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ABSTRACT established parameters. We enable this flexibility by
tightly integrating the intelligent aspects of IOTA with the
We describe recent research to enhance a trainifguman-controlled aspects of JFETS.

system which interprets Call for Fire (CFF) radio artillery
requests. The research explores the feasibility of extending In section 2, we provide a brief description of the
the system to also understand calls for Close Air Suppocurrent IOTA capabilities, and in the remaining sections
(CAS). This work includes automated analysis of complexve discuss how these capabilities can be extended and
language behavior in CAS missions, evaluation of speedmproved by using additional technologies for processing
recognition performance, and simulation of speechnatural language. In particular, we conducted research and

recognition errors. analysis of dialogue used during CAS missions, towards
extending the system’s capabilities beyond the CFF
1. INTRODUCTION missions currently handled. We examined word

differences between CAS and CFF missions, as described
Virtual environments such as the Joint Fires andn section 3.
Effects Trainer System (JFETS) can help provide best-in-
class training in Call for Fire (CFF) radio artillery request ~ Next, we noted that differences in vocabulary and
skills. In the JFETS training environment, we havedialogue moves are likely to affect IOTA's Speech
previously investigated using spoken dialogue systems ®ecognition component, which translates soldier
automate routine radio dialogues (Roque et al., 2006). latterances into text. To study this, we evaluated the
this paper, we describe more recent research on spokparformance of several speech recognizers on a corpus of
natural language processing to enhance the trainingFF+CAS missions. We also evaluated the same
environment through increased automation andecognizers on a corpus of CFF missions only. This is
understanding of more complex dialogues. This worldescribed in section 4.
includes improved semi-automated dialogue systems,
analysis of complex language in Close Air Support (CAS) We also noted that dialogues in CAS missions often
missions, evaluation of speech recognition performanceontain less constrained verbal interactions that include
and finally, simulation of speech recognition errors. conversational sentences with standard English structure,
which require more sophisticated machinery for automatic
Due to the complexity of the training tasks and theextraction of information and analysis of dialogue acts
rich nature of the JFETS virtual environment, it is neithe even if restricted to a particular domain). CAS dialogues
desirable nor feasible to eliminate human operators fromontain  both  structured utterances (like call-sign
the training system. However, many of the tasks aidentification), which can be handled by existing IOTA
operator performs are routine and can be automated. Thechnology, as well as more conversational language (such
Intelligent Operator Training Assistant (IOTA) is as free-form target descriptions), which is beyond the
designed to handle many of the routine tasks, freeing thmapability of the current deployed system. In section 5, we
operator to focus only on the “out of the ordinary”’propose a Natural Language Processing (NLP) pipeline for
situations that occur, and the specific educational needs afhalysis of CAS utterances.
the soldier. This has the potential to multiply the human
operator’s efficiency by enabling a lone operator to singly Very often, especially when designing a new
manage several training sessions with multiple soldiers iapplication there is a shortage of data for training and
parallel. In some cases, when the soldier performs the taskaluating the speech recognizer, which makes it very
within pre-defined parameters, the whole JFETS traininglifficult to predict the Word Error Rate (WER) when the
session might be handled by the IOTA. In other casesystem is being used by real users. Ideally we would want
where the soldier departs from pre-defined parameters, the ensure that our system performs well for a variety of
human operator is able to take over control of the sessidNERs. We performed a corpus study to see whether we
from the IOTA until the soldier is back within the
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Table 1: Vocabulary differences

CAS CFF
Protocol cleared, hot, egress, contact, reciprocaldbta adjust, fire, effect, polar, distance, add, drop, message,
wheel, read back, nine line, tally target, JTAC observer, shot, splash, rounds, complete, target
qualified number, my command, immediate suppression
Compass  north, south, east, west etc.
Munitions a_g_m (air ground missile), a_tens, bombs, h_e (high explosive), i_c_m (improved conventional
f_sixteens munitions), illumination, w_p (white phosphorous)
Enemies manpads, r_p_gs, trucks b r d m,b_t r, infantry
Call signs hog, talon, tulsa thunder, cherry

can reliably simulate speech recognition errors. This ilocation, or some other dialogue move, and if so, what the
described in section 6. parameters are (see section 5). A Dialogue Manager
component determines whether a voice confirmation is
The results of these studies indicate that technologyeeded, and if so, uses a Text-to-Speech engine to produce
already exists that can enhance training of forwar@. The Dialogue Manager also determines what kind of
observers by automating some language understandiegmmand is needed for sending to the JFETS CASTrainer,
tasks, particularly for structured domains such as CFRnd produces that if so.
however more research is needed to be able to improve
processing of more complex, less constrained language use As we will see in the following, IOTA technology
in CAS missions. shows promise to also handle CAS types of missions with
further analysis and development.
2. CURRENT IOTA CAPABILITIES
3. CORPORA AND VOCABULARY DIFFERENCES
IOTA has several features to assist the operator:

CAS missions have a different protocol and refer to
ifferent objects than CFF dialogues, so one would expect
information. For example, if the Soldier provides athat .the words used are allso different.  This section

: ’ considers the vocabulary differences between the two

grid goordmate, IQTA will elzxt_ra,ct the relevant digits domains. The analysis is based on two corpora from the
and insert them into the ‘grid’ text-area where the

operator would have inserted them, and IOTA WiIIJFETS training environment in Ft. Sill, Oklahoma:

« When enabled, IOTA automatically updates thed
CASTrainer interface with the relevant CFF

also print the Soldier’s utterance to the Mission Status
text-area. In this way, IOTA keeps an up-to-date

record that the operator can use to quickly recover the
context of a given training session.

IOTA-2008 was collected from January to July 2008,

and contains speech of both the trainee and the
operator. The recordings have been manually
transcribed, tokenized and tagged with dialogue acts

by the system’s classifier, and then corrected by hand
and separated manually into CAS dialogues (69369
words) and CFF dialogues (24792 words).

OTM-2009 was collected from August to October
2009, and contains the speech of the trainee only. The
recordings have been manually transcribed and
separated into CAS dialogues (24497 words) and CFF
dialogues (27028 words).

* When enabled and managing a CFF, IOTA will track
the information that has been given by the Soldier,
and IOTA will fire the mission when it has enough
information. .

e« If it encounters problems while managing an
interaction, IOTA will attempt to notify the operator
through the text-area.

» IOTA records logs and sound files, which can be
analyzed for further information about student
behavior.

There are substantial differences between the
vocabularies of CAS and CFF dialogues. Table 1 shows a
few samples of words and bigrams (word pairs) which

To achieve this functionality, IOTA consists of the occur at least 10 times more frequently in one dialogue
following components. First, an Automated SpeecHype.

Recognizer component takes the voice signal, and
translates this into text (see sections 4 and 6). Next, an Protocol words. This is an obvious difference, as the
Interpreter component determines what the meaning of thradio protocols differ between the two types of dialogues.
text is: whether a warning order is given, or a target



Points of the compass are very frequent in CAS Table 2: Training data sizes (Words/Turns)
dialogues and almost completely absent in CFF dialogues:
Munitions and platforms are not strictly part of the TRAIN TEST DEV
protocol, bgt they tend to differ -between the two domains. radiobots  6841/1082 1163/167 1325/190
Scenario features. In principle, both CAS and CFF
can be called for the same scenarios, and our corpora |IOTA  49633/4939  5441/650 6552/608
contain some joint exercises which mix calls from the two
domains. For the most part, however, CAS and CFH.2. Approach
exercises use distinct scenarios with different enemies.

Call signs. There is no principled reason for having The following recognizers were used:
different call signs, but in our corpora they differ.

e Cambridge HTK family: HVite (v3.4.1), HDecode,

The vocabulary differences make it very easy to AVite (v1.6), Julius (v4.1.2)

identify whether a dialogue belongs to the CAS or CFR  cMU Sphinx family: Sphinx 4, Pocket Sphinx (v0.5)
domain, though there may be some difficulty in precise

segmentation of joint exercises. Acoustic models and language models were first
trained on the training set (TRAIN). Then the recognizers

4. SPEECH RECOGNITION PERFORMANCE were tuned on the development set (DEV) and the final
EVALUATION result was calculated on the test set (TEST). More details

_ . about the training procedure are provided in (Yao et al.,
In this section we evaluate the performance of severalp1).

speech recognizers on a corpus of CFF missions and a
corpus of CFF+CAS missions. Since ASR systems are Qur evaluation metrics were word error rate (WER)

typically tuned to the environment they operate ingnd recognition speed. WER can be formulated as:
performance is affected by many factors, among them: the

domain/vocabulary that the recognizer is expected to S+D + |

handle, the acoustic environment in which the recognizer WER = ———x100%
" . L N

operates, and the speech recognition engine. Additionally,

there i? .often a trade-off betwgen the quality of the SpeQChhere S, D and | are the number of substitutions, deletions
recogn.mon output and thg time it takes to reagh thaand insertions respectively, and N is the length of the
output; real-time conversational systems may be willing t?

accept a somewhat degraded output in return for Iowe;rirget string (i.e. the string of words that the Soldier

latencies. When comparing CFF missions with CFF+CA§ttered)' Speed is measured _by whether_ the recognition
was real-time or not. A real-time recognizer can finish

missions, we attempted to consider as many of these issues”  ~.". . . .
; récognizing a segment of speech in a time interval no
as possible.
greater than the length of the speech.

4.1. Corpora Used 4.3. Results

We used two sets of data for this comparison: Tables 3 and 4 show the performance of the various

« Radiobots - This speech data was collected in 2006 irecognizers on the different data sets. For each recognizer,
JFETS at Fort Sill, Oklahoma, with volunteer traineeghe left column shows the best WER achieved on DEV
who performed calls for specific missions (Robinsonafter tuning the parameters; the right column shows the
et al., 2006). This corpus contains only CFF missionsperformance of the same parameter settings on TEST.

» IOTA - This speech data was collected in 2008-2009

in JFETS at Fort Sill, and includes both CFF and CAS Table 3: Non-real time speech recognition resuilts

missions. HVite HDecode Sphinx4
All utterances were transcribed manually. We split Dev Test Dev Test Dev Test
each data set randomly into training, development, and _
test sets: development and test sets were each slightly ovéRadiobots 10 15 11 12 - -

10% of the turns for each corpus, with the remainder used
for training. The size of the data sets is shown in Table 2. IOTA 66 57 49 39 76 -




Table 4: Real time speech recognition results utterances), but amount to less than 10% of all utterances
in that corpus. The current approach used in IOTA would
Julius Avite PktSphx also be suitable for other utterances that do contain
meaningful, but simple, standard English syntactic
structure (e.gcharlie four two thisis goblin).

Dev Test Dev Test Dev Test

Radiobots 17 14 12 - 7 10 . .
The second utterance contains information about an

IOTA 61 42 - . 55 47 event encoded in a more complex syntactic structure,
which includes, for example, a temporal clause (the phrase
once you get to that village refers to the time of the event),

and words with meanings that cannot be determined in

isolation (the wordget in this utterance has a meaning

Two obsgrvaﬂgns from the table”s a:jre notable. First, N9 iiar to “reach a destination,” but this is only apparent
one recognizer dominates on all data sets. Seconfyan the rest of the utterance is taken into account).

conversational speech recognition is still a challengingyoances that contain this type of general conversational
task with high WERs for IOTA, which used CAS as We”language amount to more than 70% of our corpus, and

as CFF dialogues. For more experiments and results g8, 4 require more than special-purpose pattern matching

(Yao et al., 2010). rules or a sequence labeling approach for accurate and
comprehensive extraction of information or fine-grained
classification of dialogue moves and parameters. The
analysis in this section focuses on such utterances.

4.4. Conclusion

5. SYNTACTIC AND SEMANTIC ANALY SIS OF
CASDIALOGUES

While dialogues in CFF missions tend to follow a
somewhat controlled structure, where information can b

extracted successfully using an approach that identifies 1, iiustrate the type of information that can be

patterns based_on the quear sequence of words (known %@ntified using NLP approaches, we show the information
sequence Iﬁbelmg techmquesc}, Ias shown by Roque et gl o6 to obtain from a specific CAS utterance using a
(2006) in the IOTA system, dialogues in CAS MISSIONS 44 ctic parser and a semantic-role analyzer in Figures 1

_ofteln g contain less cclJnstramed verk_)il mte:jact(ljons tlh nd 2, respectively. Note that all aspects of analyses would
Include conversational sentences with standard Englisf, oniained completely automatically from utterance 2
structure. This results in a larger vocabulary and generally,

richer syntactic and semantic structure in the language

used in CAS,’ which rgquire more sophisticated machinery While the syntactic analysis of the utterance (Figure
fqr automatic extraction of information and analysis ,Ofl) does not reflect directly the meaning intended by the
dlalqgue acts. While much of the IOTA technology 'Sspeaker, it does provide useful information that can be
applicable to a portion of these utterances, furtheﬁsed in the identification of dialogue moves and

development that accounts for richer language us,agfarameters associated with this utterance. For example,
would provide additional language understanding g ing that this utterance was produced by the operator,
capabilities to the system, opening possibilities Of; oon be trivially inferred thayou refers to the soldier,
extensions that allow IOTA to handle CAS missions. who is the subject of an action (yee Syntactic analysis
can also provide information about spans of words that
may form meaningful units. This type of analysis is also
used as the input for the semantic role analyzer, which
1. target location two seven five degrees produces the output shown in Figure 2. In this semantic
, role analysis, which contains more of the meaning in the
2. once you get to that village you see a uh almost 100kgarance, we see that a proper meaning was assigned to
like a martini glass at the south end of that lake the predicatesee, get, andlook. This is not a trivial task,

The information contained in the first utterance can b&s these words may have very different meanings in
identified with a simple template, or with a sequencdlifferent contexts. This analysis shows, among other
labeling technique similar to the one used in IOTA forthings, that the utterance is abouwtiewing event, where
automatic interpretation of utterances in CFF dialoguethe viewer is the soldier (you), that occurs when the soldier
(Roque et al., 2006). Utterances such as this, from whidieaches the village. This type of analysis is more
all or most useful information can be extracted withouchallenging to perform accurately than the purely syntactic
structural syntactic or semantic analysis, occur througho@nalysis.
the corpus used in our analysis (about 7,000 CAS

g.l. An Illustrated Example

Consider, for example, the following two utterances
taken from manually transcribed CAS dialogues:



Utterance:Once you get to that village you see a uh Semantic roles:
almost looks like a martini glass at the south end of
the lake.

Syntactic information:

Figure 1: Syntactic information obtained from a CAS ) _ ) )
utterance using a syntactic parser Figure 2: Semantic roles corresponding to the

utterance and syntactic information of Figure 1

52. A Natural Language Processing Pipeline for month names or spoken alphabet words has over 90%
Analysis accuracy (based on a random sample of 300 utterances
from our corpus of CAS dialogues) in selecting utterances
The first step towards the application of NLPfrom which NLP modules can recover useful information.
techniques to CAS utterances is identification of the
specific utterances for which these techniques are expected Once utterances are selected for syntactic and
to be effective. Then a sequence of NLP modules perfor§emantic analysis, the next step is to identify word classes,
different levels of analysis at the word-level (part_of_SUCh as nouns, verbs, adjectives, and adverbs. This task is
speech tagging), structural phrase level (syntactiEommonly referred to as part-of-speech (POS) tagging.
analysis), utterance level (utterance segmentation), arfetrrent approaches for POS tagging use statistical models
finally semantic level (semantic role analysis). We outlindased on hundreds of thousands of words that have been
the challenges and techniques involved in each of the§eanually tagged with correct categories, and can achieve
steps below. We generally base our NLP methodology ofccuracy levels above 97% on news articles in English
data-driven methods, which learn desired behavior from gfsuruoka and Tsujii, 2005). To process the more
set of manually annotated examples. Data-driven NLISPontaneous and conversational utterances in CAS
approaches have been shown to offer high levels éfialogues, we trained the POS tagger described by
accuracy and robustness to noisy input. It is important thsuruoka and Tsuijii (2005) using the manually annotated
keep in mind that the work discussed here relies heavily opwitchboard section of the Penn Treebank (Marcus et al.,
the accuracy of the transcriptions used as input for o¥993; Bies et al., 2005), which contains part-of-speech and
NLP pipeline. At the current level of speech recognitiorSyntactic structure annotation for roughly one million
accuracy for CAS utterances in IOTA (described in thavords of transcribed telephone conversations. As should be
previous section), performance of NLP technology wouldXPected, the resulting tagger makes incorrect POS tag
be severely degraded. Therefore, successful application @fsignments when faced with language usage missing
the work discussed below (based on manual transcriptionpm its training data, such as in call signs and other
in a run-time system depends on improved Speecqomain-specific words and phrases, such as “roger” and
recognition for CAS utterances. Alternatively, NLP could‘good burn.” These problems would be solved with CAS-
be used for off-line analysis of manually transcribed data. SPecific training data.

Identification of candidate utterances to be analyzed TO determine the syntactic structure of CAS
using NLP techniques is a fairly straightforward task thatitterances (Figure 1), we use dependency parsing, which is
can be accomplished using existing utterance classificatigh syntactic  analysis  approach  well-suited  for
approaches (e.g. Sagae et al., 2009), where machif@nversational language. Application of commonly used
learning techniques are used to determine utterance typ&#-the-shelf parsers built for analyzing written text
Even a simple filter that checks whether more than onBroduced syntactic structures that contained a large
third of the words in each utterance is composed of digitiumber of crucial errors in the analysis of CAS utterances.



These errors were caused in large part by disfluencies arél SPEECH RECOGNITION ERROR SIMULATION
domain-specific vocabulary and structure. As with POS
tagging, we adapted an existing dependency parser (Sagae As we saw above, speech recognition is a very hard
and Tsujii, 2007) for conversational language using theroblem for the IOTA data set (CFF+CAS missions). Very
Switchboard portion of the Penn Treebank. The accuraayften, especially when designing a new application, there
of the resulting parser, measured as the percentage isfa shortage of data for training and evaluating the speech
correct word-to-word relationships in the parser’s outputecognizer, which makes it very difficult to predict the
(the standard measure for dependency parsing accuracyWER that the system will have interacting with real users.
the NLP literature), in a small pilot evaluation using a setdeally we would want to ensure that our system (in
of 100 utterances was 86%, suggesting that this is particular, the Interpreter component and the Dialogue
promising approach, and that accurate analysis of CABlanager) performs as well as possible for a variety of
utterances is feasible. This result also indicates that th&¥ERs.
accuracy of the POS tagging approach based on
Switchboard data is sufficient to support syntactic analysis. We performed a study using the IOTA data set to see
whether we can reliably simulate speech recognition
The output of the syntactic parser can be used in otherrors. Our goal is to test two hypotheses. Our first
modules that could perform dialogue act prediction ohypothesis is that it is possible to train models for
utterance segmentation, but it does not include a diresimulating speech recognition errors, and by adjusting
representation of the meaning of the utterance. In caseeme parameters generate different WERs. Our second
where a more semantically-oriented analysis is needetlypothesis is that it is possible to generate simulated errors
another layer of processing called Semantic Role Labelingith a distribution similar to the distribution of errors
(SRL) can be applied. SRL can determine the intendedbserved with a real speech recognizer.
usage of verbs (Figure 2), as well as label the participants
in events with their appropriate roles. However, SRL Given a source utterance, our goal is to generate a
technology is not as well developed as syntactic parsingscrambled” target utterance so that, when comparing the
and the level of performance that can be expected isource and the target utterances, the resulting WER is
language that differs from news text is largely unknown. Isimilar to the WERs we observe with a real speech
is possible that an SRL system that uses existing resouraezognizer. Consider the example below where the word
(training material and dictionaries) with minor “direction” is scrambled and becomes “direction six”
modifications could achieve high levels of accuracy, givemesulting in a WER of 20%.
that the language domain is sufficiently narrow, and that
the accuracy of the adapted parsing module is relatively Source
high, which is an important factor for SRL accuracy. Weutterance:
have integrated such an SRL module in our NLP pipeline, Target
and although an evaluation is necessary to determine thdterance:
suitability of this technology to IOTA, initial results do not
rule it out. For example, the sample syntactic and.l. Approach
semantic-role analyses presented in our illustrated
examples were in fact generated fully automatically with  The problem of simulating speech recognition errors

direction two zero four five

direction six two zero four five

the pipeline we have described. has attracted much attention in the literature, especially as
an integral part of a simulated user (Georgila et al., 2006).
5.3. Conclusion The idea of using phonetic confusions for speech

recognition error simulation has been explored by many
We have found that current data-driven NLPgroups including (Fosler-Lussier et al., 2002; Pietquin,
technology can be successfully adapted and applied #)04). The above approaches produce promising results
IOTA for the analysis of CAS utterances. Use of thesbut often require a large amount of training data. A
techniques in a run-time system would also requireomputationally less expensive approach is to measure the
improvements in speech recognition accuracy for theseonfusability of each word in the corpus by counting how
utterances. Even in the absence of improved speechany other words it is confused with. However, this
recognition, NLP could still be useful in off-line analysis approach does not take into account the context of each
of manually transcribed dialogues. word.

Here we use an approach that is computationally
inexpensive and at the same time avoids the disadvantages
of considering words in isolation. Our approach is similar



to the one presented in (Schatzmann et al., 2007) with a The algorithm works as follows: Consider the source
few modifications, mainly implementation issues.word sequencen;,Ws,...,Wy. The wordw; is necessarily
Following (Schatzmann et al., 2007), at the word levelassigned to fragmeri. Let p; be the probability of seeing
speech recognition error simulations can be viewed as_; alone in a fragment (based on the language model L2)
translations of a source utteranee to a scrambled andp, be the probability of seeing; follow w; in the
utteranceu. The source utterance can be described asfeagment (again based on the language model L3}. ¥
sequence of words,w; s, or a sequence & fragments, p; thenw.; andw will be part of the same fragment and
fin, Where each fragment is a group of contiguous wordae can continue in the same way to see whetherwill

in w. In the same way, the target utteran@an be viewed be part of the same fragment or start a new fragment. If,
as a sequence dfwords,u; 1, or a sequence of confused on the other handp, > p, then w will start a new
fragmentsf; n. Note that whileS andT may be different fragment. For more details see (Schatzmann et al., 2007).
we can assume that the number Nf“clean” source

fragments can match the number of “scrambled” target In the following, our approach deviates from the
fragments. This is because each fragment can have 0 method of Schatzmann et al. (2007). Now that we have

more words. An example is given in Figure 3. decided on the fragments, for each fragment we apply all
possible scramblings above a thresHald’he next step is
direction two zero four five to use the Viterbi algorithm and select the combination of
1 2 3 4 5 scramblings along the whole sentence that will lead to the
highest overall probability. Here we use the language
/\ ‘ ‘ ‘ ‘ model L1.
1 1 2 3 4 5
direction six  two zero four five 6.2. Evaluation

Figure 3: A sample source and target alignment To test our hypotheses we used the IOTA data set (the

) o ] same as used for the speech recognition evaluation
During training we use pairs of referencegyperiments in section 4). The data set used for the
transcriptions and speech recognition outputs and aligRyterence transcriptions in training (TRAINsim) is the
them using a Levenshtein distance matrix such that the,ne a5 the one used for testing in the speech recognition
transformation of the reference transcription into they 5 yation section (TEST) since it is the most appropriate
speech recognition output is done with the minimake; for giving us correct distributions of real WERs. For
number of insertions, deletions, and substitutions. Thegpeech recognition outputs we used the output of Julius on
result is a lookup table of all fragments occurring in theI'EST, which produced the best result we got on IOTA
training  transcriptions, together with the possibleity real-time speech recognizers. For testing on unseen

scrambled fragments and the frequency of each mappingata we used the data set TESTsim (equivalent to TRAIN).
Example mappings for the fragment “back to” can be seen

below. “Back to” can be scrambled as “back” with a

orobability 80% and as “to” with a probability 20%. In the following table we can see the simulated WERs

generated by applying the algorithm on TESTsim for
different threshold®. As we can see low thresholddead
to high WERs. Having a low? means that we allow for
scramblings that did not appear frequently in the training
) data. With a highP, the less frequent confusions will be
We build two language models (back-off 3-grams)ignored, which of course will contribute to a lower WER.
one based on the speech recognition outputs (languag@te that with a threshol=0.001 we can simulate the
model L1) and one on the fragment scramblings and iygR of Julius quite accurately. The results below satisfy
particular only the source fragments (in the example abovg, first hypothesis. It is therefore possible to generate
“back t0”), which we call language model L2. different WERSs by adjusting some parameters.

back to back
back to to

8
2

—
—

During testing the algorithm has two tasks. First to
split the source utterance into fragments and then apply
the most appropriate scramblings of these fragments sorhreshold P 0.001 0.050 0.100 0.200 0.400
that the desired WERs are accomplished (first hypothesis);
and the distribution of WERs observed with real speech WER(%) 44.6 29.0 17.0 9.7 3.8
recognition is preserved (second hypothesis).

Table 5: Simulated WERSs for various thresholds

In Table 6, we can see the mean Word Error Rate
(mWER) and its standard deviation (SAWER) observed



with a real recognizer (Julius) on TRAINsim (the sarme aof WERs the techniques of section 5 and generally the full

TEST for the speech recognition evaluation in section 4)OTA system will work for, so we will be ready as

and the mMWER and sdWER observed on the sentencesprovements to speech recognition are made to leverage

generated by the error simulation algorithm on boththe most appropriate technologies.

TRAINsim and TESTsim. mWER differs from WER, as

presented in Table 5 in that WER is calculated over the ACKNOWLEDGMENTS

whole corpus, while mWER is the average of WERs for

each utterance, and thus mWER gives greater weight to This work has been sponsored by the U.S. Army
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