Award Number: W81XWH-09-1-0051

TITLE: Integrated Device for Circulating Tumor Cell Capture, Characterization, and Lens-Free Microscopy

PRINCIPAL INVESTIGATOR: Changhuei Yang

CONTRACTING ORGANIZATION: California Institute of Technology
Pasadena, CA 91125

REPORT DATE: August 2011

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
For this project, we aim to develop and integrate two highly innovative new technologies to capture and characterize circulating tumor cells found in the blood of patients with breast cancer. The first is a highly innovative cell capture technology for blood and other body fluids based on a microfluidics microchip technology. The second is an entirely new imaging technology based on a lens-free holographic scanning. The resulting device will ultimately be clinically relevant, cost-effective, straightforward, and portable. It will address a significant technology deficiency in current circulating tumor cell analysis at the clinical level that is cost-effective and high-throughput.

Holography; Holographic optical element; Medical optics and biotechnology; Imaging systems; Scanning microscopy
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Body</td>
<td>2</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>6</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>6</td>
</tr>
<tr>
<td>Conclusion</td>
<td>7</td>
</tr>
<tr>
<td>Appendices</td>
<td>7</td>
</tr>
</tbody>
</table>
Professor Changhuei Yang
California Institute of Technology

Title: Integrated Device for Circulating Tumor Cell Capture, Characterization and Lens-Free Microscopy

Award Number: W81XWH-09-1-0051

Introduction

For this project, we aim to develop and integrate two highly innovative new technologies to capture and characterize circulating tumor cells found in the blood of patients with breast cancer. The first is a highly innovative cell capture technology for blood and other body fluids based on a microfluidics microchip technology. The second is an entirely new imaging technology based on a lens-free holographic scanning. The resulting device will ultimately be clinically relevant, cost-effective, straight forward, and portable. It will address a significant technology deficiency in current circulating tumor cell analysis at the clinical level that is cost-effective and high-throughput.

Project Report:

In the past two years, we tackled Aim 2 (month 1 – 6), Aim 3 (month 7 - 18), Aim 4 (month 19-24). At this point, Aim 1, 2 and 3 are complete. Aim 4 is currently being worked. We have requested a 12 month no-cost extension and have received approval for that.

Aim 1. Adapt the MFCD technology for breast cancer CTC capture, identification and characterization.

Aim 2. Fully evaluate the microscopy imaging needs associated with using MFCD technology for CTC capture, identification and characterization.

Aim 3. Implement a wide field-of-view (FOV) and high-resolution microscope system based on holographic scanning.

Aim 4. Combine two components to create a high throughput CTC analysis system. Develop software for identifying CTCs from debris.

Conceptually, the microscope system we are working on will employ a large grid of tightly focused laser spots to scan our target microscope slide sample. The transmission/fluorescence emission associated with each laser spot interacting with the sample will be collected by a 2D sensor and reconstituted into an image.

The use of this holographic projection approach carries several advantages: 1.) We can...
generate an arbitrarily large number of sharply focused spots available for scanning and can thus boost processing speed (current wide FOV systems are constrained by the number of resolvable spots imageable by the associated microscope objectives), 2.) it is cheap to create large holographic plates for wide field-of-view operation (compared to lens-based large array designs), 3.) it allows for flexible focal spot design (for example, we can implement Bessel beam projection that provides good resolution and long depth of focus), and 4.) it allows for full optoelectronics implementation that eliminates mechanical scanning. As a specific test of its clinical relevance, we plan to work with Dr. Cote of U. of Miami to use this technology to image and identify circulating tumor cells (CTCs) that are trapped on the microsieve his group has developed. All these advantages are crucial for addressing the imaging needs for high-throughput screening of the rare CTCs.

In 2010, we successfully demonstrated that it is indeed possible to create a good quality hologram that can generate a grid of tightly focused laser spots. The holographic recording technique we have developed for doing this is highly stable and easy to scale This approach involves employing a grid of apertures that is patterned on a thinly-metal-coated glass slide as our recording mask. In this case, an incident collimated light beam that is transmitted through the holes will interfere with the fairly strong uniform transmission through the thinly-coated metal layer (in effect, this serves as the write beam) to create a recordable interference pattern. The hologram can be clamped to this mask during recording and, thus, greatly reduce vibrational error. This technique (see Fig. 1) allows us to create holograms of arbitrarily large-format light spot grids with good spot size by simply using a large mask.

Experimentally, we have shown that this approach allows us to create holograms capable of generating light spots of size 0.74 µm (wavelength = 532 nm). The spot size depends on the hologram’s ability to record large angle diffractions. Given that our hologram material (Integraf VRP) is spec’ed at 3000 lines/mm, this implies that we should be able to achieve a light spot size of 0.33 µm practically. Experimentally, we have thus far created holographic plates that are capable of generating a grid of light spots at a focal length of 6 mm, FWHM spot size of 0.74 µm, separation of 30 µm.

We further created a prototype of the target microscope system and employed it to image microscope slides. This prototype consists of an Excelsior-532-200-CDRH laser (wavelength = 532 nm) as the light source, a simple Thorlabs MAP10100100-A lens pair to project the light
transmission from the sample onto a 2D sensor. The sample shown in Fig. 2 consisted of a lily anther slide mounted on a Newport LTA-HS translation stage that was actuated at a speed of 2.5 mm/s during scan. The acquisition time for this transmission image is 2.5 s.

Fig. 3 shows preliminary transmission images of cultured breast tumor cells captured with this prototype.

In 2011, we further implemented a simpler wide FOV imaging scheme that employs a different technique. In this alternate microscope design, the focus grid is generated via the Talbot effect. Here, a mask with an aperture grid is illuminated with a collimated laser beam to produce the focus grid. A 'self-image' of the aperture grid will be reproduced at integer increments of the Talbot distance. This focus grid replacement has several advantages. First, the focus grid generation is more repeatable and robust because the mask can be readily fabricated by microfabrication technique. Second, unlike the holographic method, there is no zero-order transmission of the incident beam in the Talbot effect. This will enhance the contrast of the foci on the sensor and thus the signal-to-noise ratio of the image. Third, the focused light spots are more uniform in their powers (spot-to-spot comparison). Finally, this approach allows us to accomplish z-axis scanning (focal plane change) by simply tuning the light source wavelength.

The Talbot effect is a well known phenomenon in which the transmission from a mask with a periodic grid of apertures will reproduce the grid pattern at regular distance intervals from the mask. The distance interval, termed Talbot distance Z_T, can be calculated as

$$Z_T = 2d^2 / \lambda$$

where d is the period of the pattern, and λ is the wavelength. The periodic pattern will reproduce itself at the distance $Z = mZ_T$ or a phase-reversed image at $Z = (m-1/2)Z_T$, where m is an integer. In principle, any of this plane can be used as the focused light spot grid for our wide field-of-view microscope. In our experiment, we used the second phase-reversed Talbot plane ($Z_{1.5} = 1.5Z_T$) for more convenient experimental setup.

Interestingly, equation (1) implies that Z_T is inversely proportional to the wavelength. For a small tuning of the wavelength, i.e. $\Delta \lambda \ll \lambda$, the Talbot distance change can be calculated as

$$\Delta Z_T = -2d^2 \Delta \lambda / \lambda^2$$

Fig. 3. Image of cultured breast tumor cells.
For a periodicity $d = 30 \, \mu m$ and a nominal wavelength of 700 nm, this implies that we can accomplish a significant plane shift of $55 \, \mu m$ at $Z = Z_{1.5}$ for a small wavelength change of 10 nm.

This tuning ability can be used in our microscope design to accomplish non-mechanical focal plane shift.

Fig. 4 shows images acquired with this new technique and demonstrates its ability to do focal plane shifting by small wavelength detuning.

Fig. 4. Images acquired by the Talbot wide field-of-view microscope with effective FOV of 6.4 x 4.2 mm. (a) Wide FOV image of a U.S. Air Force target, with effective FOV indicated in the large dashed rectangle; (b) Expanded view of the smallest feature of the target and cross-sectional profile of group 8, element 6; (c) Wide FOV image of a mixed green algae slide with wavelength= 692 nm, with effective FOV indicated in the large dashed rectangle; (d) Expanded view of the region indicated in (c); (e) Wide FOV image of a mixed green algae slide with wavelength = 702 nm, with effective FOV indicated in the large dashed rectangle; (f) Expanded view of the region indicated in (e).

We are currently pursuing aim 4 under the approved no-cost extension. This delay is caused by a quicker-than-expected departure of a key post-doctoral personnel (he is currently a
faculty member at another university) and logistic delays from Dr. Cote's move from USC to U of Miami.

Key Research Accomplishments:

1. Successfully determined that CTC image identification requires 0.6 micron resolution or better.

2. Fluorescence imaging of CTC requires \(\sim 1 \, \mu M \) fluorophore concentration sensitivity.

3. Successfully developed a holographic recording process that can record good quality focused light spot grid holograms that can be scaled up easily in size. Larger holograms = larger areas on target slides can be imaged at the same time.

4. Successfully implemented a holographic scanning microscope proof-of-concept with resolution 0.74 \(\mu m \) and that is capable of area scanning speed of 12 mm\(^2\)/s.

5. Successfully implemented a Talbot grid scanning microscope with focal depth tuning capability.

Reportable Outcomes:

Patents Filed:

Conclusion:

The project is progressing with some delays. Our proof-of-concept prototype demonstrates that the proposed technology is feasible and represents an effective way to process CTCs. We are currently working to complete the project.

Appendices Attached:

Focal plane tuning in wide-field-of-view microscope with Talbot pattern illumination

Jiang Wu,1,2,* Guoan Zheng,1 Zheng Li,1 and Changhui Yang1,3
1Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
2University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
3Department of Bioengineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
*Corresponding author: jiang@caltech.edu

We have developed a focal plane tuning technique for use in focus-grid-based wide-field-of-view microscopy (WFM). In WFM, the incidence of a collimated beam on a mask with a two-dimensional grid of aperture produces the Talbot images of the aperture grid. The Talbot pattern functioned as a focus grid and was used to illuminate the sample. By scanning the sample across the focus grid and collecting the transmission, we can generate a microscopy image of the sample. By tuning the wavelength of the laser, we can tune the focal plane of the WFM and acquire images of different depth into the sample. Images of a green algae microscope slide were acquired at different focal planes for demonstration. © 2011 Optical Society of America

The ability to collect wide-field-of-view (FOV) microscopic images is highly desired in many applications, such as digital pathology [1] or high-throughput screening [2]. There are numerous recent efforts aimed at addressing this need [3,4]. Previously, we have developed a wide-FOV microscope based on holographic focus grid illumination [5]. In that system, the sample is illuminated with a holographically generated grid of focused light spots, and the transmission of the light spots through the sample is projected onto an imaging sensor by a simple collection optics arrangement. A wide-FOV image can then be acquired by scanning the sample across the focus grid. Unlike conventional microscopy or other multi-beam microscopy [6], the resolution and FOV of such a system are not cross-competing design constraints. Here, the resolution is fundamentally set by the light spot size, and the FOV is set by the size of the holographic grid. As long as the collected light spot transmissions are well separated on the imaging sensor (determined by the spot separation and the collection optics), such a system can perform high-resolution wide-FOV microscopy imaging effectively.

In this Letter we demonstrate an alternate microscope design where the focus grid is generated via the Talbot effect. Here, a mask with an aperture grid is illuminated with a collimated laser beam to produce the focus grid. A “self-image” of the aperture grid will be reproduced at integer increments of the Talbot distance [7]. This focus grid replacement has several advantages. First, the focus grid generation is more repeatable and robust because the mask can be readily fabricated by the microfabrication technique. Second, unlike the holographic method, there is no zero-order transmission of the incident beam in the Talbot effect. This will enhance the contrast of the foci on the sensor and thus the signal-to-noise ratio of the image. Third, the focused light spots are more uniform in their powers (spot-to-spot comparison). Finally, this approach allows us to accomplish z-axis scanning (focal plane change) by simply tuning the light source wavelength.

This Letter is structured as follows. We will briefly summarize the principle of the Talbot effect and point out certain subtleties that we have to closely consider in adapting the phenomenon for our specific applications. Next, we will describe our experimental setup. We will then report on our demonstration of focal plane tuning and apply the system to perform imaging.

The Talbot effect [8] is a well-known phenomenon in which the transmission from a mask with a periodic grid of apertures will reproduce the grid pattern at regular distance intervals from the mask. The distance interval, termed the Talbot distance Z_T, can be calculated as

$$ Z_T = 2d^2/\lambda, \quad (1) $$

where d is the period of the pattern and λ is the wavelength. The periodic pattern will reproduce itself at the distance $Z = mZ_T$ or a phase-reversed image at $Z = (m - 1/2)Z_T$, where m is an integer. In principle, any of these planes can be used as the focus grid for our wide-FOV microscope. In our experiment, we used the second phase-reversed Talbot plane ($Z_{1.5} = 1.5Z_T$) for more convenient experimental setup.

Interestingly, Eq. (1) implies that Z_T is inversely proportional to the wavelength. For small tuning of the wavelength, i.e., $\Delta \lambda \ll \lambda$, the Talbot distance change can be calculated as

$$ \Delta Z_T = -2d^2\Delta \lambda/\lambda^2. \quad (2) $$

For a periodicity $d = 30 \mu m$ and a nominal wavelength of 700 nm, this implies that we can accomplish a significant plane shift of 55 \mu m at $Z = Z_{1.5}$ for a small wavelength change of 10 nm. This tuning ability can be used in our microscope design to accomplish the non-mechanical focal plane shift.
As the resolution of our microscopy system depends on the grid spot size generated, the spot size that can be created by the Talbot effect is of importance to us. It is worth noting that the "self-imaging" ability of the Talbot effect is only a paraxial approximation [9]. In other words, the Talbot effect will fail and result in "self-image" spots that are substantially larger if the hole diameter is much larger than \(\lambda \) [10,11]. The effect will fail if the hole diameter is much larger than \(\lambda \) [10,11]. The effect will fail and result in "self-image" spots that are substantially larger if the hole diameter is comparable to \(\lambda \).

As we desire tightly focused light spots for our microscopy application, a straight application of the Talbot effect would not work well. Fortunately, we found that the Talbot field propagation will create tight light spots in planes that are slightly above the Talbot planes. The effect would not work well. Fortunately, we found that the Talbot field propagation will create tight light spots in planes that are slightly above the Talbot planes. The effect would fail and result in "self-image" spots that are substantially larger if the hole diameter is much larger than \(\lambda \) [10,11]. The effect will fail if the hole diameter is much larger than \(\lambda \) [10,11]. The effect will fail and result in "self-image" spots that are substantially larger if the hole diameter is comparable to \(\lambda \).

To show that we can get a resolution of \(\sim 1 \mu m \), which was verified by acquiring images of a United States Air Force (USAF) target in the experiment.

Our experimental setup is shown in Fig. 2(a). An aperture mask was illuminated by a collimated beam introduced from a tunable Ti:sapphire laser (Spectra-Physics). As mentioned earlier, we employed an aperture mask with periodicity of \(d = 30 \mu m \) and aperture size of 800 nm. The laser wavelength was tuned from 692 to 702 nm to vary the Talbot distance. The distance between the mask and the sample was set at \(Z = Z_{1.5} \) during initial alignment. We subsequently fine-tuned the distance to make use of the tighter light spots discussed in the previous paragraph.

According to Eq. (2), the tuning range of the focal plane position was 55 \(\mu m \) in the experiment. Similar to the setup in our previous paper [3], the sample was illuminated by the focus grid and the transmission of the foci was projected by relay lenses (NT45-760, Edmund Optics, Inc.) onto an imaging sensor (LuCam080M, Lumenera Corp.). The sample was scanned across the focus grid and the scanning direction (\(y' \) direction) was slightly tilted at a small angle \(\theta \) with respect to the focus grid, which was oriented at the \(x \) and \(y \) directions. The image can be reconstructed by combining line scans from each focal spots and properly shifting each line according to the scanning speed.

Figures 2(b) and 2(c) show part of the aperture grid on the mask plane and part of the focus grid at \(Z = Z_{1.5} \), respectively. We can see that the intensity uniformity of the focus grid is better than the original aperture grid. The averaged relative adjacent spot intensity variation is 4% for the focus grid and 20% for the original aperture grid. This is reasonable, because many apertures will contribute to a focal spot; thus, the intensity difference of the original aperture grid will be partially averaged out. During image processing, we further ensure image uniformity by normalizing each scan line to compensate for the nonuniformity intensity distribution of the focal spots in the experiment.

We next used our system for imaging demonstration. The focus grid we used has 213 \(\times 60 \) (in the \(x \) and \(y \) directions, respectively) spots, and the scanning was performed along the \(y' \) direction. Thus the reconstructed image is oriented at the \(x' \) and \(y' \) directions. The image will have a sawtooth shape at the starting and ending part because of the linear scanning characteristics.
width of 1.1 μm (group 8, element 6) can be resolved, which agrees with the measured spot size of ∼1 μm as shown in Fig. 1.

We then acquired images of a mixed green algae microscope slide (Carolina Biological Supply Company). Images were acquired at different focal planes, where Fig. 3(c) is for λ = 692 nm and Fig. 3(e) is for λ = 702 nm. Figures 3(d) and 3(f) show the expanded view of corresponding regions indicated in Figs. 3(c) and 3(e), respectively. We can see that Figs. 3(d) and 3(f) were focusing at different focal planes and were able to render high-resolution images of the sample at different planes.

At this point, it is worth noting that it is unclear if this Talbot illumination approach can provide resolution better than 1 μm. It may be possible to design the aperture geometry to diffract more light at large angles to help in tighter focus spot generation. The spot quality will also be degraded for thick scattering samples, especially when the focus spot is tighter.

In summary, we report a wide-FOV microscope based on Talbot pattern illumination. The wavelength of the laser source can be tuned to change the focal plane distance in order to obtain images at different focal planes. The elimination of mechanical scanning along the focal axis can be a significant advantage for fast scanning microscopy applications. The focal spot size was measured to be ∼1 μm under a conventional microscope. Images of a USAF target and a mixed green algae microscope slide with an FOV of 6.4 mm × 4.2 mm are acquired for demonstration of the system.

This work is supported by the United States Department of Defense under grant W81XWH-09-1-0051. The authors acknowledge Richard Cote and Ram Datar from the University of Miami for helpful discussions.

References