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Program 

Multidisciplinary 

Science & Technology 

Center 

Entropy & 2
nd

 Law 

Concept of Exergy 

Case Studies 
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MULTIDISCIPLINARY 

SCIENCE & TECHNOLOGY 

AFRL Air Vehicles In-House Research Centers 
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Multidisciplinary Science 
& Technology Center 

Center Goals 
Bring system-level interdisciplinary interactions 

earlier in the design process 

Bring appropriate level of fidelity across all 
stages of the design process: Conceptual  
Preliminary  Detailed 

Capture and model RELEVANT PHYSICS 
before flight 

Complement with experimentation to validate 
the science 
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Why Multidisciplinary? 

Systems are Becoming More and More 
Integrated 

Technology (Disciplinary) Interactions can be 
First-Order Effects 

Effects Can be Beneficial or Adverse 

Single-Discipline or Component Optimization 
Gives a Sub-Optimum Overall System 

Total System Optimization for Energy 

Efficient Vehicles 
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The Multidisciplinary  
Problem          &          Solution 

TRADITIONAL DEVELOPMENT 
OF INDIVIDUAL COMPONENTS, 
THEN PLUG THEM TOGETHER 

Aerodynamics 
Max L/ D ?? 

Min D ?? 

Structures 
Min weight 
Min cost ?? 

Subsystems 
 Max efficiency  
 Min O&S cost? 

Propulsion 
Max  T/W ? 

FUEL     

TRUE 
SYSTEM OPTIMIZATION 

must be WHOLISTIC 

adaptive structures 
ECS 

controls 

propulsion 
actuation 

sensors 

aerodynamics 

Control 
Systems 
Max  ?? 
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Scientific & Technical Challenge 

 How to integrate, e.g., propulsion system and 
aerodynamics? 
 Performance metrics different: L /D, etc for aerodynamics; various 

engine efficiencies for propulsion systems. 

 Fundamental challenge: 
 Find a uniform way to trade performance metrics across multiple 

disciplines, systems, and scales. 

 Need a universal property that quantifies performance. 

 Candidates: 
Energy is a universal property  First Law of Thermodynamics 

Entropy is a universal property  Second Law of Thermodynamics 

Both recognized as important in all natural processes, including 
physics-based, engineering machines. Is a synthesis of the two 
available? YES! Exergy  Work Potential 
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ENTROPY MYSTIQUE 

Second Law Interlude 
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On Thermodynamics 
“Thermodynamics is a funny subject. 
The first time you go through it, you don’t 

understand it at all. 

The second time you go through it, you think 
you understand it, except for one or two small 
points. 

The third time you go through it, you know 
you don’t understand it, but by that time you 
are so used to it, it doesn‘t bother you any 
more.” 

– Arnold Sommerfield. 
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Entropy is… 

 Order 
 Disorder 
 Chaos 
 Information 
 A heavy metal rock band 
 A “happy pill” 
 Tanning unit 
 Floor covering 
 A “semi-pro” wrestler (!) 
 Ticket Dispenser 
 The list goes on! 
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On the One Hand… 

Quote from popular undergraduate text book: 

T
dQ

dS 

This is valid for a system and can be written in control-volume 
form, but there are almost no practical applications in fluid 

mechanics except to analyze flow-loss details.” 

“Finally, the second law of thermodynamics relates entropy 
change dS to heat added dQ and absolute temperature T 

Fluid Mechanics by F. M. White, McGraw-Hill (1979), pp. 125. 
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On the Other Hand… 

 The law that entropy always increases—the second law of 
thermodynamics—holds, I think, the supreme position among 
the laws of Nature. 

 If someone points out to you that your pet theory of the universe 
is in disagreement with Maxwell’s equations—then so much the 
worse for Maxwell’s equations. 

 If it is found to be contradicted by observation, well, these 
experimentalists do bungle things sometimes. 

 But if your theory is found to be against the second law of 

thermodynamics I can give you no hope; there is nothing for it 

but to collapse in deepest humiliation. 

   —A. S. Eddington, 1948. 
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EXERGY 

The Basic Concept 
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Classical Thermodynamics 

 First Law: There exists a quantity called energy which 
behaves like a fluid-like substance that is conserved. 
 Principle of energy conservation 

 Second Law: There exists a quantity called entropy 
which behaves like a fluid-like substance that is never 
destroyed in any natural process. 
 Principle of non-negative entropy generation; maximum entropy. 

 Maximum possible efficiency for any heat engine. 

 Maximum possible work extraction for any cyclic process; Clasius-
Duhem inequality, Kelvin-Planck statement, Carnot cycle, etc. 
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Laws of Thermodynamics 

First Law: Energy is a state property. 

Second Law: Entropy is a state property. 

 EEE outin


 SSSS 
genoutin

Principle of Non-negative Entropy Generation: 

0gen S
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The Second Law in Classical 
Thermodynamics 

Entropy: 

Second Law: 

 UU
U

S
SSdtS

t

t





 0

0
0gen

0



Concavity: 

 USS 

  00
0

0 



 UU

U

S
SS
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Entropy Concavity 

concavity

inequality

S(X) S(X
+
)

X
+

X


       0  XXXSXSXS



18 

Concept of Exergy 

 Conventional Approach: 
 Introduce “availability” or “exergy” in context of “system potential 

to perform work in a reversible manner”. 

 Multiple work terms introduced: reversible work, available work, 
useful work, etc. 

 Leads to confusion and cluttering in terminology. 

 Revised Approach: 
 Utilize the essence of the second-law by interpreting exergy as an 

abstract thermodynamic metric. 

 Exergy quantifies the “distance” from arbitrary initial state to state 
of equilibrium with reference conditions. 

 Theoretical limits of engineering devices utilizing thermophysical 
processes provided by “second-law efficiency” or effectiveness. 
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Thermo-101 Derivation of 
Balance of Exergy 

Energy: 
 

 

 

Entropy: 
 

 

Mechanical Energy Transfer: 

000 WQEE 

  000 QSST 

 VVPWPdVW   00useful0  
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Mathematical Definition of 
Exergy 

Useful work potential: 

 

 

Exergy  

Construction of balance equation 
First Law  L1 

Second Law  L2 

  ,,,, 00useful SESEfW 

usefulWX 

  

  

L1 -T0L2

current 

state 

equilibrium 

with reference 

Camberos, J., “Revised interpretation of work potential in thermophysical processes,” 
AIAA J. Thermophysics & Heat Transfer, 14:2, p 177-185 (2000). 
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Exergy: Measures Distance to 
Equilibrium with Environment 

S(x) 

x0 x 

Exergy 

 
   

 
 xx

x

xx
x 




 0

0

0
S

SS
X

 0xS

Concavity inequality 
       0000  xxxxx SSS

System State 
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Measures of Performance 

Balance of Exergy: 
 

 

Principle of Non-negative Entropy Generation 

 

Second-Law Efficiency or Effectiveness 

 XSTXX 
gen0outin

0gen0 ST 

supplied

destroyed1
X

X
II 



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Conventional MDA/MDO 

Conventional MDO uses gradients (a.k.a., 
sensitivities). 

These coefficients are typically normalized 

according to local variable dimensions (e.g., 
fractional differences). 
Cannot account for essential differences between 

aerodynamics (wing) and thermodynamics (engine). 

Will not account for global changes. 

Magnitude of sensitivities can mislead direction of 
optimization. 
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Exergy Based MDA/MDO 

 With true “common currency” as objective function: 
 Sensitivities are normalized according to global dimensions. 

 The magnitude of these sensitivities will be a better indication as to 
best direction for system optimization. 

 Provide a clear picture of total system integration. 

 Will exclude (physically) infeasible directions. 

 Will lead to areas of the design space that are 
excluded by conventional design methods/knowledge. 
 Opens viable possibilities for revolutionary design. 

 Minimum exergy-destruction will result in optimum 

performance, period. 
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Payoff & Benefits 

Thesis 
Strongly integrated design process will yield better 

results in less time than conventional, weakly 
integrated, “over-the-wall”, iterative trade-study. 

Will enable new, revolutionary technology development, 
possibly lower cost. 

Systems engineering capability for truly 
integrating vehicle analysis & design. 
Theoretical basis for analysis and design framework, 

offering the potential to perform conceptual design 
across multiple disciplines, scales, and levels of fidelity. 
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Exergy Method Works Across Multiple 
Levels of Model “Resolution” 

Station A 
Station B 

Station A 

Station B 

Idealized 
Flow Stations 

Idealized 
Quasi–1D 
Processes  

Station A 

Station B 
Detailed (CFD) 
Flow 
Simulations 

Levels 

of 

Model 

Resolution 
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Multidisciplinary System Design 

AERO 

PROP 

STRUCT 

Installed 
Performance 

Aerodynamic 
Loads 

Materials 

Aerodynamic 
Variables 

Propulsion 
Variables 

Aero 
Efficiency 

Propulsive 
Efficiency 

Structural 
Efficiency 

Optimization 

Engine Loads 

 

optimum 
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CASE STUDIES 

The Second Law 
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Performance Audit 

Vehicle 

Component 

Physics 
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Aerodynamic Performance 

  Conventional (Force) 
 Lift, drag, lift/drag, etc. 

Coefficients: 

 

 Unified (Exergy) 
 Exergy Destruction 

Coefficient: 

,

,

2
2
1

2
2
1

AMP

D
C

AMP

L
C

D

L








2

0

PM

ST
C

gen

X


 


CX is based 
on flowfield 
energetics. CL,D based on 

vehicle force 
balance. 
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NUMERICAL METHODS 

In Light of the Second Law 
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GOVERNING 
PARTIAL 

DIFFERENTIAL 
EQUATION 

SYSTEM OF 
ALGEBRAIC 
DIFFERENCE 
EQUATIONS 

DISCRETIZATION 

CONSISTENCY 

asx, t  0 

THEORETICAL 
SOLUTION 

NUMERICAL 
SOLUTION 

CONVERGENCE 

asx, t  0 

NUMERICAL 

STABILITY 

Properties of Numerical 
Solution 



35 

SLT for the Global Domain 

Essence of the second law is concavity. 

 

 

Equality holds iff 

 

 

Averaging gives: 

 

      0



 qq

q
qq S

SS

qqqq  


dd

    0 qq SS
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Construction of Error Metrics 

Near equilibrium, deviations from the average 
(mean) state are small.   So approximate: 

         qqqqqqqq qqq  ,, 2
1 SSSS

T

Mean-square variations 
measured by the norm 

Average entropy difference: 

MSV relative to mean: 

    0 qq SS

  qqq qq  ,2
ST

02
 qq
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Stability Implications of SLT 

Expand MSV relative to mean 

   
22 2 qqqq  SS

From TSE near equilibrium, 

Conjecture: 

   
2

0
22 qqqq KSS 

222 qqqq 

   00 qKK
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Stability Implications of SLT 

Scaling constant determined from initial 
conditions. 

 

If SLT satisfied locally, then also 
satisfied globally: 

 

Statement of Numerical Stability 

        00  qqqq SSSS

2
0

2

0
2

q
q


S

K

0~22 2
0

22
0  qqq KSS
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Numerical Experiments 

Acoustic Wave Propagation. 
 Initial conditions 

Shock Tube Simulation. 
 Initial conditions 

1D Shock Structure Solution. 
Rankine-Hugoniot initial conditions and boundary 

conditions held fixed, Mach number equal to 1.5 
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Linear Acoustic Perturbation 

TIME -->

<
--
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E
--

>
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Entropy Generation for 
Acoustic Wave Simulation 
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Numerical Stability as Measured by 
Metrics Established with SLT 
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Nonlinear Shock Tube 
Simulation 
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Entropy Generation in Shock Tube 
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Numerical Stability as Measured by 
Metrics Established with SLT 
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General Entropy Principle 

There exists a functional S such that 

 

 

Thermodynamic definition of T and P: 
 

 

Concavity property quantifies exergy: 
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CLOSING REMARKS 

The Second Law 
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Conclusion & Implications 

True system-level analysis MUST use 
combined 1st & 2nd Laws!! 

 Implications: 
Analysis: 
Ensure analyses produce physically possible results 

Design: 
Provides guidance for more efficient optimizations 

Numerical Methods & 2nd Law 
Time-step restrictions for explicit methods 

Numerical Stability 

Convergence criteria 


