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1 Introduction

A truly detailed model of an entire human physiological system (circulatory, respiratory, etc.) is currently not

feasible due to the complicated and dynamic geometry, multi-species and multiphase chemistry, and many

complex biological processes on a wide range of spatial and temporal scales. To date, the main approach has

been to create full scale, multi-dimensional, and detailed models of a limited section of a physiological system,

such as the heart, a heart valve, or a section of vein or artery. These models obtain the high-fidelity solutions

for a small part of the overall human system and help with local physiological diagnoses and treatments.

Another approach, taken here, is to develop a broader and more integrated model that facilitates analysis of

larger-scale material transport and response in the body and the diagnosis of time-dependent systems-level

phenomena such as shock. This approach also provides a framework to integrate the calibrated submodels

derived from detailed 3D simulations.

It is with these goals in mind that we develop a global, time dependent, yet low-dimensional fluid

dynamics model of the human circulatory system. Development of this systems-level model is our first step

of a larger effort to develop models of individual physiological systems and then to couple them together,

while also permitting the use of both experimental data and more detailed simulations for calibration (Green

et al., 21-23 November, 2010; Staples et al., 18-20 November, 2007). Each individual model will also allow

for future extensions that can directly incorporate more branching networks or more detailed representations

of the chemical or physical processes occurring. The goal of this larger effort is not to simulate details of

individual systems, but to study the macro-system dynamics of the human body, as the effects of coupled

interactions may be more important than the details of the individual physiological systems. We look to

determine the necessary level of detail and accuracy in the submodels of an entire physiological system

needed to reproduce observed behavior in realistic timeframes.

Most physiological systems in the human body, such as the circulatory, respiratory, and lymphatic

systems, involve the transport of gases and liquids through elastic volumes and channels. They are, therefore,

governed by the equations of reactive fluid dynamics. As a first step, we will consider a simplified model of

the circulatory system, shown schematically in figure 1(a), as fluid circuits that incorporate blood flow in
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Figure 1: (a) Simplification of the circulatory system. (b) Diagram of our initial representation of the human
circulatory system.

idealized flexible channels and chambers. The system shown in figure 1(b) is low-dimensional: three spatial

dimensions are collapsed to one dimension with elastic cylindrical geometry. The description is dynamic and

includes higher-dimensional effects such as boundary layers and the transition from convective to diffusive

transport. This papers describes the relevant equations, the numerical schemes used to obtain fast and

efficient simulations on a laptop computer, and benchmarks of the human circulatory system against which

the model was compared.

2 Background

Many numerical models attempt to recreate the human circulatory system, ranging from detailed fluid-

chemical simulations to lower-dimensional lumped parameter models. Our efforts parallel those that simulate

biofluid flows with low-dimensional models. Among the first was Womersley, who studied the propagation

of pressure waves in elastic cylinders as a model of arterial flow (Womersley, 1955, 1957). This work showed

that for low forcing frequency, small radius, low viscosity, and low elasticity, it was adequate to assume that
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the velocity profile was axisymmetric and parabolic. Since then, many efforts have used one-dimensional

fluid equations to model the flow through large sections of the arterial system (Schaaf & Abbrecht, 1972;

Zagzoule & Marc-Vergnes, 1986; Sheng et al., 1995). In these cases, connected arterial segments were defined

with assigned length, radius, and compliance. The one-dimensional flow through each of these segments was

calculated using boundary conditions at branching locations that were determined using two principles: a

conservation of mass as the vessels branched and pressure equivalence across the branching point.

The complexity of these models increases rapidly with the addition of more and smaller segments of

the arterial tree. Olufsen et al. (2000) and Olufsen (1999) handled this by first calculating the flow through

large arteries using the nonlinear Navier-Stokes equations, and then combining segments of smaller arteries

together as a structured tree model governed by the linearized equations. This approach generated appropri-

ate outflow boundary conditions for the nonlinear calculations in the large arteries, and the results compared

favorably with experimental measurements.

Similarly, low-dimensional models of larger arterial geometries provided boundary conditions for more

highly resolved computational simulations (Vignon-Clementel et al., 2006). This approach also showed

flow rates computed by the one-dimensional vascular models that compared well with fully resolved three-

dimensional simulations and in vivo measurements (Steele et al., 2003; Wan et al., 2002). From the success

of these results, the authors speculated that such low-dimensional models could be of direct medical use

by providing a tool for real time surgery and therapy planning. Grinberg et al. (2009) performed a three-

dimensional simulation of the circulation in the intracranial arterial system, and were also able to show good

agreement in distributions of pressure and mass flow when compared against a simpler one-dimensional

model (Grinberg et al., 2011).

Low dimensional models have also been constructed using electrical circuit components, such as capac-

itors and resistors, to simulate the circulatory system dynamics (Noordergraaf et al., 1963; Snyder et al.,

1968; Westerhof et al., 1969). These circuit models used current to represent one-dimensional fluid flow and

electric potential to represent the pressure differential along vessels. Electrical circuits were physically con-

structed as an “analog computer” that produced voltage and current data that compared well with measured
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blood pressure and flow rates.

As an example of a comprehensive physiological that is not essentially based on the equations of fluid

dynamics is the Physiome Project at the National Simulation Resource (NSR). The Physiome project is

a collection chemical and biological models at a range of levels and an international effort to use them to

create a full description of the human physiome (Neil & Bassingthwaighte, 2007; Bassingthwaighte, 2000).

NSR has focused on creating open-source, user-friendly software and standard data formats, all of which

encourages collaboration and modularization of the models available there.

Our circulatory system model is a closed circuit in which axisymmetric flow is pumped by a periodic

contraction and relaxation of the heart chamber geometry. Prior models drove the fluid flow using prescribed

boundary conditions on the pressure or velocity. Sheng et al. (1995) for example, provided the pulsatile

aortic and constant caval (venous) pressures as inlet and outlet conditions of their model system. Other

physiological phenomena, such as the implementation of valves to inhibit backflow in the heart chambers and

the low-pressure venous system, and augmented blood pumping provided by the skeletal muscular system

throughout the body, are also included in the development of our model circulatory system and differentiates

our work from previous efforts.

3 The physical model

A diagram of the model circulatory system, figure 1(b), shows the four chambers of the heart: the right

atrium and right ventricle (RA, RV), and the left atrium and left ventricle (LA, LV). There are four heart

valves (mitral, aortic, tricuspid, and pulmonary) that control the flow through the heart and into the systemic

and pulmonary systems. Semi-lunar valves in the vasculature prevent flow reversal which might occur due to

the pulsatile nature of the heart pumping and resulting drops in pressure. The pulmonary and vascular trees,

shown schematically on the top and bottom of the figure, are comprised of elastic vessels and contain much of

the interesting physics of the problem. Here, the system branches form the large arteries into smaller arteries,

into the smaller arterioles, and finally to the capillaries. To return to the heart, the capillary beds coalesce
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into the ventrioles, collect into the smaller veins, and deposit into the large veins (inferior and superior vena

cava). As the fluid moves back and forth between large vessels and smaller capillaries, the inherent flow

physics change from being dominated by convective effects to being dominated by viscous effects.

Beginning at the left atrium of the heart (LA), oxygenated blood (red) is driven through the mitral

valve into the left ventricle (LV), and then through the aortic valve into the systemic section of the circuit.

When the flow enters the systemic vascular tree, the total cross sectional-area increases and there is a large

pressure drop to drive the flow through the capillaries, where oxygen is delivered to organs, muscles, etc.

After passing through the systemic vascular tree, the deoxygenated blood (blue) then passes through the

venous system, and is drawn into into the right atrium. From here it is pumped through the tricuspid

valve into the right ventricle, then through the pulmonary valve into the pulmonary vasculature, where a

smaller yet comparable pressure drop drives the flow. Here, the pulmonary capillaries are intertwined with

the small-scale alveoli of the pulmonary system, exchanging oxygen and carbon dioxide with the lungs. The

oxygenated blood (red) is returned to the left atrium via the pulmonary veins, completing the circuit.

3.1 Flexible Flow Equations

The mathematical formulation for the flow is based on a solution of the Flexible Flow Equations (FFEs).

Given appropriate initial and input conditions, the equations are solved for the pressure, velocity, and cross-

sectional area of an incompressible flow as a function of time and position along a system of elastic channels.

By assuming an axisymmetric parabolic velocity profile, the physical system collapses from three spatial

dimensions and time to one spatial dimension and time.

The fluid velocity u(S, t) at a distance S along the loop and time t is described by a momentum equation,

∂u(S, t)

∂t
+ u(S, t)

∂u(S, t)

∂S
= −1

ρ

∂p(S, t)

∂S
+ ν

∂2u(S, t)

∂S2
− 8ν

R(S, t)2
u(S, t) + g(S, t), (1)

where ρ is the density, ν is kinematic viscosity, R is the local radius of the pipe, g is an external acceleration

from gravity or any applied body force, and p is the local pressure. Equation 1 satisfies the parabolic viscous
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similarity solution with zero velocity at walls.

Because the fluid velocities are low compared to the speed of sound, we can assume that the fluid

acceleration is small compared to the pressure gradient. Equation 1 is rearranged as,

8πν

πR2
u = −1

ρ

∂p

∂S
+ g − ∂u

∂t
− u ∂u

∂S
+ ν

∂2u

∂S2
= −1

ρ

∂p

∂S
+G(S, t), (2)

where the generalized-acceleration term G(S, t) is defined as,

G(S, t) ≡ g − ∂u

∂t
− u ∂u

∂S
+ ν

∂2u

∂S2
. (3)

In one limit, we can assume that G = 0, so that this acceleration is truly small compared to the pressure-

gradient term. This, however, is generally not valid in the cases we are considering, where the acceleration

can be large during fluid pumping. In §4 of this paper, when we present a solution method for the equations,

we describe a method for including portions of the acceleration term. We also present and compare results

for cases with G = 0 and G 6= 0.

Defining A = πR2 and rearranging equation 2 gives,

u =
AG

8πν
− A

8πνρ

∂p

∂S
. (4)

Flexible walls are modeled by allowing the local area A(S, t) to accommodate the local pressure through

an equation of state,

p− peq =
peq
εAeq

(A−Aeq) . (5)

Here, Aeq is the cross-sectional area of the the flexible channel at the equilibrium pressure peq, and ε(S) is

a dimensionless elasticity coefficient defined along the length of the channel. As the elasticity goes to zero

(rigid walls), the area is pegged at the equilibrium area Aeq, independent of pressure changes. Note that Aeq

may be a function of S and t, and is used in the model of the vascular trees as discussed below.

6



Even though the flow is incompressible, the local mass flow rate is not necessarily constant because the

walls are elastic. The total mass of the fluid in the system remains constant, however, and therefore any

local expansion must be balanced by contraction elsewhere. This is reflected in the continuity equation,

∂A

∂t
= − ∂

∂S
uA. (6)

Combining equations 5 and 6 yields the pressure equation,

∂p

∂t
=

peq
εAeq

∂A

∂t
=
−peq
εAeq

∂ (uA)

∂S
. (7)

The term uA can be obtained through equation 4,

uA =
A2G

8πν
− A2

8πνρ

∂p

∂S
. (8)

Combining these equations, we arrive at a second-order diffusion equation for the pressure,

∂p(S, t)

∂t
=

peq
ε(S)Aeq(S)

∂

∂S

{
A2(S, t)

8πν(S)ρ

∂p(S, t)

∂S

}
− peq
ε(S)Aeq(S)

∂

∂S

{
A2(S, t)G(S, t)

8πν(S)

}
. (9)

3.2 Convective to diffusive flow in vascular trees

As the blood vessels branch in the systemic and pulmonary vascular trees, the total cross-sectional area

increases rapidly and the flow rate drops correspondingly. Each vessel through which blood flows decreases

in size, and therefore viscous effects become increasingly important. To address the transition from convective

to diffusive flow in the systemic and pulmonary vascular trees, we define a weighted viscosity term, ν(S),

that artificially increases in the small-scale capillary regions where the viscous term dominates despite the

increasing A. The weighted viscosity is a smooth function that varies from a value of blood viscosity at

the upstream and downstream ends of the vascular tree to a maximum value at the widest section of the

vasculature representing the capillary bed, with the maximum value calibrated to reproduce a reasonable
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pressure drop across the vascular tree. The weighted viscosity is written as,

ν(S) = νb

(
1 + νmax

(S − S(X1))(S(XN )− S)2

(c(S(XN )− S(X1))2)2

)
, (10)

where νb is the blood viscosity, c is a constant normalizing the distribution term to νmax at the peak, and

S(X1) and S(XN ) are the locations of the upstream and downstream ends of a vascular tree.

The equilibrium area is initialized using a similar function to the viscosity in the vascular trees. The

variation of both the equilibrium area and the viscosity along the length of the circulatory model are shown

in figure 2. In this case, X1 = 0.5m and XN = 2m in for the systemic vascular tree, while X1 = 3m and

XN = 4.5m for the pulmonary vascular tree. According to Guyton & Hall (2000), about 5 L is considered

normal for an adult human, and the area distribution of our current model yields a total blood volume of 4.7

L. The distribution of weighted viscosity and equilibrium area across the model circulatory system is shown

in figure 2.

3.3 Heart and skeletal muscle pumping

The blood flow is pumped by a prescribed periodic contraction and relaxation of the heart chambers, and

the local time-varying pressure is not prescribed anywhere. The effects of muscle contraction and relaxation

on the circulatory system are represented through imposed local changes in the equilibrium area. At each
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Figure 3: (a) Cross-sectional area of the atria and ventricles during the period of one hearbeat. (b) Cross-
sectional area of the vascular tree (0.5 < S < 2) area during skeletal muscle contraction. Contraction only
applied on the venous end of the vascular tree (1.25 < S < 2). For the purposes of the visualization, the
maximum amplitude of contraction is ∆Am = 0.35, and the frequency is 1 Hz.

location and time, Aeq(S, t) is either increased or decreased to model a local relaxation or contraction of

a muscle, respectively, and the local pressure is then adjusted accordingly. In the atria of the heart, for

example, the contraction occurs for time (ta1 < t < ta2), where (ta2 − ta1 = Ta) is the period of atria

contraction. Similarly, Tv is the period of ventricle contraction. The corresponding equilibrium area change

in the atria is modeled as,

Aeq(Sa, t) = Aeq0(Sa)(1− σ(t)(1−∆Aa)), where

σ(t) =

[
6.75

(
(t− ta1)(ta2 − t)2

(ta1 − ta2)3

)]1.5
. (11)

Here, ∆Aa is the fraction of the maximum area change during the atrial contraction (∆Av in the ventricles).

The areas of the atria and ventricles in the heart, over the duration of one heartbeat, are shown in figure 3(a).

General systemic contractions of skeletal muscles are represented similarly. Small amplitude periodic,

distributed contractions are applied to the venous side the systemic vascular tree (S(Xmid) < S < S(XN ),
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where S(Xmid) = 0.5[S(X1) + S(XN )]). Both the magnitude and the frequency are adjustable, so that

ωmt =
2πt

Tm

ωmx =
2π(S − S(X1))(S(XN )− S)

(S(XN )− S(X1))

Aeq = Aeq0
(
1 + ∆Am cos(ωmt)

2 sin(ωmx)
)
, (12)

where Tm is the period of muscle contraction, occurring during time (tam < t < tbm), and ∆Am is the

maximum contraction amplitude. A visualization of the muscle contraction model is shown in figure 3(b).

Valves are an important part of the physical circulatory system to prevent flow reversal. This is necessary

within the heart chambers, driving fluid out through the arteries instead of back through the atria and veins.

In the low-pressure venous region, semi-lunar valves are also integral in directing blood back towards the

heart by preventing backflow and pooling in the extremities. In the current work, both heart valves and

venous semi-lunar valves are actuated in the same manner. At each valve location, the local pressure is

monitored at every timestep. When an adverse pressure gradient is detected, the local area A is initially

decreased by 80%, and then to 0% at the next time step if the adverse pressure gradient persists.

4 Numerical Implementation

Figure 4 is a schematic of the layout of the computational domain based on Figure 1(b). Various regions

of the circulatory system can be represented by an arbitrarily chosen number of computational cells, thus

providing more or less resolution in those regions, as discussed in §5. This initial representation is a single

loop, but the algorithm can be extended to treat different branches and sub-loops in a more complex network.

Equations 5, 8, and 9 are discretized to produce a tridiagonal system that can be solved iteratively at

each time step. Equation 9 is discretized using a time derivative of pressure and a central spatial derivative
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of a general variable f ,

∂p(S, t)

∂t
=

1

δt
(pk − pk−1)

∂f

∂S j
=

1

δSj
(fj+ 1

2
− fj− 1

2
), (13)

where f can be any of the model quantities that vary in space (f(S)). The subscript j indicates spatial

indices in the range [0, jN+1], where N is the number of computational cells, and the superscripts k and

k− 1 indicate the current and previous timestep, respectively. The areas and velocities are calculated at cell

interfaces and at the half timestep, so that the time rate of change of pressure can be solved as a central

difference.

Equation 9 then becomes

−βjαj− 1
2
pkj−1 + pkj

{
1 + βj(αj+ 1

2
+ αj− 1

2
)
}
− βjαj+ 1

2
pkj+1 = pk−1

j − βj
{
γj+ 1

2
Gj+ 1

2
− γj− 1

2
Gj− 1

2

}
, (14)

where

αj+ 1
2

=
A2
j+ 1

2

8πνj+ 1
2
ρ δSj+ 1

2

, βj =
δt peq

δSjεjA
eq
j

, γj+ 1
2

=
A2
j+ 1

2

8πνj+ 1
2

. (15)
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Equation 14 is arranged into a tridiagonal system,

Ajp
k
j−1 + Bjp

k
j + Cjp

k
j+1 = Dj (16)

with vector coefficients,

Aj = −βjαj− 1
2

Bj = 1 + βj(αj+ 1
2

+ αj− 1
2
)

Cj = −βjαj+ 1
2

Dj = pk−1
j − βj

(
γj+ 1

2
Gj+ 1

2
− γj− 1

2
Gj− 1

2

)
. (17)

This matrix system is solved using a fast tridiagonal solver (Boris, 1976), and areas and velocities are

calculated using,

Akj =

(
pkj − peq

)
εjA

k
eq,j

peq
+Akeq,j

ukj =
AkjGj

8πνj
− (pkj − pkj−1)

Akj
8πνjρδSj

, (18)

The procedure is iterated until the pressure solution converges.

Including the effects of the generalized acceleration term G complicates the solution process significantly.

Assume for now that the spatial gradients are small compared to the temporal gradients, and that there are

no external body forces. Then

G ≈ −∂u
∂t
. (19)

Applying this to equation 4, yields,

u = − A

8πν

∂u

∂t
− A

8πνρ

∂p

∂S
. (20)
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Discretizing equation 20 yields,

ukj+ 1
2

= −
A
k− 1

2

j+ 1
2

(uk
j+ 1

2

− uk−1
j+ 1

2

)

8πνj+ 1
2
δt

−
A
k− 1

2

j+ 1
2

(pkj+1 − pkj )

8πνj+ 1
2
ρδSj+ 1

2

, (21)

and therefore, uk can be expressed as,

ukj+ 1
2

=
1

1 +
Ak

j+1
2

8πνδt

Ak− 1
2

j+ 1
2

uk−1
j+ 1

2

8πνj+ 1
2
δt
−
A
k− 1

2

j+ 1
2

(pkj+1 − pkj )

8πνj+ 1
2
ρδSj+ 1

2

 . (22)

We discretize equation 7 to obtain,

pkj − pk−1
j =

−peqδt
εAeqδSj

[
(uA)

k− 1
2

j+ 1
2

− (uA)
k− 1

2

j− 1
2

]
. (23)

Substituting equation 22 into 23 yields,

pkj − pk−1
j = −βjηj+ 1

2

γj+ 1
2

uk−1
j+ 1

2

δt
− αj+ 1

2

(
pkj+1 − pkj

)+ βjηj− 1
2

γj− 1
2

uk−1
j− 1

2

δt
− αj− 1

2

(
pkj − pkj−1

) , (24)

where,

αj+ 1
2

=
A2
j+ 1

2

8πνj+ 1
2
ρ δSj+ 1

2

, βj =
δt peq

δSjεjA
eq
j

, γj+ 1
2

=
A2
j+ 1

2

8πνj+ 1
2

, ηj+ 1
2

=

(
1 +

Ak
j+ 1

2

8πνδt

)−1

. (25)

Rearranging terms yields

[
−βjηj− 1

2
αj− 1

2

]
pkj−1 +

[
1 + βj

(
ηj+ 1

2
αj+ 1

2
− ηj− 1

2
αj− 1

2

)]
pkj−

[
βjηj+ 1

2
αj+ 1

2

]
pkj+1 =

pk−1
j − βj

ηj+ 1
2
γj+ 1

2

uk−1
j+ 1

2

δt
− ηj− 1

2
γj− 1

2

uk−1
j− 1

2

δt

 .

(26)
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Now, the set of vector coefficients have become,

Aj = −βjηj− 1
2
αj− 1

2

Bj = 1 + βj(ηj+ 1
2
αj+ 1

2
+ ηj− 1

2
αj− 1

2
)

Cj = −βjηj+ 1
2
αj+ 1

2

Dj = ∆pk−1
j − βj

ηj+ 1
2
γj+ 1

2

uk−1
j+ 1

2

δt
− ηj− 1

2
γj− 1

2

uk−1
j− 1

2

δt

 , (27)

which are used in the tridiagonal system in equation 16.

This generalization of the method to G 6= 0 complicates the vector coefficients, but provides the ability

to include body forces and temporal terms. Including large spatial gradients, however, requires further

development and testing, and so is left for future research. A summary of the numerical method is given in

table 1.

5 Results

In this section, we first present results for a baseline simulation that we use for comparison throughout the

section. This simulation uses the simplest physical model, which assumes that the acceleration term is equal

to zero (G = 0). The simulation was also performed using the G = −∂u/∂t acceleration model, and they are

compared to the G = 0 case in §5.2. Additionally, we present the model response to varying vessel elasticity

(§5.3) and application of the generalized muscle contractions (§5.4).

For the cases presented here, the computational run times were on the order of 100 times faster than

realtime (neglecting time needed for data output). Using the zero-acceleration model and a heartbeat of 1s,

12 heartbeats were computed in a CPU time of 60ms (5ms per heartbeat). When the nonzero-acceleration

model was employed, 140 ms of CPU time were needed to compute 12 heartbeats (12 ms per heartbeat).
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1. Initialize variables νj , εj , Aeq,j , ∆pj , Aj , uj at cell centers j.

2. Start time step loop. Current variables denoted by superscript k.

(a) Define variable at previous timestep k − 1, (pk−1 = pk, uk−1 = uk, Ak−1 = Ak)

(b) Apply equations 11 and 12 at locations of muscle contractions

• Prescribed Akeq,j in contracting cells, resultant pkj calculated using equation 5

(c) Activate valves if needed

• At prescribed locations, check for adverse pressure gradient (pjv > (pjv−1 + 10.0))

• If so, decrease local area by 80%

• If already decreased in previous timestep, set local area to 0

(d) Activate distributed muscle contractions

• Prescribed Akeq,j in user-defined region, resulting pkj calculated using equation 5

(e) Solve for p distribution

• Calculate variables at interfaces (Ak
j− 1

2

, uk
j− 1

2

)

• Set up tridiagonal system using equations in §4
• Calculate pkj using tridiagonal solver. Update Akj and ukj using equation 18

(f) If |pkj − piterj | > ptol (user-defined tolerance) anywhere, update piterj = pkj and returning
to step 5.

(g) If |pkj − piterj | < ptol everywhere, end time loop. Return to 2.

Table 1: Numerical method summary
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5.1 G = 0

The baseline simulation is initialized at t = 0 with zero velocity and an equilibrium pressure of 1.01 patm,

which corresponds to a gauge pressure (above atmospheric) of 7.6 mmHg. Blood kinematic viscosity and

density are taken as 0.05 cm2/s and 1.06 g/cm3, respectively. Figure 2 shows the equilibrium area and

weighted viscosity along the length of the system. The elasticity ε is determined empirically and set to 1.0.

The distributed skeletal muscle contraction model is not employed.

This simulation uses 100 computational cells to resolve a circulatory system that is 5 m in length with a

total volume of 4.7 L, considered normal for an average adult human. The distribution of these cells is shown

in figure 4. Each vascular tree uses 30 cells and begin six cells downstream of their respective ventricles (left

ventricle for the systemic tree, and right ventricle for the pulmonary tree). The atria are located thirteen

cells downstream of the vascular trees. Each chamber of the heart uses only one computational cell. Each

of the four heart valves (mitral, aortic, tricuspid, and pulmonary) exists at the downstream interfaces of the

atria and ventricles. There are four venous semi-lunar valves, two in each half of the circulatory loop. One

valve is located two cells downstream of the vascular tree, and one is located 2 cells upstream of the atria.

Three sensors have been “inserted” at selected locations to describe the behavior of the arteries, capil-

laries, and veins. The approximate positions of the sensors are shown as green targets in figure 4. Arterial

data is obtained at S = 0.3 m, which is two computational cells downstream of the right ventricle, and four

cells upstream of the systemic vascular tree. The capillary data sensor is positioned at the point of largest

area expansion (S(Xmid) = 1.25 m), and the venous data sensor is located 5 computational cells downstream

of the systemic vascular tree at S = 2.25 m.

Profiles of the varying cross-sectional area, gauge pressure, and velocity at the three sensor locations

are shown in figures 5(a) and 5(b). They are shown for the very first cycle of the simulation. When the

data were phase-averaged over the first 25 heartbeats, the largest standard deviation in pressure, among all

locations, was only 0.0057. Area and pressure profiles are qualitatively very similar to each other because

these quantities are linearly related through the equation of state (equation 5). The pressure at all three

locations begins at equilibrium (7.6 mmHg).
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Figure 5: Time resolved plots of (a) pressure, area, and (b) velocity at three locations in the vasculature.
G = 0.

Figure 3(a) shows that the atria begin to contract at 0.15s, causing the arterial pressure and area to

increase quickly (solid line). The pressure in the capillaries (dashed) and veins (dash-dot) begin increasing

more slowly. At 0.25s, the ventricles begin to contract, while at 0.36s the atria have begun to relax and

expand slowly. This atria expansion causes a brief drop in the venous pressure at 0.36, but the increasing

ventricle contraction increases the pressure until 0.45s. The ventricles begin to expand at 0.44s, but the

closing of the aortic valve keeps the pressure from continuing to drop so quickly in the arteries. After this

time, the expansion of both chambers causes a low pressure in the heart, but the favorable gradient keeps the

mitral and venous semi-lunar valves open, and hence the pressure in the veins drops to below the equilibrium

pressure. It then increases slowly back to peq at 0.9s, after both chambers of the heart have relaxed back

to the default equilibrium area. At the same time, the pressure in the arteries and capillaries decreases

smoothly back to the equilibrium pressure.

There is a precipitous drop in peak pressure between the arteries and the capillaries. In the veins,

pressure decreases further, and even falls below the equilibrium pressure. Guyton & Hall (2000) reports that

normal mean pressures are 100 mmHg in the arteries, 20 mmHg in the capillaries, and only 5 mmHg in the

veins. The curves presented here thus under-predict the arterial and capillary pressures and over-predict the

venous pressures. This indicates that a more refined distribution of equilibrium pressure and actuation of

the valve models is needed and gives some indication of future work.
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Time-resolved velocities are shown in figure 5(b). Arterial velocities (solid line) increase as the atria

begin to contract at 0.15s. As the rate of atria contraction slows, the velocity in the arteries falls slightly,

but remains positive. Velocity in the capillaries (dashed), which is scaled using the ordinate on the right,

increases similarly at 0.15s, although at a slower rate. Both velocities increase greatly as the ventricle starts

to contract at 0.25s Arterial velocity peaks at 0.31s and capillary pressure peaks shortly after at 0.35s. As the

atria begin to contract, there is a brief negative velocity in the veins (dash-dot), but the associated adverse

pressure gradient is detected and mitigated quickly by the semilunar valves in the veins. The velocity in the

veins is relatively low during the ventricle contraction.

As the atria expand after 0.34s, the velocity in the veins is small and positive, but the venous velocity

increases greatly at 0.44s, after which all chambers of the heart are expanding. This creates the low pressure

observed in figure 5(a), drawing blood through the veins into the heart. In the capillaries, the velocity

has two peaks, each lining up with the peak in the arterial velocity, associated with the contraction of the

heart, and the venous velocity, which occurs later with the heart expansion. In other words, flow through

the capillaries increases when it is both pushed from the arteries and pulled from the veins. Peak velocities

in the capillaries, however, are much lower that in the arteries and veins. This is a result of the increased

cross-sectional area in the vascular trees.

Time-averaged velocities are compared with data from Charm & Kurland (1974) in table 2 and average

values are on the same order of magnitude. The main discrepancy is the mean velocities of the arteries

and veins. In the reference data, the mean venous velocity is approximately half the mean arterial value,

while for our baseline simulation, the mean venous velocity is the same or slightly larger than mean arterial

velocity. Figure 5(b) shows, however, that the maximum velocity in the arteries is considerably larger than

the maximum venous velocity. The ratio of maximum velocities (230/129 = 1.8) is about the same as the

ratio of mean velocities from the reference data (45/24 = 1.9).
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G = 0 G = −∂u/∂t C & K
ū umax ū umax ū

Arteries 30.6 229.7 49.5 260.8 45
Capillaries 1.2 4.1 2.0 8.3 1.7

Veins 32.1 128.7 53.0 173.4 24

Table 2: Mean velocity comparison with Charm & Kurland (1974). All velocities are in cm/s.

t (s)

p
−
p
a
tm

(m
m

H
g
)

∆
A
/A

arteries
capillaries
veins

(a)
t (s)

u
(c

m
/
s)

,
a
rt

er
ie

s,
v
ei

n
s u

(cm
/
s),

ca
p
illa

ries

(b)

Figure 6: Time resolved plots of (a) pressure, area, and (b) velocity at three locations in the vasculature.
Results are from a simulation using the acceleration model (G = −∂u/∂t).

5.2 Nonzero-acceleration model

Using the same input parameters and computational configuration, a simulation was also calculated using

the nonzero-acceleration model described in §4. Here, the acceleration term G is modeled as G = −∂u/∂t.

Profiles of area, pressure, and velocity are obtained at the same three “sensor” locations and shown in

figure 6. These profiles are from the second heartbeat calculated (1s < t < 2 s). Phase-averaging over 24

heartbeats, from the second to the twenty-fifth, yielded a maxiumum standard deviation in pressure, among

all locations, of only 0.007. The first heartbeat deviates from the subsequent cycles at the initial condition

(p(0) = peq).

Peak pressures in the arteries are much greater than those in the capillaries, which is similar to the result

for G = 0. Also, the pressure in the veins is less than the equilibrium pressure for most of the heartbeat.

There are significant differences, however, in both the magnitude of the peak pressures, and the qualitative

characteristics of the time-varying profiles.
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At the beginning of a heartbeat, the pressures in both the arteries (solid line) and the veins (dash-dot)

are increasing slightly, and a small magnitude, high frequency oscillation is present in the arterial pressure.

Both of these phenomena are due to the effects of the previous heartbeat. When the atria begin to contract

at 1.15s, the arterial pressure increases to a second peak. As the ventricles begin to contract at 1.25s,

the arterial pressure increases more quickly, and reaches its maximum at 1.33s, the same phase at which

peak arterial pressure is reached when using the zero-acceleration model. The arterial pressure from the

acceleration model decreases more quickly, however, dropping below the equilibrium pressure at 1.38s while

the ventricle is still contracting. At 1.34s, the atria begin to expand and the pressure in the veins drops

below the equilibrium pressure. The pressure in the capillaries (dashed) increases slowly to its maximum at

1.43s, at which time the ventricles stop contracting and begin to expand.

As the ventricles approach maximum contraction, the mitral and aortic valves react to the changing

pressure distribution in the heart, and their opening and closing cause the fluctuation in the arterial pressures

observed from 1.4s to 1.43s. A longer time-scale oscillation is observed in both the arterial and venous

pressures from 1.45s until the end of the heartbeat at 2s, which is caused by the inclusion of the acceleration

model, as expressed in equation 9. The rate of change of pressure depends not only on the curvature of the

pressure distribution, but on the distribution of the acceleration. As observed in figure 5, the pressure and

velocity are not always in phase, and therefore the inclusion of the this term can induce an oscillation in

those regions where the fluid acceleration is large, such as the arteries and veins.

At 1.68s, the high-frequency oscillation of the arterial pressure begins, which was also observed near the

beginning of the heartbeat. This is due to the high sensitivity of both the mitral and aortic valves, which

open or close at each timestep because the pressures in the heart chambers and the aorta are roughly equal.

If the valves are designed to only close when the downstream pressure is more than 7.5 mmHg larger than

that upsteam of the valve, this chattering of the arterial pressure signal is eliminated, as shown in figure 7(a).

The pressure profiles for the two different valve sensitivities are qualitatively very similar. Using the less

sensitive valves that close at the higher adverse pressure, there is a period of increased venous pressure from

1.2s to 1.34s. This is a result of the venous semi-lunar valve downstream of the sensor location not activating

while the atria contract. In fact, using the less sensitive valve model, the venous semi-lunar valves are not
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Figure 7: Time resolved plots of (a) pressure, area, and (b) velocity at three locations in the vasculature.
Results are from a simulation using the acceleration model (G = −∂u/∂t). In this model, valves only close
when the downstream pressure is more that 7.5 mmHg larger than the upstream pressure.

activated during the entire heartbeat.

Comparing the results of the two different acceleration models, a significant difference exists in the

magnitudes of the arterial pressure profiles. The peak arterial pressure using the zero-acceleration model

was 54 mmHg, while including the acceleration model more than doubles it to 147 mmHg. This is attributed

to the relatively high fluid acceleration in the arteries, which amplifies the maximum pressure at 1.33s and the

minimum pressure at 1.4s. Alternatively, in the capillaries where there is relatively little fluid acceleration,

the peak pressure only increases from 17.8 mmHg in the zero-acceleration case to 22.1 mmHg here. In the

veins, the acceleration model decreases the minimum pressure to 35 mmHg below atmospheric, whereas it

was only 1.5 mmHg below atmospheric when using the zero-acceleration model.

The velocity profiles obtained using the G = −∂u/∂t acceleration model differ from the zero acceleration

case similarly to the way the pressure profiles do, as seen in figure 6(b). At the beginning of the heartbeat,

the velocities at all three data sensor locations are non-zero and still oscillating from the previous heartbeat.

The arterial velocity begins to increase more significantly at 1.6s, shortly after the atria begin to contract.

At 1.25s, when the ventricles begin to contract, the arterial velocity increases at an even greater rate and

the high frequency oscillation attributed to the mitral and aortic valve sensitivities is eliminated. At this

point in time, the velocity in the capillaries also begins to increase slowly. The arterial velocity peaks at

21

175 300 ·21 
•0.2 

1251 0.15 
200 14 

01 
, ~ .... 

' I ' 
751 ' ' 

' ' 005 r 25r _ ...... _ -"" 
' 0 
' ' 0 0 

-25 -0.05 

-75 -0.1 -1001 -7 
1 1.2 1.4 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2 



1.35s, and the capillary velocity peaks later, at 1.41s. When the ventricles begin to expand at 1.45s, the

oscillating pressure observed in figure 6(a) creates a period of low-amplitude reversed flow in the arteries

and the capillaries.

The venous velocity begins to increase at 1.4s when the atria begin to expand. It peaks at 1.6s, and

shortly after, at 1.63s, the capillary velocity peaks a second time. This double peak in capillary velocity is

similar to that the zero-acceleration case. Due to the oscillating pressure that occurs in the arteries near

the end of the heartbeat, there is an additional period of positive arterial velocity from 1.69s to 2s, during

which the valve sensitivity creates the high frequency oscillation in the arterial velocity profile. As seen in

figure 7(b), this chattering is again eliminated by using valves of lower sensitivity, which are not activated

until the downstream pressure exceeds the upstream pressure by more than 7.5 mmHg. Because the semi-

lunar valves are never activated in this case, as previously mentioned, a period of reversed flow occurs in the

veins from 1.2s until 1.37.

In table 2, mean and maximum velocities at the three sensor data locations are also included for the

acceleration model case. As expected, inclusion of the acceleration model increases the mean and maximum

velocities at all three locations, just as it was observed to increase the oscillating pressure magnitudes. The

mean venous velocity is slightly greater than the arterial velocity, similar to the zero-acceleration case, but

the ratio of arterial to venous maximum velocities, however, is lower (261/173 = 1.5).

5.3 Effects of system elasticity

After establishing the baseline distributions of pressure, area, and velocity through the model vasculature,

we can begin to explore the effects of varying input parameters and applying additional forcing. In figure 8,

we show the time-resolved pressure in the arteries and capillaries for three values of rigidity, simulated using

both the zero acceleration and the (G = −∂u/∂t) model. An increase in rigidity is applied as a decrease

in the elasticity (ε) in the equation of state throughout the vasculature. Using the G = 0 model, a 25%

decrease in elasticity cause a 6% increase in peak pressure in the arteries and a 15% increase in peak capillary

pressure. Halving the elasticity caused an 19% increase in peak arterial pressure and a 58% increase in the
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Figure 8: Effects of vasculature rigidity (a) G = 0 and (b) G = −∂u/∂t

G = 0 G = −∂u/∂t
100% ε 75% ε 50% ε 100% ε 75% ε 50% ε

Arteries 54.6 57.8 (+6%) 62.9 (+15%) 147.3 160.3 (+9%) 174.2 (+18%)
Capillaries 17.8 21.2 (+19%) 28.1 (+58%) 22.1 25.7 (+16%) 32.1 (+45%)

Table 3: Peak pressures (in mmHg) for different elasticities in the two models, and the percentage increase
over the baseline value.

capillaries. Similar increases were also seen when using the G 6= 0 model, and these are summarized in

table 3. A 25% decrease in elasticity cause a 9% increase in peak pressure in the arteries and a 16% increase

in peak capillary pressure, while a 50% decrease in elasticity caused an 18% increase in peak arterial pressure

and a 45% increase in the capillaries.

When including the acceleration model, another effect of the increased rigidity is shown in in figure 8(b).

As rigidity increases, not only do the peak pressures increase over the baseline case, they also occur slightly

earlier. The loss of flexibility advances the dynamic response of the system. Furthermore, from 1.37s

to 1.46s, the increased rigidity appears to mitigate some of the heart valve chattering effects because the

arterial pressure profile is smoother. Future work will investigate the effects of varying the elasticity along

the vasculature and the system sensitivity.
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5.4 Effects of distributed muscle contractions

Distributed muscle contractions, as described in §3, were applied to simulations using both acceleration

models, and the results were evaluated by analyzing time-averaged flow velocities in the veins. It is at this

location where the physical benefit of these contractions, represented as an velocity increase, are considered

important to help drive blood back towards the heart despite the relatively low venous pressures.

Test cases were run for muscle contractions at frequencies in the range 0.5 Hz < fm < 2.0 Hz and

maximum amplitudes in the range 0.005 < ∆Am/A < 0.02. A summary of the muscle contraction effects

are plotted in figure 9, where mean venous blood flow velocities are shown for four contraction amplitudes

at four contraction frequencies. These mean velocities were averaged over six heartbearts to ensure than an

integer number of muscle contractions were included in the timeseries for all frequencies. In both acceleration

model cases, increasing amplitude increases the blood flow benefit at all but one contraction frequency. At 1

Hz, there is no benefit to venous flow according to the zero-acceleration model, and when using the nonzero-

acceleration model, muscle contractions at this frequency actually inhibit venous flow. This is assumed to

be a result of contracting in phase with the heart pumping, effectively working against it.

For the cases studied here, the lowest frequency of muscle contractions (0.5 Hz) created the greatest

venous flow benefit for both acceleration models at almost all amplitudes. Future work will include a phase

shift between the muscle contractions and heart pumping in order to better understand how to optimize

venous blood flow.

6 Discussion

A new low-dimensional numerical model of the human circulatory system is introduced, consisting of a one-

dimensional axisymmetric circular elastic pipe with periodic boundary conditions. Computational runtimes

were on the order of 100 times faster than realtime. Five liters is considered a normal volume for an adult

human circulatory system (Guyton & Hall, 2000), and the model presented here has a pipe length of 5m and

a cross-sectional area distribution that yields a total circuit volume of 4.7 L. The fluid forcing is accomplished
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Figure 9: Mean venous flow velocities for a range of contraction amplitudes and frequencies. (a) G = 0 and
(b) G = −∂u/∂t

through an effective contraction and relaxation of the local area near the heart and is aided by a set of model

valves in the heart and along the vascular tree to prevent expected backflow.

This circulatory system model performs reasonably well and predicts some large scale dynamic quantities.

The magnitude of pressure oscillations is approximately correct and, as expected, it is largest in the arteries

and decreases precipitously in the capillary region. Large pressure oscillations were also observed in the

veins due to the low pressures created by the left atrium expansion. Mean velocities at points in the arteries,

capillaries, and the veins compared well with reference data from Charm & Kurland (1974) (table 2). One

main discrepancy is the over-prediction of mean velocity in the veins, which results from the large low-

pressure oscillations. Future model development that resolves the correct venous pressure signature should

also decrease the local mean velocity.

The model was also applied using a modified set of equations that included the pressure drop caused by

a fluid acceleration term. When the acceleration effects are included, the time-resolved pressures exhibit a

larger amplitude in the the arteries and veins, where the fluid acceleration is expected to be high. Also, in

these regions the pressure oscillates at a frequency that is higher than the heartbeat due to the nonlinear

feedback of the fluid acceleration into the model. This formulation also makes it more difficult to predict

the effects that improvements to the model geometry and characteristics of the system model will have on
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the nonzero-acceleration simulations.

When using the nonzero-acceleration model, a very high-frequency pressure oscillation also occurs near

the beginning and end of the heartbeat, when the fluid is decelerating and the pressure in and around

the heart chambers is fairly constant. The chattering of the pressure (and velocity) comes from the rapid

opening and closing of the mitral and aortic valves. If the valves are calibrated to only close at a larger

adverse pressure gradient, this chattering is eliminated. Future work will refine the implementation of these

valves so that they perform more smoothly and realistically.

Changes to the model parameters and inputs from the baseline simulation produce realistic responses in

the circulatory model. An increase in vascular rigidity by 25% increases the arterial pressure maximum in

the G = 0 (G 6= 0) simulation by 6% (9%). Doubling the rigidity increased the maximum arterial pressure

by 15% (18%). The application of distributed muscle contractions, used to model the added pumping from

skeletal muscle contractions, was shown to increase the mean venous velocities in the model. At the largest

distributed muscle contraction, with maximum amplitude of 2%, there is an increase of 20% in the mean

venous velocity using the zero-acceleration model, and 5% using the nonzero-acceleration model.

There are several geometric and mechanical characteristics of the current model that need to be refined

as development continues, despite the current qualitative similarities on the macro length and time scales.

The relative cross-sectional areas and lengths of the arteries, capillaries, and veins are currently defined

heuristically, so that the total volume and length are physiologically realistic. Also, the two halves of the

circulatory loop (systemic and pulmonary) are symmetric, even though it is known that this is not the case

in human physiology. The physical pulmonary circuit is considerably shorter and offers less resistance to the

output of the right ventricle than the systemic circuit offers to the left ventricle. Future development of the

model will focus on the realistic calibration of the quantities such as segment length, area, distribution of

the weighted viscosity and elasticity, and valve representation.

With respect to the model of the actuated heart chambers, it is not in the scope of this work to

correctly capture the complex three-dimensional dynamics. Rather, we will use calibrated phenomenologies

to capture the results of experiments and more detailed simulations. For this model, it is important to
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recreate a physiologically realistic cardiac output, and future work to refine the model of heart pumping

will focus on replicating the quantity of fluid pumped, but not necessarily on geometrically matching the

physical heart.

A primary concern about the large-scale dynamic behavior of the model is that it does not yet correctly

capture a high mean pressure in the arteries. In reality, the high pressure created by the contraction of the

heart keeps the aorta and the large arteries at a pressure near 100 mmHg above atmospheric. We have so

far attempted to address this issue in two ways. First, the local equilibrium area was set to be greater in the

large arteries, which initiated a larger arterial pressure, but this relaxes to the lower equilibrium pressure

within two heartbeats. Consequently, the local pressure is much lower than the equilibrium pressure in the

arteries, causing a significant decrease in the local area.

A second approach to correct this discrepancy was to increase the weighted viscosity in the capillary

region. This not only drives up the pressure in the arteries as the heart pumps, but at high enough values,

the arterial pressure relaxes to equilibrium at a rate slower than the heart rate. The arterial pressure then

oscillates around a higher mean, as desired. This approach, however, significantly decreases the low pressure

on the venous end of the vasculature. The enhanced resistance in the capillaries achieved by a higher viscosity

does increase the arterial pressure, but at the cost of unrealistically low venous pressure and high venous

velocities. Further research, augmented with additional expertise, is needed to resolve this issue.

In addition to the continued improvement of this circulation model, other future work is planned to

expand the scope of this project. Currently, a similar formulation is being used to develop a model of the

respiratory system. These two independent models will then be coupled together through a model of the

respiration process, involving the transport of gases (O2 and CO2) across the blood gas barrier. We also plan

to develop an independent fluid dynamic model of the lymphatic system, although a new formulation may

be needed to appropriately capture its diffusion-dominated dynamics. The lymph (interstitial fluid) comes

from a slow “leak” of material out of circulatory system, and the lymphatic system returns it at the venous

ends of the systemic vasculature. This process provides another natural coupling between the circulatory

and lymphatic system models.
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The refinement of the circulatory system model, the development of independent respiratory and lym-

phatic models, and the careful coupling among them will occur simultaneously. It is as yet too soon to state

that the interaction of the relatively simple models will be able to recreate, on some level, the intricate and

nonlinear behavior of the human body as a whole, but the progress is promising.
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