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Abstract
Unlike other standard equations in introductory classical mechanics, the
Bernoulli equation is not Galilean invariant. The explanation is that, in
a reference frame moving with respect to constrictions or obstacles, those
surfaces do work on the fluid, constituting an extra term that needs to be
included in the work–energy calculation. A quantitative example is presented
here for a horizontal tapered pipe. A frame-independent expression for the
pressure drop in the pipe is obtained. The concepts discussed in this paper are
accessible to introductory undergraduate physics majors.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Suppose water is flowing from a horizontal pipe of large diameter to the one of small diameter.
The speed of the water consequently increases, because the same volume of water passes
through the larger pipe’s cross section per second as through the smaller pipe’s cross section.
The Bernoulli equation then implies that the pressure decreases in the narrower pipe. Water
is pushed from the higher pressure in the wide pipe towards the lower pressure in the narrow
pipe and hence its speed increases. But now view the situation from a reference frame moving
at the velocity of the water in the smaller diameter pipe. In that frame, the water in the narrow
pipe is at rest, while the water in the wide pipe has a nonzero velocity (and is reversed in
direction). However, pressure is a Galilean invariant and must therefore be the same in either
frame of reference (since neither force nor area varies from one inertial frame to another). So
we now have the paradoxical situation that the speed of the water is larger in the wide pipe
where the pressure is higher [1]. How can that be?
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Figure 1. A pipe necks down from a large diameter in region 1 to a smaller diameter in region 2.
In a frame at rest relative to the pipe, fluid flows from left to right.

2. Resolution of the paradox

Consider a straight cylindrical pipe (sketched with bold lines in figure 1) that has uniform
cross-sectional area A1 in region 1 and area A2 in region 2. Between them there is a tapered
neck connecting one diameter to the other.

In the pipe’s frame of reference, an incompressible, inviscid fluid of density ρ flows
steadily and irrotationally rightwards through the pipe. (Extensions to viscous, compressible,
rotational and unsteady flows are possible [2, 3].) According to the equation of continuity, the
speeds of the fluid in the two regions are related by

A1υ1 = A2υ2. (1)

Now consider the situation from the point of view of a reference frame F moving to the right
at speed υF. In that frame, the fluid in region 1 has speed υ1 − υF to the right, the taper has
speed υF to the left, and the fluid in region 2 has speed υ2 −υF to the right, as indicated by the
arrows in figure 1. Focus on the volume of the fluid between the two vertical solid lines. A
time �t later, the ends of that same volume have moved rightwards to the two vertical dashed
lines and the taper has moved leftwards to the dashed positions. Work W done on the volume
is equal to

W = P1A1(υ1 − υF)�t + Pave(A1 − A2)υF�t − P2A2(υ2 − υF)�t. (2)

The first and third terms on the right-hand side are the work done by the fluid pressures P1

and P2 at the two ends marked 1 and 2 in figure 1. The middle term is the work done as the
taper (of cross-sectional area A1 − A2) compresses the fluid [4]. In the appendix, it is shown
that the static pressure [5] has an average value along the wall of the taper given by

Pave = P1A1 + P2A2

A1 + A2
= P1υ2 + P2υ1

υ1 + υ2
(3)

using equation (1) to obtain the second equality. Note that Pave ≈ P1 if A1 is much larger than
A2. (Already, P2 is smaller than P1 and weighting it by the areas makes its contribution even
smaller.)

The net work is equal to the change in the kinetic energy (KE) of the fluid within the
volume. The fluid gains the KE Kf equal to

Kf = 1
2ρA2(υ2 − υF)�t(υ2 − υF)

2 + 1
2ρA2υF�t(υ2 − υF)

2 (4)

where the first term on the right-hand side is the KE of the fluid inside the region marked 2
in figure 1, and the second term is the final KE of the fluid inside the dark-coloured cylinder
near the taper. Similarly, the fluid lost the KE Ki:

Ki = 1
2ρA1(υ1 − υF)�t(υ1 − υF)

2 + 1
2ρA1υF�t(υ1 − υF)

2 (5)
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where the first term on the right-hand side is the KE of the fluid inside the region marked
1, and the second term is the initial KE of the fluid both inside the dark-coloured cylinder
and inside the light-coloured parallelogram-shaped annular region next to the taper. Here, it
has been assumed that the taper is steep enough and �t is long enough that we can neglect
the small volume of the fluid within the cross section of the taper itself (which has a speed
intermediate between υ1 and υ2). Then, dividing W = Kf − Ki by A1υ1�t = A2υ2�t and
simplifying the result gives

(P1 − P2)

[
1 − 2υF

υ1 + υ2

]
= ρ

2

(
υ2

2 − υ2
1

) [
1 − 2υF

υ1 + υ2

]
. (6)

Cancelling the term in square brackets on both sides of this equation, one recovers the standard
Bernoulli equation [6–8] for horizontal flow, which thus only holds for fluid speeds measured
in the rest frame of the pipe. In particular, defining υ̃1 ≡ υ1 − υF and υ̃2 ≡ υ2 − υF, one
cannot write

P1 + 1
2ρυ̃2

1 = P2 + 1
2ρυ̃2

2 (7)

if υF �= 0. The pressure drop �P ≡ P1 − P2 is given not by ρ
(
υ̃2

2 − υ̃2
1

)/
2 but instead by

�P = ρ

2
(υ̃2 − υ̃1)

2 A1 + A2

A1 − A2
. (8)

Note that υ̃2 − υ̃1 = υ2 − υ1 so that equation (8) is properly frame independent, unlike (7).
But if υF = 0, equation (1) can be used to show that (8) can be rewritten as (7).

3. Summary

In a frame in which a tapered pipe moves, the taper does work on the fluid moving through it.
In the standard energy derivation of the Bernoulli equation, the pressure term represents work
per unit volume on the fluid. In a frame moving with respect to obstacles or constrictions
that the fluid passes over or through, the work they do must be included in the calculation of
the net work to which the change in KE is equated. Quantitative agreement then results, as
demonstrated here, and a Galilean-invariant expression for the pressure drop along a horizontal
tapered pipe can be obtained.
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Appendix. Derivation of equation (3)

Consider an annular area element dA of the tapered region located at radius r relative to the
centre of the pipe as sketched in figure A1.

The differential bit of work done by this area element as it moves horizontally leftwards
a distance �x = υF�t is

dW = P(r) dA�x cos θ (A.1)

where dA is the left-hand surface area of the small rectangle in figure A1 revolved around the
axis of the pipe. But dA cos θ is just the vertical projection of that area and is thus equal to
2πr dr . Equation (A.1) now becomes

dW = P(r) 2πr dr υF�t. (A.2)
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Figure A1. Close-up view of a small bit of area on the taper of the pipe and of the pressures at
different radii along the taper.

In the pipe’s rest frame, the Bernoulli equation is

P(r) + 1
2ρυ2(r) = P1 + 1

2ρυ2
1 (A.3)

which at r = r2 can be rearranged as

1

2
ρ = P1 − P2

υ2
2 − υ2

1

. (A.4)

Substituting equation (A.4) into (A.3) leads to

P(r) = P1 +
P1 − P2

υ2
2 − υ2

1

[
υ2

1 − υ2(r)
]
. (A.5)

But the equation of continuity implies that

A1υ1 = πr2υ(r). (A.6)

Solving equation (A.6) for υ(r) and substituting it into (A.5) and then, that equation into (A.2)
gives

dW =
[
P1 +

P1 − P2

A2
1

/
A2

2 − 1

(
1 − A2

1

π2r4

)]
2πr dr υF�t (A.7)

where equation (1) was used to eliminate υ2 in favour of υ1. The right-hand side of
equation (A.7) is integrated from r2 to r1 to get the work W taper done on the fluid by the
taper. But that work defines the middle term in equation (2) so that

Pave =
∫ r1

r2

[
P1 +

P1 − P2

A2
1

/
A2

2 − 1

(
1 − A2

1

π2r4

)]
2πr dr

A1 − A2
. (A.8)

Performing the integral and simplifying the result gives equation (3), as desired.
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