FE analysis, modeling meth-

ods for joints have been extensively studied. Depending on the required accuracy

and complexity of the problem at hand, an appropriate modeling strategy can be

adopted for the joints. Several techniques for modeling joints were proposed in

the literature [30, 31, 32, 33, 34]. For fatigue analyses based on local stresses

and the local strength of the material, a fine mesh of the structure and accurate

joint models are required. For noise and vibration analysis of complex structures,

a moderate level of accuracy and complexity is required, which leads to simple

models for the joints. For a design optimization problem, and especially for a pre-

liminary design, the simple flexible bar models are preferred [6, 8, 32, 35] because

those joint models can be easily catered toward the iterative updating employed in

design optimization.

In this work, the joints are modeled as three rectilinear springs. Let the stiff-

ness associated with the motion of one of the two ends of a joint (of indexi) be

ks,i = Diag
([

kx,i ky,i kz,i

])

, wherekx,i, ky,i, andkz,i denote the stiffnesses

of the spring along the three directions of a local Cartesian reference system asso-

ciated with jointi. Here,Diag(v) represents a diagonal matrix with entries given

by the vectorv. The directional stiffnesses of a joint are often related to each

other. In this work, it is assumed thatkx,i = kz,i = αiki andky,i = ki. This is

the case for joints such as bolts, rivets, spot welds, etc, wherey is the axis of the
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joint (e.g., the axis of a bolt). Thus, a joint is modeled as having 6 DOFs linked

by three springs. The stiffness matrix for theith joint can thus be written as

Ks,i =





ks,i −ks,i

−ks,i ks,i



 ,

whereks,i = kiDiag
([

αi 1 αi

])

.

The joints (modeled as three rectilinear springs) are designed using density

functions in the SIMP method. According to the SIMP method, the design ele-

ments are written using the densitiesρi as

Kb,i = ρpi





ks,i −ks,i

−ks,i ks,i



 = ρpiKs,i, (1)

whereKb,i represents the joining stiffness matrix for theith candidate joining lo-

cation. Thus,Kb,i is a density-based function. Intermediate values ofρi (0 < ρi <

1) are penalized compared to values of 0 or 1 by the use of the penalty exponent

p. This exponent is typicallyp = 3 for a structural optimization problem [36, 37].

Also, for simplicity, we assume thatαi has the same value for all joints. Thus,

only one density variable is assigned to a joint.

The system-level joining stiffness matrixKb is given by

Kb = Bdiag
[

Kb,1 Kb,2 · · · Kb,g

]

, (2)

whereBdiag denotes a block-diagonal matrix, andg is the number of candidate

joining locations. Then, the system-level governing equation for the structural

dynamic problem with (structural) dampingγ is

M0





üb

ür



+ (1 + jγ)



K0 +





Kb 0

0 0













ub

ur



 =





fb

fr



 , (3)
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wherej =
√
−1, M0 and K0 are the system-level mass and stiffness matrices

which do not include the joining stiffness matrixKb. Subscriptb indicates the

candidate joining DOFs, and subscriptr denotes the remaining DOFs. Note that

a joining mass matrixMb does not exist because massless spring elements are

used. Based on Eq. (3), the dynamic response of all DOFs,ur (remainder) andub

(joint), are obtained.

2.2. Formulation of the Optimization Problem

The approach employed here is based on an energy criterion which is com-

monly used in structural optimization problems. Two energies are used. The

first is the total energy input into the structure under dynamic loading. This total

energy input is equal to the external work done on the structure, which can be de-

fined in function of the mean compliance of the structure. For the dynamic case,

the total work done on the structure by external forces is

Re

(
∫

FTdu

)

= Re

(
∫ T

0

FT
du

dt
dt

)

= Re

(
∫ T

0

FTu̇dt

)

, (4)

whereF = fejωt is the external harmonic forcing, andu is the displacement due

to the harmonic forcing. The phase reference for the calculation is chosen such

thatf is real. For structures with damping, the responseu is complex and can be

expressed as

u = (uR + juI)e
jωt so that u̇ = (jωuR − ωuI)e

jωt, (5)

where subscriptsR andI indicate real and imaginary parts. From Eq. (5), the real

valued portion of the velocity is

Re(u̇) = −ωuIe
jωt = −ωuI cosωt− ωuR sinωt. (6)
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Substituting Eq. (6) into Eq. (4) and using the fact thatf is real, one obtains

Re

(
∫ T

0

FTu̇dt

)

= −
∫ T

0

fT cosωt(ωuI cosωt+ ωuR sinωt)dt

= −ωfTuI

∫ T

0

cosωtdt = −ωT

2
fTuI

= −πfTuI = −π(fTu)I .

The resulting first component of the cost functionc1 is thus

c1 = −
(

fTu
)

I
, (7)

and contains the strain energy in the entire structure, including the joints. How-

ever, focusing on the durability of the joints, the strain energy in the joints should

be taken into account. Thus, the second component of the cost function is based

on the strain energy in the joints. This energy can be expressed as

c2 =
1

2
uH

b Kbub, (8)

where the superscriptH indicates the Hermitian operator. Then, by assembling

the two componentsc1 andc2 of the cost function from Eq. (7) and Eq. (8), the

final cost function for this optimization problem is

c = w1c1 + w2c2 = −w1

(

fTu
)

I
+ w2

1

2
ubK

H

b ub,

wherew1 andw2 are weighting factors to control the relative importance of overall

structural vibration and joint durability.

Naturally, the number of joints to be distributed in the design domain is lim-

ited. Thus, the topology optimization problem associated with the joining location
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design can be stated as

Minimize : c(ρρρ) = −w1

(

fTu
)

I
+ w2

1

2
ubK

T

b ub,

(9)

Subject to : g(ρρρ) =

g
∑

i=1

ρi −N ≤ 0; 0 < ρmin ≤ ρi ≤ 1,

whereN denotes the total number of joints allowed in the design,g is the total

number of candidate joint locations, andρmin is a sufficiently small lower bound

imposed to avoid numerical instabilities (hereinρmin = 0.001).

To solve such optimization problems, specific methods have been developed

to handle a large number of design variables with a few constraints. Among these

techniques, the method of moving asymptotes (MMA) [38, 39] and the optimality

criterion (OC) [1, 40] methods are broadly utilized for their efficacy and gener-

ality. The MMA method is based on the convex approximation method with the

advanced feature of setting asymptotic moving limits to approximation variables.

The OC makes use of the well-known Karush-Khun-Tucker condition to satisfy a

set of criteria related to the behavior of the structure. Even though the OC method

is well-convergent for static cases, it is not effective for the dynamic case. Thus,

herein we use the modified optimality criterion (MOC) method [40], which is also

a gradient-based optimizer.

2.3. Sensitivities of the Cost Function

The design domain for joining is modeled with the density-based three rectilin-

ear springs, each having a design variableρi (density), as in Eq. (1). The variable

ρi is varied between 0 and 1 using the MOC method to select improved/optimal

joining locations. For any gradient-based optimizer, the design sensitivities of the
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cost function and of the constraints with respect to the design variables are re-

quired. For an efficient calculation of the design sensitivities for the dynamic case

discussed here, an adjoint variable method [41] is applied. First, we consider the

design sensitivities ofc1 given by in Eq. (7). The derivative ofc1 with respect to

themth design variableρm is

∂c1 (ρρρ)

∂ρm
= −











fb

fr





T 



∂ub

∂ρm

∂ur

∂ρm











I

= −











fb

fr





T

λλλ







I

.

The direct calculation of





∂ub

∂ρm

∂ur

∂ρm



 is cumbersome, so an adjoint variableλλλ is

used. To obtainλλλ, the equilibrium Eq. (3) is differentiated with respect to the

design variableρm to obtain

∂G

∂ρm





ub

ur



+G





∂ub

ρm

∂ur

∂ρm



 = 0, (10)

where

G = −ω2M0 + (1 + jγ)



K0 +





Kb 0

0 0







 .

Multiplying Eq. (10) by





ub

ur





T

, one obtains





ub

ur





T

G





∂ub

ρm

∂ur

∂ρm



 =





fb

fr



λλλ = −





ub

ur





T 



∂Kb

ρm
0

0 0









ub

ur



 .
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Thus, the design sensitivity ofc1 to ρm is given by

∂c1 (ρρρ)

∂ρm
= −











fb

fr





T

λλλ







I

= −
(

uT

b

∂Kb

∂ρm
ub

)

I

(11)
= −

(

uT

b,m

∂(ρpmKs,m)
∂ρm

ub,m

)

I

= −
(

pρp−1

m uT

b,mKs,mub,m

)

I
.

Second, the sensitivity ofc2 with respect toρm is considered. One obtains

∂c2 (ρρρ)

∂ρm
=

1

2

[

2uH

b Kb

∂ub

∂ρm
+ uH

b

∂Kb

∂ρm
ub

]

, (12)

where the fact thatKb is a real, symmetric matrix was used. This sensitivity

requires the calculation of∂Kb

∂ρm
and ∂ub

∂ρm
. The first term∂Kb

∂ρm
can be easily calculated

because it has a simple analytical form. Next, from Eq. (10), one obtains




∂ub

∂ρm

∂ub

∂ρm



 = − (1 + jγ)G−1





∂Kb

∂ρm
ub

0



 . (13)

This equation could, in principle, be used to compute∂ub

∂ρm
once ∂Kb

∂ρm
is calculated.

However, using Eq. (13) requires the inverse ofG at each iteration. This matrix

is very large because it is a full-order, system-level matrix. Also,G depends on

excitation frequencyω, so this inversion has to be done at each frequency in the

range of interest. To avoid such a high computational effort, we propose a novel

approach. To calculate∂ub

∂ρm
, first, Eq. (3) is used to obtain

(

−ω2M0 + (1 + jγ)K0

)





∂ub

∂ρm

∂ur

∂ρm



 + (1 + jγ)





∂Kb

∂ρm
0

0 0









ub

ur





(14)

+ (1 + jγ)





Kb 0

0 0









∂ub

∂ρm

∂ur

∂ρm



 = 0.
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Then, substituting Eq. (13) into Eq. (14), one obtains




Kb
∂ub

∂ρm

∂ur

∂ρm



 = G0G
−1





∂Kb

∂ρm
ub

0



−





∂Kb

∂ρm
ub

0





(15)

=
(

G0G
−1 − I

)





∂Kb

∂ρm
ub

0



 ,

whereG0 = (−ω2M0 + (1 + jγ)K0). The quantityG0G
−1 in Eq. (15) can be

written as

G0G
−1 =



I+ (1 + jγ)





Kb 0

0 0



G−1

0





−1

. (16)

Then, substituting Eq. (16) into Eq. (15), one obtains




Kb
∂ub

∂ρm

∂ur

∂ρm



 =







I+ (1 + jγ)





K0 0

0 0



G−1

0





−1

− I









∂Kb

∂ρm
ub

0



 . (17)

The novel approach uses the assumption that the values of the (spring) stiffnesses

of the joints are much smaller than the values of the stiffnesses in the nominal

structure. Thus, we assume that, for all DOFs of indicesi1 andi2,








K0 0

0 0



G−1

0





i1i2

≪ 1.

Then, the inverse term in Eq. (17) can be written as


I+ (1 + jγ)





K0 0

0 0



G−1

0





−1

≈ I− (1 + jγ)





K0 0

0 0



G−1

0
. (18)

Substituting Eq. (18) into Eq. (17), one obtains




Kb
∂ub

∂ρm

∂ur

∂ρm



 =



− (1 + jγ)





K0 0

0 0



G−1

0









∂Kb

∂ρm
ub

0



 . (19)
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Of course, Eq. (19) can be used to obtain∂ub

∂ρm
. However, Eq. (19) requires the

calculation of the inverse ofG0. InvertingG0 has to be done only once during

the iterations becauseG0 does not depend onKb. However,G0 does depend on

the excitation frequencyω, which means thatG0 has to be inverted at all frequen-

cies in the range of interest. Also,G0 is a large matrix because it is a full-order,

system-level matrix. Thus, this calculation is very time consuming. A new ap-

proach to address this issue is presented next. The key term to be calculated in

Eq. (19) isG−1

0





∂Kb

∂ρm
ub

0



. To compute this term, we consider first that a unit

force is applied at themth joining location and to theath DOFs (at that location).

The indexa varies from 1 to the numberL of DOFs used in the finite elements

which contain the joining nodem. For example,L = 6 for shell-type elements,

while L = 3 for brick-type elements. Then, the resulting deformationΨΨΨm,a can

be expressed as

ΨΨΨm,a = G−1

0
·
[

0 0 · · · 1m,a 0 0
]T

,

whereΨΨΨm,a indicates the deformation everywhere in the system due to the unit

force applied at theath DOFs of themth joint location.
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Next, we express the difficult term as

G−1

0





∂Kb

∂ρm
ub

0



 =

L
∑

a=1

G−1

0























0
...

1m,a

...

0























(

∂Kb,m

∂ρm
ub,m

)

=
L
∑

a=1

ΨΨΨm,a

∂ (ρpmKs,m)

∂ρm
ub,m

=

L
∑

a=1

pρp−1

m ΨΨΨm,a (Ks,mub,m)a .

Thus, the sensitivity ofc2 in Eq. (12) can be expressed as

∂c2 (ρρρ)

∂ρm
=

1

2

(

−2
n
∑

i=1

Ai + pρp−1

m uH

b,mKs,mub,m

)

, (20)

where

Ai = ρpiu
H

b,iKb,i (1 + jγ)

[

L
∑

a=1

pρp−1

m (ΨΨΨm,a)i (Ks,mub,m)a

]

.

Finally, the design sensitivity of the entire cost function for themth design

variable is obtained using Eqs. (11) and (20) as

∂c (ρρρ)

∂ρm
= − w1

(

pρp−1

m uT

b,mKsub,m

)

I

+ w2

1

2

(

−2

n
∑

i=1

Ai + pρp−1

m uH

b,mKsub,m

)

.

Computing the sensitivities of the entire cost function based on this formulation is

fast especially because vectorsΨΨΨm,a have to be calculated only once. They remain

unchanged during the optimization iterations.
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3. PARAMETRIC REDUCED-ORDER MODELS (PROMs)

The cost function and design sensitivities are presented in Section 2 as if they

are calculated based on full-order finite element models. However, if the struc-

ture has a huge number of DOFs, the turn-around time of the optimization iter-

ation process is very long. This issue is particularly important when the design

involves not only choosing joining locations, but also modifications of various

components of the structure. In that case, the full-order model of the modified

components changes, which requires additional computational effort. To address

this issue, a new modeling approach is presented next. This approach is based

on next-generation parametric reduced-order models (NX-PROMs) [28] used to-

gether with the well-known fixed-interface Craig-Bampton component mode syn-

thesis (CB-CMS) [19]. A review of this approach is provided next.

3.1. Modeling Approach

CB-CMS [19] is used to model only the substructures which do not have any

structural variability. This modeling approach is used because it is very simple and

computationally stable. To apply CB-CMS, the complex structure of interest is

divided into several substructures, and their DOFs are partitioned into internal and

interface DOFs. The interface DOFs for a substructure (of indexq) are projected

onto the generalized coordinates by using static constraint modesΨΨΨC
q . The internal

DOFs are projected onto fixed-interface normal modesΦΦΦN
q . Then, the size of the

mass and stiffness matrices and the force vector for substructureq is significantly

reduced as follows

MCB
q =





mC
q mCN

q

mNC
q mN

q



 ,KCB
q =





kC
q kCN

q

kNC
q kN

q



 ,FCB
q =





fCq

fNq



 ,
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where the superscriptC indicates generalized interface DOFs (i.e., constraint par-

titions). These DOFs are used to assemble substructural matrices and obtain

system-level reduced matrices. The superscriptN indicates generalized internal

DOFs. These DOFs are used to reduce the number of internal DOFs.

The substructures which can have variability are modeled using NX-PROMs [28].

One important advantage of NX-PROMs is that the finite element mesh of the

nominal structure does not need to be modified although several substructures

may have variability. That is because the mass and stiffness matrices of these sub-

structures are parameterized. The NX-PROM approach resembles the CB-CMS

approach. However, the transformation matrix for NX-PROMs is constructed for

all values of the variable parameters in the parameter space of each component

with variability. In contrast, components with no parameter variability do not

need a parameterization, so they are modeled by CB-CMS. By applying the NX-

PROM approach to thelth substructure with variation∆p in one of its parameters,

the mass and stiffness matrices and force vector are obtained as

MNX
l =





mC
∆p,l mCN

∆p,l

mNC
∆p,l mN

∆p,l



 ,KNX
l =





kC
∆p,l kCN

∆p,l

kNC
∆p,l kN

∆p,l



 ,

FNX
l =





fC
∆p,l

fN
∆p,l



 ,

3.2. Geometric Compatibility Conditions

The complete, reduced-order component-level equations of motion for each

componentl of the entire set ofn components can be expressed as

MROM
l q̈ROM

l +KROM
l qROM

l = FROM
l , (21)

where the superscriptROM indicates that either CB-CMS or NX-PROM was

used, withql being the generalized coordinates (l = 1, · · · , n).
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The constraint partitions (indicated by superscriptC) of component-level ma-

trices retain the physical meaning of the interface DOFs. This means that the

geometric compatibility conditions at the interfaces with no joints can be applied

directly to construct the system-level matrices. Consider, for example that an in-

terface with no joints exists between componentsl andd (d = 1, · · · , n, d 6= l).

Then,

qC
l = qC

d , (22)

whereqC
l andqC

d are the generalized coordinates for the constraint partitions that

correspond to the interface between substructuresl andd. Of course, there is no

compatibility condition to be enforced for two components which do not have a

common interface. Equation (22) is used to transform the matrices in Eq. (21) in

a manner similar to the assembly process in all finite element modeling methods.

Then, the system-level equation of motion which does not include the joints is

given by

MROM
sys q̈ROM

sys +KROM
sys qROM

sys = FROM
sys . (23)

Equation (23) is obtained after all geometric compatibility condition have been

enforced, except for the conditions present at the interfaces with joints. To tackle

the joints, the (remaining) constraint partitions corresponding to the joints are

repartitioned in two pieces. These pieces are indicated by superscriptC1 andC2.

TheC1 portion corresponds the DOFs of one end of all joints and theC2 portion

corresponds to the DOFs of the other end of all joints. Thus, the matrices in
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Eq. (23) can be expressed as

MROM
sys =





MC̄ MC̄N

MNC̄ MN



 =











MC1 0 MC1N

0 MC2 MC2N

MNC1 MNC2 MN











,

KROM
sys =





KC̄ KC̄N

KNC̄ KN



 =











KC1 0 KC1N

0 KC2 KC2N

KNC1 KNC2 KN











, (24)

qROM
sys =





qC̄

qN



 =











qC1

qC2

qN











, FROM
sys =





FC̄

FN



 =











FC1

FC2

FN











,

where superscript̄C represents the constraint partition (for all components) that

corresponds to the joints.

Next, the joints (three rectilinear springs) are applied to connect the DOFs of

C1 to those ofC2. First, the joining stiffness matrix in Eq. (2) and the physical

coordinates of all DOFs of all joints are partitioned similar toC1 andC2 to obtain

Kb =





KC1

b KC1C2

b

KC2C1

b KC2

b



 and qb =





qC1

b

qC2

b



 . (25)

TheC1 andC2 partitions are the same in Eqs. (24) and (25). Thus,

qC1 = qC1

b and qC2 = qC2

b . (26)

Ultimately, Eq. (26) is used to obtain the final system-level equation of motion

with joints expressed as

M̂ROM
sys q̈ROM

sys + K̂ROM
sys qROM

sys = F̂ROM
sys , (27)
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where

M̂sys = Msys, K̂sys =











KC1 +KC1

b KC1C2

b KC1N

KC2C1

b KC2 +KC2

b KC2N

KNC1 KNC2 KN











and

F̂sys = Fsys.

Note that all the design parameters are contained in the joints. Thus, the join-

ing optimization has to reevaluate only the joints, and does not require a reevalu-

ation of all components. Moreover, all components (except for the joints) are re-

duced only once, at the initial construction of NX-PROMs, before iteration. Thus,

the joining design can be very efficient by using NX-PROMs with the proper ma-

trix partitioning. By using the system matrices in Eq. (27) (based on NX-PROMs),

the turn-around time of the iteration process is much shorter than by using FEMs.

Additionally, variations in any substructure (where NX-PROM is used) can be

handled efficiently in the new optimization processes.

4. NUMERICAL EXAMPLE: V-SHAPED BOX STRUCTURE WITH THICK-

NESS VARIATIONS

To demonstrate the improved/optimal joining, a structure with a V-shaped bot-

tom is considered, as shown in Figure 1. The focus of this example is to find

joining locations where to attach an armor plate to the structure. Figure 1 shows

all substructures and their number. The marked regions are candidate joining lo-

cations. Harmonic loads are assumed to act on substructure 5 shown in Figure 3.

Substructure 6 and the armor plate have thickness variations. Table 1 shows two

cases of thickness variation of each substructure. NX-PROMs are constructed by

parameterizing the thickness of substructure 6 and of the armor plate. CB-CMS
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is applied to all remaining substructures because they do nothave structural vari-

ations.

As an initial guess, all the candidate joining nodes on substructure 4 and on the

armor plate are connected by three rectilinear springs as shown in Figure 2. For all

joints, the maximum allowable stiffness of the spring in the (main)y direction is

ky = k0 = 500 kN/m, and the other directional stiffnesses arekx = kz = 0.5 k0.

The total number of candidate joints is 54, and the final desired number of joints

g is 10 or 11. Note that the four edge nodes highlighted in Figure 2 are not

considered candidate joining locations. The fact that joints are present at those

four locations is considered to be known.

The optimization starts with an initial guess, i.e. a given set of feasible design

values (ρi = 0.185 whenN = 10, andρi = 0.204 whenN = 11). The structural

damping isγ = 0.03, and the weighting factors in Eq. (9) arew1 = 0.5 and

w2 = 0.5. With the given initial guess, the excitation frequency was fixed at

30 Hz for the nominal structure. Figure 4 shows the results of the optimization

for the30 Hz excitation andN = 10. Figures 5, 6 and 7 show the results of the

optimization for a100 Hz excitation for the nominal structure and for cases 1 and

2 of thickness variations. For the nominal structure under the100 Hz excitation,

N = 11. For cases 1 and 2 of thickness variation,N = 10.

The optimal joining locations described in Figure 5 are selected differently for

each case, even though the thickness variations are not very large. However, the

cost function is minimized for all 3 cases, as shown in Figure 6. Figure 7 shows

the changes in natural frequencies at each iteration. Note that the various choices

made during the iterations affect significantly the dynamic response because some

of the natural frequencies of the overall structure change significantly.
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5. CONCLUSIONS

Several challenges of current methods for determining improved/optimal join-

ing locations have been addressed. First, the mean compliance for the dynamic

case with damping was derived, and the strain energy in the joints was added to

the cost function. Second, a novel approach to calculate efficiently the sensitiv-

ity of the strain energy in the joints was proposed. Third, the cost function and

its sensitivities were computed in the optimization process by using novel next-

generation parametric reduced-order models to improve computational efficiency

and to manage structural variabilities in several substructures.

The approach to select improved/optimal joining locations uses a density-

based topology optimization method which employs solid isotropic material with

penalization (SIMP) modeling. Based on SIMP modeling, a three rectilinear

springs (with density) is used to model each joint. Also, a reliable cost func-

tion has been developed. It includes the energy input into the structure and the

strain energy in all joints. By penalizing the density of the springs between 0

and 1, the cost function is minimized while satisfying a constraint which enforces

an upper limit for the number of joints in the design domain. To solve this opti-

mization problem, the modified optimality criterion method has been applied. To

demonstrate the methodology, the problem of attaching armor to a structure with

a V-shaped bottom has been considered. By applying the proposed methodology,

improved/optimal joining locations have been selected.
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Table 1: Thickness variations for substructure 5 and for the armor plate

Substructure Nominal Case 1 Case 2

6 6 mm 7.5mm 8.5mm

Armor plate 10 mm 10.5mm 11.1mm
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Figure 4: (a) 10 optimal joining locations, (b) convergence history, and (c) natural frequency

variations for a 30Hz excitation of the nominal structure
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(a) (b)

(c)

Figure 5: Optimal joining locations for a 100Hz excitation for (a) nominal structure, (b) case 1 (c)

case 2 of thickness variation
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Figure 6: Convergence history for a 100Hz excitation for (a) nominal structure, (b) case 1 (c) case

2 of thickness variation
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Figure 7: Natural frequency variation for a 100Hz excitation for (a) nominal structure, (b) case 1

(c) case 2 of thickness variation
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