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Abstract We report the main results produced within the effort sponsored by the U.S. Air Force 
Research Laboratory with Contract No. FA8718-09-C-0061. We focus on the most relevant 
aspects of our findings, which we have fully addressed during our effort: guided propagation and 
leaky-wave radiation along linear arrays of nanoparticles, also considering and modeling the 
realistic presence of technological disorder, comparison of the guidance properties along linear 
and planar arrays of nanoparticles and nanovoids in different realistic geometries, guided and 
leaky modes along parallel arrays of nanoparticles, propagation along periodic arrays of 
nanoparticles and their rigorous homogenization as metamaterials for a variety of applications of 
interest to the U.S. Air Force. 
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1. Executive Summary 

In the present effort we have explored a variety of theoretical and numerical problems associated 
with wave propagation and radiation along periodic arrays of nanoparticles. Our extensive efforts 
have tackled several relevant problems in the following areas: (a) leaky- and guided modes along 
isolated and coupled arrays of metamaterial resonators and plasmonic nanoparticles; (b) 
quantification of the effect of degree of disorder in the propagation along linear arrays; (c) 
propagation along planar arrays of nanoparticles and voids in plasmonic substrates, and 
comparisons among different solutions for nanoscale light propagation and radiation; (d) 
rigorous modeling of the propagation along 3-D arrays of nanoparticles and their proper 
homogenization models. These results may have a variety of important applications of interest to 
the U.S. Air Force, in particular in the realization and design of sub-wavelength compact optical 
waveguides with optimized field confinement and propagation length, nanoantenna and leaky-
wave radiation applications with optimized directivity, control of propagation and scattering 
from nanoscale structures and design of metamaterials with unconventional wave interaction. We 
have analyzed several geometries and designs with a variety of analytical and numerical 
methods, including full-wave numerical techniques, modeling in details the properties of the 
arrays in terms of frequency and spatial dispersion and of radiation and Ohmic losses. During 
this effort, we have developed novel analytical, theoretical and numerical tools for a thorough 
understanding of the propagation and radiation properties of arrays of nanoresonators in various 
frequency regimes of operation, even in the presence of realistic disorder. Our efforts have been 
successful not only from the research perspective, but we have also involved a few students and 
one postdoctoral researcher within this exciting project. In the following, we review some of the 
most relevant findings obtained in this work, as outlined in recent publications referred at the end 
of this report. Each section will contain one of the topics developed in the framework of this 
project and the main results obtained in this framework. The interested reader is referred to the 
series of publications that have been produced during this effort, which are reported in Section 9 
of this report. 

2. Methods, Assumptions and Procedures 

In this effort we have used a variety of analytical techniques, including periodic Green’s 
functions and analytical continuation in the complex domain, as well as numerical techniques, 
including finite-integration technique and finite-time-domain simulations. We detail more of our 
numerical approaches and efforts in the following sections, specifying their relevance in each 
part of our effort. We assume in the following sections an i te   time dependence for the 
electromagnetic fields, unless otherwise noted. 

3. Propagation Along Linear Arrays of Nanoparticles: Effect of Disorder 
a. Summary 

Metallic nanoparticles are known to possess several exciting properties when interacting with 
light. Linear arrays of plasmonic nanoparticles, in particular, can support optical beam 
propagation with ultra-confined lateral cross-section (possibly much smaller than the free-space 
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wavelength of interest), surpassing by far the transverse size of regular optical fibers. Although 
in theory these waveguides may support relatively long propagation, in practical scenarios short 
propagation lengths have been measured. Absorption in plasmonic materials indeed plays a 
relevant role in this regard, but fabrication disorder has been also suspected to severely affect the 
overall propagation length. 

During this effort, we have been able to quantify in a simple analytical expression the role of 
small imperfections in linear arrays of plasmonic nanoparticles, showing that the dominant effect 
of random Gaussian disorder on the propagation properties of these arrays is equivalent to an 
additional loss term in the metal. The total measured loss may therefore be associated with 
material absorption and to an additional factor that is directly proportional to the disorder 
variance and function of the phase velocity of the guided mode. Our results may not only affect 
the understanding of plasmonic nanoscale waveguides and quantify the role of technological 
disorder in optical communications, but they may also be extended to other periodic optical 
devices of interest, like photonic crystals and metamaterials, whose performance are often 
limited by inherent fabrication imperfections. Analogous concepts may be able to quantify their 
effect in various practical designs of interest. 

b. Introduction 

Exploring the science and applications of photonic crystals and metamaterials formed by 
periodic collections of inclusions has rapidly grown in interest and importance in recent years 
(see e.g., [1]). With a few exceptions (see, e.g., [2]-[7]), however, in majority of the theoretical 
contributions on this subject the role of disorders and imperfections due to inherent fabrication 
limitations are neglected, while, at the present state of the art, experimental efforts in 
metamaterial realization and measurement inevitably involve such problems. The sub-
wavelength scale in which the constituent inclusions of a metamaterial are typically embedded in 
a host medium usually allows a homogenization procedure, suggesting that the intrinsic 
deviation from an ideal periodic arrangement may not play a fundamental role in the 
metamaterial performance. This disorder, however, should be taken into account for a complete 
and rigorous analysis of the metamaterial response, which may describe more closely the 
experimental conditions. A clear example of such limitations is seen when dealing with periodic 
lattices of inclusions and metamaterials: it is well known that an infinite periodic arrangement of 
lossless inclusions cancels out the scattering losses from each individual particle, ensuring a 
completely lossless bulk metamaterial [8], but the measured losses in metamaterials, manifested 
in the imaginary parts of extracted permittivity and permeability, are often higher than expected 
from purely theoretical considerations. The role of fabrication imperfections and random 
disorders enters directly into play in this scenario, generating incoherent superposition of 
scattered waves from the different inclusions, which results in energy decay for a wave traveling 
through the metamaterial sample. This energy “loss” has been often interpreted in the 
measurements as energy absorbed in the bulk sample, even though it is actually related mostly to 
incoherent scattering, rather than material absorption. 

A different, but related problem that we have recently analyzed is represented by the analytical 
solutions for the eigenmodes supported by 1-D or 3-D periodic lattices of closely-packed 
plasmonic nanoparticles [9]-[10], which may support highly-confined guided modes and 
backward-wave propagation, with various potential applications for negative-index materials and 
laterally-confined waveguides. Also in this case, the chain periodicity allows total cancellation of 
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the scattering losses, supporting the propagation of low-loss eigenmodes (with loss only due to 
the material absorption in the particles). However, disorder is inherently associated with the 
realization of these chains: techniques for manufacturing large arrays of nanoparticles are 
currently available, but while they can ensure a good control on the average dimension of the 
particles, it may be more challenging to ensure a perfect alignment and positioning of each of 
them on a large scale. Since the assumption of ideally periodic arrangement of the particles has 
provided us with closed-form solutions for the propagation of such modes [9]-[10], which may 
also easily take into account the presence of Ohmic absorption, we may ask whether an extension 
of these analytical results may also model the intrinsic disorder expected in the fabrication 
process. More broadly, this may be applied to the general analysis of metamaterials, in order to 
quantitatively model how the deviation from ideal periodic arrangements of the inclusions may 
affect their potential application in realistic setups and devices. 

In this section, we explore these concepts and in particular we study how the presence of 
disorder may be modeled in simple geometries like periodically arranged nanoparticles. In 
particular, we show how such disorder effects, when small enough, may be equivalently 
described as the effect of an additional “loss” in the materials forming the particles, directly 
related to the statistical variance of the disorder in the system, and may characterize both 
quantitatively and qualitatively the effects of imperfections in the realization of these 
metamaterials. These results may be further generalized to generic metamaterial lattices, 
providing relevant physical insights into the analysis of metamaterials for a practical realization.  

It should be pointed out that other groups have recently analyzed the problem of disorders in 
metamaterials, both from theoretical and experimental points of view (see e.g., [2]-[5]), showing 
how these effects, although of second-order, may be relevant in some applications and how they 
are sometimes underestimated. An extensive amount of work, somehow related to these 
concepts, is also available for random disorder in photonic crystals and Anderson localization in 
random materials [11]-[16]. Here we concentrate on the problem of periodic arrays of plasmonic 
nanoparticles in order to derive a quantitative expression that may model this small disorder in 
closed form, with a first-order perturbation approach. Different from the other approaches 
presented in the literature relative to this problem, our analytical results allow us to theoretically 
quantify and model the small disorder in order to provide simple physical analogies and insights 
that could be later applied to metamaterial technology. A preliminary portion of these results has 
been presented in a recent conference talk [7] and these results have been recently published in  

c. Theoretical analysis 

Consider an infinite linear array of identical particles each characterized by an electric 
polarizability ee  and periodically displaced along the z  axis at distance d  from each other 

(center-to-center distance). As shown in various recent papers on the problem [17]-[23], the 
guided eigenmodes supported by this periodic arrangement propagate along the array with an 

i ze   dependence, where   satisfies the following equations: 

   

   

3 3 1

1

3 3 2 2 1

1

: 6 cos 1

: 3 cos 1

iNd
ee

N

iNd
ee

N

L N d N d e i Nd

T N d N d e i Nd N d

 

 


  




  



   

     




, (1) 
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where 0d k d , 0/ k  ,  3
0 0/ 6ee eek   , 0 0 0k     , and 0 , 0  are the background 

medium’s permittivity and permeability, respectively. In Eq. (1) the nanoparticles forming the 
array are modeled as polarizable dipoles. The two equations refer to the two orthogonal 
polarizations for the eigenmodes of this system, i.e., respectively, longitudinal (Fig. 1a) and 
transverse (Fig. 1b) with respect to the axis of propagation [9].  

Eq. (1) supports the possibility of no-damping sub-diffractive guided propagation in the limit of 
lossless plasmonic particles, since, as expected, the mathematical problem represented by (1) 
ensures a real-valued solution for any 1 / d    under the lossless condition 1Im 1ee       

[9]. Therefore, similar to any periodic metamaterial, this geometry in the ideally periodic limit 
also ensures that, despite the scattering losses from each one of the nanoparticles, the overall 
behavior of the chain may have zero radiation losses. 

The previous equations may fully take into account the general case in which the particles 
forming the array are lossy. In such case, complex solutions for   are required, with a 
corresponding decay in the direction of propagation. The summations in (1) are not strictly 
convergent in this situation [19], and an analytical continuation employing polylogarithm 
functions is required, obtaining the closed-form dispersion equations first introduced in [9]: 

   

     

3 1
3 2

3 2 1
3 2 1

: 3 , ,

3
: , , ,

2

ee

ee

L d f d id f d

T d f d id f d d f d

  

   

 

 

   

     

, (2)  

where        1 1
,

i d i d

N N Nf d Li e Li e
       and    1

0

x N
N

Li t
Li x dt

t
  , with 

   1 ln 1Li x x    is the polylogarithm function, as defined in [24]. 

Let us suppose now that each of the particles in the linear array is not necessarily positioned at 
the designated location Nz N d  , but slightly shifted as N Nz Nd   , where the set of real 

numbers N d   represents quantitatively an imperfection or disorder in their position (see Fig. 

1). Analogously, intrinsic fabrication limitations may generate uncontrollable small differences 
among the particles, and each of the polarizabilities involved in the summations (1) may be 
rewritten as  1N ee N    , with N  being a set of complex numbers. 

 
Figure 1 – Geometry of the propagation along 1-D linear chains of particles under the two orthogonal polarizations 

[(a) longitudinal, (b) transverse], considering random imperfections/disorders in the positioning of the particles. 

In order to model the presence of disorder in this problem, we may assume that these 
imperfections are inherently random in nature and provide small perturbations from the ideal 
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design values. Under these assumptions, it may be reasonably expected that such quasi-periodic 
system may still be able to guide a mode with i ze   space dependence, where the disorder is 
anticipated to produce an analogously small perturbation in the guided wave number  . Here we 
aim to quantify this variation, and relate it to the expected degree of disorder.  

The dispersion equations (1) have been obtained for the two polarizations in the ideally-periodic 
geometry by assuming that the induced dipole moments along the chain are in the form 

0
i N d

N e p p , with N  being any integer (positive or negative) and 0p  being the dipole moment 

induced on the particle located at the origin. Each Np  produces an electric field at the origin, 

with amplitude  N NNd E G p , where  NdG  is the dipolar dyadic Green function. Imposing 

that the sum of the NE  would give rise to a total electric field at the origin self-sustaining a 

dipole moment 0p  provides the dispersion equations (1)-(2), which may be solved for the guided 

wave number   once the array geometry is known. The presence of small disorder in the 
position of the particles has a perturbative effect to the original dispersion equation, which may 
be analyzed under a first-order approximation as the perturbation to the self-sustaining field at 
the location of 0p . In this sense, the small disorder affects the evaluation of the dispersion 

equations in two distinct ways: the Green function is modified into  NNd G , due to the 

variation of the distance of each of the particle from the origin, which causes an estimated 
variation in the induced field on the particle; moreover, the value of each of the dipole moments 
in the chain is also varied as  

0
Ni Nd

N e  p p  by the variation in the particle position. The 

variation in the shape or electromagnetic properties of the particles may also be embedded in the 
estimation of the induced dipole moment of each particle, which corresponds quantitatively to 

the expression    
01 Ni Nd

N N e    p p . Summing all these effects, each term in the summations 

in (1), therefore, takes the form: 

        

           

3

3 2

: 1 1

: 1 1

N N

N N

i Nd i N d

N N N

i Nd i N d

N N N N

L N d e e i N d i

T N d e e i N d N d

  

  

  

   

  

  

   

     
, (3) 

where N  goes from   to   and it takes into account of the contribution from each of the 
particles in the chain. In this modified form, the sums in the dispersion relations cannot be 
evaluated in any closed form, since each of their terms depend separately on random occurrences 
of N  and N .  

Rearranging the terms in the summation and expanding in Taylor series for N , owing to the 

assumption of small disorder, we may formally rewrite the dispersion relations as in Eq. (2): 

   

     

3 1
3 2

3 2 1
3 2 1

: 3 , ,

3
: , , ,

2

L

T

L d f d id f d

T d f d id f d d f d
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   

 

 

   

     

, (4)  

where the following expressions for the modified polarizabilities hold: 
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1 1 2 ...L ee N N N N N N N N N
T N
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The coefficients Nc , Nd , Nf  are the Taylor coefficients of (3). As an example, in the 

longitudinal polarization they take the form: 
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N

i Nd i N d

N

c N d e e i N d

d Nd e e i Nd Nd

f Nd e e i Nd Nd i Nd







 

   







 

        
          

. (6) 

Eq. (4)-(5) combine the effects of disorder along the chain in a single compact expression, 
accurate enough to evaluate the perturbation of the dispersion relations due to the random 
disorder in the chain in terms of a change in the “average polarizability” of the particles forming 
the array, allowing a quantitative evaluation of the effects of the disorder on the guided wave 
number. In other words, the disorder along the chain is “seen” by the propagating mode as a 
variation in the polarizability of the particles in an equivalent ideally-periodic array.  

Due to the assumption of small disorder, the summation in (5) is expected to weakly perturb the 
solution of Eq. (4), and this is why the approach of summing the fields at the particle location is 
still applicable. In particular, in the limit of interest in which the particles are lossless or with 
low-loss (allowing low-damping modal propagation along the chain) it is straightforward to 
show that the perturbation in (5) principally affects the imaginary part of Eq. (4), which is 
identically satisfied in the limit of lossless particles. This implies that a reasonably small disorder 
weakly affects the phase velocity along the chain, but it may affect more considerably its 
damping coefficient (imaginary part of  ). 

Assuming that the random quantities N  and N  are Gaussian distributions with zero expected 

value and with variances 2
  and 2

 , respectively, we may evaluate this expected variation on 

the effective polarizability of the particles as “seen” by the mode. The Gaussian hypothesis on 
the distribution of N  and N  represents a realistic assumption, since the disorder associated 

with technological limitations and imperfections may be reasonably assumed to be a stochastic 
process in which each occurrence of N  and N  is fairly independent from the others. Due to the 

zero mean value of N  and N  and their independence, the dominant term in the summation (5) 

for evaluating the expected values 1
L   and 1

T
  is given by 2

N Nf  . The expected values may 

be evaluated in closed form using the variance theorem for the sum of Gaussian distributions and 
the properties of the polylogarithm function. Their expressions in closed form are given in the 
general case as: 
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 (7) 

where we have applied the properties of the polylogarithms to evaluate the summation (5) in 
closed form. Even if the form of these expressions is quite complex, these solutions provide 
some interesting insights into the effect of disorder in these plasmonic chain waveguides.  

It is seen in (7) that the main perturbation on the effective polarizability is given by the variance 
of the disorder in the position of the particles, as shown by (7). Random (and independent) 
variations in the geometry of the particles appear to compensate each other in the first-order 
approximation along the chain, not significantly affecting the expected value 1  , as it was 

also verified numerically in [4] for 3D metamaterials in a different geometry. The variance of the 
position disorder, however, which is a measure of the degree of disorder in the system, may 
significantly perturb the effective “average” polarizability of the particles as seen by the guided 
mode, since the scattering losses from each of the particles cannot be completely “canceled” by 
the other particles forming an ideally periodic array, producing residual scattering losses. For this 
reason, in the following sections we concentrate on the analysis of random disorder in the 
position of the nanoparticles, assuming for simplicity that they have the same size. 

Due to the nature of Eq. (4), when low-loss particles and low-damping guided modes are 
considered, the main effect in the perturbation of (7) is in fact expected to be in the imaginary 
part of (7), which is a measure of the “losses” experienced by the mode. Similarly to what was 
done in [9], the properties of the polylogarithm functions allow a direct evaluation of this 
imaginary part. Using the properties: 
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 (8) 

the following exact relations are obtained for the imaginary parts of the expected values of 
effective polarizabilities in the two polarizations: 

2
1 1 2

2
1 1 2

1 5
Im Im

10

2 5
Im Im

10

L ee

T ee





  

  

 

 

           
           

, (9) 

under the assumption that Im     is negligible (low-damping guided modes). This result is 

formally consistent with the first-order approximation for the effect of disorder in photonic 
crystal waveguides derived in [14]. 

We reiterate that Eq. (9) applies only in the limit of small disorder, for which these results 
represent small perturbations of the solution in the ideally periodic scenario. In this limit, this 
result is of great interest for its inherent simplicity. In this context, it is noticed that this 
perturbative method is consistent with iterative techniques that take into account small disorders 
in periodic arrays, for which a recent application to periodic metamaterials has been presented in 
[6]. Although our method would numerically yield consistent results for any type of random 
disorder (with zero mean value), the advantage of our technique when applied to Gaussian 
disorder is that it provides a closed-form solution for the level of additional losses caused by the 
disorder, directly related to its variance, as shown in Eq. (9). This provides relevant physical 
insights into the effect of small disorder in periodic structures, as we further discuss in the 
following. 

Without resorting to any further approximation, and considering the fully dynamic interaction in 
the infinite disordered array of particles, Eq. (9) indeed states that, independent of the average 
distance between the particles, the disorder in the positions of particles affects the modal 
propagation by adding an effectively additional loss, due to the incoherent scattering radiation 
from the particles, proportional to the variance of the disorder. Similarly to the closed-form 
solution obtained in the ideally-periodic chain for the imaginary part of the dispersion relations 
(4), which ensured power conservation along the chain [9], and for which 1Im 1ee      , i.e., the 

particles are lossless and no-damping propagation is obtained, here we get another equally 
simple generalized expression that takes into account the presence of disorder along the chain 
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and adds another form of radiation damping, quantitatively related to the degree of disorder in 
the chain. 

We note that the sign of the additional terms in (9) is strictly negative, ensuring that the disorder 
increases the damping factor of the modes whatever is the geometry of the chain and the nature 
of the disorder. For passive particles, in fact, 1 1Im 1ee loss        , with 1 0loss    [9]. Moreover, 

Eq. (9) is consistent with the physical expectation that an increase in the variance of the disorder 
would correspond to an increase in the damping factor of the guided modes, and that a tighter 
(and slower) propagation along the chain (increase in  ) makes the propagation more sensitive 
to such imperfections. Another interesting feature of this result is associated with the fact that the 
transverse-polarization configuration, which ensures backward propagation, is slightly more 
sensitive to the disorder than the longitudinal-polarization propagation. This is consistent with 
our previous findings [9] that showed how this polarization has a slightly lower bandwidth and 
more sensitivity to losses than the forward-wave longitudinal propagation. 

d. Numerical examples and validation 

Figure 2, as a first example, shows the variation of Im     with the standard deviation   of the 

position disorder for a chain of silver particles, calculated using (9) and the results in [9]. 
Longitudinal polarization, which is the most appealing for guiding purposes, is considered here 
and in the following. Moreover, we concentrate on the positional disorder, which has been 
proven in the previous section to be the most significant mechanism of radiation loss. The chain 
is formed by silver spherical nanoparticles with average radius 10a nm  and center-to-center 
average distance 22d nm . We have evaluated this chain geometry considering experimental 
values of the silver permittivity available in the literature [25], and considering the inherent 
absorption and frequency dispersion (black solid line) of silver at optical frequencies. We have 
also added the red dashed curve, which neglects the absorption in the particles, in order to isolate 
the effect of disorder on the damping of the mode. The curves in this case have been evaluated at 
the free-space wavelength 0 380nm  , which, following the analysis in [9], ensures the best 

guiding properties of the mode as the highest ratio between real and imaginary parts of  . At 
this wavelength the permittivity of silver is 3.8 0.19Ag i     [25]. 

As predicted by the previous analysis, increasing the disorder along the chain induces a 
perturbation of  , mainly reflected in its imaginary part. Small deviations from the ideal 
position of the particles do not considerably perturb the guiding properties of the chain, and the 
absorption is usually dominated by the inherent ohmic absorption of metallic particles. Still, the 
sensitivity to disorder is well modeled by the theoretical considerations in this geometry. 

Figure 3 shows a similar case, but for larger silver particles and correspondingly larger 
separation between the centers of the particles, highlighting the difference in the effect of 
disorder with a change in the geometry of the chain. In this case 15a nm , 33d nm  and 

0 390nm  , for which 3.9 0.19Ag i    . 

It is evident how in this second scenario the effect of disorder is somehow lower. This is due to 
the fact that in this second scenario the particles are larger, and therefore less affected by the 
inherent Ohmic losses and effect of disorder, since the electric field is less concentrated in their 
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volume. Despite the mode being more confined around the chain (higher Re    ) this second 

example ensures more robustness to Ohmic losses and to disorder, consistent with its inherent 
robustness reported in [9]. 

 
Figure 2 – Variation of imaginary (a) and real (b) parts of   as a function of the standard deviation of disorder 

along a chain of silver nanoparticles, considering (solid) and neglecting (dashed) Ohmic absorption.  The radius of 
the particles is 10a nm  and average distance between any two neighboring particles (center to center) is 

22d nm  at the free-space wavelength 0 380 nm  . Here and in the following the longitudinal polarization is 

considered. 

Figure 4, as a confirmation of the validity of the previous theoretical results, reports the 
numerical simulations of a linear chain of particles with some disorder in which the location and 
the size of each particle has been perturbed from the original periodic geometry of Fig. 2. In 
particular, we have assumed a Gaussian random noise in the position of the particles with 
standard deviation 0.5nm   and a deviation from the ideal radius of each particle 10a nm  

equal to 0.5a nm  . The figure reports the calculated Im     for the ideal chain without 

disorder and for the chain with added disorder, both evaluated using Eq. (4), corresponding to the 
black solid line and the red dashed line, respectively. Moreover, we have reported the 
calculations for a random chain, obtained by applying (1), (3) and truncating the summation to 
the first 20 elements (that is evaluating the eigen-wave number considering the contributions 
from the nearest 40 nanoparticles around the origin). As we already mentioned, the summation in 
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(1) is not strictly convergent when complex propagation constants are considered, due to the fact 
that the mode amplitude grows exponentially in one direction of the chain. This is consistent 
with any complex eigenmode solution (leaky-waves or lossy geometries), and this problem is 
usually solved with proper analytical continuation of the series in the complex domain, as in Eq. 
(4). 

 
Figure 3 – Similar to Fig. 2, but for 15a nm  and average distance 33d nm  at the free-space wavelength 

0 390 nm  . 

Since now the summation is constituted by random variables, and it cannot be solved in closed-
form, we have considered its solution obtained after proper truncation, which is a good 
approximation to the exact analytical continuation derived in (2). In this scenario, where each 
particle has a random deviation in position and size, the closed-form analytical solution cannot 
be derived, but the summation truncated to the first 20 elements provide a good agreement with 
our theoretical results that embed the effect of disorder in the closed-form expression (4)-(5), as 
evident from the figure. The residual oscillation with frequency, evident in Fig. 4, is related to 
the truncation effect, as shown by evaluating Eq. (1)-(3) in the case of no disorder and of 
increased losses using Eq. (4) (black and red dotted lines, respectively). It is evident that the line 
corresponding to the random chain (dotted blue line) agrees very well with the truncated 
dispersion relation obtained using the previous theoretical results. We have verified similar 
agreement when we change the number of elements considered in the truncated series. 

Figure 5 shows the full-wave numerical simulations, performed with commercial 
electromagnetic software [26], simulating the chain geometry of Fig. 2 with (Fig. 5a) and 
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without (Fig. 5b) considering the disorder in the position of the particles, in the amount of 
2nm  . These simulations refer to the wavelength 0 400nm  , for which the silver 

permittivity is 4.56 0.22Ag i     [25]. In particular, the figure reports a snapshot of the 

instantaneous magnetic field distribution orthogonal to the plane of the chain. It is evident from 
the figure how the guided mode along the chain, although supported in both cases, decays faster 
due to the presence of disorder, consistent with the results of the previous theory and with the 
presence of an effective additional loss factor in the particles forming the chains. In the figure we 
have also reported the plot of the longitudinal electric field amplitude sampled on a line parallel 
to the chain axis at a distance of 80 nm . Despite the sharp variations due to the granularity of the 
spheres, a clear exponential decay is visible in both cases in the figure, which is highlighted by 
the dashed lines in Fig. 5. We have extracted the effective Im     from these simulations, which 

is given by: 

no disorder: Im 0.22

disorder: Im 0.35





   
   

, (10) 

respectively corresponding to the black (darker) and red (lighter) lines. As expected, these 
extracted values of Im     are consistent with the values predicted by Eq. (9), despite the 

simplified dipolar approximation of our analytical model. 

  
Figure 4 – Dispersion of Im     for a guided mode along the chain of Fig. 2 in the three cases of: ideally periodic 

chain (black solid line), disordered chain using this theory (Eq. (9), red dashed) and disordered chain using a random 
array and Eq. (1)-(3) truncated to max 20N   (blue dotted). The disorder in the position of the particles has a 

standard deviation 0.5nm  , whereas the disorder in the size of the particles is embedded in the standard 

deviation for their radius 0.5a nm  . For comparison, here we have also reported the solution of Eqs. (1)-(3) 

truncated to max 20N   for an ideally periodic chain (black dotted) and for the disordered chain using Eq. (9) (red 

dotted). 
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Figure 5 – Magnetic field distribution orthogonal to the plane of the chain for the geometry of Fig. 2 in the case of: 

(a) ideally (periodically) ordered particles and (b) with random disorder in the position of the particles with 
2 nm  . The plot reports the electric field distribution sampled on a line parallel to the chain axis, at a distance of 

80nm  (solid lines) and the corresponding exponential decays, consistent with our theoretical model.  

e. Conclusions 

The results in this manuscript confirm that the disorder in plasmonic waveguides and 
metamaterials may give rise to additional scattering losses that may be quantified as a function of 
the degree of disorder present in the periodic lattice. The geometry analyzed here, a linear array 
of plasmonic nanoparticles, has been selected for two reasons: the possibility of a closed-form 
analytical solution, generalizing the results of [9], and its inherent property that this geometry 
shares with the more general class of periodic metamaterials, i.e., supporting low-loss 
propagation by the means of cancellation of the radiation losses that an ideally periodic lattice 
ensures. It has been proven in various experimental setups that sub-diffraction optical 
waveguides like the one considered here, indeed suffer from the presence of losses, and signals 
cannot travel over few wavelengths in realistic scenarios with subwavelength  cross-sectional 
size. The results presented here allow a proper quantification of the effects of small random 
disorder on the expected propagation distance and on the further increase in damping due to 
radiation losses. We believe this may be useful for the design and fabrication of these 
waveguides and of optical metamaterials based on similar concepts. 

With similar arguments, these results may be extended to the 3D scenario of closely packed 
nanoparticles forming backward-wave metamaterials [10] and to the more general class of 
periodic metamaterials and photonic crystals. We may quantify the amount of expected 
scattering losses in a realistic plasmonic array or metamaterial affected by disorder associated 
with technological limitations and imperfections, justifying how the measured losses in such 
setups are often larger than those expected from purely theoretical predictions obtained under the 
assumptions of ideally-periodic configurations. It is interesting to underline that our theoretical 
results show quantitatively how to a first-order approximation small variations in the shape or 
electromagnetic properties of the inclusions are less important than an analogous disorder in their 
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position, for what concerns the overall electromagnetic behavior of the metamaterial setup and in 
particular its damping and absorption properties. To conclude, these results represent an 
important step in quantifying the radiation and scattering losses induced by disorder in plasmonic 
waveguides and periodic metamaterials. 

4. Waveguiding Properties of Plasmonic Nanoparticles and Voids 
a. Summary 

In this section, we show our efforts in comparing different nanoscale waveguiding geometries 
involving plasmonic materials for sub-diffractive propagation at optical frequencies. Deriving 
closed-form analytical formulas to analyze the different structures, we show how the presence of 
a plasmonic background may produce robust, highly confined guided wave propagation as 
compared with the dual setups involving plasmonic particles in a transparent background. 
Advantages and disadvantages of different scenarios for realizing right-handed and left-handed 
propagation in one-dimensional (1D) and two-dimensional (2D) waveguides are highlighted and 
discussed. 

b. Introduction 

Plasmonic phenomena and their related applications have witnessed fantastic development in 
recent years. In particular, at optical frequencies where plasmonic materials are readily available 
in nature [27]-[28], various potential applications of plasmonic concepts have been recently 
proposed, including transport of optical energy with tight lateral confinement [29]-[56], left-
handed wave propagation [57]-[60], and slow-light devices [61]-[63], just to name a few. As one 
such application, inspired by our idea of bringing the notion of circuit elements into optical 
frequencies [64], we have proposed and analyzed different geometries for realizing optical 
nanotransmission-lines in the form of chains of plasmonic nanoparticles [39] and nanorods [41] 
(1D propagation), planar plasmonic nanolayers [56] (2D), and plasmonic 3D nanoarrays of 
particles to form optical nanomaterials [40]. Bringing the notion of transmission-line from the 
radio frequencies (RF) and microwaves into optical frequencies may inspire the design of guided 
modes more tolerant to Ohmic absorption, less radiation losses and larger bandwidth of 
operation, all inherent properties of RF transmission lines. The different waveguiding geometries 
that we have recently proposed, all based on the peculiar properties of plasmonic materials at IR 
and optical frequencies, indeed allow, under proper conditions, reasonably long propagation 
distances with highly sub-diffractive lateral confinement of the guided beams and relatively 
larger bandwidth of operation.  

Even if ideally the plasmonic nanowaveguides may be designed to totally suppress unwanted 
radiation [39]-[40], the presence of small disorder, Ohmic absorption and other unwanted 
imperfections may generate radiation losses in the transparent background, which affect the 
propagation distance of the guided beams [65]. For this reason, we have recently been interested 
in analyzing in detail the dual of these setups, i.e., analogous geometries employing dielectric 
waveguides surrounded by a plasmonic background material, in the form of arrays of voids or 
dielectrics, cylindrical voids, or dielectric nanolayers embedded in noble metals or other 
plasmonic materials as backgrounds, consistent with some recent analogous proposals [42]-[54]. 
Due to the opaqueness of such materials at optical frequencies, wave propagation in the 
background is forbidden and the corresponding radiation losses of the guided modes may be 
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reduced. The confinement of the guided beams inside the dielectrics or voids, which usually have 
lower loss, may also ensure a lower sensitivity to Ohmic absorption, which is another possible 
advantage of these dual configurations. This is of course valid as long as comparable field 
confinement is achieved, since large field concentration would always lead to larger sensitivity to 
absorption loss in both setups. 

In general, a common trend in all the waveguiding geometries involving plasmonic effects may 
be emphasized: a trade-off between propagation length of the guided waves and the limitation on 
its lateral confinement and bandwidth. In this sense, a figure of merit, defined as the ratio of 
propagation distance versus beam cross section may be defined in order to sort out the most 
promising waveguiding geometries involving plasmonic materials at the frequency of interest. 
Moreover, the fact that the power inside plasmonic materials generally flows in a direction 
opposite to the modal phase velocity [56] allows one tailoring these waveguides to exhibit either 
forward- or backward-wave propagation (i.e., the group velocity being parallel or anti-parallel 
with the phase velocity of the mode), depending on whether the power is more concentrated in 
the plasmonic or in the dielectric region. Efficient and optimized backward-wave waveguides 
may play an important role in the framework of left-handed material research and sub-
wavelength imaging, as discussed in Ref. [56].  

In this section, after discussing the analytical properties of the guided modes in these different 
types of waveguides, we compare and contrast their properties, exploring which ones of the 
different proposed waveguiding geometries and solutions may be more robust to material 
absorption and radiation losses, and which ones exhibit a “better” bandwidth of operation. 

c. Plasmonic and dielectric cavities 

It is well known that a subwavelength plasmonic nanoparticle of radius a  and permittivity   
may support a “quasi-static” resonance when  Re 0   [28]. This phenomenon may be 

interpreted in terms of the nanocircuit concepts [64] as the intrinsic resonance between the 
nanoinductor elements represented by a plasmonic nanoparticle and the nanocapacitor 
constituted by its fringing fields in a background material with permittivity 0b  . The specific 

values of the two nanocircuit elements, as described in Ref. [64], depend on the material 
parameters and the geometry of the nanoparticle, which determines the combined resonance 
condition. It is well known, for instance, that the resonance of a plasmonic nanosphere is 
obtained when: 

   

   
0

/ /

n n b

n b n b b

j ka y k a

ka j ka k a y k a 
       

, (11) 

where nj  and ny  are spherical Bessel functions, depending on the resonant order n , 0k    

, 0b bk     (with the choice for the branch root of bk  satisfying the radiation condition at 

infinity) and 0  is the free-space permeability assumed to be the same in all the (non-magnetic) 

materials in our study. In the small-radii approximation, Eq. (11) is satisfied near the frequency 

for which   1
Re b

n

n
 

 . Different resonant conditions may be achieved for different shapes 
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of the nanoparticle or with a multi-layered geometry [67]. For the dominant resonant mode, with 
1n  , the corresponding resonance Q-factor may be calculated as: 

  3

0
0

3

2 3
Q

k a
f





, (12) 

where we have assumed a Drude-model dispersion for the nanosphere permittivity as 

 
2

0
0

3
1

f

f f i
 


 

    
, with 0f  being the resonance frequency. (Here, we are assuming that the 

plasma radian frequency for the spherical particle is 2 3p of  .)  The denominator in Eq. 

(12), proportional to the total losses in the system, is evidently given by the sum of two terms: 
the radiation losses, inversely proportional to the nanosphere volume, consistent with Ref. [66], 
and the ohmic absorption in the material, proportional to the damping frequency   of the 
material. Even in an ideally lossless particle, the Q-factor in Eq. (12) would be indeed limited by 
the intrinsic radiation losses of the particle. For higher-order resonances the term in the 

denominator of (12) becomes   2 1

0

n
k a

 
, implying smaller radiation losses and higher Q, as 

expected. 

If we now reverse the role of inductors and capacitors, i.e., we analyze the dual geometry 
composed of a dielectric nanosphere with permittivity 0   embedded in an ε-negative (ENG) 
background with permittivity 0b  , the resonance is described by an analogous equation: 

     
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1
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n n b

n b n b b

j ka h k a

ka j ka k a h k a 
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, (13) 

where  1
nh  is the spherical Hankel function of first kind, which is purely imaginary for imaginary 

bk  (associated with the fact that the ENG background does not support wave propagation), and 

the field distribution is mainly concentrated in the dielectric nanosphere and at the plasmonic 
interface, decaying much more rapidly in the outside region. In this case, the expression for the 
Q-factor simplifies to: 

0fQ


 , (14) 

where we have assumed 
 

2
0

2 1
11b

n
f

n
f f i

 


 
    
 

, which once again supports a resonance at 

frequency 0f . Eq. (14) is valid for any resonant order n . 

It is interesting to see that such a cavity may support an extremely high-Q  resonance, limited 
only by the inherent losses of the background material, since no radiation is involved in the 
unbounded plasmonic background. Interestingly, the cavity size is not limited by diffraction, i.e., 
in principle its dimension may be made arbitrarily small, since the field distribution would be 
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adjusted in order to remain concentrated around the plasmonic interface, with the Q  as derived 
in Eq. (4), independent of the cavity volume or of the resonant order.  

Figure 6 reports the variation of the electric field distribution induced on the surface of a glass 
spherical cavity embedded in the silver background, with radius 5a nm , for a sample 
excitation. It is interesting to note how the different resonant peaks1 have similar operating 
bandwidths, since they are characterized by a similar Q-factor, as predicted by Eq. (14)2. 

 
Figure 6 - Electric field amplitude on the surface of a glass cavity with radius 5a nm  embedded in a silver 

background (considering realistic losses of silver). 

d. Chains of dielectric voids in an ENG background 

If the 0-D problem of a sub-wavelength dielectric cavity in an ENG background presents some 
interesting peculiarities, collections of such small cavities may give rise to other, even more 
exciting possibilities [42], [47], [50]. For instance, consider cascading several identical dielectric 
voids, of any arbitrary shape and material properties, in a linear array format, with center-to-
center spacing 2d a . The propagation along these arrays may be modeled analogously to the 
previous section and to Ref. [39], where we have solved analytically the propagation along linear 
arrays of plasmonic particles in free-space. In particular, when our technique in Ref. [39] is 
applied to this dual scenario, the dispersion equations for the guided modes supported by such 
arrays of nanovoids embedded in an ENG background become, in the limit of negligible losses: 
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, (15) 

                                                 
1 As seen in Fig. 1, the 1n   resonance arises around 755THz , the other resonances arise in order when the 

frequency is lowered, consistent with Eq. (11). 
2 This is different from the behavior of a plasmonic nanoparticle embedded in a dielectric (e.g., air), where, due to 
radiation losses, the bandwidth of higher-order resonances is usually much narrower than the first-order resonance. 
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Respectively, for the longitudinal and transverse polarization (with respect to the array axis x , 
see the insets in Fig. 7a and Fig. 7b respectively), where   is the longitudinal wave number of 

the guided modes ( i xe   spatial dependence) and ee  is the generic electric polarizability of each 

individual nanovoid, consistent with Ref. [39]. Since the wave propagation is forbidden in the 
background material, the radiation from this array is automatically avoided in this geometry, and 
the coupling among distant elements is consistently minimized. In this lossless limit, Eq. (15) 
indeed ensures quick convergence and only a few terms should be considered for an accurate 
prediction of the guided wave number  . Introducing losses, however, Eq. (15) is not properly 
converging and an analytic continuation is necessary to handle the problem accurately. In this 
sense, the closed-form expressions may be derived, analogous to those derived in the previous 
section for the present dual geometry, as: 
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, (16) 

with        1 1, i d i i d
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b

ee ee
b

ik 

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 . NLi  is the polylogarithm function, which may be analytically continued in the 

complex plane following Refs. [39], [68]. 

Owing to the absence of radiation, these equations are much simpler to analyze than their 
counterparts derived in Ref. [39] for the transparent background scenario. When losses are 
absent, they are real-valued.  When the losses are considered in general their imaginary part is 
simply associated with the ohmic absorption in the background (notice that due to the 
normalizations, when losses are considered the normalized distance d  becomes a complex 
quantity). Due to the properties of  NLi z  and their derivatives (see Ref. [39] for details), Eq. 

(16) implies that in the longitudinal polarization the chain supports only “backward” modes 
(oppositely-signed phase and group velocities), whereas the modes are inherently “forward” for 
the transverse polarization. This is opposite to the dual scenario of arrays of plasmonic particles 
in a transparent background, consistent with the fact that in both polarizations we have 
effectively interchanged the roles of nanoinductors and nanocapacitors (in the longitudinal 
polarization, the equivalent circuit model for this geometry consists of series capacitors and 
shunt inductors, like in a left-handed transmission line[69], whereas for transverse modes we 
have series inductors and shunt capacitors, as in a regular transmission line supporting forward 
wave propagation).  Eq. (16) determines the conditions on the polarizability of each individual 
cavity and on the spacing among them, so that such arrays may support propagation. In 
particular, the range of guidance for the two polarizations may be written in closed-form by 
considering the properties of  NLi z  and the fact that, due to its periodicity, the array may 

support propagation in the range 0    . The range of guided wave propagation as a function 

of ee  may be interestingly written in closed form as: 
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, (17) 

valid in the limit of zero losses.  

 
Figure 7 - Regions of guidance (between the black and red lines) for arrays of nanovoids in an unbounded plasmonic 

background for the two polarizations, as a function of the normalized distance d  for fixed ratio / 2.1d a  . 

These results are valid for any shape of the nanovoids, since they are written in terms of the 
generic polarizability ee . For a homogenous spherical void of permittivity  , we have 

  31 23

2
b

ee b
b

ik a
 
 

 



  and this allows plotting the conditions (17) in terms of the ratio /b  , 

as reported in Figure 7 for the case of 2.1d a . The solid lines in the figure are relative to the 
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current scenario (i.e., voids embedded in the ENG background), whereas the dashed lines refer to 
the dual case of plasmonic particles in a transparent background (consistent with the analogous 
plots in Ref. [39]). The regions of guidance are delimited by the loci 0   and / d   
(notice that in this geometry, for which propagation is forbidden in the background material, also 
fast modes with 1   may propagate without losses, like inside a regular waveguide at RF, 

differently from the case of plasmonic particles that are required to radiate away when bk  ). 

In the plot other curves for specific values of   within the guidance region are also shown. 

Since 0b   and / 0bd d    for passivity requirements [70], both plots confirm that 

longitudinal modes are necessarily backward (Fig. 7a) and transverse modes are forward (Fig. 
7b), opposite to the dual configuration in Ref. [13].  

Some other interesting features are evident in these plots: in principle there is no limit on the 
distance between the nanovoid cavities to support propagation, even if, for large enough 
distance, propagation is allowed only very near the resonant frequency of the individual cavities 
(for which / 2b   ). This may substantially enlarge the relative region of propagation when 

compared with the dual configuration of plasmonic particles (dashed lines), particularly for the 
transverse polarization (in Ref. [39] it was proven analytically that arrays of plasmonic particles 
in a transparent background may support propagating modes with no radiation losses only for 
d  ). It should be noticed, however, that for large distances the supported modes are very fast 
( 0  ) and this propagation region may become sensitive to the material absorption in the 
background. For closer and closer particles, the range of values of permittivities of dielectric 
voids for which propagation is admissible gets relatively larger, consistent with the tight 
coupling among the individual resonances in the chain, and therefore relatively larger 
bandwidths of propagation are expected, compared to the dual geometry, due to absence of 
radiation loss from the array. In the limit of 0d  , the regions of guidance coincide for the two 
dual geometries, since in this case quasi-static considerations hold [39]. 

Figure 8, as an example, shows the dispersion of the guided modes for a chain of spherical SiC  
voids embedded in a silver background with 5a nm  and 10.5d nm , considering realistic 
values of permittivity (including dispersion and losses) for both materials [27],[71]. In particular, 
here the silver is modeled using a Drude model with plasma frequency 2.175pf PHz  and 

damping frequency 435THz  . The figure reports the real and imaginary parts of the 

normalized guided wave number 0/ k , with 0 0 0k    . Fig. 8a reports the comparison 

between the dispersion curves in the ideally lossless scenario (neglecting loss in silver, solid 
lines) and the case in which losses are considered (dashed). As expected, their influence is most 
visible near the edges of the pass-band, since the group velocity is lower. The thin dashed line in 
this panel represents the dispersion of the curve  Re / d  , which coincides with the stop-

band for these guided modes, as again expected. Fig. 8b reports the imaginary part of the 
normalized guided wave number in the two polarizations, also reporting the level of absorption 
in 0/dB  , where 0 02 / k  . It is clear that realistically these guided beams cannot propagate 

over multiple wavelengths, but this is expected, considering the level of confinement represented 
by the large value of  Re  . 
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Figure 8 - Dispersion of the real (a) and imaginary (b) part of  , normalized to 0k , for a linear array of SiC  voids 

of radius 5a nm  in a silver background with 10.5d nm . The thin dotted line corresponds to the condition 

/ d  , which is the upper limit for modal propagation, whereas the dashed lines refer to the case in which 

material losses are neglected. 

It is evident that the dispersion of   versus frequency supports the backward (forward) 
propagation of longitudinal (transverse) modes, with the derivative /    confirming the 
previous discussion. The bandwidth for longitudinal modes is slightly larger than for the 
transverse modes, consistent with the dual scenario [39], implying that in this geometry 
backward-wave propagation is actually more robust than forward-wave propagation, in terms of 
bandwidth and losses (Fig. 8b). The possibility of relatively low-loss propagation over a 
relatively wide bandwidth is feasible, consistent with the transmission-line analogy at radio-
frequencies. Another advantage of this dual configuration, with respect to plasmonic particles in 
a transparent background, is the suppression of the spurious transverse mode with forward 
properties [39] that limits the bandwidth of the transverse backward-wave mode in the dual 
geometry. Here its presence is avoided due to the absence of propagation in the background 
material. In the figure the dashed lines refer to the case in which material losses are neglected, 
exhibit the fact that their presence does not sensibly affect the phase velocity of guided modes 
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(  Re  , Fig. 8a), but it simply affects the propagation distance (  Im  , Fig. 8b). As noticed in 

panel a), and consistent with the dual scenario [39], losses are more significant in the regions 
where slow-wave propagation arises, i.e., near the edges of the propagation band, where the 
group velocity / 0    . 

e. Dielectric nanorod in an ENG background 

In the limit in which the dielectric nanovoids analyzed in the previous section are closely packed 
together, they may constitute a homogeneous 1D cylindrical nanorod of radius a  surrounded by 
an ENG background, as investigated, e.g., in Ref. [55]. The properties of the dual configuration, 
i.e., a plasmonic nanorod used as waveguide, have been thoroughly investigated by various 
groups in several papers (e.g., Refs. [41],[72]) and the analytical framework is the same when 
plasmonic materials form the background. In particular, the dispersion equation for a mode with 
generic azimuthal order n  supported by a nanorod with permittivity   and radius a  is given by: 
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. (18) 

Still sub-diffraction propagation may be obtained and, not surprisingly, the properties of the 
chain configuration analyzed in the previous section do appear in the modes guided by these 
cylindrical nanovoids. In particular, the longitudinal polarization in the array of voids 
corresponds to the azimuthally symmetric 0TM  mode (both with backward-wave properties), 

whereas the transverse polarization in the chain corresponds to the forward hybrid quasi- 1TM  

mode, consistent with the results in Ref. [41]. The important difference between these two 
geometries arises in the frequency band in which propagation is supported. If the array of 
nanovoids supports propagation in a frequency band centered around the resonance of each 
nanovoid (for the homogeneous sphere case when / 2b  ), the local geometry is drastically 

changed when the array of inclusions merges into a single infinite nanorod, shifting the 
propagation band around the plasmonic frequency of the nanorod, which happens for a 
homogeneous cylinder near b    for any order 0n  . This is shown in Fig. 9, where we have 

reported the propagation properties, in both polarizations, of a cylindrical nanorod made of SiC  
in a silver background, with 5a nm , consistent with the example in Fig. 8. The plots confirm 
the correspondence between the cylindrical guided modes and polarization of the modes in the 
arrays described in the previous section, showing how the cylindrical geometry may provide 
another possibility for obtaining highly confined guided wave propagation in specific frequency 
bands of interest with relatively long propagation distances.  
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Figure 9 - Dispersion of the real (a) and imaginary (b) part of  , normalized to  Re bik  calculated at the central 

frequency, for a cylindrical nanorod made of SiC  with radius 5a nm  embedded in an unbounded silver 

background. 

We compare more thoroughly the guidance properties of the 1D waveguides analyzed in these 
two subsections in the following. It would be interesting to compare more thoroughly the 
propagation along nanovoid arrays and the dual geometry of plasmonic nanoparticle arrays, as 
well as nanorods and cylindrical nanovoids. In part, we also address this comparison in the 
following section. However, it is worth noting that it is not straightforward to establish a fair and 
universal criterion to compare these different waveguide geometries. On the one hand, a 
thorough comparison would require keeping the same shape of the waveguide and using the 
same materials, with similar level of losses. However, as it is clear after comparing the 
dispersion bands in Fig. 7, the guidance regions in these two complementary scenarios would fall 
in very different frequency bands. For instance, for the longitudinal mode of the arrays of 
nanovoids in Fig. 8, propagation is expected in the green-blue bands, whereas the dual setup of 
silver nanoparticles in a SiC  background would support propagation in the red spectrum. This 
drastic difference is of course reflected in substantially different properties of the involved 
plasmonic materials, which affect the overall propagation lengths. Similar considerations are 
applicable in the case of cylindrical rods. 

f. 2D arrays of nanovoids 

The extension of the analytical solution presented in Ref. [39] and above to the 2D array of 
nanoparticles and nanovoids may be performed following the analytical technique that we have 
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recently applied to study the propagation in 3D arrays of plasmonic particles [40], based on the 
acceleration technique presented in Ref. [73].  In this 2D geometry, Eq. (16) becomes: 
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 (19)   

where ,x y   are the components of the propagation wave vector in the -x y  array plane and 

,x yd d  are the spacing distances (i.e. the periodicities in the x and y directions). These formulas 

are equally valid both for 2D arrays of plasmonic nanoparticles and of nanovoids in a plasmonic 
background, once again in terms of the individual polarizability of each inclusion 1

ee  . The 

convergence of the summations in (19) is very fast (few terms are needed for convergence) and 
the equations are also valid for complex values of   (due to ohmic absorption or radiation losses 
in the transparent background case). 

The properties of these chains are analogous to those highlighted in Section 2b for the 1D case, 
even if the operational bandwidth and robustness to losses may be worsened in the transverse 
polarization when the parallel chains get too close to each other, consistent with our findings in 
3D arrays [40]. In the case of nanovoids in a background material, in this 2D case the transverse 
propagation also implies forward-wave modes and longitudinal propagation corresponds to 
backward propagation. Longitudinal modes are generally more robust to losses and have a 
slightly larger frequency bandwidth, and in both scenarios the propagation band is centered 
around the resonant frequency of the individual inclusions, similar to the 1D arrays. 
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g. Planar nanolayers 

Similar to the 1D geometry, when the nanoparticles or nanovoids are closely packed together, the 
2D structure resembles, in the limit, a single planar nanolayer with thickness 2a , corresponding 
to the geometry thoroughly analyzed in Ref. [56]. The corresponding dispersion relation for the 
TM  modes may be split into even and odd operation, with conditions: 

2 2
02 2

0 2 2
0

2 2
02 2

0 2 2
0

: tanh

: coth

b

b

b

b

even a

odd a

     
   

     
   

     

     

. (20) 

As we have shown in Ref. [56], this geometry also fully supports the nanocircuit interpretation, 
acting as an infinite cascade of nanoinductors and nanocapacitors arranged in series or in parallel 
as a function of the polarization of the local electric field. In particular, the longitudinal 
polarization in the 2D nanochain/nanovoids problem corresponds to the odd TM  modes in the 
planar layer geometry, and correspondingly transverse polarization corresponds to the even 
modes. This is confirmed by the backward (forward) nature of the odd (even) modes in the 
metal-insulator-metal geometry [56]. Moreover, in this case the propagation band is generally 
located around the resonance of the layer (when b   ), even if usually the bandwidths over 

which propagation takes place in this planar layer geometry are very large. In the following 
section, we compare the different types of plasmonic waveguides that we have introduced in this 
section, highlighting the differences among them and the potentials that they may offer for 
different applications. 

h. Figure of merit for different plasmonic waveguides: 1D propagation 

Following Sections 2b-c, 1D plasmonic waveguides may be envisioned as linear arrays of 
plasmonic nanoparticles in a transparent background, nanovoids in a plasmonic background, and 
cylindrical nanorods. In all these scenarios, the field distribution away from the interface 

between plasmonic and dielectric materials decays as  2 2
0i bK      , where   is the 

radial coordinate with respect to the axis of propagation,  .iK  is the modified Hankel function 

and 1i   for azimuthally symmetric modes (the longitudinal mode in the array geometries and 
the 0TM  modes in the cylindrical structures), whereas 2i   for the transverse polarization and 

the hybrid quasi- 1TM  modes [39]-[41]. This allows one to evaluate the beam cross section as the 

distance 0  for which the field amplitude is decreased to 1e  of its value at a  . It is clear that 

0  decreases for larger  Re  , since the mode is more concentrated around the waveguide. Not 

surprisingly, decreasing the waveguide radius a  for a given frequency,  Re   increases, in 

principle without any limit, supporting the possibility of highly confined sub-diffractive guided 
wave propagation. 
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On the other hand, we may define the attenuation length L  as the propagation length along the 
x  axis for which the modal field has decreased to 1e  of its original value due to ohmic (and in 

general radiation) losses. It is noted that, due to the same definition of  ,    1
ImL 


 . 

 
Figure 10. Dispersion of the lateral confinement (a) and attenuation length (b) for four different forward-wave 1-D 

waveguides employing silicon-nitride and silver with 25a nm . 

As a first example, in Fig. 10 we compare the guidance properties of four different 1D forward-
wave waveguides composed of silver Ag  (as the plasmonic material) and silicon-nitride 3 4Si N  

(as the dielectric), in particular for the cases of: (a) silver nanoparticles embedded in the silicon-
nitride background with longitudinal polarization, (b) silicon-nitride nanovoids in silver 
background with transverse polarization, (c) silver nanorod in silicon-nitride background with 

0TM  mode, and (d) a silicon-nitride nanocylinder in silver background with quasi- 1TM  hybrid 

mode. It is important to stress that for a fair comparison of the different performance of these 
different waveguides, in this section we have used the experimental values of the silver 
permittivity as extracted from Ref. [27]. This is different from the simplified Drude model used 
in the previous section, which does not take into account the interband transitions of silver in the 
near-UV. We have preferred the Drude model in the previous section because it provides a 
clearer and more predictable behavior with frequency, providing some intuitive insights into the 
effect of frequency dispersion on the modal propagation of these sub-diffractive modes. 
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However, in this section we use realistic experimental values of silver permittivity, to ensure the 
higher accuracy of these results even near the UV band. 

In Fig. 10a we plot the variation of the lateral confinement 0  versus the operation wavelength 

(in free-space) 0 , whereas in Fig. 10b we report the corresponding variation of the attenuation 

length L . In all these examples the radius of the waveguide is 25a nm  and for the array cases 
the distance between neighboring spherical inclusions is 2.1d a . Several features are evident 
from these plots: first of all, in all these geometries it is possible to confine the propagating 
beam, over a given frequency band, in a cross section much smaller than the usual diffraction 
limit ( 0 / 2 ). These sub-diffractive beams may propagate over several wavelengths without 

diffraction and with relatively low damping, despite the strong concentration of the guided beam 
and the material absorption (and possibly radiation in the cases of transparent backgrounds). 

 
Figure 11 - Figure of merit for the four classes of forward-wave 1D waveguides in Fig. 10 (when available) for four 

different scenarios: (a) silver and free-space with 25a nm ; (b) silver and silicon-nitride with 25a nm  

(corresponding to Fig. 10); (c) silver and free-space with 5a nm ; (d) silver and silicon-nitride with 5a nm . 

The available bandwidth is usually much larger for cylindrical waveguides, whereas the 
propagation along chain of particles is usually possible only over a relatively narrower 
bandwidth (still large enough for many applications) around the resonance frequency of the 
inclusions composing the array, which in this case happens near the wavelength for which 

3 4

12Ag Si N    (with the plus minus depending on whether the silver composes the inclusions or 

the background). Depending on the frequency band and the application of interest, arrays of 
particles or cylindrical waveguides may be more or less appealing. For instance, in this geometry 
the array of nanovoids appears very suitable in the optical frequency range, providing the longest 
propagation distance together with a good beam confinement. At lower frequencies, the 
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cylindrical plasmonic nanorod seems the most suitable solution for this combination of materials, 
due also to the larger bandwidth of propagation. 

A clear general trend is evident in Fig. 10, which applies to all these classes of plasmonic 
waveguides: a trade-off should be sought between beam lateral confinement and attenuation 
length. Even if in principle there is not an upper limit to the value of  Re   (and therefore to the 

beam lateral confinement), the value of  Im   indeed usually grows accordingly, effectively 

limiting the possibility of realizing highly confined ultra-sub-diffractive waveguides with 
reasonably long attenuation lengths. In the following, therefore, we define a figure of merit as the 
ratio 0/F L  , in order to effectively compare waveguides with different sizes and geometries. 

Figure 11, for instance, compares, when available, the four different scenarios of Fig. 10 using 
two different dielectric materials (free-space, Fig. 11a,c; silicon-nitride, Fig. 11b,d) and two 
different radii ( 25a nm , Fig. 11a,b; 5a nm , Fig. 11c,d). For each panel only some 
waveguides may support a propagating mode with sufficient robustness to propagation despite 
the material absorption, as indicated in the legend. Even though the trends are consistent in the 
four panels, important differences arise. For instance, a larger radius usually allows reaching 
larger figures of merit, due to the lower field concentration in the plasmonic materials. 
Moreover, the free-space as dielectric ensures larger figures of merit at low frequencies, since the 
mode can be more spread (with lower beam concentration) in the transparent region, even though 
the chain configuration in the plasmonic background may achieve relatively large figures of 
merit at optical wavelengths.  

 
Figure 12. Similar to Fig. 11, but for four backward-wave 1D waveguides (dual of those in Fig. 11, when available) 
for: (a) silver and free-space with 25a nm ; (b) silver and silicon-nitride with 25a nm  (corresponding to Fig. 

10); (c) silver and free-space with 5a nm ; (d) silver and silicon-nitride with 5a nm . 
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Figure 12 refers to the backward modes supported by the dual geometries or polarizations, 
employing the same materials. In this case, the modes are supported only by some combinations, 
since backward modes are usually more challenging to be supported. However, consistent with 
Fig. 8, for small radii the nanovoid linear array supports a fairly robust longitudinal mode with 
backward-wave properties that may achieve, over a reasonable bandwidth, considerable figures 
of merit, as reported in Fig. 12b. This may provide some interesting possibility to realize left-
handed nanotransmission lines at optical frequencies. The cylindrical rods, on the other hand, do 
not easily support backward modes with sufficient robustness to losses. If the interest is merely 
in field confinement and propagation length, the best option and the largest figure of merit is 
usually obtained with forward-mode waveguides. 

 
Figure 13. Similar to Fig. 10, but for 2D geometries, dispersion of the lateral confinement (a) and attenuation length 

(b) for three different forward-wave 2-D waveguides employing silicon-nitride and silver with 25a nm . 

i. Figure of Merit for Different Plasmonic Waveguides: 2D propagation 

We may perform an analogous analysis for the different types of 2D waveguides, i.e., 2D planar 
arrays of nanoparticles or nanovoids and planar nanolayers with different combinations of 
plasmonic and dielectric materials. In this scenario, the field distribution decays in the transverse 
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direction as 
2 2

bk ze   , therefore    1
2 2

0 Re ba k 


   . In the case of 2D arrays of 

inclusions, sufficiently small x yd d  ensure isotropic propagation in two dimensions, analogous 

to the planar layers. In the following, for comparison, we analyze this situation. 

Figure 13 reports the dispersion of 0  and L  for three classes of plasmonic 2D forward 

waveguides, consisting of a planar array of silver nanoparticles in a silicon-nitride background 
(with longitudinal polarization), a silver planar nanolayer surrounded by silicon-nitride (odd 
mode) and a 3 4Si N  nanolayer in a silver background (even mode). For the planar array of 

nanoparticles we have assumed isotropic guidance properties, i.e., same interspacing 
2.1x yd d a   in the plane of propagation. In all the cases 25a nm  is the nanosphere radius or 

the half-thickness of the nanolayer. The dual scenario of silicon-nitride voids in a silver 
background does not support a forward mode with sufficiently low damping in this 
configuration, so it has not been reported in the figure. 

 
Figure 14. Similar to Fig. 11, but for three forward-wave 2D waveguides for: (a) silver and free-space with 

25a nm ; (b) silver and silicon-nitride with 25a nm  (corresponding to Fig. 8); (c) silver and free-space with 

5a nm ; (d) silver and silicon-nitride with 5a nm . 

It is noticed that the propagation properties are analogous to the 1D case, even if the bandwidth 
and guidance properties of the arrays of nanoinclusions are somehow worsened by the coupling 
between closely packed parallel arrays. The plasmonic nanolayer geometry may achieve very 
long propagation distances, at the expenses of worse beam confinement. On the other hand, in 
the infrared the dielectric planar gap in a silver background performs well, similar to a parallel-
plate waveguide, confining the field in a sub-diffractive quasi-TEM mode with long propagation 
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distances. In the 2D scenario this parallel-plate silver configuration seems the most adequate for 
guidance and in this sense the advantages of a plasmonic background, as outlined in the previous 
sections, are evident in Fig. 13. 

Figure 14 shows the figure of merit dispersion for four different geometries, consistent with the 
results of Fig. 11, but for the 2D case. Here it is even more evident how the plasmonic 
background allows confinement in the waveguide in a sub-diffractive region, still ensuring 
sufficiently low-damping. At optical frequencies the 2D arrays of nanovoids may also be 
employed in this configuration with good performance. (As an aside, it should be noted that the 
central frequency for the propagation band in the array geometries may be tailored at will by 
changing the geometry of each inclusion, or the involved materials, as outlined in the previous 
section. In this geometry the resonance between silver and air or silicon-nitride happens in the 
visible, but THz  plasmonic materials, like silicon carbide, or multi-layered particles, may shift 
the propagation band at will). 

 
Figure 15. Variation of the figure of merit for forward 1D and 2D waveguides as a function of the half-thickness a  
for: (a) silver and free-space at 0 600 nm  ; (b) silver and silicon-nitride at 0 600 nm   (corresponding to Fig. 

13); (c) silver and free-space at 0 1.5 m  ; (d) silver and silicon-nitride at 0 1.5 m  . 

As a last example, Fig. 15 shows the variation of F , for the classes of forward waveguides in 1D 
and 2D geometries, with the half thickness a  of the waveguide, for the same combinations of 
materials as in the previous examples. The panels refer to an optical wavelength ( 0 600nm  , 

Fig. 10a-b) and a typical telecommunication wavelength ( 0 1.5 m  , Fig. 10c-d). These charts 

show how the figure of merit tends to increase for larger waveguides and it is in general larger at 
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lower frequencies and for 3 4Si N Ag  combinations. The potential advantages of a plasmonic 

background in guidance and confinement are evident also in these charts. 

j. Conclusions 

We have considered and compared in this section eight different solutions for guiding optical 
beams with highly confined sub-diffractive cross-sections and reasonable propagation distance, 
comparing their potential advantages and drawbacks. In particular, we have compared, both in 
1D and 2D geometries, plasmonic waveguides embedded in a transparent background, and the 
dielectric waveguides in a plasmonic background, showing how the latter may arguably provide 
better figures of merit in terms of propagation distances versus lateral cross-section. The 
analogies and differences between arrays of particles and continuous rods and layers have been 
outlined, showing how the latter may provide wider guidance bands, whereas the former may 
show larger figures of merit and propagation lengths, but more limited bandwidth of operation 
concentrated around the resonances of the inclusions composing the arrays. These results may be 
of interest for the design and realization of plasmonic waveguides, with potentials in optical 
communications and nanocircuit applications. 

5. Radiation and Leaky-Waves along Linear Arrays 
a. Summary 

We analyze in this section the leaky-wave properties of linear arrays of plasmonic nanoparticles. 
It is shown that such periodic arrays may support two orthogonal leaky-wave propagation 
regimes, respectively with longitudinal and transverse polarization. Using closed-form dispersion 
relations derived in the complex domain, consistent with the previous sections, we analyze their 
properties in the leaky-wave regime and we derive general conditions under which a nanoparticle 
array with sub-wavelength lateral cross section may support a radiating leaky mode with 
directive properties, conical radiation, frequency scanning and sufficiently long propagation 
distance, paving the way to potential applications as a leaky-wave optical nanoantenna with sub-
diffractive properties. Realistic designs and configurations are presented, considering the 
material dispersion and absorption of optical materials, for which we determine propagation 
distance, near-field distribution and far-field leaky-wave radiation pattern. 

b. Introduction 

The miniaturization of electronic and optical devices is one of the main challenges in modern 
communications and computer technology. Various concepts and devices, well-established in 
microwave engineering, have been transplanted to optical frequencies, at which the characteristic 
size and operating wavelength are orders of magnitude smaller, and frequency bandwidths are 
proportionally larger. One successful example is represented by optical nanoantennas [74]-[82], 
which have been inspired in recent years by well-established concepts at radio frequencies[83]. 
As another example, in microwave technology the electromagnetic properties of periodic 
structures play a crucial role in several devices. Various periodic structures, such as slot arrays 
and frequency selective surfaces, are widely applied as antennas and filters. Recent advances in 
nanotechnology have made possible to extend also these concepts to optical frequencies, where 
periodic structures, arrays and nanoscale metamaterials have been recently investigated for a 
variety of applications. 
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As one of the interesting applications of periodic arrays at radio frequencies for radiation 
applications, leaky-wave antennas are a well-established technology that provides directive 
radiation and frequency beam scanning [83]-[85]. The recent application of metamaterial 
concepts has provided novel possibilities for leaky-wave antenna design and operation at 
microwave frequencies [86]-[88]. Translating these concepts to the optical domain may open 
new areas in optical communications, control of radiation and optical computing. In this regard, 
periodic arrays of nanoparticles have already been considered by various groups as optical 
waveguides with confined beams, overcoming the optical diffraction limit [89]-[98]. Dielectric 
waveguides are generally limited by diffraction to have a transverse cross section comparable 
with the wavelength, as guided optical beams tend to spread in the background material when the 
waveguide is too thin [99]. However, the use of plasmonic materials, and arrays of 
subwavelength plasmonic nanoparticles in particular [89]-[98], may overcome this limitation and 
confine a guided optical beam over a transverse cross-sections significantly smaller than the 
wavelength, supporting sub-diffractive propagation with relevant applications in optical 
computing and communications. 

This same nanoparticle array, which is realizable within available nanofabrication technology, 
may also provide an interesting way of realizing leaky-wave nanoantennas with sub-wavelength 
lateral cross-section and directive radiation at a specific angle in the far-field. Our group has 
theoretically investigated in the past guided-wave propagation along linear chains of plasmonic 
and metamaterial particles as optical nanotransmission lines with sub-diffractive properties 
[100]. Our contribution to this problem consisted in the derivation of a closed-form dispersion 
relation for real and complex dipolar modes supported by such arrays, with the only 
approximation being the neglect of multipoles of higher order than the dominant dipolar 
contribution from each particle. In particular, this formulation makes it possible to deal with the 
presence of realistic losses and damping for the guided modes, extending previous analyses that 
were limited to real wave numbers to the complex domain by an analytic continuation technique 
[100]. Similarly, this technique may be applied to problems involving radiation losses, coming 
into play when the wave energy is not totally guided along the particle chain, but partially leaked 
out, as it happens in leaky modes. 

As mentioned above, the idea of energy leakage is widely applied in microwave engineering to 
design directive radiators with beam scanning capabilities. A leaky mode is a fast eigenmode of 
the structure with complex wave number, whose real part is less than the free-space wave 
number [101]. This ensures that the energy is not confined along the array, and the Poynting 
(power flux) vector points towards the lateral direction. Provided that the imaginary part of the 
leaky wave number is sufficiently small, the radiation from the chain may become very directive, 
producing a conical directive beam at a given angle from the array axis. At microwaves, leaky-
wave antennas are usually obtained by perturbing a guided wave with periodic defects, as in a 
periodically loaded micro-strip line [102]-[104]. It is challenging, however, to produce defects 
within a sub-wavelength transverse cross-section, since in such case they tend to weakly interact 
with the mode of interest, which is usually weakly confined. This is another clear symptom of 
the diffraction limit of guided beams in free-space. For this reason, the leaky-wave antenna 
transverse cross section is usually comparable with the wavelength of operation. In optics, 
surface plasmons may be able to confine the energy within sub-wavelength cross-sections, and 
there has been some interest in using energy leakage from thin plasmonic films for near field 
microscopy [105]-[107]. 
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In this work, stemming from our previous analysis of guided modes along periodic linear arrays 
of sub-wavelength nanoparticles, as reported in part in the previous sections, we analyze the 
potential of this geometry to support leaky-waves with directive radiation properties in the 
optical regime, even in the limit in which it has sub-wavelength (i.e., not limited by the 
diffraction limitations mentioned above) lateral cross section, in order to form a sub-diffractive 
optical leaky-wave nanoantenna. This may lead to the possibility to connect distant points of an 
optical nanocircuit board [108] and create point-to-point links at the nanoscale. In this context, 
interest in tailoring the optical radiation from linear and planar arrays of nanoparticles, forming 
Yagi-Uda nanoantenna arrays [109]-[110] or planar reflectarrays [111]-[112], has been recently 
discussed in several exciting papers. In the following, we derive relevant design parameters and 
underline the fundamental and general limitations and challenges to the practical realization of 
leaky-wave nanoantennas as linear arrays of plasmonic nanoparticles. It should be mentioned 
that an extensive analysis of the complex modes supported by 1-D, 2-D and 3-D arrays of 
magnetodielectric particles has been recently reported [113], including some aspects of the 
leaky-wave propagation along sub-wavelength arrays of dielectric and magnetodielectric spheres 
with large index of refraction. Our general analysis is focused here on plasmonic nanoparticle 
arrays, which may ensure the application of these concepts at optical frequencies and may 
provide inherent advantages associated with their anomalous light interaction. 

z

x(a) Longitudinal

z

x
0

i Nd
N e p p

(b) Transverse
0p

0p
 

Figure 16 - Geometry under consideration: a linear array of polarizable nanoparticles supporting a longitudinal (a) or 
a transverse (b) eigenmode. 

c. Theoretical formulation 

Consider an infinite linear array of particles oriented along the z  axis, periodically located at 
z Nd , with d  being the center-to-center distance and N  being any positive or negative 
integer, consistent with the geometry analyzed in Ref. [100]. Provided that the nanoparticle size 
is much smaller than the wavelength of operation, as assumed in the previous sections, its wave 
interaction is dominated by the dipolar scattering and each element may be safely modeled as a 
polarizable dipole, fully characterized by its electric polarizability ee . As commonly done 

[114], and consistent with the analytical theory in Ref. [100], if 0 0eep E  is the dipole moment 

induced by a local electric field 0E  on the particle at 0z  , it is possible to derive a self-

sustained eigensolution traveling along the array in the form 0
i Nd

N e p p , under an i te   time 

convention. Here,   is the complex propagation factor, fully characterizing its propagation and 
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radiation properties. As reported in several papers on the topic [90]-[100], the complete 
eigenmode spectrum may be split into longitudinal and transverse polarizations, consistent 
respectively with Fig. 16(a) and Fig. 16(b). The dispersion relations for these two polarizations 
may be respectively written [100], consistent with the previous sections: 

   

     
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 

 

   

     

 (21) 

where 0d k d , 0/ k  ,  3
0 0/ 6ee eek   , 0 0 0k     , and 0 , 0  are the permittivity 

and permeability of background medium, respectively. In addition: 

       1 1
, Li Li

i d i d

N N Nf d e e
       (22) 

and  LiN x  is the polylogarithm function, as defined in Ref. [116]. Due to the inherent 

periodicity of the Floquet modes of the linear chain, we limit our analysis to the principal period 

Re d     . 

The form of dispersion relation (21) is valid for any real or complex value of  , ensuring that it 
may be employed to study guided [100] as well as leaky-wave propagation along the linear 
chains. In our previous work, we have discussed guided propagation along arrays of extremely 

sub-wavelength particles, showing that the condition 1Im 1ee       is required for the involved 

nanoparticles to support a real solution for   (guided modes with no decay) [100]. This 
condition is identically met for passive dipolar particles only when absorption may be neglected 

[114],[117], as physically expected, and it implies that Re 1     in Eq. (21). If the lossless 

condition is not satisfied ( 1Im 1ee      ), then absorption takes place in the nanoparticle array 

and the eigenwave numbers are necessarily complex, whose imaginary part is associated with the 
damping caused by Ohmic loss. 

Even in the lossless scenario, however, complex solutions are allowed when Re 1     (fast 

leaky modes), when 1 Re / d      (complex modes) or when Re / d      (stop-band). 

In the following, we are interested in leaky modes with sufficiently low Im    , which may 

provide directive radiation and sustained propagation over a reasonable electrical length, 
analogous to the operation of microwave leaky-wave antennas [83]. For d   (sufficiently tight 
arrays, which is required for leaky radiation, as we note in the following), the first-order Bloch 
mode dominates the far-field pattern, which may be therefore evaluated by simply assuming an 
averaged current line distribution along the z  axis with amplitude 0 /i zi e d p , consistent with 

Ref. [115]. In this case, the magnetic potential A  may be written in the two polarizations as:  

   1 2 20 0
0 04

i zH k e
d

   
p

A  (23) 
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where   is the radial coordinate in the suitable cylindrical reference system with axis along the 
cylinder. The electric and magnetic far-field distributions may be easily derived as 

0/  H A ,  0/ i  E H . 

This implies that a complex value of   necessarily requires a non-zero power flux and phase 

propagation along the radial direction. In particular, for  Im   sufficiently small, Eq. (23) 

represents a standard guided-wave mode for   0Re k  , with exponential decay rate in the 

radial direction given by Ref. [100]: 

  
  

2 2
1 0

2 2
2 0

: Re

: Re

L K k

T K k

 

 

 

 


 (24) 

and a leaky mode when   0Re k  , with conical beam radiation at an angle 1cos Re         

from the z  axis. In such case, the decay rate is the one of a cylindrical wave 1/   and the 

corresponding intensity pattern is well approximated by [84]: 

 
   

2

2 2

sin

cos Re Im
I


  


 

. (25) 

The radiation beamwidth of the main conical lobe is calculated as: 

02 Im / sinBW   , (26) 

which ensures that the directivity of radiation, a measure of how oriented and narrow the far-

field radiation pattern is towards the desired direction, is inversely proportional to Im    . 

It should be emphasized in this context that a complex solution of Eq. (21) implies in principle a 
diverging distribution of the induced dipole distribution along the array, which may raise some 
questions about the validity of its analytical continuation in the complex domain. It is noticed, 
however, that similar concerns arise any time we deal with complex eigensolutions of the wave 
equation, i.e., in regular leaky-wave configurations, or even in surface-wave propagation along 
lossy interfaces. Similar to such cases, this divergence arises only because of the assumption of 
an infinite array. Leaky-wave solutions do not represent proper contributions to the radiated 
spectrum of the chain, but they indeed dominate the steepest-descent approximation in specific 
angular regions of the visible spectrum, and therefore they constitute an accurate and effective 
description of the far-field distribution of the chain in a variety of realistic applications [83]. In 
practice, their divergence does not constitute an issue, since we are interested in solutions with 
small  Im   and finite chain lengths, for which the localized excitation (which may be 

represented by an emitting molecule or a quantum dot in this scenario at optical frequencies) is at 
a finite location along the array [118]. 
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Figure 17 - Variation of complex   in (a) longitudinal and (b) transverse polarization versus the normalized inverse 

polarizability of the nanoparticles composing the array. Here we consider a normalized center-to-center distance 
0.2d  . 

d. General properties of the leaky-wave eigensolution 

In this section, we report our investigation on the general properties of the complex solutions of 
Eq. (21), with special attention to the leaky-wave regime. In order to make the analysis very 
general, we focus in this section on the variation of complex   with the normalized quantity 

1Re ee    , which compactly describes the general properties of the individual nanoparticles 

forming the array. It is noticed, in particular, that 1Im ee     is simply associated with the 

absorption properties of the particles, and it is forced to be 1Im 1ee       when the particles are 

lossless. The available degrees of freedom to tailor the leaky-wave properties of the array are 
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therefore compactly represented, to within the dipolar approximation, by 1Re ee    , which is a 

function of the geometrical and material properties of the nanoparticles. In the next sections, we 
will provide specific examples of nanoparticle geometries that may synthesize the required 

values of 1Re ee     obtained in this section. 

As a first example, in Figure 17 we report the variation of complex   as a function of the 

normalized parameter 3 1Re eed     , for an interparticle distance 0.2d  . We consider here 

lossless particles with 1Im 1ee      . As seen in Fig. 17(a), the longitudinally polarized 

eigenmodes have a smooth transition from the guided-wave to the leaky-wave region at 

Re 1    . The lossless nature of the particles ensures Im 0     in the guided region 

Re 1    . As the wave number enters the region Re 1    , the imaginary part starts 

increasing, due to the conical radiation of the leaky mode at an angle 1
0 cos Re        . It is 

recognized that the guided modes in this longitudinal polarization are inherently forward in 

nature, since the slope 1Re / Re ee          is negative. As explicitly proven in Ref. [100], in 

fact, the slope of the curves in Fig. 17 is directly related to whether the modes are forward 
(negative slope) or backward (positive), which directly determines the sign of  Re /    for 

passive particles in regions in which Im     is negligible.  

Also in the leaky-wave regime, for low Im     negative slope is preserved, but, for the value 
1 1

minee   , the real part of   reaches a minimum at min  and then returns to Re 1    . Similar 

arguments apply in the low-damping region 1 1
minee   , ensuring that the supported longitudinal 

leaky-wave modes are forward, improper[119] in nature, as also verified by the fact that 

Re / Im 0         , (phase and group velocities are parallel with each other) in the region with 

small Im    . This follows from the modal dependence i ze  , which ensures that the phase 

propagation is in the same direction as the power flow and energy decay, under the condition 

Re / Im 0         .  

The level of radiation damping monotonically increases with 1Re ee    , implying that the range 
1 1

minRe ee       is preferable for more directive radiation. This is physically expected, since this 

is the region closer to the resonance of the individual nanoparticles composing the array, which 

always arises at 1Re 0ee    . Longitudinal leaky modes are inherently supported for positive 

values of 1Re ee    , due to their forward nature, since causality requires[100] 
1Re

0
ee



    


. 

It is worth noticing that the point of minimum minRe       arises close to the crossing 

Re Im         in the plot of Fig. 17a. This point may be considered the cut-off of the leaky-
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wave regime, since for 1 1
minee    the leaky-wave radiation is damped by rapid longitudinal 

decay, and its directivity is very limited. The occurrence of a cut-off for leaky modes close to 

where Re Im         is well known in a variety of leaky-wave antennas[85], and it is verified 

in this geometry for different values of d  in Fig. 18. It is interesting to note that this cut-off 
arises here around the region of minimum  . 

In the transverse polarization (Fig. 17b), the guided confined branch (right in the figure) is 

inherently backward in nature, since 1Re / Re 0ee          , due to similar arguments as 

outlined above, and consistent with analogous findings in thin plasmonic films [120]-[121] and 
optical metamaterials [122]. As outlined in Ref. [100], a second, less confined, forward branch is 
also present in the guided regime, of less interest from the practical point of view, since it is very 
similar to a plane wave traveling unperturbed in the background with very limited confinement. 
A complex branch stems from the contact point between these two guided modes, which enters 

the leaky-wave regime for sufficiently negative 1Re ee    . The dispersion of Re     with 

frequency in this regime decreases monotonically from +1 to -1, for decreasing 1Re ee    , 

crossing the axis Re 0    . For this specific value of inverse polarizability, the leaky mode 

passes from backward proper [123] (for less negative 1Re ee    ) to forward improper operation. 

It is evident that in this polarization we are mostly interested in the backward region, which 

ensures smaller damping factor Im    . As expected, also in this polarization the most 

interesting region arises closer to the resonance of the individual nanoparticles, i.e., here for less 

negative values of 1Re ee    . The leaky-wave branch is connected to the guided branches 

through a complex modal regime, which is typical of a transition between leaky-wave modes and 
a two-branch guided-wave regime [85]. In this transition region, the mode does not radiate and 
propagates with complex wave number, whose real part is very close to the one of free-space, 
and non-zero imaginary part. 

It is interesting to stress that the inherent backward propagation of guided and leaky-wave modes 
with transverse polarization may be appealing in the framework of negative-index propagation, 
and this guided regime has been exploited to realize double-negative metamaterials in the visible 
[120]-[122]. In terms of leaky-wave radiation, backward radiation may be of interest to increase 
the degrees of freedom in tailoring and directing the optical radiation, but, as we show in the 
following, it is intrinsically less efficient than the forward longitudinal mode. Farther from 
resonance, outside the leaky-wave regime, both polarizations have a stop-band region with 

Re 1    , in which the imaginary part grows in magnitude, the propagation is evanescent in 

nature and the damping is significantly large. In the following, we analyze more in detail the 
dispersion of the leaky-wave modes as a function of the interparticle distance d  and of the 
nanoparticle polarizability, with the goal of optimizing the leaky-wave radiation in the two 
polarizations, and of analyzing the fundamental limitations and possibilities of leaky radiation at 
optical frequencies. 
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i. Longitudinally polarized modes 

Consistent with Fig 17(a), Re 1     constitutes the boundary between guided-wave and leaky-

wave operation for longitudinal polarization. Formally, the leaky-wave regime is bounded by the 
following conditions on the nanoparticle inverse polarizability: 

         
3 1

3 2 3 2
Re 1

Re
3 2 2 Re , ,

3
eed

Cl d d Cl d f d idf d 



  




  

           , (27) 

where  ,Nf d  are defined in (22),  NCl   are the Clausen’s functions [116], which are real 

for real argument and  .  is the Riemann Zeta function. The left-hand side has been written in 

closed-form using the properties of the polylogarithm functions for real argument: 
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Figure 18 - Guided- and leaky-wave regions for longitudinal polarization. The solid blue and dashed red curves are 
respectively the loci of real solutions d   and 1  , which delimit the guided-wave regime. The dotted green 

line defines the upper limit of the leaky-wave regime. The black dots denote the locus minRe      , which may be 

considered the cut-off of the leaky-wave regime. 
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Figure 18 shows a map of the different ranges of guided-wave, leaky-wave radiation, or stop-

band, as a function of d  and 1Re ee    . The dashed red line in this plot represents the locus 

1  , which separates the guided-wave propagation (below) and leaky-wave radiation (above). 

The dotted green line represents the upper boundary of the leaky-wave regime, for which    

and Re 1    . In this plot, we have also considered the locus minRe     (black dotted line), 

which may be considered the cut-off for leaky-wave propagation, as discussed above. The solid 
blue line corresponds to / d  , which is the lower boundary of the guided regime. The 
regions above the leaky-wave region and below the guided-wave region are stop-band regions, 
where modes decay very fast along z , and are not of interest for guidance or radiation purposes. 

 

Figure 19 - Variation of the ratio Re Im           for the supported leaky-wave modes of the nanoparticle chain 

of Fig. 16 for longitudinal polarization, varying the center-to-center distance.  

It is seen how all the boundary curves converge at d   which represents the maximum 
interparticle distance for supporting guided or leaky modes along arrays of sub-wavelength 
nanoparticles. Moreover, the leaky-wave region widens up around 2d   and it is centered above 

the resonance condition for the individual nanoparticles 1Re 0ee     . In the limit 0d  , the 

leaky-wave range Eq. (27) tends to a single point with value  3 1Re 6 3 7.21eed       , 

implying that too closely packed chains provide a very limited leaky-wave radiation bandwidth. 

One of the relevant figures of merit for leaky modes is the ratio Re Im          . A lower 

Re     may be desirable for radiation closer to the normal to the array, but this is usually 

accompanied by a larger Im    , which implies shorter propagation distance, and inherently 

lower directivity. As mentioned above, the cut-off of the leaky mode may be defined by 1  . 
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Overall, a larger value of   ensures larger directivity and radiation farther from the array axis, 
both desirable features of a leaky-wave antenna. 

Figure 19 shows the variation of log  versus Re     for different values of interparticle 

distance. The ratio   tends to infinity for Re 1    , since we are operating near the guided-

wave regime and lossless particles are being considered here. This region is characterized by 
endfire radiation, consistent with the limit of a surface mode propagating along the chain. A 
wider range of Re     implies that energy may be coupled into a broader angular spectrum, 

which is more appealing for antenna applications. Fig. 19 confirms that better ratios   and wider 

variation along Re     may be obtained by choosing a smaller value of d . This is to be 

expected, since the nanoparticles in this regime are tightly coupled, ensuring more flexibility in 
terms of guidance and radiation. Consistent with Fig. 17, however, the available bandwidth of 
leaky-wave operation shrinks down for smaller values of d . It should be stressed, in addition, 
that small interparticle distance necessarily requires nanoparticles with smaller diameters, which 
in turn implies higher individual Q factors and more sensitivity to losses. We discuss these 
aspects in the following section, when we consider specific models for the nanoparticle 
geometry. 

ii. Transversely polarized modes 

Transversely polarized leaky modes behave quite differently. As discussed above, guided-wave 
and leaky-wave regions are separated by a complex transition region, not present in the 
longitudinal polarization. By setting Re 1      and solving for the corresponding Im     in 

Eq. (21), we can obtain the range of polarizability values that support leaky-wave propagation in 
this regime. This condition may be formally expressed as: 
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, (29) 

where  ,Nf d  are defined in (22).  

Figure 20 shows the different modal regions for transversely polarized modes as a function of d  
and 1

ee  , analogous to Fig. 18. Like the longitudinal case, the leaky-wave regime converges to a 

single point for 0d  , implying that also in this polarization the leaky-wave regime is of 
narrow bandwidth for very tight nanoparticles. On the other extreme, towards d  , the modal 
region widens, ensuring a relatively broad range of normalized polarizability values that support 
leaky modes. As we will point out in the following, however, the corresponding Im     is rather 

large for this range of interparticle distance. 

Figure 21 shows the variation of   with the array properties in this polarization, analogous to 
Fig. 19. It is evident comparing the two figures that it is more challenging to obtain a reasonably 
large figure of merit in this polarization. As anticipated earlier, the region of most interest is 
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localized in the backward-wave region, for positive Re     (right portion of Fig. 21). Due to the 

presence of a complex transition region between guided-wave and leaky-wave modes, in this 
polarization the imaginary part Im     is not negligible even for values Re 1     , and the 

ratio   is never remarkably large. These results confirm the general dispersion properties of 
transverse modes highlighted in Fig. 17b.  

 

Figure 20 - Analogous to Fig. 18, guided- and leaky-wave regions for transversely polarized modes. 

 

Figure 21. (Color online) Analogous to Fig. 19, variation of   vs. Re     for transversely polarized leaky modes, 

varying the center-to-center distance. 
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Before concluding this section, it should be mentioned that some of the general modal features 
highlighted here for linear arrays of nanoparticles may be obtained in thin plasmonic films, in the 
limit in which the array density increases. This is consistent with recent analyses of complex 
modes along such geometries [106], which have also highlighted the presence of backward-wave 
propagation [120]-[121] for transverse polarization, consistent with the general results presented 
here. 

 

Figure 22 - (a) Guided-wave and leaky-wave regions for longitudinal polarization, as a function of nanosphere 
permittivity and interparticle distance. The guided-wave regime is supported between the bold lines, while the leaky-

wave region is bounded by thinner lines. (b) Loci of constant Re Im           in the leaky-wave region for 

2.2  . Blue solid lines delimit the guided-wave and leaky-wave regions. 

Approved for public release; distribution unlimited.

(a) 0~----------------------~ 

-4 

CJJO -6 
(3 

-8 

-10 

' .. · ·····.·· 

i 

I 
I 

. . . . 
·. - n=3.0 

·.. -- 11=2.5 
... ..... 11=2.1 . . 

o ' 

' 0 
0 

0 . 

0 

-12 ~--~--~~--~------~~~~~~0 

0.0 0.5 1.0 1.5 2.0 2.5 3.on 
a 

(b) 0 ,--------------------------. 

0 
w 

-2 

-6 

(;) -8 

................ ····· 

-. 
' \ 

\ Leaky-wave Region \ 

-1 0 \ -- <; = 1 00 \ 
I •' <;=10 -12 
I 

<;=5 ' 
\ 

-14 - ··· <;=1 ' 

·. 
. . 

-15 ~----~~----~----~--------~----~--------~ 

0.0 0.5 1.0 1.5 2.0 2.5 3.on 
a 

-; 



 

45 
 

e. Realistic models for nanoparticles 

In the previous section, we have analyzed the general conditions and limitations for leaky-wave 
propagation along sub-wavelength nanoparticle chains, considering a general model for the 
nanoparticle polarizability. In particular, we have shown that longitudinal forward leaky-wave 
modes may provide better directivity properties than transverse modes, due to their significantly 
larger value of   for the same interparticle distance. Moreover, we have outlined the range of 

1Re ee     required to sustain leaky-wave radiation. In this section, we will consider realistic 

nanoparticle geometries to apply the previous general results to several practical designs for 
optical leaky-wave arrays. 

In practice, 1Re ee     is determined by the specific design and shape of the nanoparticles forming 

the array. In the case of spherical nanoparticles of radius a  and permittivity  , for instance, we 
obtain [100]: 

  31 0
0

0

23
Re

2ee k a
 
 

    
 , (30) 

in the quasi-static limit of interest here. Other possible geometries of interest may be represented 
by coated spheres, with permittivities 1  and 2  and ratio of inner to outer radius  , for which: 

       
     

3
3 2 1 2 0 1 2 2 01

0 3
2 1 2 0 1 2 2 0

2 2 23
Re

2 2 2ee k a
        


        

     
       

 , (31) 

or nanodiscs of radius a , height a  and permittivity  , for which the transverse polarizability 
is [124]: 
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ee k a

  
    


                

 . (32) 

It is evident that there is a wide range of flexibility in the shape and material properties of the 
nanoparticles to tailor the value of 1Re ee     at the frequencies of interest. In the following, we 

focus on homogeneous nanospheres [Eq. (30)] and analyze how their design parameters affect 
the leaky-wave dispersion. Analogous results may be derived for different shapes and 
geometries.  

Before analyzing in detail the nanosphere problem, it is relevant to highlight a common trend in 
the previous formulas (30)-(32): as expected, the value of 1Re ee     tends to diverge for small 

nanoparticles  0 0k a  . This is to be expected, since a small nanoparticle is usually very far 

from its individual resonance 1Re 0ee     . On the other hand, leaky-wave radiation requires 

finite values of 1Re ee    , as shown in the previous section. This implies that the operation of 

these leaky-wave nanoantennas with sub-diffractive lateral cross section will arise in the 
frequency range for which the numerator in the right-hand side of Eqs. (30)-(32) is close to zero, 
i.e., near a plasmonic resonance for the specific shape of interest. For larger d  this condition 

Approved for public release; distribution unlimited.



 

46 
 

becomes more and more stringent, since 1Re ee     is required to be closer to zero. This is 

reflected in a general trade-off between size of these leaky-wave antennas and their bandwidth 
and robustness to the presence of loss and disorder. We discuss these aspects in further detail, 
specifically applied to spherical nanoparticles, in the following. 

i. Leaky-wave modal dispersion with the nanosphere permittivity 

For spherical nanoparticles, we may use Eq. (30) to determine the range of permittivities   that 
may allow leaky-wave propagation along the nanoparticle chain. Figure 22a shows the 
longitudinal guided and leaky modal regions in the diagram of 0/   vs. d , for different values 

of the nanosphere radius a . The different curves refer to different ratios /d a   and we have 
used shadowing to highlight the guided-wave and leaky-wave regions in the case 3  . As it 
may be seen, the leaky-wave region requires more negative permittivity values than the guided-
wave region, which is centered at the resonance condition of the individual nanospheres 

02   . Denser chains support a wider range of permittivities to achieve leaky-wave 

propagation, since the permittivity range gets wider for smaller values of   (of course there is a 
geometrical limit of 2   to consider in the design). This is reflected in wider bandwidths, as 
negative permittivity is necessarily dispersive with frequency [125]. Consistent with the previous 
section, in the mathematical limit 0d   leaky waves are not supported, but the permittivity 
region rapidly widens up for slightly larger values of d . Fig. 22b shows the loci of constant 

Re Im           for 2.2  , as an example. Consistent with the results of the previous 

section, it is seen that low attenuation rate is achieved close to the boundary of the guided-wave 
mode region, corresponding to end-fire radiation. However, relatively large values of   may be 
achieved even farther away from the guided-wave regime, which may provide conical radiation 
off-axis. Moreover, the natural permittivity dispersion of metals may provide frequency scanning 
for the conical beams radiated by the chain. 

Figure 23 shows analogous plots for the transverse polarization. Due to the backward nature of 
guided and leaky modes in this polarization, less negative values of permittivity are required as 
compared to the guided regime. Also in this case, by decreasing the value of   the leaky-wave 
operation broadens in bandwidth. Comparing Figs. 22 and 23, it is seen that longitudinal leaky 
modes have a broader leaky-wave region and comparatively larger values of  , implying that 
they may outperform the transverse backward-wave leaky modes in terms of directivity and 
bandwidth of operation. These results are consistent with the discussion in the previous section, 
but applied here specifically to the nanosphere geometry. 

ii. Effects of absorption and material loss 

In this section we relax the assumption that material absorption and losses are negligible in the 
materials composing the chain, i.e., 1Im 1ee      . This is a relevant aspect to consider, since 

negative permittivity, required to support subdiffractive leaky-wave operation, is usually 
combined with finite absorption [125]. Material losses are known to play a relevant role in 
plasmonic devices with subwavelength cross sections, such as nanoparticle waveguides [100], 
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[126]-[127]. In the case of lossy materials, the quasi-static inverse polarizability is related to the 
complex permittivity r ii     as: 
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. (33) 

For low-loss particles, of interest here, i  is small and the associated additional contribution to 
1Im ee     provides a first-order perturbation of the lossless results derived above. 

 

Figure 23 - Analogous to Fig. 22, but for transverse polarization. 
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Figure 24 shows the dispersion of Re     and Im     versus r  for longitudinally polarized 

modes, for 0.1d  , / 2.1d a    and different levels of material absorption i . It is interesting 

to see how in the guided-wave region a moderate increase of i  principally affects Im    , as 

expected, but leaves unaltered Re     and correspondingly the phase velocity. Since the 

transition towards the leaky-wave regime is continuous for this polarization, the presence of 
material loss implies a reduction of the achievable values of  , even near the guided-wave 

region. In the leaky-wave region, however, the trend is opposite: Im     is not sensibly altered, 

being mainly dominated by radiation losses (the mode is less confined to the particles), and the 
additional small loss mainly affects the angle of radiation and Re    . It is worth noticing that a 

complex-valued transition region may arise for relatively larger values of i , for which 

Re 1    .  

 

Figure 24 - Variation of Re     and Im     for 0.1d   and / 2.1d a    in the longitudinal polarization 

regime, varying the imaginary part of permittivity. The inset plot shows a zoom in the transition region for the case 
0.1i  . 

A zoom of this transition region for 0.1i   is reported in the inset of Fig. 24. The figure 

confirms that realistic levels of absorption in optical materials may provide the possibility to 
realize nanoantennas with sub-diffractive lateral cross section able to sustain such longitudinal 
leaky modes with directive radiation properties. 

Figure 25 shows the variation of   for increased material absorption in the case of 

/ 2.1d a    and 0.1d  , both for longitudinal (a) and transverse (b) polarization. The loss 
effect is more evident in the longitudinal case, since the transverse polarization has much larger 
radiation losses. Still, the levels of  , and correspondingly of directivity, achieved in the 
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longitudinal polarization remain substantially larger than in the transverse case, even after 
considering realistic absorption levels. 

 

Figure 25 - Variation of   for different levels of material loss i  in longitudinal (a) and transverse (b) polarization. 

In both plots, we have considered / 2.1d a    and 0.1d  . 

iii. Realistic plasmonic materials 

The results of the previous subsection imply that chains of metamaterial or plasmonic 
nanoparticles with negative permittivity and moderate losses may provide a promising mean to 
realize a leaky-wave nanoantenna with subwavelength transverse cross-section. For this purpose, 
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noble metals, or combinations of noble metals and dielectrics, may be chosen to realize such 
nanochains, following the design guidelines represented by Eqs. (30)-(32).  

 

Figure 26 - d  vs 0k d  diagrams and   for longitudinal modes supported by silver arrays with 2.1  . 
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Metallic nanoparticles made of silver or gold, for instance, have shown moderate guidance 
properties in the optical regime [93]. In this subsection, we consider the realistic properties of 
noble metals in the realization of these nanoantennas. For simplicity, we focus on nanospheres 
and on longitudinally polarized modes, which ensure better radiation performance and more 
robustness to the effect of absorption in the materials under consideration. 

 

Figure 27 - d  vs 0k d  diagrams for longitudinal modes supported by dielectric arrays with 2.1  . 
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Figure 26 shows the complex dispersion relations d - 0k d  for linear arrays composed of silver 

nanospheres, considering experimental values of permittivity [128], frequency dispersion and 
loss. In this case, we have chosen 2.1   and nanosphere radii of 25 (blue solid line) and 50 nm 
(red dashed). Fig 26a reports the real part of d  and Fig. 26b the corresponding imaginary part. 
It is seen that larger particles may provide wider bandwidth of leaky-wave radiation, due to the 
inherently larger period, and they are inherently more robust to the presence of loss, consistent 
with analogous results in the guided region [100]. The shadowed regions in the figure indicate 
these guidance regions. 

Fig. 26c reports the calculated values of   for the leaky-wave operation. Significantly large 
values may be achieved near the endfire radiation, despite the presence of loss and the overall 
sub-diffractive lateral cross-section of these nanoantennas. These results are particularly 
encouraging for the realization of these concepts using arrays of subwavelength silver 
nanoparticles. 

iv. Comparison with dielectric nanosphere arrays 

The previous results imply that plasmonic nanoparticles may represent a promising means for the 
realization of sub-diffractive leaky-wave nanoantennas. In this subsection we compare their 
performance with the one of dielectric nanoparticles, focusing in the range d  . Complex-
wave propagation along arrays of spheres with large values of constitutive parameters has been 
considered in Ref. [113]. Figure 27 shows the dispersion of complex modes along a dense array 
( 2.1  ) of dielectric spheres with 05   and with 045  . For consistency with the previous 

results, we show only guided modes supported by the induced electric dipoles along the array for 
longitudinal polarization, although for large dielectric constants magnetic modes are also 
available. Fig. 27a and 27b report the dispersion diagrams for Re     and the corresponding 

Im    , respectively. For the low permittivity spheres (blue line), guided modes are not 

available in this low-frequency regime, as expected, and a small complex branch is visible near 
the light line. Since we are far from resonance, however, the value of   is always less than unity, 
implying poor radiation properties, as expected. Drastically increasing the nanosphere 
permittivity it is possible to induce electric dipole resonances, despite the sub-wavelength size of 
the particles. In this situation, guided-wave and leaky-wave regimes are available, and the 
dispersion diagrams are characterized by narrow guided-wave regions (highlighted by the 
shadowed regions) connected by leaky-wave branches. In some frequency ranges, significant 
directivity may be achieved, although the radiation is limited to grazing angles, close to the light 
line in the diagrams of Fig. 27. It is evident that large permittivity spheres may be also effective 
in supporting sub-diffractive leaky radiation, although the efficiency and directivity values 
achieved in this example are lower than for plasmonic particles and it may be challenging to 
realize such large values of permittivity at visible wavelengths. Plasmonic materials with the 
required values of permittivity, on the contrary, are naturally available at these frequencies, and 
their dispersion may naturally provide a larger degree of frequency scanning compared to large 
permittivity materials. We discuss these features further in the next section. 
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Arb. Units

Arb. Units

(a)

(b)

(c) (d)

 

Figure 28 - Magnetic field and power flow distribution for a nanoparticle chain operating in the leaky-wave regime 
[(a) and (c), at 690nm wavelength] and in the guided propagation regime [(b) and (d), at 600nm]. 

f. Full-wave numerical simulations  

In the previous sections, we have used the analytical formulation (21) to derive the fundamental 
properties of leaky-wave propagation and radiation along infinite arrays of subwavelength 
plasmonic nanoparticles to within a dipolar approximation. In this section, we validate the 
previous analytical model by simulating realistic finite arrays of silver nanoparticles with finite-
integration technique commercial software [129], in order to determine the radiation patterns of 
such leaky modes in a practical realization, considering also the complete multipolar coupling 
among closely spaced nanoparticles. 
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In our numerical simulations, we have fixed the particle size to 50nma  , center-to-center 

distance 110nmd  , and we have used a Drude permittivity model 
 

2
pf

f f i
 

 


, with 

5.0  , 2175 THzpf   and 4.35 THz  , which describes with good approximation the silver 

dispersion in the range of frequencies of interest [130]. The overall length of the chain is 
7L  µm, sufficiently long to ensure that significant part of the power coupled to the leaky mode 

has been radiated. The array is excited by an optical source (i.e., an emitting molecule or a 
quantum dot) longitudinally polarized along the array axis, to ensure proper coupling with the 
longitudinal leaky modes supported by the array. 

We have verified in our simulations that the dispersion of leaky-wave and guided modes along 
the array is qualitatively consistent with our analytical predictions. Clearly, the nature of our 
analytical technique neglects higher-order multipolar coupling between the closely spaced 
nanoparticles, which is reflected in a quantitative difference in the prediction of the frequency 
range for leaky-wave radiation, but qualitatively the results are in good agreement with the 
previous sections. As an example, Figure 28a reports the normal magnetic field distribution at 
the operating wavelength 0 690  nm, which is in the leaky-wave regime for this array. 

Similarly, Fig. 28b reports the corresponding distribution at 0 600  nm, for which the chain is 

in its guided regime. It is evident that the permittivity dispersion of silver allows tuning the 
guidance properties of the supported mode from a slow mode with short guided wavelength, as 
in Fig. 28b, confined along the structure, to a much faster mode, which produces leaky-wave 
radiation in free-space with conical directive properties. The difference in phase velocity 
between the two simulations is striking, considering that the free-space wavelength difference 
between the two cases is only 15% , and it is consistent with our analytical theory. Away from 
the chain, the leaky-wave (Fig 28a) couples to free-space radiation, drastically different from the 
guided propagation in Fig. 28b, which decays exponentially far away from the chain axis. The 
leaky-wave far-field extends laterally and propagates with oblique wave fronts, consistent with 
the previous analytical results. Figs. 28c and 28d show a zoom in the dashed regions of the two 
panels of Figs. 28a and 28b, reporting the power flow (Poynting vector) distribution. The power 
flow shows significant lateral energy leakage in the leaky-wave scenario of Fig. 28c. In contrast, 
at the wavelength 0 600nm   (Fig. 28d), the power flow is confined and bounded parallel to 

the chain, rapidly decaying away from its axis. It is remarkable that these full-wave results 
qualitatively confirm with very good precision the analytical results in the previous sections, and 
in particular the possibility to create a leaky-wave nanoantenna composed of subwavelength 
nanoparticles composed of realistic plasmonic materials. The fact that our full-wave results take 
into account the full coupling among the neighboring particles, and not just their dipolar 
(dominant) contribution, slightly shifts the guidance and leaky-wave frequency ranges from our 
analytical predictions in Fig. 26, but qualitatively these results confirm the possibilities noted in 
the previous sections. 
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(a)

(b)

(c)

 

Figure 29 - (a) Far-field radiation patterns vs. wavelength of operation. At 722 nm (solid blue line), 714 nm (dashed 
red line) and 690nm (dotted green line), directional far-field radiation patterns are obtained, pointing at 20°, 18°, and 

13° respectively. At 600nm, the guided-wave mode does not significantly contribute to the far-field radiation. (b) 
Calculated three-dimensional leaky-wave radiation pattern at the wavelength of 690nm. (c) Scanning of the main 
lobe radiation pattern (magnitude and main direction) versus wavelength. The highlighted region corresponds to 

leaky-wave operation. 

Figure 29(a) shows the corresponding far-field radiation patterns in the E plane at various 
wavelengths. It is seen that, in the leaky-wave regime, the conical beam may scan the angle with 
frequency, as predicted in the previous sections. The patterns show a significant directivity that 
may be tuned by changing the frequency of operation (i.e., the material permittivity). It is seen 
that, consistent with the previous analytical results, better directivity is achieved for radiation 
closer to the chain axis, for which   is larger. The scan of the main lobe direction with 
frequency confirms the forward nature of these longitudinal leaky-wave modes, as predicted by 
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the previous analysis. For comparison, the radiation at 0 600nm   is very poor, due to the 

guided-wave properties of the chain at this wavelength. The subdiffractive nature and 
subwavelength period of the chain ensure absence of significant side lobes. These results confirm 
the realistic possibility of using a silver nanoparticle chain as a leaky-wave nanoantenna. 
Different nanoparticle size and geometry may be used to tune and shift the leaky-wave operation 
at different wavelengths.Figure 29b reports the three-dimensional far-field radiation pattern at 
714 nm, together with the geometry of the chain, to highlight the directive conical radiation at 18 
degrees from the chain axis, consistent with Fig. 29a. Smaller side lobes are visible, associated to 
the finite length of the chain. As reported in Fig. 29c, the nanoparticle chain supports a smooth 
linear scanning region between the wavelengths of 680 to 740 nm (highlighted in the figure), 
which delimit the leaky-wave operation of this nanoantenna. Tunability and beam scanning at the 
same frequency may be envisioned by considering electro-optical materials or proper 
nonlinearities in the nanoparticles. 

g. Conclusions 

In this section, we have provided a detailed analysis of the general leaky-wave radiation 
properties of linear arrays of subwavelength plasmonic nanoparticles. Using closed-form 
analytical dispersion relations for real and complex modes supported by such chain, we have 
analyzed its leaky-mode properties and the most general conditions required to support this 
regime with large directivity and robust frequency response, in the limit of subwavelength 
nanoparticles composing the array. 

In particular, we have shown that the longitudinal polarization is the best candidate for achieving 
significantly directive conical radiation with scanning capabilities in this regime, and that the 
transverse polarization may support backward-wave radiation. We have also considered the 
effects of varying the center-to-center distance, the material properties and the possible presence 
of material dispersion and loss, specializing our general analysis to realistic plasmonic materials 
and providing comparison with analogous dielectric arrays. Our analysis shows that plasmonic 
materials may provide a robust route to leaky-wave radiation at optical frequencies, adding more 
flexibility over the leaky-wave properties of thin plasmonic films. We have also validated our 
results with full-wave simulations, analyzing the leaky-wave propagation and radiation along 
silver nanosphere arrays of finite length. Our full-wave simulations have confirmed that 
plasmonic leaky-wave nanoantennas with sub-diffractive lateral cross section may indeed lie 
within the realm of current nanotechnology and may be applied to novel devices for optical 
communications and computing. 

6. Coupling and Guided Propagation along Parallel Arrays of Nanoparticles 
a. Summary 

In this section, we derive a dynamic closed-form dispersion relation for the analysis of the entire 
spectrum of guided wave propagation along coupled parallel linear arrays of plasmonic 
nanoparticles, operating as optical “two-line” waveguides. Compared to linear arrays of 
nanoparticles, our results suggest that these waveguides may support more confined beams with 
comparable or even longer propagation lengths, operating analogously to transmission-line 
segments at lower frequencies. Our formulation fully takes into account the entire dynamic 
interaction among the infinite number of nanoparticles composing the parallel arrays, 
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considering also realistic presence of losses and the frequency dispersion of the involved 
plasmonic materials, providing physical insights into the guidance properties that characterize 
this geometry. 

b. Introduction 

Linear chains of plasmonic (silver or gold) nanoparticles have been suggested as optical 
waveguides in several recent papers [131]-[141], as outlined in the previous sections. Owing to 
design flexibility and relatively easy construction within current nanotechnology, the realization 
of such ultracompact waveguides has been thoroughly studied and analyzed in the past few 
years. However, the recent experimental realizations of such devices at the nanoscale have 
revealed challenges due to severe sensitivity to material absorption and to inherent disorder. The 
guided beam cannot usually travel longer than few nanoparticles before its amplitude is lost in 
the noise. This is mainly due to the fact that linear arrays of small nanoparticles have the 
property to concentrate the optical energy in a sub-wavelength region of space, in large part 
filled by lossy metal. If this is indeed appealing in terms of power concentration and for 
enhancing the nanoscale interaction with light, it also has the clear disadvantage of strong 
sensitivity to material and radiation losses. In general, there is a well-known trade-off between 
energy concentration and confinement and robustness to loss in several plasmonic waveguide 
geometries [142]. As we have noted in [143], a bare conducting wire at low frequencies has 
analogous limitations: although metals are much more conductive and less lossy in radio 
frequencies, connecting two points in a regular circuit with a single wire would still produce 
unwanted spurious radiation and sensitivity to metal absorption. This problem, which is much 
amplified at optical frequencies due to the poorer conductivity and higher loss of metals in the 
visible, is simply approached at low frequencies by closely pairing two parallel wires (or, which 
is the same, placing a ground plane underneath the conducting trace), forming the well-known 
concept of a transmission-line that provides a return path for the conduction current. 
Analogously, applying the nanocircuit concepts [144]-[145], we have recently put forward ideas 
to realize optical nanotransmission-line waveguides in different geometries [146]-[147], which 
have been proven to be more robust to material and radiation losses and may provide wider 
bandwidth of operation. In particular, one such idea consists in pairing together two parallel 
arrays of plasmonic nanoparticles, suggesting that the coupling among the guided modes may 
improve the guidance performance. In [143] we have shown that this is indeed the case: 
operating with the antisymmetric longitudinal mode, such parallel chains may indeed confine the 
beam in the background region between the chains, leading to large power confinement without 
significantly affecting the robustness to material absorption and radiation losses as compared to 
the isolated array scenario. In particular, we have shown that operating with these modes near the 
light-line would, in many senses, lead to operation close to a regular transmission-line at low 
frequencies, but available in the visible regime. 

Here, we present a complete, closed-form dynamic solution for the dispersion of the eigenmodes 
supported by parallel chains, fully taking into account the coupling among the infinite number of 
particles composing the two-chain array, even in the presence of material absorption, radiation 
losses and frequency dispersion. This derivation allows us to discuss the complete spectrum of 
guided modes supported by this geometry and analyze the differences among different 
polarizations and the analogies with the isolated chain geometry. The results confirm the validity 
of the analogy between these parallel arrays of nanoparticles and optical transmission lines, and 
they provide further insights into the operation and the large spectrum of modes guided by these 

Approved for public release; distribution unlimited.



 

58 
 

paired arrays of nanoparticles. Applications for low-loss optical communications, optical 
switching, nonlinearity enhancement and sub-wavelength imaging devices are envisioned. 

c. Dispersion Relations for Guided Propagation 

Consider the geometry of Fig. 30, i.e., two identical linear arrays of plasmonic nanoparticles with 
radius a , period 2d a  and interchain distance l d . This geometry has been preliminarily 
analyzed in [143] for its longitudinally polarized antisymmetric guided modes, where it was 
shown that the coupling between the chains, limited in that analysis to its dominant contribution 
coming from the averaged current density on the chain axes, was expected to generate the 
splitting of the regular longitudinal mode guided by an individual linear array into two coexisting 
longitudinal modes, respectively, with symmetric and antisymmetric field distributions and 
polarization properties, as sketched in Fig. 30. The antisymmetric mode is the one corresponding 
to transmission-line operation [143], as outlined in the introduction, for which two antiparallel 
displacement current flows are supported by the parallel chains. A similar modal propagation has 
been analyzed in [137] for a related distinct geometry, consisting of longitudinal dipoles placed 
over a perfectly conducting plane. Also our analysis of quadrupolar chains [147] may, in the 
limit of 0l  , have some analogies with this antisymmetric operation. In the following, we 
rigorously approach the general problem of modal dispersion along the parallel chains of Fig. 30, 
extending our general analysis in [140] valid for one isolated chain. Our formulation fully takes 
into account the entire coupling among the infinite nanoparticles composing the pair of arrays 
and the possible presence of material absorption, radiation losses and frequency dispersion. 

 

Figure 30 – Geometry of the problem: a pair of linear arrays of plasmonic nanoparticles as an optical two-line 
waveguide. The sketch reports the polarization properties of quasi-longitudinal modes with symmetric and 

antisymmetric properties. 

We model each nanoparticle in the coupled array of Fig. 30 as a polarizable dipole with 
polarizability  , an assumption that is valid as long as ba  , with b  being the wavelength of 

operation in the background material, consistent with the assumptions in the previous sections. 
For simplicity, we assume a scalar polarizability, implying that the particles are isotropic 
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(nanospheres, easy to realize as colloidal metal particles), or for more general shapes focusing on 
one specific field polarization. It is relevant to stress that the dipolar approximation represents a 
good assumption for small nanoparticles, and in particular in the case of nanospheres, due to 
their inherent symmetries. We have verified that this approximation holds very well even in the 
limit of very small gaps, as those considered in the following examples [140]. The use of 
additional multipolar orders, as considered, e.g., in [148], may increase the accuracy of the 
calculation, but also complicate some of the physical insights outlined in the following.  

For a single isolated chain, the spectrum of supported eigenmodes may be split into longitudinal 
and transverse polarization with respect to the chain axis x̂  [140] (see previous sections). In 
particular, for i xe   propagation, the corresponding guided wave number   satisfies the 
following closed-form dispersion relations, respectively, for longitudinal and transverse modes: 
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of order N  [149] and all the quantities have been normalized, consistent with [140], as bd k d , 

/ bk  ,  3 / 6b bk   , with 2 /b bk    being the background wave number and b  the 

corresponding permittivity. 

These equations fully take into account the dynamic coupling among the infinite number of 
particles composing the linear chain. They are real-valued for lossless particles (for which 

1Im 1       [140]), supporting guided modes with 1  , but they are also fully valid in the 

complex domain when realistic material losses are considered, making it possible to evaluate the 
realistic damping factors associated with material absorption and radiation losses. They can be 
applied also to the leaky-wave modal regime, for which Re 1     and the chain radiates as an 

antenna in the background region [150]. 

When l  is finite in Fig. 30, i.e., there are two parallel chains, their mutual coupling produces a 
modification of their guidance properties, which may be taken into account by considering the 
polarization fields induced by the electric field from each chain on the other. The fields radiated 
by each chain may be expanded into cylindrical waves, allowing us to write the general closed-
form expressions for the coupling coefficients between the two chains. 

Without loss of generality, we can assume that the particles composing the first chain, located at 
0y  , are polarized by an eigenmodal wave with dipole moments 1

i mde p , where m  is the 

integer index for each nanoparticle of the chain. The equivalent current distribution on the x  axis 
may be written as: 

   1
i md

m

x i e x md 




  J p , (35) 
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where  .  is the Dirac delta function. The fields radiated by such current distribution may be 

expanded into cylindrical waves and may be used to evaluate the coupling coefficients between 
one chain and the other, with dipole moments 2

i mde p  located at y l , yielding: 

 
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, (36) 

where 
2

2
1m

m
b

d

    
 

 and  .mK  are the modified Bessel functions of order m  and 

bl k l . The generic coupling coefficient ijC  expresses the polarization along j  on one chain 

induced by the i -polarized dipoles on the other chain. The summations in (36) have very fast 
convergence, and the dominant term ( 0m  ) is usually sufficient to take into account the 
dominant contribution to the coupling, an approximation that is consistent with the approach we 
used in [143]. The numerical results shown in the following sections have been obtained by 
considering the first ten terms in the summations (36), even though full convergence has been 
usually achieved after the first one or two terms.  The form of the coupling coefficients in (36) 
ensures that longitudinal (directed along x ) and transverse modes polarized along y  are coupled 
through xyC , whereas transverse modes polarized along z  are not coupled with the orthogonal 

polarizations. 

The complete closed-form dispersion relation for the eigenmodes supported by the parallel 
chains may be written as: 

0

0
det det 0

0

0

xx xy

xy yy zz

xx xy zz

xy yy

L C C

T C C T C

C C L C T

C C T

 
 

          

, (37) 

or, in a more compact form: 

    2 0xx yy xy zzL C T C C T C      . (38) 
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Figure 31 – Modal dispersion for the quasi-longitudinal modes supported by two parallel chains with interchain 
distance 50 nml  . The dispersions are compared to that of an isolated chain (thin solid line). The lighter blue 

shadowed region refers to leaky-wave propagation, whereas the darker orange region refers to the first Bragg stop-
band. 
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Figure 32 – Similar as in Fig. 31, modal dispersion for the quasi-longitudinal modes supported by two parallel 
chains with interchain distance 30 nml  . 

The left-hand side in Eq. (38) consists of the product of two terms: the first determines the 
dispersion of the coupled modes polarized in the xy  plane (among which the quasi-longitudinal 
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antisymmetric modes considered in [143]), whereas the second determines the purely-transverse 
modes polarized along z . This dispersion equation is completely general and it fully takes into 
account the entire dynamic interaction among the infinite particles composing the two parallel 
chains. Since the coupling coefficients (36) tend rapidly to zero for increased l , Eq. (38) 
represents the perturbation of the original transverse and longitudinal modes supported by the 
two linear chains independently given by 0L   and 0T   respectively [140], produced by the 
coupling coefficients C . In particular, it is seen that each of the three orthogonal polarizations 
(along , ,x y z ) splits into two branches due to the coupling between the chains, one with 
symmetric and the other with antisymmetric properties (consistent with the sketch in Fig. 30), 
leading to six modal branches of guided modes, some of which supported at the same frequency. 
In particular, the modes in the xy  plane are mixed together (i.e., the parallel chains do not 
support purely longitudinal or purely y  polarized modes, but they do support purely transverse 

z  polarized modes). In the limit of lossless particles, since L  and T  are real for any 1   
[140], by inspecting Eq. (38) we notice that the parallel chains still support lossless guided 
propagation for any 1 / d   . In the following, we analyze in details the modal properties of 
this setup in its different regimes of operation. 

d. Guided Modes of Parallel Chains of Silver Nanospheres 

In this section we consider the different regimes of guided propagation supported by the parallel 
chains of Fig. 30, considering realistic optical materials composing the plasmonic nanoparticles. 
In the case of a chain of homogeneous spherical particles of radius a  and permittivity 

r ii    , their normalized polarizability satisfies the following relations [140]: 

 

 
 

31

3

1
2 2

23
Re

2

9
Im 1

2

r b
b

r b

b bi

r b i

k a

k a

 
 


  






    

       

. (39) 

This polarizability model is analogous to the classic quasi-static polarizability definition for a 
small sphere, with the addition of radiation loss (as from the -1 term in 1Im     ), to comply 

with energy conservation. Since the guided modes are perturbations of the longitudinal and 
transverse modes supported by the isolated chains, there is no need to analyze here again in full 
detail how variations in the chain geometry, i.e., in a , d  and/or the involved materials, may 
affect the guidance of the parallel chains, since we have already extensively studied how these 
changes affect the guidance of isolated chains in [140]. In the following, therefore, we focus on 
one specific realistic design of the chains and we employ the exact formulation developed in the 
previous section to characterize the modal properties of two of such parallel arrays coupled 
together. In the following, we focus on colloidal silver nanospheres embedded in a glass 
background ( 02.38b  ).We use experimental data available in the literature to model the silver 

permittivity at optical frequencies [27] and we assume 10 nma   and 21nmd   for the two 
chains. In general, we can predict that larger separation distances for same particle size are 
expected to weaken the guidance properties of the array and reduce the bandwidth of operation 
and robustness to loss, whereas particles with larger size have the opposite effect. 
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i. Quasi-longitudinal propagation (forward modes) 

An isolated linear chain of plasmonic nanoparticles supports forward-wave longitudinal guided 
modes ( x polarized), satisfying the dispersion relation 0L  , over the frequency regime for 
which: 

         3 1
3 2 3 26 Re 3 3 2 2Cl d d Cl d d Cl d d Cl d                  , (40) 

where  NCl   are Clausen’s functions [149] and  .  is the Riemann Zeta function. For the 

case at hand (silver nanoparticles, 10 nma   and 21nmd  ), such modal regime is supported 
over a relatively wide range of frequencies between 550THz  and 850THz , as shown in Fig. 31 
(thin solid black line). In particular, in the figure we plot: (a) the real and (b) the imaginary parts 
of the normalized   and (c) the propagation length, i.e., the distance traveled by the guided 

mode before its amplitude is 1e  of the original value, which is equal to   1
Im  

. The shadowed 

regions at the sides of the plots delimit the leaky-wave region (left-side, lighter blue shadowed 
region), for which Re 1     and the mode radiates in the background region [154], and the 

stop-band region (right side, darker shadow, brown), where Re / d      when lossless 

particles are considered and the mode is evanescent in nature. In between these two regions, as 
defined by Eq. (40), the modes are guided and  Im  , i.e., the damping factor, is only 

associated with material losses, since in the limit of lossless particles the mode would not radiate 
and  Im 0  . In the leaky-wave region (lighter blue shadow) the damping is larger, due to 

additional radiation losses [150], whereas in the stop-band (darker shadow) the mode does not 
propagate and it is reflected back by the chain due to Bragg reflection (the ideal Bragg stop-band 
line Re / d      is shown in Fig. 31 as the thin pink line). Near the light line ( Re 1    ) the 

mode is poorly guided by an isolated chain, but its propagation length may reach relatively large 
values, around  1 m . 

In the same figure we plot the variation of these dispersion diagrams in the case of two coupled 
parallel chains separated by a finite distance l . In this case, the longitudinal modes are coupled 
with each other, also polarizing the chains with a small transverse component along y , 

consistent with the value of xyC . The longitudinal mode dispersion splits into two quasi-

longitudinal branches, one with symmetric and the other with antisymmetric properties with 
respect to x   polarization (as sketched in Fig. 30). The two modes satisfy, respectively, the 
following dispersion relations, consistent with Eq.(38): 

  
  

2

2

: 0

: 0

xx yy xy

xx yy xy

sym L C T C C

antisym L C T C C

   

   
, (41) 

providing the following constraints on the polarization eigenvectors for the two chains [obtained 
by calculating the eigen-vectors associated with Eq. (37)]: 
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Figure 33 – (Color online). Magnetic field distribution (snapshot in time) for the chains of Fig. 32 at frequency 
585f THz . (a) antisymmetric mode, (b) symmetric mode, (c) isolated chain. All the plots are drawn with the 

same color scale bar (normalized to the modal amplitude at the left of the figure). The total length of the simulated 
region is 2 b . 

Figure 31 shows as a first example the dispersion of symmetric and antisymmetric modes for 
50l nm . It is noticed that the small coupling between the chains slightly perturbs the dispersion 

of the modes, causing the antisymmetric mode (blue dashed line, with polarization currents 
oppositely flowing along the chains) to have slightly larger real and imaginary parts of   with 
respect to the unperturbed longitudinal mode supported by an isolated chain (light solid line) in 
the guided regime. Conversely, the symmetric mode (thick red solid line) supports slightly lower 
values of Re    . The perturbation is stronger near the light line and in the leaky-wave region, 

since the mode is less confined around each chain in this regime. The symmetric operation 
allows an increase of the propagation length of up to 1.5 m , since the coupling between the 
parallel chains with polarization currents flowing in the same direction can boost up the mode. 
On the other hand, the antisymmetric operation has slightly lower propagation lengths, but this is 
accompanied with the important advantage of much stronger field confinement, as we note in the 
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following. The derivative Re / 0       ensures that the modes supported in this regime are 

all forward-wave, and this is also confirmed by the condition Im 0    , which ensures that 

phase and group velocity are parallel with each other for both modes. 

As an aside, it should be noted that in the leaky-wave region (blue lighter shadow in the left) the 
forward-wave modes are improper in nature [154], implying that the dominant cylindrical wave 
radiated by the chain grows with the distance from the chain instead of decaying. This implies 
that for a correct evaluation of the modal properties and the field distribution generated in this 
forward-leaky mode regime, the formulas of Eq. (36) for the index 0m   need to be corrected 
using the Hankel functions of second order instead of the modified nK  functions. 

Figure 32 shows analogous results for closer chains, with 30l nm . It is seen that the 
perturbation from the isolated chain is now stronger and the coupling between the modes 
generates some isolated resonant regions of stronger absorption, which are associated with 
stronger transversely polarized components of the field. Still, near the light line propagation 
lengths are relatively large. 

Figure 33 shows the calculated orthogonal magnetic field distribution (snapshot in time) on the 
xy  plane for the modes supported by the chains of Fig. 32 ( 30nml  ) at the frequency 

585f THz , near the light line. The figure emphasizes how the modal distribution is quite 
different in the three scenarios, even if the guided wave numbers are similar. Fig. 33a 
corresponds to antisymmetric propagation, for which the two chains support the eigenvector 
polarizations  1 ˆ ˆ0.14 0.008i  p x y ,  2 ˆ ˆ0.14 0.008i   p x y , consistent with Eq. (42). 

The corresponding normalized wave number at this frequency is 1.38 0.1asym i   . It can be 

seen how the magnetic field is very much confined in the tiny background region delimited by 
the two chains, similar to the field propagation in a regular transmission-line at low frequencies. 
Also the electric field is mainly transverse in the region between the chains, supporting the 
transverse electromagnetic configuration, again typical of a transmission-line mode. This regime 
of operation, whose interesting properties we have already described in details in [143], may lead 
to relatively low-loss optical guidance with ultra-confined properties in the space between the 
chains, similar to an optical nanotransmission-line. This functionality may be particularly 
appealing for optical switching, nanoscale field interaction, sensing and nonlinearity 
enhancements. 

Fig. 33b, on the other hand, refers to the symmetric mode for the same parallel chains. In this 
case  1 ˆ ˆ0.08 0.003i  p x y ,  2 ˆ ˆ0.08 0.003i  p x y  and 1.13 0.053sym i   . The currents 

flowing along the chains are now parallel with each other, producing fields very much spread all 
around the outside background region and weak field concentration in between them. This 
operation is equivalent to two parallel current flows, leading to small fields in between them. A 
single linear chain has analogous guidance properties, shown in Fig. 33c (for comparison, in this 
third example the chain is positioned at the same location as the lower chain in the other two 
panels). In this case the mode is purely longitudinal and  single 1.18 0.072i   , implying weak 

guidance. 

Comparing the three field plots (notice that for fair comparison they have been calculated with 
the same color scale and under the same initial amplitude excitation), it becomes evident that the 
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antisymmetric longitudinal operation allows for a much stronger confinement of the field, with 
comparable propagation length. By field confinement here, we consider the field decay away 
from the array axis, which is always of a higher rate for the anti-symmetric longitudinal mode 
compared to an isolated chain or the symmetric mode. By increasing the distance between the 
chains, as in the examples of Fig. 31, we achieve similar confinement in the region between the 
chains with reduced attenuation. In addition to a quantitatively larger field confinement achieved 
with the antisymmetric mode (compared to the isolated chain, despite the larger transverse 
physical cross section of the parallel chain geometry), this operation ensures larger confinement 
in between the two chains, which is particularly appealing for applications aiming at enhancing 
the nanoscale optical interaction. 

These properties are not only limited to the modes operating near the light line, but they are also 
valid for higher frequencies and more confined modes. For instance, in Fig. 34 we show the 
magnetic field plots for the same chains, operating at 680f THz . At these frequencies, as seen 
in Fig. 32, the three cases have similar levels of absorption and more confined slow-wave modes. 
The antisymmetric excitation is characterized in this case by  1 ˆ ˆ0.37 0.038i  p x y , 

 2 ˆ ˆ0.37 0.038i   p x y  and 2.42 0.091asym i   . Its field distribution (Fig. 34a) still shows 

strong confinement between the two chains, where a “quasi-uniform” magnetic field may 
propagate as if guided by a transmission-line. The wave is slower than in the case of Fig. 4, due 

to increased Re    , but the level of absorption is still quite good and the mode can propagate 

for over two wavelengths with no strong attenuation. The symmetric operation, for which 

 1 ˆ ˆ0.158 0.082i  p x y ,  2 ˆ ˆ0.158 0.082i  p x y  and 1.9 0.074sym i   , once again 

provides worse field confinement, as expected. In this case (Fig. 34b) the field is spread around 
the chains and is very weak in the region between the two chains. Similar spreading is noticeable 
in the single isolated chain configuration of Fig. 34c, with single 2.06 0.077i   .  We note that 

the field spreading in the region around the chains would also be more sensitive to radiation 
losses produced by disorder and technological imperfections. This is consistent with our  
findings in [141], in which we have quantitatively modeled the possible presence of disorder 
along such periodic arrays in terms of effective additional loss in the polarizability coefficient. 
We predict that the antisymmetric transmission-line operation of the parallel chains may produce 
more robust optical guidance confined in the region between the chains compared to the 
symmetric operation or the isolated chain. 

From the previous examples, it is evident that in this regime the modes guided by the parallel 
chains are quasi-longitudinal with a spurious transverse polarization, arising from the coupling, 
which is nearly 90  out of phase with respect to the longitudinal polarization. In Fig. 35, for the 
parallel chains of Fig. 31 and 32 we have calculated the level of transverse cross-polarization 
(defined as the ratio of the longitudinal to transverse component of p ) induced on the particles 
due to coupling, as a function of frequency. It is evident that its level increases for closer chains, 
as expected, and it is larger for antisymmetric modes. In the region of enhanced absorption that 
we have noticed in Fig. 32, the corresponding level of cross-polarization is also very high, 
implying that at some resonance frequencies the transverse polarization may be even higher than 
the longitudinal one, noticeably affecting the chain guidance. As expected, in these regimes the 
losses are inherently larger. The coupling is minimal near the light line and in the leaky-wave 
and stop-band regimes, and reaches its maximum somewhere inside the guidance region, whose 
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position in frequency varies depending on the distance between the chains and the mode of 
operation. 

 

Figure 34 – Similar to Fig. 33, magnetic field distribution (snapshot in time) for the chains of Fig. 32 at frequency 
680f THz : (a) antisymmetric mode, (b) symmetric mode, (c) isolated chain. 

 

Figure 35 –Magnitude of the transverse cross-polarization for the chains of Figs. 31 and 32, operating in their quasi-
longitudinal forward-wave regime. 
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ii. Quasi-transverse y -polarized propagation (backward modes) 

We have discussed in [140] that a single isolated linear chain may also support transversely 
polarized guided modes, satisfying the exact dispersion relation 0T  . In this case, the condition 
on the particle polarizability is: 

     3 1 3 1 2
3 2 1Re 3mind d Cl d d Cl d d Cl d                   , (43) 

where 1
min   is defined in [140]. In this regime the isolated chain always supports two distinct 

modes at the same frequency, both with the same transverse polarization: one is guided along the 
chain and has backward-wave properties, the other is weakly guided, with forward-wave 
properties and Re 1     (this eigenmode is basically a simple plane wave traveling in the 

background region, weakly polarizing the nanoparticles. This is not of interest for guidance 
purposes [140], but it is still discussed here for sake of completeness). For the geometry at hand, 
transversely-polarized propagation is supported over the frequencies between 650THz  and 
800THz , in part overlapping with the longitudinally-polarized regime, as shown in Fig. 36 (thin 
black line), consistent with Eq. (43). Remarkable differences are noticed between longitudinal 
and transverse polarization: the confined transverse mode is backward in nature, explaining the 
negative slope of Re     versus frequency and the negative sign of Im    . Correspondingly, 

the bandwidth is more limited and losses are higher, as is usually the case for backward-wave 
waveguides. As a consequence, the leaky-wave operation arises now at the upper boundary of 
the guided regime (lighter shadowed region in Fig. 36) [150], whereas the Bragg stop-band is 
positioned at the lower-end of the guidance band (darker shadow). 

Due to modal coupling in the xy  plane, when the coupling between parallel chains is considered, 
the quasi-transverse modes still satisfy the dispersion relations (41) and the polarization 
eigenvectors obey the same relations (42). It should be noticed, however, that in this regime the 
modes are quasi-transverse, and therefore the antisymmetric mode now corresponds to parallel 
y  polarized chains, whereas the symmetric mode supports anti-parallel polarization along y , 
consistent with (42), as sketched in Fig. 34. 

Figure 36 shows the dispersion of symmetric and antisymmetric quasi-transverse modes for 
50l nm . Once again, the relatively small coupling between the chains produces a minor 

perturbation of the original backward-wave purely-transverse mode, which causes the 
antisymmetric mode to have slightly lower real and slightly larger imaginary part of  . 

Conversely, the symmetric mode supports slightly larger values of Re    . As in the previous 

section, the coupling is stronger near the light line and in the leaky-wave region (lighter shadow), 
as expected. Also in this scenario the symmetric operation allows longer propagation lengths, 
even if in this case the y  polarized currents are oppositely oriented (see Fig. 37).  

Compared to quasi-longitudinal forward modes, the propagation length is significantly reduced 
for these confined modes, due to the backward-wave nature of these modes and their transverse 
polarization. Of course, following the results in [140], the propagation length may be somewhat 
increased and optimized by increasing the size of the nanoparticles and/or reducing the 
interparticle distance d . Compared to backward-mode supported by isolated chains, these results 
show that the coupling between two parallel chains may increase the propagation length of 
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backward-wave optical nanowaveguides, simultaneously improving their field confinement in 
the space between the two lines, which may be of interest for several applications. 

 

Figure 36 – Analogous to Fig. 31, modal dispersion for the quasi- transverse y  polarized modes supported by two 

parallel chains with interchain distance 50 nml  . In the antisymmetric polarization, as well as in the isolated chain, 

it is evident the presence of a second quasi-transverse mode with weakly guided properties, explaining the presence 
of two distinct branches. 
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Figure 38 shows analogous results in the case of closer chains ( 30 nml  ). Also in this case, the 
perturbation from the isolated chain is stronger and the bandwidth of backward operation may be 
increased by using two parallel chains in the symmetric mode. Here leaky modes (lighter 
shadow) are proper in nature and therefore Eqs. (36) also apply to this regime in the way they are 
written. Both in Fig. 36 and 38, for completeness, we also show the modal branch associated 
with the weakly guided forward-wave transverse mode, which is visible very close to the light 
line (thin solid line very close to the Re 1     line in both plots). Consistent with its forward-

wave properties, Im 0     for this mode. As outlined above, this mode is of minor interest for 

guidance purposes, since it is a minor perturbation of a plane wave traveling in the background 
region, very weakly affected by the presence of the chains. It is noticed, as expected, that this 
second branch is present only for the antisymmetric modes, whose y  polarization is in the same 
direction for both chains. Indeed, in Figs. 36 and 38 one can see a second branch for the blue 
dashed lines, near the light line, corresponding to the weakly guided forward mode traveling in 
the background (not of interest here). 

Figure 39 shows the magnetic field for these backward-wave modes as in Fig. 38 at the 
frequency 700f THz . In the antisymmetric case (Fig. 39a)  1 ˆ ˆ0.076 0.12i  p x y , 

 2 ˆ ˆ0.076 0.12i   p x y  and 3.95 0.46asym i   ; in the symmetric case 

 1 ˆ ˆ0.02 0.016i  p x y ,  2 ˆ ˆ0.02 0.016i  p x y  and 5.88 0.72sym i   ; for the isolated 

chain single 5.036 0.42i   . The field distributions in some senses resemble the one for quasi-

longitudinal modes, but the presence of a dominant transverse polarization does not allow an 
analogous strong transmission-line confinement in this backward-wave regime for the 
antisymmetric modes. Still, the plots confirm that relatively long backward-wave propagation 
(over one wavelength) is achievable using coupled parallel chains. 

Figure 40 shows the level of longitudinal cross-polarization for the chains of Figs. 36 and 38. In 
this scenario, the cross-polarization is in general lower than for quasi-longitudinal modes and it 
is stronger for symmetric modes. Once again, the cross-polarization is stronger for closely 
coupled chains and it has some resonant peaks in the middle of the guidance region, for which 
the damping is correspondingly increased. 

 

 

Figure 37 – Polarization properties of the symmetric and antisymmetric quasi-transverse modes supported by 
parallel chains as in Fig. 30. 
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Figure 38 – Similar to Fig. 36, modal dispersion for the quasi- transverse y  polarized modes supported by two 

parallel chains with interchain distance 30 nml  . 

iii. Purely transverse z-polarized propagation (backward modes) 

When the chains are polarized along ẑ  the supported modes are purely transverse, consistent 
with (37).  Due to symmetry, the properties for isolated chains are identical to those described in 
the previous section, and therefore here we discuss how the coupling may have a different effect 
on the backward-wave guidance properties in this polarization. The coupling coefficient zzC  

splits the transverse modal branch of propagation into two modes, with dispersion relations: 
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: 0

: 0
zz

zz

sym T C

antisym T C

 
 

, (44) 

providing the following constraints on the polarization eigenvectors for the two chains: 

1 2

1 2

ˆ ˆ:

ˆ ˆ:

sym

antisym

  
   

p z p z

p z p z
. (45)  

 

Figure 39 – Magnetic field distribution (snapshot in time) for the chains of Fig. 38 at frequency 700f THz . (a) 

antisymmetric mode, (b) symmetric mode, (c) isolated chain. 

 

Figure 40 – Amplitude of the longitudinal cross-polarization for the chains of Figs. 36 and 38, operating in the 
quasi-transverse regime. 
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Figure 41 – Analogous to Fig. 31 and Fig. 36, modal dispersion for the quasi- transverse z  polarized modes 
supported by two parallel chains with interchain distance 50 nml  . 

Approved for public release; distribution unlimited.

".,d 
D.29 0.30 Cl.31 0.32 D.33 D.33 D.34 D.35 
7 

- - Single Chain 
6 --Parallel Symmetric 

- - - Parallel Antisymmetric 
5 - - Bragg Stop-Band 

C!l. 
4 

• 3 a:: 

2 

1 

0 
&al 680 700 720 740 7liO 710 100 

Fraquency [ THz ] 
2.0 

1.5 

1.0 
CZ1. 

E 
"'T 0.5 

0.0 ... 

-D.5 
&al 680 700 720 740 7liO 710 800 

0.15 
Fraquency [ THz ] 

I 
.s::. -a c • ....1 

0.10 

c 
0 

1i D.05 a • D. 
2 
IlL 

o.ao 
&al 680 700 720 740 7liO 710 100 

Fraquency [ THz ] 



 

75 
 

 

Figure 13 – (Color online). Similar to Fig. 12, modal dispersion for the quasi- transverse z  polarized modes 
supported by two parallel chains with interchain distance 30 nml  . 
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Figure 41 shows the dispersion of symmetric and antisymmetric transverse modes for 50l nm . 
Here, for the same distance as in Figs. 31 and 36, the coupling perturbs the propagation 
properties even less as compared to the isolated chains.  

Also in this case, symmetric modes allow slightly longer propagation lengths near the light line, 
where the coupling is stronger. Increasing the coupling ( 30 nml  ), as in Fig. 42, the 
perturbation is stronger, even if the trend is similar as in the previous scenario. Similar to the 
quasi-transverse propagation considered in the previous section, these purely transverse modes 
are also backward in nature and support leaky-wave propagation in the upper frequency regime 
and Bragg stop-band in the lower one. Moreover in this case the anti-symmetric transverse mode 
(consistent with the definition in Fig. 37) supports two distinct branches, one of which with very 
weakly guided properties near the light line. 

Figure 43 shows the calculated orthogonal electric field distribution in the xy  plane for the 
modes of Fig. 41 at the frequency 750f THz . In this case the modes are purely transversely 

polarized and the guided wave numbers are respectively 1.987 0.42asym i   , 

2.64 0.296sym i   , single 2.36 0.34i   , consistent with Fig. 42. The field confinement in this 

polarization is not drastically different from that of an isolated chain, as evident from the figure, 
and the main advantage of using parallel chains may reside in the longer propagation distance of 
symmetric modes near the light line. 

 

Figure 43 – (Color online). Electric field distribution (snapshot in time) for the chains of Fig. 41 at frequency 
750f THz . (a) antisymmetric mode, (b) symmetric mode, (c) isolated chain. 

e. Conclusions 

We have presented in this section a fully general and complete theoretical formulation for the 
analysis of the dynamic coupling between two parallel linear chains of plasmonic nanoparticles 
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operating as optical waveguides. These chains may support up to eight different guided modes 
with different polarization properties in the same range of frequencies, which we have fully 
analyzed here. We have shown that, compared to linear arrays, these waveguides may support 
relatively longer propagation lengths and ultra-confined beams, operating analogously to 
transmission-line segments at lower frequencies. In particular, our results confirm that, by 
operating near the light line with antisymmetric quasi-longitudinal modes, we may achieve 
relatively long propagation lengths (of several wavelengths) and ultraconfined beam traveling, 
similar to a transmission-line, in the background region sandwiched between the two 
antisymmetric current flows guided by the chains. It should be stressed that the designs 
considered here are based on ultrasmall nanospheres, with the aim of large concentration of light 
in a sub-wavelength region. This choice inherently produces relatively short propagation lengths, 
in part improved by the parallel chain configuration. Large field confinement, even at the 
expenses of moderate propagation distances, may be appealing in a variety of applications, i.e., 
nonlinearity enhancement, sensing, optical switching and nanoscale interaction with light, as in 
optical nanocircuits [144]-[145]. On the other hand, longer propagation distances may be 
achieved by considering larger particles or lower frequencies of operation for which metals are 
more conductive, as discussed for isolated chains in [140] and in the previous sections. We 
believe that these results may be of great interest for optical connections with sub-wavelength 
lateral cross-section in a variety of new generation optical devices of interest to U.S. Air Force. 

7. Rigorous First-Principle Homogenization Theory of Metamaterials 
a. Summary 

We introduce in this section a first-principle homogenization theory for periodic metamaterials 
composed of arbitrary dielectric, magnetic and/or conducting inclusions. We derive closed-form 
analytical expressions for the effective constitutive parameters of the metamaterial array, 
pointing out the relevance of inherent spatial dispersion effects, present even in the long 
wavelength limit. Our results clarify the limitations of quasi-static homogenization models and 
the proper physical meaning of effective metamaterial parameters. In particular, we outline the 
physical reasons behind the necessity of considering magneto-electric coupling in the 
homogenized constitutive relations, even in the case of metamaterials formed by center-
symmetric inclusions. These results may be of great interest for U.S. Air Force applications of 
nonconventional materials and artificial materials in realistic systems and devices. 

b. Introduction 

The electromagnetic homogenization of natural and artificial materials has a long-standing 
tradition [155]-[160] and several theories are available to properly define macroscopic averaged 
quantities representing the effective constitutive parameters of periodic or random collections of 
molecules or inclusions. The same way in which we define permittivity and permeability of 
natural materials, by averaging out irrelevant microscopic fluctuations of the fields at the atomic 
or molecular level, also in the field of artificial materials and mixtures, homogenization and 
mixing rules have been put forward over the years in order to avoid solving for the complex 
electromagnetic interaction among a large number of inclusions [160]. Homogenized 
descriptions of natural and artificial materials can hold only in the long-wavelength regime, i.e., 
for effective wavelengths and averaged field variations much larger than the material granularity. 
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Within these limits, however, such descriptions have proven to be accurate and of great 
advantage for analysis and design purposes. 

With the advent of metamaterials [161], i.e., artificial materials with anomalous and exotic 
electromagnetic response, the necessity of more advanced concepts and improved 
homogenization models has become evident, since often the topological and/or resonant 
properties of the inclusions and building blocks do not allow a description of their properties in 
terms of simple averaging procedures. Often, the exotic metamaterial properties are inherently 
based on these anomalous features, which cannot be captured by simple homogenization 
schemes inspired to natural materials. The necessity for improved homogenization models has 
been outlined in several recent papers on the topic [162]-[179], which describe different 
approaches to the problem.  

The simplest homogenization method is represented by retrieval techniques, which postulate the 
equivalence between a complex metamaterial array and a uniform slab of same thickness with 
unknown constitutive parameters, often limited to permittivity and permeability [180]-[182]. 
This simple approach regularly provides non-physical dispersion of these constitutive 
parameters, in particular near the inclusion resonances, yielding complex values of permittivity 
and permeability that violate basic passivity and causality constraints [183]. The typical presence 
of “anti-resonant” artifacts in the dispersion of the effective constitutive parameters, wrong sign 
of the imaginary part and wrong slope of the real part of the extracted parameters are all clear 
signs of the inadequacy of such simple homogenization approaches when applied to resonant 
artificial materials, as discussed in [184]. 

These anomalies have been generically related to strong spatial dispersion effects present in 
metamaterials, which should be taken into account in more refined homogenization models. In 
this context, analytical and semi-analytical methods have been put forward to address the 
homogenization in a more rigorous fashion. Generalized Clausius-Mossotti techniques have been 
extended to the case of complex inclusions, including bianisotropic effects, possible presence of 
spatial dispersion and accurate modeling of the interaction among inclusions [167]-[175]. As 
another successful approach, averaging a planar sheet of inclusions and then considering the 
mutual interaction among parallel layers as a Bloch lattice has been proposed as a venue to 
derive physically sound effective constitutive parameters [162]-[166]. In these schemes too, 
however, effects of spatial dispersion can often generate artifacts in the extracted effective 
parameters, which are not easily explained on physical grounds. 

In order to circumvent these issues, an interesting approach to the homogenization of periodic 
arrays of dielectric inclusions [176]-[179] has been put forward based on the model that 
commonly describes optical crystals [185], i.e., introducing a generalized permittivity tensor that 
includes all the polarization effects, including artificial magnetism and possible bianisotropy. 
Although this technique is applicable to a wide class of dielectric metamaterials with periodic 
features, it often may not be intuitive to relate weak spatial dispersion effects in the generalized 
permittivity tensor to magnetic or bianisotropic effects, and it may be more desirable to describe 
these effects in terms of local permeability or chirality parameters. In addition, in this description 
the generalized permittivity tensor explicitly depends on the wave number even for local 
materials, making it more challenging to apply the usual boundary conditions and the solution of 
dispersion relations. 

In most circumstances, it may be safely assumed that for frequencies well below the inclusion 
resonances, for which both the background wavelength and the effective guided wavelength are 
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significantly larger than the average array granularity, local or quasi-local constitutive 
parameters should be sufficient to characterize the metamaterial response, and strong spatial 
dispersion effects may be negligible. There are, however, examples of metamaterial geometries 
that contradict this general assumption, such as the wire medium [186] or dense arrays of 
plasmonic nanoparticles [169], [176], which show spatial dispersion effects even for longer 
wavelengths. In addition to these effects, anomalous bianisotropic coupling due to lattice effects 
has been pointed out in recent papers [174]-[175]. 

Inspired by all these issues, in the following we develop a general and rigorous first-principle 
theory for the homogenization of periodic metamaterials composed of arbitrary 
magnetodielectric and/or conducting inclusions. We use a homogenization approach consistent 
with [176],[185], but generalized to the case of an array comprised of arbitrary electric and 
magnetic materials and to the presence of arbitrary sources. We show that it is indeed possible to 
derive a fully consistent homogenization model for metamaterial arrays, which rigorously takes 
into account their complex wave interaction, that does not depend on the external source 
excitation and that converges to quasi-local constitutive parameters in the long-wavelength limit. 
Our analysis highlights the reasons and physical mechanisms behind artifacts and non-physical 
features arising in common homogenization models, showing that a rigorous analysis of the array 
coupling inherently requires considering frequency and spatial dispersion effects at the lattice 
level, even when higher-order multipolar interaction or bianisotropic effects within the unit cell 
are negligible. These effects modify the usual form of effective local constitutive parameters and 
they may be associated with a direct manifestation of the finite phase velocity with respect to the 
array granularity, becoming particularly relevant for more densely packed, and possibly resonant, 
metamaterials. Our findings establish the foundations of a physically meaningful and rigorous 
description of a wide class of metamaterials, in particular when the density of inclusions is not 
small and classic homogenization models, like Clausius-Mossotti relations [160], lose their 
accuracy even in the long wavelength regime. In addition, we shed new light into the physics of 
metamaterials and the meaning of effective constitutive relations to describe their complex wave 
interaction. 

c. General Homogenization Theory for Metamaterial Arrays  

In this section, starting from first-principle considerations, we develop a general and rigorous 
homogenization model for periodic arrays of arbitrarily shaped dielectric, magnetic and/or 
conducting inclusions, extending the approach commonly used in optical crystals [185] and 
dielectric metamaterials [176] to arbitrary materials and arbitrary form of excitation. We will 
show that this general description reduces to a quasi-local constitutive representation in the long-
wavelength limit. For simplicity of notation, we assume a cubic lattice with period d , but 
extension to arbitrary lattices may also be envisioned. The most general description of a periodic 
array in its linear operation may be developed, without loss of generality, in the Fourier domain 
[185]. Our goal is to derive the general form of macroscopic constitutive relations for any 
arbitrary pair  , β , relating spatially averaged field quantities that vary as i i te e  β r . In general, 

only a limited set of eigen-vectors β  are supported by the array at a given frequency   in 
absence of impressed sources. These correspond to the eigen-modes of the system. Therefore, we 
will assume the presence of impressed sources with specific i i te e  β r  plane-wave like 
dependence, uniformly distributed all over the array. This ensures an averaged space-time 
distribution of the induced fields with the same i i te e  β r  dependence. In practice, it may be 
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challenging to practically realize a distribution of uniformly impressed sources within a 
metamaterial array, so this excitation should be seen as a test excitation to isolate the response in 
the Fourier domain, or as the Fourier expansion of embedded sources with realistic space-time 
distribution. We will specialize these results to the eigen-modal scenario (source-free modes) 
later in the paper. 

In the most general case, the microscopic field distribution [187] at any point in the array 
satisfies 

     
     

0

0

i
ext

i
ext

i i e

i i e

 

 





   
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β r

β r

E r H r M r K

H r E r P r J
, (46) 

where  E r ,  H r  are the local electric and magnetic fields,  P r  is the local polarization 

vector,  M r  is the local magnetization vector, extJ  and extK  are complex vectors of 

independently impressed distributed electric and magnetic current density sources with explicit 
plane wave dependence ie β r , and 0 , 0  are the background permittivity and permeability, 

repectively. Due to the linearity of the problem, we have suppressed in (46) the i te   time 
dependence. In the presence of electric or magnetic conductors, the induced current densities 

indJ , indK  are implicitly embedded into     /indi P r J r   and     /indi M r K r  in Eq. (46)

. 

The distributed impressed source distributions may also be seen as sustaining impressed fields 
with the same i i te e  β r  plane-wave dependence and therefore complex amplitudes satisfying 

0

0

ext ext ext

ext ext ext

i i

i i




  
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β E H K

β H E J
. (47) 

Notice that the arbitrary choice of extJ  and extK  in (46) implies that the complex amplitudes of 

impressed fields extE  and  extH  are independent of each other. This will be very important to 

ensure the general validity of the effective homogenization model proposed here, as discussed 
below.  

Due to the periodicity of the crystal, we may write Eq. (46) in the i i te e  β r  Fourier domain 

0

0

ext

ext

i i i

i i i

 

 

   
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β E H M K

β H E P J
, (48) 

where the bar denotes the averaging operation  3

1 i

V
e d

d
   β rE E r r , and similarly for all the 

other vectors in Eq. (48). This averaging procedure, consistent with [185], [176], filters out the 
dominant contribution to the local field  E r , varying as ie β rE , of interest for a macroscopic 

homogenized description of the array. Eq. (48) effectively relates the complex amplitudes of the 
spatially averaged macroscopic field quantities, which all vary with an i i te e  β r  space-time 
dependence due to the chosen form of impressed excitation and the linearity of the problem. 
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Inspecting Eq. (48), one may be tempted to define spatially averaged displacement vectors 

0 B H M  and 0 D E P , and the associated constitutive relations g B μ H , g D ε E , 

which would generalize the metamaterial homogenization approach used in [185], [176] to the 
case of magnetodielectric materials. However, this macroscopic description would have several 
shortcomings: the effective permittivity and permeability coincide with 0 or 0  if the inclusions 

are formed by purely magnetic (    P r P 0 ) or dielectric (    M r M 0 ) materials, 

respectively. This implies that artificial magnetic or polarization effects, stemming from the 
rotation of electric and magnetic polarization respectively, remain hidden as spatial dispersion 
effects in the permittivity or permeability tensors. In particular, gε  coincides with the 

generalized permittivity defined in [176] in the case of dielectric inclusions. This description, 
therefore, cannot converge to a local constitutive model in the long-wavelength limit in the 
presence of artificial magnetic or dielectric effects (e.g., for split-ring resonators), of most 
interest for metamaterial applications. 

i. Multipolar expansion 

In order to overcome this problem, we assume that the unit cell is sufficiently smaller than the 
wavelength of operation to ensure that the induced microscopic polarization and magnetization 
vectors vary slowly within each unit cell. In such circumstances, it is possible to expand P  in 
Taylor series around the origin of each unit cell, to obtain [188] 
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where 
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represent the first electric and magnetic multipole moments associated with the induced electric 
polarization distribution  P r . In particular, EP , EM  are the fist-order contribution to the 

electric and magnetic dipole moments, respectively, e
EQ , m

EQ  are the electric and magnetic 

quadrupole moment cntributions, EP  is the third-order contribution to the electric dipole 

moment. The subscript E  indicates the origin of these multipole moments, associated to the 
electric polarization. We can apply analogous considerations to the induced magnetization  M r  
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2 2

e
HmH

H H H

i

i 
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β Qβ P β β
M M Q M β , (51) 

with analogous definitions for the corresponding multipole moments 
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and the subscript H  refers to the magnetic origin of these multipole moments. 

Using the previous expansions, we may write Eq. (48) in the interesting form 
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, (53) 

in which we have neglected the effects of higher order multipole moments (beyond the electric 
and magnetic quadrupole moments) in Eqs. (49), (51). 

ii. Proper definition of averaged fields 

Eq. (53) ensures that, by correcting the definition of the averaged fields as follows: 
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the macroscopic (averaged) Maxwell’s equations take the expected form 
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i i

i i




  

   

β E B K

β H D J
 (55)  

for any arbitrary pair  , β . 

The definition of averaged fields as given in (54) solves the issues outlined above in reference to 
Eq. (48) and ensures the proper representation of artificial electric and magnetic effects, making 
sure that the constitutive relations of the metamaterial tend to local parameters in the long-
wavelength limit, even in presence of artificial magnetic or polarization effects. In other words, 
this averaging procedure, based on a rigorous first-principle approach, properly takes into 
account weak forms of spatial dispersion associated with artificial magnetism and polarization, at 
the basis of common metamaterial effects, and it allows their description in a local framework. 
Eq. (54) shows that the proper form of averaged electric and magnetic fields avE  and avH  is 

obtained after correcting the spatial microscopic averages E  and H  for the possible presence of 
these artificial effects, associated with the rotation of P  and M . This ensures that they are 
correctly attributed to local constitutive parameters in the long-wavelength limit. In the presence 
of only dielectric and conducting inclusions (   M r 0 ), av E E  and 0av B H , ensuring that 

E  and B  are the direct source fields, consistent with rigorous homogenization for optical 
crystals and dielectric metamaterials [185],[176]. Similarly, if only magnetization is present at 
the microscopic level, then av H H  and 0av D E  are the source fields to be spatially 

averaged, as shown in [178]. Eq. (54) represents a generalization of these techniques in the case 
of magnetodielectric arrays, for which both averaged fields avE , avH  need to be corrected for the 

possible presence of artificial electric and magnetic effects. This is the only way to ensure that 
these weak spatial dispersion effects are properly taken into account within a local 
homogenization description. 

iii. Relations between averaged fields 

In the general case, the constitutive relations relating the averaged displacement vectors avD , 

avB  to the averaged field vectors avE , avH  inherently depend on β , implying that spatial 

dispersion effects associated with higher-order multipole contributions are present. In the long 
wavelength limit of interest here, however, it is expected that the distributions of  P r ,  M r  

may be described simply in terms of electric and magnetic dipole moments, which is the case 
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when the unit cell is sufficiently smaller than the wavelength of operation, and the inclusions are 
not too densely packed. In such circumstances, the explicit effects of spatial dispersion disappear 
in Eq. (54): 

0

0

0

0

/

/
av H

av E

av E

av H









 

 

 

 

E E P

H H M

D E P

B H M

, (56) 

and the constitutive relations relating averaged displacement and field vectors may be written in 
the local form 

0 0

0 0

av av E H av av

av av H E av av

 
 

    

    

D E P P E P

B H M M H M
, (57) 

where we have combined averaged polarization and magnetization stemming from electric and 
magnetic effects into avP  and avM . As an aside, this relation rigorously proves from first-

principle considerations that the electric and magnetic contributions are simply additive within 
the unit cell in the dipolar limit, which in turn implies that we can alternatively describe the 
complex unit cell interaction in terms of point-dipoles. In other words, the following theory may 
be also obtained in a more streamlined version by considering lattices of electric and magnetic 
point-dipoles to describe the complex inclusions in each unit cell. 

Combining Eq. (57) and (47) into (55), we can write a general relation between averaged and 
external fields and averaged polarization and magnetization vectors, 

   
   

0

0

av ext av ext av

av ext av ext av

i i i

i i i

 

 

    

     

β E E H H M

β H H E E P
. (58) 

These equations may be further manipulated to yield 

 

 

2 2
0 0 0 0

0 0

2 2 0
0 0

0 0 0

av av
av ext

av av
av ext

k k k

k
k k


 

  

         

         

P M
β β E E β

M P
β β H H β

, (59) 

where 0 0 0k     and 0 0 0/   . 

Henceforth, for simplicity of notation, we consider only averaged and impressed field 
distributions that are transverse-electromagnetic (TEM) waves propagating along the direction β̂  
(where the hat indicates a unit vector). It may be proven that this is the case for isotropic unit 
cells and lattices, as we assume in the following, when β̂  is along one of the lattice axes or, more 

generally, for any propagation direction in the limit 0 1k d  . A more general tensorial notation 

may be used for arbitrary propagation, but is not adopted here in the interest of notational 
simplicity. In this situation, Eq. (59) may be compactly written as follows, 
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2
0 0

02 2 2 2
0 0 0 0

2
0 0

2 2 2 2
0 0 0 0 0

ˆ

ˆ

av av
av ext

av av
av ext

k k

k k

k k

k k

 
   


    

   
 

   
 

P M
E E β

M Pβ
H H

. (60) 

This is a very general result, which relates the averaged and external fields for any  , β  pair 

and holds for any metamaterial array and any combination of electric and magnetic excitations. 
Observe that, analogous to the way both electric and magnetic induced currents contribute to the 
electric and magnetic averaged polarization effects in (57), both averaged polarization and 
magnetization vectors contribute to the averaged electric and magnetic fields. In other words, an 
inherent form of magnetoelectric coupling at the unit cell level stems from weak spatial 
dispersion effects when 0  , associated with finite phase velocity across each unit cell. Eq. 
(60) defines a general relation among averaged and impressed fields, which is independent on 
the specific nature of the metamaterial inclusions. In the following section, we use these results 
and introduce the inclusion into the picture, in order to derive the first-principle effective 
constitutive parameters of an arbitrary metamaterial. 

iv. Effective constitutive parameters 

After having established the proper definition of averaged fields and their general relations, we 
are now ready to derive a macroscopic homogenized description of the array, once we relate 
averaged polarization and magnetization vectors to the local fields, as a function of the specific 
inclusion geometry. Since we are assuming that dipolar terms are dominant, we may compactly 
describe the unit cell response in terms of its polarizability coefficients, which relate the induced 
electric and magnetic dipole moments in the unit cell 3

000 avdp P  and 3
000 avdm M  to the local 

fields at its center, 

000 0 0 0

000 0 0
0

ˆ

ˆ
e loc em loc

loc
m loc em

    

   


  


 

p E β H

β E
m H

, (61) 

where e , m  and em  are the electric, magnetic and magneto-electric polarizability coefficients, 

respectively. All these coefficients have dimensions of an inverse volume, and they are 
considered scalar here due to the assumptions of TEM propagation and isotropic unit cell. In 
addition, in writing Eq. (61) we have implicitly assumed that the inclusions are reciprocal. 

The fields locE  and locH  represent the local fields at the center of the unit cell in absence of the 

inclusion. They are due to the superposition of the impressed fields extE , extH  and the induced 

fields scattered from inclusions in the rest of the array, that is, 

000 000
0

0 0

000 000

0 0 0

ˆ

ˆ

loc array ext em ext

em
loc array ext ext

C C

C
C


 

  

     

     

p m
E E E β E

m p
H H H β H

. (62) 
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The interaction constants C  and emC  may be evaluated using the dipolar radiation from the 

generic unit cell at  , ,lmn ld md ndr  and applying the Floquet condition 000
lmni

lmn e  β rp p ,  

000
lmni

lmn e  β rm m : 

 
   

 
   

, , 0,0,0

, , 0,0,0

ˆ ˆ

ˆ ˆ

lmn

lmn

i
ee lmn

l m m

i
em em lmn

l m m

C e

C e









  

  





β r

β r

p G r p

p G r m
, (63) 

where  ee lmnG r  and  em lmnG r  are the electric and magneto-electric dyadic Green’s functions 

[189] and p̂ , m̂  are unit vectors oriented along 000p  and 000m . Fast converging expressions for 

these summations are available in [168]-[169], [173]. 

Combining Eqs. (61)-(62), we may now derive a general relation between impressed fields and 
averaged polarization vectors: 

3 3
02 2

0 0

3
3

2 2
0 0 0

1 ˆ
/

1 ˆ
/

av em av
ext em

e em m e m em

av em av
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m em e e m em
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
       


        

   
           

   
           

P M
E β

M P
H β

, (64) 

which, substituted in (60), provides the important relations 
3 3

3 3
02 2

0 0

3 3
3 3

2 2
0 0 0

ˆ

ˆ

m av em av
av int em

e m em e m em

e av em av
av int em

e m em e m em

d d
d C d C

d d
d C d C

  
       

 
        

   
           

   
           

P M
E β

M Pβ
H

. (65) 

Here we have used the reduced interaction constants 
2
0

3 2 2
0

0
3 2 2

0

1

1

int

em em

k
C C

d k

k
C C

d k






 
    

 
     

, (66) 

which respectively coincide with ˆ ˆ
int p C p  and ,

ˆ ˆ
e m p C m  derived in [176] using an alternative 

spectral-domain representation. 

Eq. (65) represents another important result, since it shows, directly from first-principle 
considerations, that it is possible to establish a general relation between averaged electric and 
magnetic fields and averaged polarization vectors [as defined in (56)], which depends on the 
array period and the polarizability coefficients for any given pair  , β , but is completely 

independent on the relative amplitude of the impressed sources extJ , extK . This is a fundamental 

property of this homogenization theory, since a proper description of the metamaterial 
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interaction  in homogenized form cannot depend on the type and form of external excitation, as 
commonly happens in less rigorous homogenization models. 

The relations in (65) also show that there is an inherent form of magnetoelectric coupling 
(usually negligible in natural materials) relating avE  to the rotation of avM  and avH  to the 

rotation of avP . As expected, part of this coupling is associated with the presence of em , which 

represents the possible bianisotropy within the unit cell, stemming from asymmetric or non-
centered inclusions [191]. However, Eq. (65) predicts that, even when inclusions are perfectly 
center-symmetric and with no inherent bainisotropy, a form of magneto-electric coupling is still 
expected, associated with the presence of emC . This additional coupling term is due to lattice 

effects and the finite value of  . We will discuss the implications of this coupling in more detail 
in the following. 

Using (57), we can finally write for the constitutive relations of the metamaterial array: 

 
 

0

0

ˆ

ˆ

e o
av av av eff av eff eff av

e o
av av av eff av eff eff av

   

   

     

     

D E P E β H

B H M H β E
, (67) 

with 
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1o em
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, (68) 

where 0 0 01 /c   ,  
1 /me eff    ,  

1 /em eff    ,  
1 /emem eff     and  2

e m em      [in 

the absence of magnetoelectric coupling at the unit cell level 0em   and   ee eff  , 

  mm eff  ]. 

v. General properties of the effective constitutive parameters 

These expressions represent general closed-form effective constitutive parameters obtained from 
first-principle considerations. They are valid for any pair  , β  and any form of external 

excitation extJ , extK , ensuring that this homogenized description does not depend on the specific 

impressed field distribution in each unit cell, but it is the inherent response of the metamaterial as 
a bulk to a given arbitrary level of electric and/or magnetic excitation. It is noticed, in particular, 
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that the ratio of averaged fields /av avE H , i.e., the local wave impedance, inherently depends on 

the specific choice of impressed sources extJ , extK , following Eq. (58), as expected in presence 

of arbitrary impressed sources. However, the constitutive parameters defined in Eq. (68) do not 
depend on this ratio, thus compactly including the macroscopic polarization and magnetization 
properties of the array for arbitrary excitation. 

Effective permittivity and permeability are found in closed form in the first two expressions (68). 
These generalize the Clausius-Mosotti homogenization formulas [159]-[160], [176] by 
rigorously taking into account the coupling among the inclusions and their polarization 
properties. More importantly, this theory demonstrates the inherent presence of the magneto-
electric coupling via the coefficients e

eff  and o
eff  in Eq. (67)-(68). The first portion of the 

bianisotropy coefficient e
eff , even with respect to  , is associated with the magneto-electric 

effects at the inclusion level, and satisfies the usual reciprocity constraints for bulk materials. An 
additional contribution to eff , odd with respect to  , is associated to inherent magneto-electric 

coupling effects at the lattice level. These latter effects cannot be generally neglected. Even in 
the case of center-symmetric inclusions, for which 0em  , this latter contribution is present as 

long as 0emC  . The presence of this odd bianisotropy coefficient has been pointed out 

theoretically and numerically in [174]-[175], and the present theory explains its physical nature 
and relevance from first-principle considerations: o

eff  is a weak spatial dispersion effect 

associated with the finite phase velocity of mode propagation along the array, not negligible even 
in the long-wavelength limit as we show in the following numerical examples (Section 8). Its 
nature is associated with the inherent asymmetry introduced by the phase propagation across the 
unit cell, and this explains why, at first sight, its occurrence in (67) does not appear to satisfy the 
reciprocity relation for local bianisotropic materials. Its odd response with respect to   ensures 
however that, by reversing the direction of propagation for given frequency, its contribution also 
changes sign, ensuring that the constitutive relations (67) are effectively describing a reciprocal 
medium. This shows the drastic difference between the bianisotropy stemming from lattice 
effects o

eff  and the one associated with an actual magneto-electric coupling at the inclusion level 
e
eff . Its relevance in the homogenization of metamaterials and in restoring the physical meaning 

of their constitutive parameters has been discussed in further detail in [184]. 

Due to the inherent properties of the summations in (63), which for real   satisfy [168]-[169], 
[173], [176] 

   
 

3
0Im / 6

Im 0em

C k

C




 (69) 

and the lossless conditions on the polarizability coefficients [190] 

 
 

1 1 3
0Im Im / 6

Im 0

e m

em

k  



        


, (70) 

it is recognized that all the constitutive parameters in (68) are real for lossless particles and real 
 , as required in lossless bianisotropic materials, satisfying power conservation. 
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Before concluding this section, it is worth stressing that the closed-form expressions (68) for the 
effective parameters of the array apply to any plane-wave like field distribution in the 
homogenized material, any form of excitation and any pair  , β , representing an accurate first-

principle homogenization model for the metamaterial array. The derived parameters are, in the 
general case, still weakly dependent on  , as a symptom of spatial dispersion. However, they 
tend to local parameters in the long-wavelength limit (small  ). The present general theory 
highlights that, in addition to artificial magnetism and polarization effects stemming from weak 
spatial dispersion, the rigorous consideration of the coupling within the array requires additional 
magneto-electric coefficients, even in the case of center-symmetric inclusions. In the following 
section, we consider the special case of eigen-modal solution, without external impressed 
sources. 

d. Eigen-Modal Propagation and Equivalent Constitutive Parameters 

In the eigen-modal case, i.e., in the absence of external distributed sources, Eq. (64) ensures that 
non-trivial solutions are available only for specific instances of  β , satisfying the array 

dispersion relation 

       
1 1 2 2

eme eff m eff em effC C C       . (71) 

The corresponding eigenvectors, again solving Eq. (64), satisfy 
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 
  

  
p p

m m
, (72) 

which provides a specific constraint on the ratio /av avP M  in this source-free case, function only 

of the frequency and the array geometry. 

Rearranging Eq. (67) and (58), in this regime we may also write 
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

β E H H

β H E E

, (73) 

which shows that the eigen-modal propagation may be described in terms of equivalent 
permittivity and permeability parameters eq , eq , which embed the magneto-electric coupling 

effects as a form of weak spatial dispersion. Their validity is strictly limited to eigen-modal 
propagation, since the ratio /av avP M  is in general a function of the impressed distributed 

sources. The description of the array in terms of equivalent parameters is particularly attractive 
in the absence of bianisotropic effects at the inclusion level ( 0e

em eff   ), for which the 

residual magneto-electric coupling associated with lattice effects may be embedded into 
equivalent permittivity and permeability related to the effective parameters through the 
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normalization factor 0

0

1
/

o
effc

k




 . This shows that classic homogenization models that aim at 

describing metamaterial arrays in terms of permittivity and permeability (see, e.g., [166]-[173]) 
effectively extract these equivalent parameters, that inherently contain a form of weak spatial 
dispersion when o

eff  is not negligible. It is evident that this may easily translate into 

inconsistencies and lack of physical meaning in the extracted or retrieved parameters, as 
discussed more in detail in [184]. It is also worth stressing that these parameters are inherently a 
function of the specific ratio /av avP M  in (72), i.e., they are forced to change when impressed 

sources are present in the array, in sharp contrast with the effective constitutive relations, derived 
in (68) on first-principle physical grounds. 

i. Secondary parameters and relation between equivalent and effective 
descriptions 

It follows straightforwardly from (73) that the dispersion relation  β  may be re-written as 

2 2
eq eq    , (74) 

which, after using Eqs. (68) and (66), is proven to coincide with Eq. (71). 

In addition, we can define the effective characteristic impedance of the array for eigen-modal 
propagation: 
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. (75) 

In the absence of bianisotropic effects in the inclusion 0e
em eff    and the last side in Eq. (75) 

simply becomes 

eq effav
eff

av eq eff

E

H

 


 
   . (76) 

 In absence of bianisotropy, therefore, the characteristic impedance is not directly affected by 
magnetoelectric coupling at the lattice level, and the same characteristic impedance is obtained 
using either the ratio of effective or equivalent parameters. Using Eq. (67), we may write in the 
general case 
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which, for 0e
em eff   , may be also written as 
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


. (78) 

Eqs. (74) and (78) coincide with the classic retrieval procedures used to determine effective 
permittivity and permeability of a metamaterial sample from their secondary parameters, i.e., 
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their eigen-modal wave number   and characteristic impedance eff  [173], [182]. This implies 

that the equivalent parameters derived in (73) from first-principle considerations coincide with 
those retrieved after assuming that the metamaterial may be described by a simple model 
consisting of permittivity and permeability, effectively embedding the effects of o

eff  into the 

equivalent parameters. In souce-free problems in which the sources are all outside the 
metamaterial sample, as in classic retrieval schemes, it is tempting to put aside the magneto-
electric coupling coefficient o

eff , and use the equivalent parameters to model the array 

scattering. This is indeed possible, and from the scattering point of view the effective and 
equivalent description is perfectly equivalent in this source-free scenario, since the secondary 
parameters of the supported eigen-mode coincide in the two descriptions. However, our theory 
shows that the equivalent parameter description has a limited physical meaning and it should not 
be used to characterize the electric and magnetic response of the metamaterial, since it hides an 
inherent form of magneto-electric coupling. It is not surprising that the frequency dispersion of 
the equivalent parameters may contain non-physical artifacts and not satisfy passivity, 
reciprocity or causality constraints typical of local parameters [184]. 

As a final remark with respect to retrieval procedures, it is worth noticing that, even at 
frequencies where spatial dispersion and magneto-electric coupling are negligible and we can 
write 

av eq av

av eq av









D E

B H
, (79) 

as in a natural material, our theory shows that the averaged fields are effectively related to the 
microscopic polarization fields through Eq. (56), i.e., standard retrieval techniques implicitly 
assume 

0

0

0

0

/

/

E
eq

H

H
eq

E

















E P

E P

H M

H M

. (80) 

In other words, the nature of the averaged polarization currents within each unit cell, whether 
electric or magnetic, inherently affects the definition of averaged fields used to calculate 
equivalent or effective constitutive parameters, and weak spatial dispersion effects associated 
with artificial magnetism or polarization have a different role (contributing to avE  and avH ) than 

the direct polarization and magnetization vectors (contributing to avD  and avB ). This should be 

considered an implicit assumption of standard retrieval techniques for metamaterials. 

e. Long-Wavelength Limit and Relations with Approximate Homogenization Models 

For sufficiently long wavelength and away from the inclusion resonances, under the conditions 

0 1k d  , 1d  , the magneto-electric coupling effect becomes negligible, implying that 

0, 0o
em effC    . (81) 

Approved for public release; distribution unlimited.



 

92 
 

Under this simple condition, and in the absence of bianisotropic effects at the inclusion level 
0em  , the array may be described by simple constitutive parameters 

3

0 1

3

0 1

1

1

eff eq
e int

eff eq
m int

d

C

d

C

  


  










 
    

 
    

, (82) 

which coincide with generalized Clausius-Mossotti relations fully taking into account the 
coupling among the inclusions [176]. Under condition (81) and 0em  , we find for the 

eigenmodal solution: 

0

0

eff eff

eff
eff

eff

p

m

   

 


 

 






, (83) 

which is exactly coincident with Eqs. (74) and (78) for equivalent parameters, ensuring that eq  

and eq , as well as the retrieval method [173], are coincident with this first-principle definition 

of effective constitutive parameters in the absence of impressed sources, after the relevant 
assumption that magneto-electric coupling effects stemming from spatial dispersion in emC  may 

be neglected. 

If also intC  may be considered independent of   in the long-wavelength limit, then 

 
3
0

3

1
, 0

3 6int

k
C j

d
 


   , (84) 

which proves that Eqs. (82) and this homogenization method convege to local classic Clausius-
Mossotti formulas for periodic arrays [158]-[160] when , 0   . In the following numerical 
examples, we show that this assumption does not necessarily hold even in the very long 
wavelength regime, and that the rigorous homogenization approach introduced here may provide 
results significantly different from quasi-static approaches even for 0 1k d  , 1d  . 

f. Spatial Dispersion and Extreme Metamaterial Parameters 

At the other limit, metamaterials are of most practical interest when their constitutive parameters 
assume extreme (very large, very low or negative) values, which usually arise around the 
inclusion resonances. The homogenization model described here is very general, and in principle 
applicable to any value of ,  . However, the same definition of homogenized parameters, as 
those presented in the previous section, inherently neglects the array granularity. This is 
particularly relevant near these resonances, since, despite a small  0k d , the effective eigen-

modal wavelength may become comparable with the period as  d  increases. Although these 

resonant regions are quite limited in bandwidth for passive inclusions in the long-wavelength 
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regime, it is in these regions that the effects of o
eff  and of inherent spatial dispersion are most 

relevant. 

i. Near-zero effective material parameters 

Limiting ourselves to the lossless scenario for clarity, consider first the low-index regions, for 
which 0d   for finite 0k d , of interest in a variety of applications [192]-[197]. This includes ε-

near-zero, µ-near-zero and low-index metamaterials. In this frequency range,   passes from 
imaginary to real values, since one of the two equivalent parameters crosses the real axis. For 

0  , 0o
em effC     and their value also goes from imaginary to real. This makes sure that eq  

and eq  stay real (and one of them negative) in Eq. (73), also when   . As shown in some of 

the following numerical examples, crossing this zero-index region provides significant 
deviations between the equivalent parameters  ,eq eq   and the effective parameters  ,eff eff  , 

as a symptom of inherent spatial dispersion, consistent with the results in [179]. It should be 
stressed that, surprisingly enough, in this region , ,em effC   are all very close to zero, implying 

very long effective wavelengths and weak magneto-electric coupling; however, the ratio /o
eff   

(corresponding to eff  in the notation of [184]), crucial for determining the effect of spatial 

dispersion in the denominator of (73), is not necessarily small, providing relevant non-local 
effects in the equivalent parameters. 

ii. Effective parameters near the bandgap regions 

Another region of interest for metamaterial applications is the one near the edge of the lattice 
bandgap, for which d  . Around this region, large positive or negative values of permittivity 
and permeability may be obtained, of interest in a variety of applications [171], [198]-[199]. It is 
evident that in this scenario the interaction of the electromagnetic wave with the inclusions may 
become very complex, and an averaged description may not provide much insight into the 
physical behavior of an eigenmode that flips its phase within the individual unit cell. In 
particular, inside the bandgap the same definition of constitutive parameters is not meaningful, 
and they become complex even for lossless inclusions. It is relevant to study, however, the 
transition between the homogenization regime and the bandgap region, where extreme 
metamaterial parameters are expected. It is in this transition region that this rigorous 
homogenization technique becomes particularly important, since here weak spatial dispersion 
effects become very relevant, even in the long-wavelength limit 0 1k d  . Exactly at the bandgap 

edge the periodic properties of emC  require that [176] 

 / 0emC d     . (85) 

For center-symmetric inclusions ( 0em  ), this implies that the general dispersion relation (71) 

simplifies into 

   1 1, / , / 0e mC d C d               , (86) 
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which implies that a bandgap may be reached, in the long-wavelength limit for which C  is 
small, exclusively near an electric or a magnetic resonance, for which one of the two 1 C   . It 
follows directly from (68), (73) that at such resonance one of the equivalent parameters 

0eq   (for 1
e C   )  or 0eq   (for 1

m C   ), (87) 

unless the two resonances are degenerate, as considered in the following section. 
Correspondingly, using (74), the other equivalent parameter has to become 

 

2

0 2

0

eq
k d

   (for 1
e C   )  or 

 

2

0 2

0

eq
k d

  (for 1
m C   ). (88) 

For instance, if the bandgap associated with a magnetic resonance is considered, as it is the case 
for the first resonance of a dielectric inclusion (see example 2 in the following numerical 
section), the eigen-wave number   and the corresponding effective permeability eff  rapidly 

increase from lower frequencies when approaching the array resonance, until they hit the 

bandgap for 1
m C   . At this frequency 0eq  , 

 

2

0 2

0

eq
k d

  , and therefore, using (73) 

 
0

0 0

0
0 0 0
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o
eff eff

eff o
eff

c

k d

c
k d k d

 
 

   


 

 
  

 

. (89) 

Eq. (75) is indeed satisfied by Eq. (89), and it implies 

 0 0 0

eff

k k d

  


  , (90) 

which suggests that, independent on the geometry of the inclusions, at the bandgap edge the 
normalized characteristic impedance simply coincides with the normalized wave number. An 
analogous derivation for bandgaps at an electric resonance provides the inverse of Eq. (90). It is 
evident that in this regime o

eff  may not be neglected and indeed its effect is comparable, if not 

larger, than the one of eff  and eff . In this frequency range the equivalent parameters (73) lose 

their physical meaning and strongly diverge from the effective parameters (68), as discussed in 
further detail in [184].  

It is evident from this discussion that regions with extreme (very large, very low or negative) 
metamaterial parameters are those for which the present homogenization technique is most 
relevant. We show in the following numerical examples how this rigorous model may correctly 
model the exotic features of metamaterials within these frequency bands, capturing the weak 
spatial dispersion effects that are usually at the root of inconsistencies in approximate and less 
rigorous homogenization models. 
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g. The Special Case of Matched Inclusions and Degenerate Resonances 

A special situation of interest arises in the case in which the electric and magnetic resonances of 
the inclusions are degenerate, as it may happen for matched inclusions, which support combined 
electric-magnetic resonances at the same frequency [171],[173],[196]. These are particularly 
relevant for realizing double negative metamaterials with matched properties. Under this 
condition, it is evident that e m     (at least over a given range of frequencies of interest) 

and, under the assumption 0em  , the eigen-modal dispersion relation (71) simplifies into 

1
emC C    . (91) 

Correspondingly, Eq. (72) always yields, as expectable 

0/m p  . (92) 

The effective constitutive parameters are simplified into 
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, (93) 

and 

2 2 2
0 0

0 0

0

eq eq

eff

k k
 


 

 

 


, (94) 

ensuring that effective and equivalent parameters are matched, as expected. 

The eigen-solution   of (91) is necessarily bounded within the principal period  Re / d   

for the homogenization to hold. In the lossless limit of interest here, the matched condition 
ensures that there are no finite bandgaps for the real branches of  , and its dispersion bands are 

connected to each other at the branchcuts for which  Re / d  . The absence of bandgaps in 

the eigen-modal dispersion is particularly interesting, since it implies that the effective 
parameters are always real defined, producing peculiar dispersion phenomena in this special 
circumstance. In particular, at the branch cuts, using (85) we get 

 1 , /C d      . (95) 

Using (93) and (66), under this condition we find the interesting relations 

0 0

0
0 0

0eff eff

eq eqo
effc

d

 
 

  
 

 

  
, (96) 
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which always hold at branch-cut points  Re / d  . Notice that in this special case Eqs. (87)

-(88) do not hold. Although the effective permittivity and permeability are zero, the magneto-
electric coefficient is large, and it makes sure that the dispersion relation (94) is satisfied. In this 
regime, by locally increasing the average electric field would curiously affect only the average 
magnetization, and dual considerations apply to the average magnetic field. It is evident that in 
this scenario the effects of o

eff  and of weak spatial dispersion cannot be neglected. 

 

Figure 44 – (a) Frequency dispersion of the electric (thick line) and magnetic (thin) normalized polarizability of the 
individual inclusions for the four metamaterial arrays considered in the following figures: (solid) dielectric spheres 
with permittivity 020  ; (dashed) dielectric spheres with 0120  ; (dotted) conducting spheres; (dash-dotted) 

magnetodielectric spheres with 020   and 020  ; (b) Ratio of electric over magnetic polarizability for the 

same geometries. Here 0.45  . 

Near the bandgaps, there are two finite frequencies satisfying the equation 
1

int emC C    , (97) 

symmetrically placed around the branch-cut point  1 , /C d    , at which all the 

constitutive parameters diverge. In fact, in this matched scenario the effective parameters are not 
bounded, but 
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, (98) 

and analogously for eq ,  ensuring that the equivalent parameters in (73) remain bounded and 

satisfy (94), even when all the effective constitutive parameters diverge. These two closely 
spaced vertical asymptotes for the effective parameters are symmetrically placed around any 
branch-cut point for  Re / d   and they are separated by a distinct branch that crosses 

conditions (96) when  1 , /C d      . Around the inclusion resonance, the effective 

parameters may assume zero or infinite values and o
eff  cannot be neglected. 

Passed any of these resonances,   assumes negative eigen-values, which corresponds to regions 
with effective negative index of refraction, in which both the effective parameters are negative. 
At the connection between negative and positive branches, when the effective parameters cross 
zero, in this matched lossless scenario spatial dispersion may be safely neglected, since 

0
0 0 0 0 0

0eff eff eq eq
effc

k

    
   

      . (99) 

Only in this situation we may achieve a truly local zero permittivity and permeability, impedance 
matched with free-space, useful in various applications envisioned in recent papers [196]-[197]. 
In contrast, in the unmatched scenario, as outlined above, the effects of spatial dispersion may 
not be neglected in regions with near-zero effective index of refraction. 

h. Numerical Examples and Further Discussion 

In this section, we discuss the homogenization of four specific metamaterial geometries of 
interest. Although the previous formulation is applicable to arbitrary lossy, bianisotropic 
inclusions, arbitrary source distribution and any choice of  , β , here we focus on 

metamaterials composed of lossless spheres and eigen-modal propagation. This has the 
advantage of providing a clearer picture of the difference between this homogenization approach 
and other quasi-static techniques and retrieval methods focused on the absence of embedded 
sources in the array, in order to highlight the relevant effects of spatial dispersion and magneto-
electric coupling coefficient in the different propagation regimes and transition regions near the 
metamaterial resonances. Our numerical examples are tailored to highlight the difference 
between quasi-static homogenization models and this rigorous homogenization approach. For 
this reason, we limit our analysis to dipolar approximations and eigen-modal propagation in the 
long-wavelength regime, of major interest in the metamaterial community. In future works we 
will apply the general multipolar approach introduced in Section 2 to arbitrary metamaterial 
inclusions and extend our numerical analysis to the presence of embedded sources. Since we deal 
with spherical particles, we can use analytical closed-form expressions for e , m  [200]. Finally, 

for the reasons outlined above and the purpose of this paper, we focus all our examples in the 
long-wavelength region, usually considered safe for quasi-static homogenization models, i.e., 

 0 1k d   [162]-[164]. The parameter /a d   is also introduced, which defines the ratio of 

sphere radius over lattice period, as a measure of the array density. 
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Figure 45 – Frequency dispersion of the guided wave number, and its approximations as defined in the text, for an 
array of dielectric spheres with 020  , with (a) 0.45  , (b) 0.3  . 

Figure 44a shows in logarithmic scale the amplitude of the normalized polarizability coefficients 
(thick lines for the normalized electric polarizability, thin for the magnetic one) for four different 
geometries of interest: (1, solid lines) dielectric spheres with relative permittivity 20r   and 

permeability 1r  ; (2, dashed) dielectric spheres with 120r   and 1r  ; (3, dotted) perfectly 

conducting spheres; (4, dash-dotted) magneto-dielectric spheres with 20r r   . For 

convenience, Fig. 1b shows the ratio /e m  , in order to highlight the ratio between electric 

and magnetic response at the inclusion level. Both plots show their variation as a function of 

 0k d , for the density factor 0.45  . The chosen geometries represent specific situations of 

interest in common metamaterial arrays: in case 1 (solid lines), a regular array of dielectric 
spheres is considered, far from their individual resonances, but still with a good contrast 
compared to the background: a dominant electric polarization is expected all over the spectrum 
of interest; in case 2 (dashed), the permittivity is increased to support a magnetic and an electric 
resonance within the frequency band of interest, in analogy with established designs to realize 
negative metamaterial parameters [171]: in this case, more interesting features are expected in 
the metamaterial response near these resonances. As expected, the electric response is dominant 
for lower frequencies, but the first resonance is magnetic. In case 3 (dotted), conducting particles 
are considered, for which electric and magnetic responses are comparable, and for lower 
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frequencies the electric response is exactly twice the magnetic one; in case 4 (dash-dotted), 
impedance matched inclusions are employed, supporting two combined electric-magnetic 
resonances within the band of interest. It is noticed that in all these examples, lossless conditions 
(70) strictly apply. 

Figure 45a shows the dispersion of normalized eigen-wave number (effective index of refraction) 
for the array 1 with 0.45  . The figure compares the exact eigen-modal solution of the guided 

wave number 0/ k  (solid line), as obtained from Eq. (71), with various approximate solutions 

obtained neglecting spatial dispersion and magneto-electric effects, as follows: the dashed line 
refers to the dispersion of em , obtained neglecting the magneto-electric coupling term emC , as in 

Eq. (81); the dotted line shows CM , which in addition neglects the dispersion effects in intC , 

implying 0emC   and intC  as given by Eq. (84), coinciding with the quasi-static Clausius-

Mossotti homogenization model; the dash-dotted line refers to e , obtained neglecting the 

magnetic polarizability effects associated with the magnetism of the inclusions (which is small in 
this geometry), but still using the exact intC  expression; finally the dash-dot-dot line refers to 

e CM  , which neglects the magnetic effects and uses Eq. (84) for intC . We consider all these 

approximate expressions to show how the different spatial and frequency dispersion terms, 
usually neglected in quasi-static homogenization models, affect the metamaterial 
homogenization accuracy. As expected, all these expressions converge to the same quasi-static 
limit when  , 0   , but the approximate expressions start deviating from the exact 

expression of   for relatively low values of 0k d . In particular, it is surprising to notice how, by 

neglecting the magnetic polarizability of the particles, which in this case is orders of magnitude 
smaller than the electric one (see Fig. 1b), the dispersion of 0/e k  diverges quite drastically 

from the exact model, implying that the small magnetism in these dielectric particles should not 
be neglected, as one may be tempted to do looking at Fig. 1b. The effects of non-locality and 
spatial dispersion in intC  start playing a role much earlier in frequency than one would generally 

expect for such simple topology, comparing CM  with  . In comparison, the magneto-electric 

coupling effects have a much weaker role, and start being relevant only around 0 1k d  . Figure 

45b, in comparison, shows the same curves calculated for a less dense array, with 0.3  . As 
visible, the trend of the various curves is quite similar, although the effects of spatial dispersion 
are less relevant here, as the interaction among inclusions is weaker. In particular, the magneto-
electric coupling effects associated with emC  are negligible all over the range of frequency of 

interest, since em  practically coincides with   in this less dense configuration. Non-local 

effects in intC  and the influence of the small magnetic properties of the inclusions have still some 

relevant effects in this less dense scenario. 

Figure 46 shows the eigen-modal dispersion of effective constitutive parameters for this array for 
0.45  . The top panel compares: the effective permittivity eff  (solid black line); em , 

calculated after neglecting the magneto-electric coupling coefficient emC , as in Eq. (82) 

(dashed); loc , calculated neglecting also the effects of spatial dispersion in intC , but still 

considering its dependence on   for 0   (dash-dotted); CM , obtained using the quasi-static 
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expression for intC  given in (84) (dotted), which coincides with the Clausius-Mossotti definition 

for periodic arrays derived in [158]; finally eq  (solid light green), defined as in (73). All these 

expressions yield a purely real permittivity, as expected from the lossless assumption. However, 

CM  rapidly diverges from the first-principle value of permittivity eff . The value of eff  actually 

decreases with frequency for any 0 0.65k d  , due to the effects of frequency and spatial 

dispersion in the interaction constants for dense arrays. By neglecting the magneto-electric 
coupling, as in em  does not produce any sensible difference in the prediction of eff , but the 

effects of spatial and frequency dispersion of the interaction constants are quite relevant, as seen 
analyzing the divergence of loc  and even more of CM  from eff . Finally, the divergence of eq  

from the correct value of eff  is a symptom of non-negligible spatial dispersion and magneto-

electric coupling in the array, which are evidently not negligible in such dense arrays. 

In comparison, the permeability is accurately predicted by all the approximate models, and even 
the local or Clausius-Mossotti approximations predict extremely well its weak dispersion, due to 
the significantly lower magnetic response of the spheres all over the frequency range of interest. 
Interestingly, only eq  shows a moderate deviation from eff , which highlights how the effects 

of o
eff  may not be neglected even in this long-wavelength regime. Finally, the value of o

eff  

(bottom panel) becomes relevant only towards the higher end of this frequency range, explaining 
the divergence of effective and equivalent parameters. 

Figure 47 calculates the secondary effective parameters of this material, obtained using the 
different homogenization models of Fig. 3. In particular, Fig. 47a compares the exact value of 
normalized wave number 0/ k , as from Fig. 45a, with the approximate values 0/i i ik   , 

where the pedix i  stands for any of the approximate models used in Fig. 46. This plot offers 
several interesting insights. First of all, it is noticed that eff  follows extremely well the 

dispersion of em , consistent with the weak effects of emC  on the effective permittivity. 

However, both curves moderately diverge from the correct value 0/ k  in the range 

00.5 1k d  , confirming that the effects of o
eff  cannot be neglected in this frequency range. 

The Clausius-Mossotti model CM  fails even more substantially. Fig. 47b compares the 

corresponding values of effective characteristic impedance 0/ /i i i    . As noticed in the 

previous section, o
eff  does not play a direct role in the impedance when 0e

eff  , as here, and 

therefore the parameters obtained neglecting emC  yield an accurate approximation of the 

effective impedance eff . It should be noted, however, that the relation between eff  and 

/av avP M  may not be assumed as simple as (83), due to the effects of o
eff  for relatively larger 

frequencies. In the less dense array case of Fig. 45b (not reported here for brevity), as expectable 
the effects of non-locality and spatial dispersion are much less relevant, but still Clausius-
Mossotti homogenization formulas would deviate considerably from the proper effective 
parameters. The use of equivalent parameters, that embed the magneto-electric effect in their 
same definition (73), would predict correct values of these secondary parameters, consistent with 
(74)-(75), ensuring that their use for scattering purposes in the eigen-modal operation is perfectly 
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legitimate, if one avoids assigning them the usual physical meaning of local constitutive 
parameters. 

 

Figure 46 – Frequency dispersion of the effective constitutive parameters, and their approximations as defined in the 
text, for the array of Fig. 45a. 
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Figure 47 – Frequency dispersion of the effective wave number and characteristic impedance calculated from the 
constitutive parameters of Fig. 46. 

 

Figure 48 – Frequency dispersion of the guided wave number, and its approximations as defined in the text, for an 
array of dielectric spheres with 0120   and 0.45  . The thin solid line corresponds to the imaginary branch of 

 . 
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Figure 49 – Frequency dispersion of the effective constitutive parameters, and their approximations as defined in the 
text, for the array of Fig. 5. Dashed lines in the bottom panel refer to branches with imaginary values. 

Consider now the second metamaterial of interest, composed of spheres with 120r  , which 

support a magnetic and an electric resonance within the low frequency regime considered here. 
Figure 48 shows the eigen-wave number dispersion for such array with 0.45  , with symbols 
analogous to Fig. 2. It is immediately recognized that the exact dispersion of normalized wave 
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number 0/ k  (solid lines) is much more intricate than in the previous situation. As expected, 

0/ k  initially grows with frequency, until hitting the first band-gap of the array at 

 0 0.594k d  , at the magnetic resonance frequency 1 0m C    . The narrow frequency region 

within the bandgap should be completely disregarded in terms of homogenization, since, as 
discussed above, the effects of array granularity plays a major role, and the same definition of 
averaged constitutive parameters loses its macroscopic meaning. Passed the magnetic bandgap, a 
branch with imaginary wave number ij    is reached (thin solid line), which connects with 

the next real branch at  0 0.723k d  , at the point for which 0  . The following bandgap is 

then hit at the electric resonance frequency 1 0e C    , at  0 0.891k d  , and the next real 

branch is obtained at  0 0.909k d  . As seen in Fig. 7, this behavior is well described by 

approximate dispersion relations, even neglecting the effects of emC  or even the spatial 

dispersion in intC , as in em  and CM  respectively, since the local inclusion resonances now 

dominate the spatial dispersion effects of the lattice. Of course, in this scenario it is not possible 
to neglect the magnetic effects in the dielectric particles, as for e  and e CM  , since this would 

completely miss the first magnetic bandgap resonance. 

The effective constitutive parameters of this array are reported in Fig. 49, with analogous 
symbols as in the previous example. If the spatial dispersion effects are negligible in evaluating 

    in Fig. 48, they play a major role in the correct definition of the constitutive parameters, in 

particular near the electric and magnetic resonances of the inclusions. First, it is noticed that 
Clausius-Mossotti formulas completely miss the relevant magneto-electric coupling arising near 
the bandgaps, and the permittivity especially suffers of this approximation, starting from very 
low frequencies. Towards the first (magnetic) resonance, em  may approximate relatively well 

the effective permittivity eff , confirming that the effect of emC  is small on the permittivity 

dispersion, dominated by the local inclusion resonances. However, the value of o
eff  assumes 

large values near the two resonances and it cannot be neglected in a proper homogenization 
model. Near the magnetic resonance, the effective permittivity experiences a sharp Lorentzian 
resonance, completely missed by CM  and even by loc , which is an evident symptom of the 

magneto-electric coupling in the array. In contrast, the various models for magnetic permeability 
all have good agreements with the effective model (with the exception of a small resonant 
feature arising at the electric bandgap resonance of the array). In the region where   is 
imaginary, immediately following the bandgaps, all the models correctly predict a negative 
effective permeability or permittivity region, which crosses zero at  0 0.723k d   and 

 0 0.909k d  , together with the value of  . In this negative parameter range, as expected, o
eff  

is imaginary (dashed lines in the bottom panel), which ensures that the equivalent parameters are 
real quantities (one of them negative). 

Special attention should be paid to the dispersion of the equivalent permittivity eq  in Fig. 51a 

(lighter green line). Its slope is negative all the way until the magnetic bandgap, producing an 
anti-resonance effect similar to the one extracted from retrieval procedures in various 
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metamaterial geometries near magnetic resonances [173]-[182]. It is evident from this analysis 
that these effects are associated to incorporating o

eff  in the definition of equivalent permittivity.  

 

 

Figure 50 – (Color online): Frequency dispersion of the effective wave number and characteristic impedance 
calculated from the constitutive parameters of Fig. 49. 

It is true that the two equivalent parameters may describe well the guidance properties of the 
array, but their physical meaning in this case diverges considerably from the first-principle 
definition of permittivity and permeability. A simple metamaterial model based on just 
equivalent permittivity and permeability would fail capturing the physics of the array near the 
first bandgap resonance, predicting 0eq   (87), when in reality the averaged polarization 

vector has a strong resonance cancelled by the coupled magnetization. These effects have been 
discussed in more detail in [184]. If the discrepancy between eq  and eff  may have been 

expected near this resonant regime, another transition region in which the equivalent parameters 
,eq eq   lose their usual meaning is the region near  0 0.723k d  , for which 0  . As 

confirmed by Fig. 8a, and anticipated above, in this region: 
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Indeed, the correct value of effective permittivity coincides with the local value loc , since 

0  , but this value is substantially different from eq . This is due to the fact that, although the 

magneto-electric coefficient is near zero, the ratio /o
eff   is finite, implying that eq  diverges 

from eff  and it loses the meaning of the average electric polarizability of the array. In this near-

zero index region, the weak spatial dispersion represented by o
eff  may not be neglected, 

although the effective wavelength is very large. This confirms the results in [179] derived for 
periodic arrays of split-ring resonators, which discussed the presence of non-negligible spatial 
dispersion effects in this extremely long-wavelength ( 1d  ) scenario. 

 

Figure 51 – Frequency dispersion of the guided wave number, and its approximations as defined in the text, with 
frequency for an array of conducting spheres, for (a) 0.45  , (b) 0.3  . 
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Figure 52 – Frequency dispersion of the effective constitutive parameters, and their approximations as defined in the 
text, for the array of Fig. 8a. 
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Figure 53 – Frequency dispersion of the effective wave number and characteristic impedance calculated from the 
constitutive parameters of Fig. 52. 

Figure 50 shows the dispersion of the effective index of refraction and characteristic impedance 
obtained through the various parameters in Fig. 49, analogous to Fig. 47. As it is visible, all the 
curves agree with high accuracy within the real branches, since their dispersion is dominated by 
the local resonances at the inclusion level. This example clearly shows that indeed   and    for 
this array may be easily derived applying local concepts, like Clausius-Mossotti relations or 
simple retrieval procedures, since they are dominated by local resonances at the inclusion level; 
however, inferring from these secondary parameters the physical values of permittivity and 
permeability, as commonly done, may lead to physical artifacts and inconsistencies [184], since 
in the resonant regions the effects of o

eff  cannot be neglected. 

As a third example, consider the case of an array of conducting particles, as in Fig. 44, dotted 
lines. Figure 51 shows the dispersion of wave numbers for 0.45   (a) and 0.3   (b), 
analogous to Fig. 45. In this case, the wave numbers predicted using just electric effects of the 
particles are evidently incorrect, since the magnetic contribution for conducting particles is never 
negligible. Moreover, the effect of the coupling coefficient emC  is particularly relevant in this 
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conducting scenario, which shows the maximum divergence between   and em , due to the 

relevance of the magnetic effects even at very low frequencies. 

Figure 52 shows the corresponding constitutive parameters for the case 0.45  . eff  also in this 

scenario shows a distinct negative slope, all over the range of frequencies considered here, due to 
non-negligible spatial and frequency dispersion. This is compensated by the positive slope of the 
effective permeability, which assumes, as expected, diamagnetic values [201]. Only the 
Clausius-Mossotti quasi-static model predicts a positive dispersion for CM , whereas all the other 

models correctly follow the trend of eff . As good confirmation of the strong influence of o
eff , 

the deviation of the equivalent parameters eq , and in particular eq , from the effective 

parameters is pretty relevant. Figure 10, finally, shows the dispersion of the calculated wave 
numbers and characteristic impedances obtained using the effective constitutive parameters of 
Fig. 52. It is seen how all the curves agree reasonably well with the exact dispersion of eff , 

except the quasi-static Clausius-Mossotti formula, which neglects frequency and spatial 
dispersion effects of the interaction constants. The divergence of all the curves from the exact 
dispersion of   is particularly striking, as a symptom of the relevance of the magneto-electric 

coefficient o
eff . We have also analyzed the less dense configuration with 0.3  , as in Fig. 51b 

(not reported here for brevity), which indeed provides analogous results, but less strong 
variations from the background parameters, as expected. 

 

Figure 54 – Frequency dispersion of the guided wave number, and its approximations as defined in the text, for an 
array of magnetodielectric spheres with 020  , 020  , 0.45  . 

Finally, as the fourth relevant metamaterial geometry of interest, Figs. 54-55 show the case of an 
array of magnetodielectric matched spheres, as in Fig. 1 (blue lines), which are able to produce 
degenerate electric-magnetic resonances at the same frequency, leading to negative index bands 
of operation [171], [173]. Figure 54 shows the eigen-wave number dispersion for this array, 
consistent with the previous examples. Indeed, the wave number experiences resonances near the 
combined electric-magnetic resonances of the inclusions, as predicted by (91). In particular,   
grows from its quasi-static value until reaching the first branch-cut at / d  , at the resonant 
condition (95). Exactly as formulated in the previous section, the effective constitutive 
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parameters (Fig. 55) diverge twice around this resonance condition, at the frequencies (91), and 
the corresponding wave number enters a region of negative effective index of refraction. As 
expected, also o

eff  diverges near this resonance, and it cannot be neglected in a proper 

homogenization model. All the effective parameters are real for any frequency, and their value is 
unbounded, as described in the previous section. Consistently, the approximate models of   (in 
this scenario they are identically equal to the dispersion of the permittivity models in Fig. 55a, 
since permittivity and permeability are matched) may considerably fail near these resonances. As 
already mentioned in the previous section, in this matched geometry the eigen-modal 
characteristic impedance is always 0 , equal to the ratio /av avM P . Therefore, classic retrieval 

techniques, as well as the one employed in [173], may derive with good approximation the 
behavior of eff , eff  far from the branch-cuts, for which o

eff  and the effects of spatial 

dispersion are minimal. However, near the branch-cut resonances a more refined model as the 
one described here is required for a proper physical description of the array.  

 

Figure 55 –Frequency dispersion of: (a) effective permittivity and its approximations (the normalized permeability 
and effective wave number have exactly the same dispersion in this case) and (b) magneto-electric coefficient for the 

array of Fig. 54. 
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i. Conclusions 

We have laid out in this section the foundations of a first-principle homogenization theory to 
properly define quasi-local effective constitutive parameters for a periodic array of 
magnetodielectric and conducting inclusions. We have shown that a proper and rigorous 
description of the wave interaction in metamaterial arrays requires taking into account weak 
spatial dispersion effects and magneto-electric coupling within the lattice, even in the long-
wavelength limit and for center-symmetric inclusions. In this context, we have derived closed-
form analytical formulas for the rigorously defined effective constitutive relations of an arbitrary 
metamaterial array, highlighting the limitations of commonly used models that neglect these 
effects. Although our theory is very general, the numerical results presented here are focused on 
isotropic metamaterial arrays, lossless materials and eigen-modal propagation, in order to better 
highlight the specific effects of spatial dispersion, above all in the transition between different 
eigen-modal regions, in the long-wavelength limit. We have highlighted in our calculations the 
effects of neglecting spatial and frequency dispersion in the interaction constants and in the 
constitutive models of metamaterials formed by magnetodielectric and conducting spheres, 
which may cause severe artifacts and divergence from the first-principle effective parameters of 
the metamaterial. We believe that these results may be fundamental for a proper description of 
artificial materials with nonconventional properties in complex environments, for their realistic 
applications in practical devices of interest to the U.S. Air Force. 

8. General Conclusions 

We have reported here a series of basic research results as the outcome of our extensive efforts 
sponsored by the U.S. Air Force Research Laboratory with Contract No. FA8718-09-C-0061. 
We have focused in this report on the most relevant aspects of our findings, and in particular on 
guided and leaky-wave modes along linear arrays of nanoparticles, also considering and 
modeling the realistic presence of technological disorder, comparison of the guidance properties 
along linear and planar arrays of nanoparticles and nanovoids in different realistic geometries, 
guided and leaky modes along parallel arrays of nanoparticles, propagation along periodic arrays 
of nanoparticles and their rigorous homogenization as metamaterials and nonconventional 
artificial materials. We believe that these findings may be of significant importance to realize 
novel optical devices and exotic materials for a variety of applications of interest to the U.S. Air 
Force. A complete overview of our results may be found in the series of papers we have 
published during this effort, as reported in the following section. 

9. Scientific Publications 
a. Journal Papers 

J1. A. Alù, “First-Principle Homogenization Theory for Periodic 
Metamaterial Arrays,” Physical Review B, under review, online at: 
http://arxiv.org/abs/1012.1351.  

J2. X. X. Liu, and A. Alù, “Homogenization of Quasi-Isotropic 
Metamaterials Composed of Dense Arrays of Magnetodielectric 
Spheres,” Metamaterials, Special Issue for Metamaterials’2010, in press, (invited 
paper). 
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J3. X X. Liu, and A. Alù, “Limitations and Potentials of Metamaterial 
Lenses,” Journal of Nanophotonics, Special Issue on Subwavelength Imaging, 
in press, (invited paper). 

J4. A. Alù, and N. Engheta, “Optical Metamaterials Based on Optical 
Nanocircuits,” Proceedings of IEEE, in press, (invited paper). 

J5. J. T. Costa, M. G. Silveirinha, and A. Alù, “Poynting Vector in Negative-
Index Metamaterials,” Physical Review B, Vol. 83, No. 16, 165120, April 19, 
2011. 

J6. A. Alù, G. D’Aguanno, N. Mattiucci, and M. Bloemer, “Plasmonic Brewster 
Angle: Broadband Extraordinary Transmission through Optical 
Gratings,” Physical Review Letters, Vol. 106, No. 12, 123902, March 23, 2011. 

J7. A. Alù, P. A. Belov, and N. Engheta, “Coupling and Guided Propagation 
along Parallel Chains of Plasmonic Nanoparticles,” New Journal of 
Physics, Vol. 13, 033026 (23 pages), March 18, 2011, also in Virtual Journal of 
Nanoscale Science & Technology. 

J8. A. Alù, “Restoring the Physical Meaning of Metamaterial Constitutive 
Parameters,” Physical Review B, Rapid Communications, Vol. 83, No. 8, 
081102(R) (4 pages), February 17, 2011, online at: 
http://arxiv.org/abs/1012.1353. 

J9. A. Alù, and N. Engheta, “Emission Enhancement in a Plasmonic 
Waveguide at Cut-Off,” Materials, Special Issue on Next Wave of 
Metamaterials, Vol. 4, No. 1, pp. 141-152, January 4, 2011, (invited feature paper). 

J10. P. Y. Chen, and A. Alù, “Optical Nanoantenna Arrays Loaded with 
Nonlinear Materials,” Physical Review B, Vol. 82, 235405 (6 pages), 
December 2, 2010. 

J11. X. X. Liu, and A. Alù, “Sub-Wavelength Leaky-Wave Optical 
Nanoantennas: Directive Radiation from Linear Arrays of Plasmonic 
Nanoparticles,” Physical Review B, Vol. 82, No. 14, 144305 (12 pages), 
October 20, 2010. 

J12. A. Alù, and N. Engheta, “Comparison of Waveguiding Properties of 
Plasmonic Voids and Plasmonic Waveguides,” Journal of Physical 
Chemistry C, Special Issue for Martin Moskovits, Vol. 114, No. 16, pp 7462–
7471, April 5, 2010, (invited paper). 

J13. A. Alù, and N. Engheta, “Effect of Small Random Disorders and 
Imperfections on the Performance of Arrays of Plasmonic 
Nanoparticles,” New Journal of Physics, Vol. 12, 013015 (12 pages), January 
18, 2010, also in Virtual Journal of Nanoscale Science & Technology, Vol. 21, 
No. 8, February 22, 2010. 

b. Book Chapters 

B1. A. Alù, and N. Engheta, “Optical Wave Interaction with Two-
Dimensional Arrays of Plasmonic Nanoparticles,” in Structured Surfaces 
as Optical Metamaterials, A. A. Maradudin, ed., Cambridge University Press, in 
press. 
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c. Conference Papers and Abstracts 

C1. X. X. Liu, and A. Alù, “Leaky-wave Radiation From Subwavelength 
Metamaterial or Plasmonic Arrays,” in Proceedings of the 5th European 
Conference on Antennas and Propagation, Roma, Italy, April 11-15, 2011, 
(invited talk). 

C2. Y. Zhao, and A. Alù, “Broadband Circular Polarizer Formed by Stacked 
Plasmonic Metasurfaces,” in Proceedings of SPIE Photonics West, San 
Francisco, CA, USA, January 22-27, 2011, (invited talk). 

C3. A. Alù, A. Yaghjian, and R. A. Shore, “Causality Relations in the 
Homogenization of Electromagnetic Metamaterials,” in Proceedings of 
2011 Electromagnetics Contractor Meeting, San Antonio, TX, January 4-6, 
2011, (invited talk). 

C4. A. Alù, “Spatial and Frequency Dispersion Effects in the 
Homogenization of Metamaterial Arrays,” in Proceedings of Metamaterials 
2010, Karlsruhe, Germany, September 16-19, 2010, (invited talk). 

C5. A. Alù, and N. Engheta, “Electromagnetic Modeling and Limitations in 
the Homogenization of Metamaterials and Metasurfaces,” in Proceedings 
of Metamaterials 2010, Karlsruhe, Germany, September 16-19, 2010, (invited 
talk). 

C6. P. Y. Chen, and A. Alù, “Optical Metamaterials and Metasurfaces Formed 
by Nanoantennas Loaded by Nonlinear Materials,” in Proceedings of 
Metamaterials 2010, Karlsruhe, Germany, September 16-19, 2010. 

C7. A. Alù, and N. Engheta, “Extremely Anisotropic Boundary Conditions 
and Their Optical Applications,” in Proceedings of URSI Commission B 
Electromagnetic Theory Symposium 2010, Berlin, Germany, August 16-19, 
2010, (invited talk). 

C8. A. Alù, “Optical Leaky-Wave Nanoantenna: Complex Modes along 
Linear Arrays of Plasmonic Nanoparticles,” in Proceedings of URSI 
Commission B Electromagnetic Theory Symposium 2010, Berlin, Germany, 
August 16-19, 2010, (invited talk). 

C9. A. Alù, and N. Engheta, “Homogenization of 2D and 3D Sub-diffractive 
Arrays of Plasmonic Nanoparticles,” in Proceedings of CNC/USNC/URSI 
Radio Science Meeting, Toronto, Canada, July 11-17, 2010, (invited talk). 

C10. X. X. Liu, and A. Alù, “Plasmonic Low-Profile Nanoantenna Reflectors,” 
in Proceedings of 2010 IEEE International Symposium on Antennas and 
Propagation, Toronto, Canada, July 11-17, 2010. 

C11. A. Alù, “Contribution of Higher-Order Multipole Radiation to Spatial 
Dispersion and Radiation Losses in Metamaterials,” in Proceedings of 
Progress in Electromagnetics Research Symposium 2010, Cambridge, MA, 
USA, July 5-8, 2010, (invited talk). 

C12. A. Alù, “Metamaterial Antennas: From Radio to THz and Optical 
Frequencies,” in Proceedings of Tri-Service Metamaterials 2009, Atlanta, GA, 
U.S.A., December 8-10, 2009. 
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