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Abstract—The value memristor devices offer to the 

neuromorphic computing hardware design community rests on 
the ability to provide effective device models that can enable 
large scale integrated computing architecture application 
simulations. Therefore, it is imperative to develop practical, 
functional device models of minimum mathematical complexity 
for fast, reliable, and accurate computing architecture 
technology design and simulation. To this end, various device 
models have been proposed in the literature seeking to 
characterize the physical electronic and time domain 
behavioral properties of memristor devices. In this work, we 
analyze some promising and practical non-quasi-static linear 
and non-linear memristor device models for neuromorphic 
circuit design and computing architecture simulation. 

I. INTRODUCTION 
HE neuromorphic computing hardware community has 
been re-energized by the discovery of the physical 

memristor device by researchers at Hewlett-Packard (HP) 
Laboratories, in Palo Alto, California, in 2008 [1]. The 
memristor device, whose name comes from the contraction 
of “memory resistor,” has been characterized as the 
functional equivalent to the synapse [1]. Leon Chua 
theorized the existence of the memristor device in 1971 as 
the fourth basic circuit element [2]. Given the non-volatile 
nature of the memristor device, applications containing such 
devices lay within memory and computing applications [1]. 
As mentioned, the memristor device operates analogously to 
the biological synapse [1]–[3]; therefore, it represents a step 
forward in the development of low power and large scale 
neuromorphic computing hardware and applications.  

In order to apply memristor device technology to large 
scale computing systems, it is important to accurately model 
and simulate its time domain electronic characteristic 
behavior. Memristor devices exhibit a strong hysteresis; 
therefore, based on the current device resistance (or 
memristance) state or initial conditions, we must be able to 
accurately predict its future electronic behavior. Several 
models have been proposed in the literature to describe the 
non-quasi-static electronic time domain characteristic 
behavior of memristor devices [4], [6], [7]. In this work, we 
present a memristor modeling simulation analysis and 
comparison of published linear and non-linear closed-form 

dynamical memristor device models. We believe that a solid 
understanding of memristor modeling and simulation 
methodologies will lead to accelerated design and 
development of memristor powered technologies such as 
neuromorphic computing hardware. 
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II. MEMRISTOR DEVICE MODELS 

A. Linear Boundary Drift Model  
The linear memristor device model reported by Hewlett-

Packard [1][4] states that the effective transport mechanism 
in TiO2 based memristor devices is through the drift of 
vacancies originating within an oxygen deficient TiO2-x layer 
[4]. The TiO2 based memristor devices’ physical quasi-static 
transport mechanisms have been recently described in some 
detail by Pickett et al. [5]. As the oxygen vacancies drift 
under an applied external electric field, the stoichiometric 
TiO2 will become doped with the ionized vacancies. 
Treating the doped (oxygen vacancy rich regions) and 
undoped regions of the device as a pair of resistors in series, 
the memristance corresponding to a given boundary position 
w relative to the device length or thickness D can be 
described as follows [4]: 

 
M(w) = Ron ቀ ቁ     ௪

஽
 + Roff ቀ1 – ቁ

ୢ௪
ୢ௧

,     (1) 
 
where Ron is the resistance of the doped region and Roff is the 
resistance of the undoped region. Again, this model 
describes the memristor device as two resistors in series, 
where Roff and Ron are the maximum and minimum 
memristance states achievable by the device, respectively. A 
graphical schematic representation of the memristor device 
model is shown in Figure 1. From the figure, we can observe 
the doped/undoped boundary region interface, a dashed line, 
whose position, w, along the length of the device, D, will 
determine the effective total memristance state of the device. 

The drift velocity, vD, at which the doped/undoped 
boundary interface moves is defined as [6] 

 
 = vD = ఎ   µವ ோ೚೙

஽
 I(t),      (2) 

 
where the oxygen vacancies have a characteristic drift 
mobility, µD, under any applied bias voltage. η indicates the 
polarity of the memristor, where η = 1 or  -1 for a device 
whose doped region is expanding or shrinking respectively 
under an applied voltage bias. For example, the doped region 

T
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of the memristor device in Figure 1 is on the left side; so the 
memristor has an η = 1 polarity.  ൰
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 Integrating both sides of (2) gives the doped/undoped 
boundary position w as a function of time [6] 

 
w(t) = w0 + ఎ   µವ ோ೚೙

஽
 q(t),       (3) 

 
letting q(0) = 0. Substituting (3) into (1), we can solve for 
the device’s memristance, M(q), as a function of charge [6] 
 

M(q) = R0 – ఎ ௱ோ
ொబ

 q(t),       (4) 
 
where, after grouping terms, the parameters R0, Q0, and ΔR 
are given by [6] 
 

R0 = Ron ቀ
௪బ
஽
ቁ െ ௪బ

஽
 + Roff ቀ1 ቁ

 ஽మ

ವ ோ೚೙

,     (5) 
 

Q0 = 
µ

,         (6) 

and 
ΔR = Roff – Ron .        (7) 

 
From Chua’s seminal memristance equation [2] 

 
dφ = M dq,          (8) 

 
one may derive essentially Ohm’s Law, 
 

ሻ൯ݐሺݍ൫ܯ ൌ
ୢఝ

ୢ௧ൗ
ୢ௤

ୢ௧ൗ
ൌ ௏ሺ௧ሻ

ூሺ௧ሻ
 .      (9) 

 
Using (4), we can rewrite (9) as [6] 

 
ܸሺݐሻ ൌ   ቂܴ௢ – 

ఎ ௱ோ
ொబ

ሻቃݐሺݍ ୢ௤
ୢ௧
 .     (10) 

 
Then integrating (10) over time, we can solve for the 
magnetic flux 
 

߮ሺݐሻ ൌ  ܴ௢ݍሺݐሻ –
ఎ ௱ோ ௤మሺ௧ሻ

ଶொబ
 ,      (11) 

 
which, in turn, provides an equation for q(t) via its quadratic 
solution [6] 
 

,    (12) 

 
again letting q(0) = 0. Substituting (12) into (4), we obtained 
an equation for memristance as function of charge [6] 

 
Fig. 1.  Graphical model representation of the memristor device as 
two resistors in series. 

 

M(q) = R0 ට
 .      (13) 

 
Finally, we can insert (13) into (9) to solve for the current 
flowing through the memristor device [6] 
 

I(t) = ௏ሺ௧ሻ

ோబ ඨଵି 
మആ ೩ೃ കሺ೟ሻ 
ೂబ ೃబ

మ

 .       (14) 

 
 The linear boundary drift model assumes that the oxygen 
vacancies are free to traverse the entire length of the 
memristor unhindered by the boundary conditions of the 
device. The utility of this model lies within the ease of usage 
and closed form solution. 
 

B. Non-linear Boundary Drift Models 
The linear boundary drift model reproduces the 

characteristic time hysteresis behavior of memristor devices; 
however, the model suffers from oversimplifications of basic 
electrodynamics. Physically, w could never reach a zero 
width length because it would mean that there are physically 
no oxygen vacancies present in the device to enable the 
charge transport mechanisms. On the other hand, the entire 
length of the device could potentially become doped with the 
oxygen vacancies. Modeling the doped/undoped boundary 
drift velocity as a mass on a spring, the drift velocity, vD, 
should be greatest at the center of the device and reduced to 
essentially zero as w approaches either edge (w = 0 and w = 
D). These boundary value restrictions can be implemented 
by multiplying an additional w dependant function to (2) as 
shown below [6][7] 

ܨ ሻݐሺܫ  ቀ௪
஽

஽ݒ ൌ
ୢ௪
ୢ௧
ൌ ఎ µವ ோ೚೙ 

஽

 
ቁ

௪
஽

,     (15) 
 
where the function F ቀ ቁ

௪
஽

 would be a window a function 
with non-zero values over the interval (0, D). In addition, the 
function should have its highest value at the center of the 
device (w = D/2) and be zero at the boundaries, w = 0 and  
w = D. Joglekar et al. [6] proposed the window function 
 

Fpቀ ቁ ቀ௪
஽

 = 1 – ቂ2 ቁ െ  1ቃ
ଶ௣

two boundaries. Also, by varying the p parameter, we can 

,      (16) 
 
where p is a positive integer. Figure 2 displays a graphical 
representation of the window function described by (16) for 
various p solutions (p = 1, 5, and 10). From the figure, we 
can observe that the maximum Fp(w/D) value occurs at the 
center of the device and that zero values are obtained at the 
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control the rate of change of the function. Lower p values 
correspond to a lower rate of change and vice versa. 
Inserting (16) into (15), we can obtain the modified 
boundary drift velocity equation 
 

஽ݒ ൌ
ୢ௪
ୢ௧
ൌ ఎ µವ ோ೚೙ 

஽
ሻݐሺܫ ൜1 െ ቂ2 ቀ௪

஽
ቁ െ 1ቃ

ଶ௣
ൠ .   (17) 

 
W  reduces to the linear boundary dr  

 
 oundary drift model described by (17) i  

௪ሺ௧೔ሻ
஽

e observe that (17) ift
model described by (2) as p approaches infinity [6]. 
Equation (17) also utilizes the ߟ parameter, which is used to 
specify the physical orientation of the memristor device. As 
shown in Figure 1, memristor devices are asymmetric 
devices. Therefore, during modeling and simulation it is 
important to consistently specify the orientation of each 
device’s wiring.  

The nonlinear b s
more physically accurate when compared to the linear 
model; however, in order to solve for w as function of time, 
the window function makes (17) challenging to integrate for 
an arbitrary p. Therefore, a time-step numerical solutions 
approach was employed for simulations. The following 
formulae were independently derived from the algebraic 
manipulation of (1), (9), and (17) as shown below 
 

M(w(ݐ௜)) = Ronቀ ቁ     ௪ሺ௧೔ሻ
஽

 + Roff ቀ1 – ቁ

௏ሺ௧೔శభሻ 
ெሺ௪ሺ௧೔ሻሻ

,   (18) 
 

I(ti+1) =  ,        (19) 
 

vD(ti+1) = ఎ   µವோ೚೙
஽

 I(ti+1 ) ܨ௣ ቀ
௪ሺ௧೔ሻ
஽
ቁ

௣ܨ ቀ
௪
஽

 ,  (20) 
 

w(ti+1) = vD(ti+1) [ti+1 – ti] + w(ti) ,    (21) 
 

q(ti+1) = Φ(ti+1)/ M(w(ݐ௜)) ,     (22) 
 
where ti in (18) corresponds to the initial time step and ti+1 in 
(19) to (22) the next integral time step. 
 The order of these time-step equations brought to light 
another challenge in the implementation of (16), specifically 
when the doped region covers the entire device length (w/D 
= 1). It then follows that Fp(w/D = 1) = 0 for all p, (16). 
Thus, w in (21) does not change since vD = 0, (20). 
Therefore, w/D = 1 once again for the next time-step during 
simulation. Then, this loop persists till the end of the 
simulation without respect to the change in the direction of 
the current, producing invalid results. 

 

 A new window function was proposed by Biolek et al. [7] 
 

ቁ ௪
஽

 = 1 – ቂቀ ቁ –  uሺ– ሻቃܫ
ଶ௣

1, if ܫ ൒ 0

0, if ܫ ൏ 0

Fig. 3.  Plot of non-linear window function proposed by Biolek et al.

Fig. 2.  Plot of non-linear window function proposed by Joglekar et 
al. for p = 1, 5, and 10. 

,      (23) 
 

where  

u(I)= ൝ .        (24) 

 

 
 

for p = 1, 5, and 10. 

The window function is displayed in Figure 3 for various p 
integer values (p = 1, 5, and 10). This window function does 
not model the boundary drift velocity as a mass on a spring. 
Rather, the function is asymmetric in the way it limits 
changes in vD. For example, when w starts at 0, the function 
equals 1. Then, as w increases, approaching D, the function 
approaches 0 as shown in Figure 3 for p = 1. Once the 
current reverses direction, the function immediately switches 
to 1. Then, as w decreases back to 0, the function also 
decreases to 0 as displayed in the figure. When the current 
reverses, the cycle begins once again. In order to compute 
vD, (23) can be substituted into (20) without altering the 
other four equations. One advantage of Biolek’s window 
function is that it eliminates convergence issues at the device 
boundaries. 

III. RESULTS AND DISCUSSION 
 During model analysis and simulation, all memristor 
models were simulated in Matlab; and all bias voltage 
sources were of the form 
 

V(t) = v0 sin(ω0 t + θ),       (25) 
 
where v0 is the voltage amplitude and θ is an arbitrary phase 
shift. Typical simulation input parameter values are v0 = 1 – 
5 V and ω0 = 10 – 106 rad/s. We can calculate the flux 
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through the device as the time integral of the voltage across 
it from (25) 

 
Φ(t) = ቀ ௩బ

ఠబ
ቁ [cosθ – cos(ω0 t + θ)].    (26) 

 

A. Linear Boundary Drift Model 

 
The physical memristor device is characterized by the 
parameters µD, w0, D, Roff, and Ron. Adjustments to the 
dopant mobility parameter directly correlates to changes in 
the boundary drift velocity as described in (2). A slower 
(faster) velocity corresponds to smaller (larger) changes in w 
per cycle, which in turn decreases (increases) the resistance 
value spectrum available to the memristor.  Adjusting w0 
also directly alters the effective range of resistance values 
available to the memristor. In general, a higher w0 produces 
wider loops in the I-V plots. However, neither µD nor w0 can 
be set to completely arbitrary values; otherwise, imaginary 
numbers arise in the equations. Overall, the model operates 
over the widest range of parameter values when the initially 
doped region is less than half the device length. The 
maximum viable µD and w0 values are related to the 
frequency of the voltage source, where a high frequency 
allows for larger values in both parameters. Long devices, 
high D values, display less memristive effects than short 
devices because, as is seen in (4), memristance falls off as an 
inverse square function. 
 The Roff /Ron resistance values can be arbitrarily set in 
accordance with their definitions. The ratio r = Roff /Ron 
should be greater than 10, though ratios of r = 100 – 2000 
are more commonly used.  Increasing r generally reduces the 
I-V curve to a straight line. Additionally, for any given D, 
hysteresis effects are most prominent when ܴ߂ >> R0 [6]. 
 For the linear dopant boundary drift velocity model, 
typical parameters were µD = (10-12 – 10-14 m2·V-1·s-1), D = 
(10 – 50 nm), x0 = (0.1 – 0.6), Ron = (100 – 1000 Ω), and r = 
(100 - 2000). 

 Figure 4 shows typical simulation results. Figure 4(a) 
superimposes the input voltage in time (thin line) against the 
current in time (thick line). From the plot, it is apparent that 
while the current lags the voltage, both curves have the same 
period. This shows that the memristor does not store any 
charge itself but is a totally dissipative circuit element [2]. 
Figure 4(c) depicts the symmetric, smooth hysteresis loop of 
an ideal memristor. Figures 4(b) & 4(d) show the variation 
in width w and memristance over time, respectively. From 
the figures, we can observe that when w is greatest, 
memristance is minimum and vice-versa. Both parameters 
mirror each other. 

 
 

Fig. 4.  Plots of I(t) & V(t) (a), w(t) (b), V-I hysteresis behavior (c), 
and M(t) (d) memristor simulation results using the linear 
boundary drift model, with parameters µD = 10-14 m2V-1s-1, D = 10 
nm, x0 = 0.2, Ron = 1700 Ω, r = 100, v0 = 1 V, ω = 2π rad/s, and 
V(t) = sin(2π t) V. 

B. Non-linear Boundary Drift Models 
 For modeling and simulation of non-linear memristor 
models, the optimal time-step values, Δt = ti+1 – ti , were 
determined to be between 10-2 – 10-4 sec. Then, we 
performed model simulations using Joglekar’s window 
function, (16), [6]; and the results are shown in Figure 5. 
From the results, we can observe that the I-V plots, figures 
5(a) and (c), exhibit a more pointed signature compared to 
the linear model results in figures 4(a) and (c). While both 
I(t) plots have the same period as their respective voltage 
inputs, figures 5(a) and (c) are sharper because of the usage 
of the window function. We also noticed, though not shown 
graphically, that for high p integer values, the non-linear 
model behaves as its linear counterpart. It is important to 
notice that the memristance and w plots remain similar for 
both linear and non-linear models as shown in figures 4 and 
5. Under certain sets of parameters, the memristor will 
fluctuate for a few cycles before it settles on a consistent 
pattern of behavior. However, an appropriate phase shift 
choice eliminates these initial fluctuations as is shown in the 
results of Figure 5, where a phase shift of 0.16 rad was 
employed. The window function also gives the model added 
robustness in terms of arbitrary parameter range selection. In 
addition, in terms of parameter selection and adjustment, 
both linear and non-linear models are similarly affected. 
 In terms of simulation stability, certain non-linear model 
simulations cannot be performed for an arbitrary length of 
time when employing Joglekar’s window function. This 
failure is caused by the convergence issue described in 
Section II B. To partially remedy this problem for additional 
simulation time, we could increase D (up to around 50nm, 
maintaining physical dimensions). However, it is not a 
comprehensive solution.  

In order to circumvent the convergence issues originating 
from Joglekar’s window function, we can employ Biolek’s 
approach described by (23) [7]. Simulation results 
employing Biolek’s window function are displayed in Figure 
6. From the figures, we can observe that the results preserve 
the highly non-linear device characteristic behavior. In 
addition, Biolek’s model is unique because it allows for 
general asymmetric I-V device behavior modeling, which is 
not realizable except in extreme circumstances with the two 
previous models. This is significant because published 
physical memristor experimental data [4][5] exhibits 
asymmetric characteristic behavior.  
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IV. CONCLUSION 
In this work, we analyzed various published, dynamic 

linear and non-linear memristor device models. From our 
study, we observed that the non-linear models offer closer 
dynamic device characteristic representations when 
compared to the limited physical published results as 
opposed to the linear model. The non-linear models, 
characterized by unique window functions, provide insight 
into the dynamics of memristor devices.  

Future work will include performing model-to-hardware 
correlations to physical experimental data when device 
fabrication is completed. This will provide an opportunity 
for refining the non-linear memristor models and window 

functions. Once robust, compact memristor models are in 
place, circuit level simulations will allow for applications to 
neuromorphic computing architecture development. 
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