
NPS-CS-11-010

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

SHADOWCOPY: A PYTHON-BASED SHADOW VOLUME
ENUMERATION AND DIGEST TOOL

by

Mike Hom

September 12, 2011

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

iii

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Daniel T. Oliver Leonard A. Ferrari
President Executive Vice President and
 Provost

This report was prepared for and funded by the Defense Intelligence Agency, Washington, DC.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Mike Hom
Department of Computer Science

Reviewed by:

Peter Denning
Chairman
Department of Computer Science

Released by:

Karl A. van Bibber, Ph.D.
Vice President and Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

iv

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.

1. REPORT DATE (DD–MM–YYYY)2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

12–9–2011 Technical Report 2011-06-26—2011-09-17

shadowcopy: A python-based shadow volume enumeration and digest tool

Mike Hom

Naval Postgraduate School
Monterey, CA 93943 NPS-CS-11-010

Defense Intelligence Agency

Approved for public release; distribution is unlimited

The views expressed in this report are those of the author and do not necessarily reflect the official policy or position of the
Department of Defense or the U.S. Government.

This report presents shadowcopy, tool written in Python that extracts and deduplicates files from Microsoft NTFS Shadow
copies using the Microsoft Volume Shadow Service (VSS), copies the files to an external volume, and prepares a report of
each extracted file’s name, timestamp, original path, and MD5 hash value.

Microsoft, Windows, Vista, 7, Shadow Volume, Volume Shadow Service

Unclassified Unclassified Unclassified UU 23

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Abstract

This report presents shadowcopy, tool written in Python that extracts and dedu-
plicates files from Microsoft NTFS Shadow copies using the Microsoft Volume
Shadow Service (VSS), copies the files to an external volume, and prepares a re-
port of each extracted file’s name, timestamp, original path, and MD5 hash value.

1 Introduction
Microsoft shadow volumes are snapshots of a Windows NTFS file system that are “a read-
only point-in-time replica of an original volume’s contents. Each shadow copy is keyed by a
persistent GUID.” [7]

Forensic analysts can use shadow volumes to recover intact files that were once present in the
file system but were deleted by the user or the system. Typically shadow volume snapshots take
minimal space because the majority of files in the file system do not change between snapshots.
This can cause additional work for the forensic examiner, however.

General-purpose tools to analyze Microsoft shadow volumes are included with Windows 7;
tools specially designed for forensic examiners have been available since at least 2009. How-
ever, most of these tools are manual. and have been available to forensic has been readily
available but much of it has historically been a manually driven process.

Automating the extraction of distinct files from shadow volumes saves the examiner time and
is vital for additional forensic pipeline automation.

This paper describes the Microsoft Volume Shadow Copy Service (VSS), presents a brief anal-
ysis of currently available tools, and present shadowcopy.py, a short Python program that per-
forms extraction, deduplication and report generation.

2 Background
2.1 Volume Shadow Copy Service (VSS)
The Volume Shadow Copy Service was first implemented in Windows XP but differed from later
instantiations of VSS as it created non-persistent snapshots for file-based backups. Windows
Server 2003 introduced the more commonly encountered version of VSS that creates persistent
snapshots.

There are two methods for creating shadow copies. The first is to make a complete copy and
the second is to create a differential copy. When the full copy (also called a clone) is made, the
copy remains synchronized until the connection is broken for the shadow copy. At this point, the
source data and shadow copy volume are independent of each other. This shadow copy volume
is now a snapshot of the original volume, timestamped at the point it broke the synchronization
connection and is a read-only copy to maintain integrity.

1

When a differential copy is initiated, an initial copy of the original data is made. Then, when
changes to the volume are made, the blocks of data that are modified are read and indexed
to a ”differences area” which will preserve a copy of the blocks prior to any data being over-
written. The blocks indexed in the differences area and the original volumes allows a logical
representation of the shadow copy volume at the point in time it was snapshotted.

3 shadowcopy.py
shadowcopy.py is a python-based command-line tool developed to process shadow volumes
contained in Virtual Hard Disk (VHD) images. When invoked on an image, it will enumerate
all shadow volumes on that disk, walk each volume and the files contained, and do at least one
of the two following things:

1. Hash the file for reporting purposes.
2. Extract every file walked to the full original path.

When extracting from multiple shadow volumes, it will deduplicate files based on hash. If a file
is encountered with the same file name as a previously walked file but different hash, then that
file is renamed with a three digit XXX delimiter to indicate the difference.

When producing the report, a tab-delimited .txt file is created containing all file names, the
originating shadow volume the file came from, the file size, and md5 hash values. This file can
be imported into a spreadsheet program for further viewing.

3.1 Requirements
shadowcopy.py has the following base requirements for it to function properly:

• Microsoft Windows Vista, 7 or later
• Python 3.2: If later versions come out, these may or may not work depending on syntax

and library revision. Earlier versions of python will not work.
• Administrator Access: shadowcopy.py requires the end-user to have access to the “Ad-

ministrator” account on the system being used to inspect the shadow volumes. If the
program is run, it might, and generally will, ask for the administrator password to run.
This is a requirement for the build-in command-line tools Microsoft provides.
• vhdtool.exe: A tool that converts raw/dd images into VHD images, if the image desired

to be processed is not in a VHD format.

3.2 Features
The development of shadowcopy.py was dictated by fundamental features that were seen as the
the most important to accomplish as automated of an analysis as possible within the given time
frame.

For our purposes, the most important was the ability to automatically enumerate all shadow
volumes and proceed to walk each volume hashing each encountered file. The constraint was

2

to ensure only built-in python libraries were used in order to ensure shadowcopy.py would be
usable across any platform that had the same version of python available.

A concurrent priority was outputting that information into a format that would be human read-
able. Generally speaking, attributes that were found desirable were to know the names of each
file, the full path location of each file, the originating shadow volume, the size of each file, the
hash value calculated for each file, and timestamps of the latest modification time, last access
time, and creation time of the file (i.e., the file’s MAC times).

Other features include choosing between the local (host) machine or everything else, and ex-
tracting all files or just providing report. An initial assumption was made that the tool would be
useful to run on a machine under inspection and analysis, if needed. The next logical assump-
tion made was disk images are more commonly processed and analyzed, so the default behavior
of shadowcopy.py is for it to choose all shadow volumes that don’t belong to the local machine.

4 Existing Tools
We conducted a brief survey of tools currently available to extract files from Microsoft shadow
volumes. Among our findings:

1. Few commercial tools exist that perform a manual analysis.
2. No open source tools publicly exist that perform the capabilities we desired.
3. We could not find tools that are easily extensible for future feature additions.
4. Current tools right now are not architected to automate the extraction, deduplication, and

hashing process.

4.1 Commercial Tools
Commercial tools allegedly exist to perform shadow volume forensics but we had trouble ac-
quiring the actual software. When we tried to acquire these tools for testing, one was unavailable
despite us contacting the vendor [8], and two appear still be under development [3, 9].

Additionally, the information provided by all three vendors make a strong implication that the
their software is targeted to the forensics examiner to manually analyze a disk image.

4.2 Open Source / Commercial Tools Hybrid Approaches
There is no single open source tool in the public domain that perform an automated extraction,
deduplication, and hashing of all files in the residing shadow volumes on a disk image. During
the survey, it was seen that many forensics practitioners resorted to using a combination of
different tools to accomplish some of the capabilities we desired.

Some approaches found to analyze shadow volumes was to use dd [13] to image an individual
shadow volume, and then perform additional processing with other tools. One approach used
the commercial tool Encase with their Physical Disk Emulator (PDE) module [11] to perform a

3

manual forensics examination [2]. A second approach used ntfs-3g [12] to mount the dd-created
image for inspection [4].

A method described to create shadow volume timelines and extract unallocated space from
these volumes was to utilize command-line tools from Sleuthkit [1, 5]. First, the shadow vol-
umes would have to be enumerated, then the fls command would be used to list all the files
in the volume. Then, the mactime command would be used to create the timeline. To extract
unallocated space, the blkls command would be used on a shadow volume.

While these approaches have merit, the problem is that they are all manually drives which
reduces the productivity of a forensics examiner. Further, some of these methods require more
than one operating system platform to be used in order to accomplish the objective.

5 Test and Evaluation
We tested our tool on an image we constructed to verify that it was functioning correctly and
then expanded usage into other data. This is a fair test and evaluation because we could use
other methods to verify our “ground truth” when performing a post-processing evaluation on
our tool’s results.

The following section presents the testing portion of shadowcopy.py and a discussion on the
results and limitations encountered.

5.1 Testing Environments
There were two environments used for testing shadowcopy.py. Initially, development and test-
ing was done on a machine running Apple Mac OSX with VMware running a Windows 7
Virtual Machine (VM). An external hard drive containing a test VHD converted from a known
VM was created for the “ground truth” image.

When testing, the tab-delimited digest of files was compared against a manual find of files, in-
cluding hidden and system files, on the VHD performed using the standard Microsoft Windows
find and locate files command. Several samples were taken, either by size constraints, or by
inspection of directory listings.

The second testing environment was a Windows 7 Desktop running a Windows 7 VM. The
“ground truth” image was copied over to ensure results would align with the original testing
results from the first environment.

5.2 Testing Results
As expected, both environments performed identically in walking the “ground truth” image,
enumerating the shadow volumes, and digesting all files that encountered. Because the python
libraries are identical, there is no reason to believe that results would differ.

4

5.3 Known Limitations
There are some current limitations to the tool that preclude the claim of it being completely
automated. First, the process of automatically mounting the VHDs is possible by command-
line using diskpart but the exact process at the time of writing this is unknown. This is an
immediate addition that will be implemented into the next version release of shadowcopy.py.

During testing, the authors noted that VHDs would not mount over a network share. While
researching this problem, it was discovered that VHDs cannot be attached when stored on a
network file system (NFS) or File Transfer Protocol (FTP) server [6]. [6] mentioned that VHDs
located on a Server Message Block (SMB) share can be attached. VMware shared folders oper-
ate over Samba/Common Internet File System (CIFS) so attaching VHDs should have worked
but did not. The immediate known known solution was to simply attach an external hard drive
to the host machine so that the external hard drive would be made available locally to the VM.

Third, despite the script running as “Administrator” in Windows, there were still files that were
being walked that could not be read and hashed. These files are presumably critical system files
that may need to be walked as “System”.

6 Conclusions
We have shown that we can implement a completely python-based tool to enumerate shadow
volumes on a disk image and digest all the files contained in those shadow volumes. We have
also shown that the tool has the potential to be completely automated in an environment where
disk images can be automatically fed into a framework for analysis during ingestion.

6.1 Future Work
The initial effort on this tool suggests many avenues for extensibility. Some desired additions
to the implementation include the following:

1. Implement an automatic mounting process with Microsoft’s built-in diskpart tool.
2. Choosing specific shadow volumes rather than enumerating and walking all shadow vol-

umes found.
3. Deduping against known hashes (e.g., NSRL repository). If this was performed against

every encountered image, this could result in a substantial increase in analysis overhead.
4. Export files by file type. This would involve implementing carving techniques if reading

file headers/footers or integrating existing carving technology into the process chain.
5. Similarity digest hashing (SDHash) of walked files as proposed by Roussev [10].
6. Implement a multi-threaded version of this to increase efficiency.
7. Integrate a faster hashing system (e.g., md5deep) over the built-in python implementation.

6.2 Acknowledgements
We wish to acknowledge Brian Madden for his initial work that led to shadowcopy’s develop-
ment.

5

A Program Listing
Both of the programs listed here are embedded in the PDF of this technical report.

A.1 shadowcopy.py
””” shadowcopy command l i n e t o o l ”””

T h i s program browses and e x t r a c t s da ta from VHDs t h a t c o n t a i n shadow volumes
c :\ vhd − where t h e VHD g e t s mounted
c :\ vhd\

VHD DIR= ’ c :\\ vhd ’

import sys , os , g lob , p l a t f o r m , c t y p e s
from s u b p r o c e s s import c a l l , Popen , PIPE
import ShadowVolume2

def g e t v h d (fname) :
””” R e t ur n t h e f i l e n a m e o f t h e VHD f o r fname . ”””
(r o o t , e x t) = os . p a t h . s p l i t e x t (fname)
i f e x t . l ower ()== ” . vhd ” :

re turn fname # i t ’ s a l r e a d y a vhd
See i f t h e . vhd i s t h e r e ; i f i t i s n ’ t , make i t
vhdname = r o o t + ” . vhd ”
i f os . p a t h . e x i s t s (vhdname) :

re turn vhdname # t h e r e was a vhd t h e r e a l r e a d y ; use i t

p r i n t (” C o n v e r t i n g %s t o %s ” % (fname , vhdname))
p = c a l l ([’ v h d t o o l . exe ’ , ’ / c o n v e r t ’ , fname])
i f p ! = 0 :

p r i n t (” Cannot c o n v e r t ; v h d t o o l r e t u r n s e r r o r code %d ” % p)
e x i t (1)

re turn vhdname

def m a k e n e e d e d d i r s (fn) :
”Make a l l o f t h e d i r e c t o r i e s r e q u i r e d t o g e t t o p a t h fn ”
import os . p a t h
i f l e n (fn)>0 and not os . p a t h . e x i s t s (fn) :

(head , t a i l) = os . p a t h . s p l i t (fn)
m a k e n e e d e d d i r s (head)
os . mkdir (fn)

def m a k e f i l e n a m e d i s t i n c t (fn) :
””” I f f i l e n a m e . e x t e x i s t s , r e p l a c e w i t h f i l e n a m e .NNN. e x t , where NNN i s be tween 0 and 999
I f we have more than 999 f i l e s , j u s t keep i n c r e m e n t i n g . . . ”””
import os . p a t h
i f not os . p a t h . e x i s t s (fn) :

re turn fn
c o u n t e r = 0
whi le True :

(pa th , e x t) = os . p a t h . s p l i t e x t (fn)

6

newfn = p a t h +” . { : 0 3 } ” . f o r m a t (c o u n t e r)+ e x t
i f not os . p a t h . e x i s t s (newfn) :

re turn newfn

def i n c l u d e v o l u m e (v , i n c l u d e l o c a l) :
””” R e t u r n s True i f volume v s h o u l d be i n c l u d e d . ”””
import p l a t f o r m
i f not i n c l u d e l o c a l : i n c l u d e l o c a l = F a l s e # h an d l e case o f i n c l u d e l o c a l ==None
re turn i n c l u d e l o c a l == (p l a t f o r m . node ()== v . o r i g i n a t i n g M a c h i n e ())

READSIZE=65536 # read i n 64 kb
def p r o c e s s (seen , d e s t d i r , v , r e p o r t) :

”””Scan t h r o u g h t h e shadow volume d e n o t e d by v . Look f o r f i l e s
t h a t have a hash n o t i n seen . W r i t e t h e f i l e s n o t s een t o d e s t .
Save r e s u l t s i n r e p o r t .
”””
import mmap , h a s h l i b , c sv
g l o b a l o p t i o n s
f o r (d i r p a t h , d i rnames , f i l e n a m e s) in os . walk (v . vo lumePath ()) :

p r i n t (”{} ” . f o r m a t (d i r p a t h))
f o r f i l e n a m e in f i l e n a m e s :

shadow fn = os . p a t h . j o i n (d i r p a t h , f i l e n a m e)
t r y :

s t = os . s t a t (shadow fn)
i f o p t i o n s . m i n s i z e <= s t . s t s i z e <=o p t i o n s . maxs ize :

w i th open (shadow fn , ” rb ”) a s f :
map = mmap . mmap(f . f i l e n o () , l e n g t h =0 , a c c e s s =mmap . ACCESS READ)
md5 = h a s h l i b . md5 (map)
i f md5 . d i g e s t () not in s een :

T h i s f i l e hasn ’ t been seen b e f o r e .
W r i t e t h e f i l e ’ s i n f o t o t h e r e p o r t and copy i t t o t h e d e s t i n a t i o n
o r i g i n a l f n = shadow fn . r e p l a c e (v . vo lumePath () , ” ”) ;
d e s t f n = shadow fn . r e p l a c e (v . vo lumePath () , d e s t d i r)
d e s t f n = m a k e f i l e n a m e d i s t i n c t (d e s t f n)
p r i n t (o r i g i n a l f n ,

md5 . h e x d i g e s t () ,
os . p a t h . g e t s i z e (shadow fn) ,
v . o r i g i n a t i n g M a c h i n e () ,
v . volumeName () ,
d e s t f n , sep = ’\ t ’ , f i l e = r e p o r t)

I f we are e x t r a c t i n g , make t h e d i r e c t o r i e s and copy t h e da ta
i f not o p t i o n s . n o e x t r a c t :

m a k e n e e d e d d i r s (os . p a t h . d i rname (d e s t f n))
Now copy over t h e f i l e da ta
map . seek (0)
wi th open (d e s t f n , ”wb”) as f d e s t :

whi le True :
buf = map . r e a d (READSIZE)
i f l e n (buf) = = 0 : # End o f f i l e !

7

break
f d e s t . w r i t e (buf)

p u t back t i m e s
os . u t ime (shadow fn , (s t . s t a t i m e , s t . s t m t i m e))
os . u t ime (d e s t f n , (s t . s t a t i m e , s t . s t m t i m e))

Now we ’ ve seen t h i s f i l e !
s een . add (md5 . d i g e s t ())

e xc ep t (WindowsError) a s ex :
p r i n t (”Windows c a n n o t r e a d : {} ; \n{} c o n t i n u i n g . . . ” . f o r m a t (shadow fn , s t r (ex)))
p r i n t (”\ t ” . j o i n ([shadow fn , s t r (ex)]) , f i l e = r e p o r t)
c o n t in u e

e xc ep t (I O E r r o r) a s ex :
p r i n t (”Windows c a n n o t open : {} ; \n{} c o n t i n u i n g . . . ” . f o r m a t (shadow fn , s t r (ex)))
p r i n t (”\ t ” . j o i n ([shadow fn , s t r (ex)]) , f i l e = r e p o r t)
c o n t in u e

i f n a m e ==” m a i n ” :
from o p t p a r s e import O p t i o n P a r s e r
g l o b a l o p t i o n s
import sys , t ime

p a r s e r = O p t i o n P a r s e r ()
p a r s e r . u sage = ””” usage : %prog [o p t i o n s] <EXTRACT−DIR>

< i m a g e f i l e > may be a . vhd or a . raw . I f i t i s a . raw , i t w i l l
be c o n v e r t e d t o a . vhd IN PLACE , so be s u r e you have enough d i s k
and t h e v h d t o o l . exe t o do t h e c o n v e r s i o n

Note : t h i s s c r i p t must be run as a d m i n i s t r a t o r .

”””
p a r s e r . a d d o p t i o n (”−− l i s t ” , h e l p =”Show t h e shadow volumes t h a t a r e a v a i a l b l e . ” ,

a c t i o n =” s t o r e t r u e ”)
p a r s e r . a d d o p t i o n (”−− l o c a l ” , h e l p =” Analyze on ly t h e l o c a l machine ” ,

a c t i o n =” s t o r e t r u e ”)
p a r s e r . a d d o p t i o n (”−−image ” , h e l p =” Analyze a s e l e c t e d image (c o n v e r t s i f n e c e s s a r y t o VHD) ” ,

a c t i o n =” s t o r e t r u e ”)
p a r s e r . a d d o p t i o n (”−−maxs ize ” , h e l p =” S p e c i f i e s maximum s i z e o f a f i l e t o e x t r a c t ” ,

t y p e = ’ i n t ’ , d e f a u l t =1024∗1024∗1024∗1024)
p a r s e r . a d d o p t i o n (”−−m i n s i z e ” , h e l p =” S p e c i f i e s minimum s i z e o f a f i l e t o e x t r a c t ” ,

t y p e = ’ i n t ’ , d e f a u l t =1)
p a r s e r . a d d o p t i o n (”−−n o e x t r a c t ” , h e l p =”Do n o t e x t r a c t t h e shadow d a t a ” ,

a c t i o n =” s t o r e t r u e ”)
p a r s e r . a d d o p t i o n (”−− r e p o r t f n ” , h e l p =” S p e c i f y r e p o r t o u t p u t f i l e n a m e ” ,

d e f a u l t =” r e p o r t . t x t ”)
p a r s e r . a d d o p t i o n (”−−zap ” , h e l p =” O v e r w r i t e r e p o r t f i l e i f i t e x i s t s ” ,

a c t i o n =” s t o r e t r u e ”)

8

i f l e n (s y s . a rgv) = = 1 :
p a r s e r . p r i n t h e l p ()
e x i t (0)

g l o b a l o p t i o n s
(o p t i o n s , a r g s) = p a r s e r . p a r s e a r g s ()

i f not c t y p e s . w i n d l l . s h e l l 3 2 . IsUserAnAdmin () :
p r i n t (” Th i s s c r i p t must run as t h e Windows A d m i n i s t r a t o r ”)
e x i t (1)

I f t h e c :\ vhd d i r e c t o r y does n o t e x i s t , c r e a t e i t .
i f n o t os . pa th . e x i s t s (VHD DIR) :
os . pa th . mkdir (VHD DIR)
I f t h e r e are any mounted i t e m s i n t h e d i r e c t o r y , unmount them

Get a l l vo lumes (l o c a l and non−l o c a l) f o r l i s t i n g
v o l s = ShadowVolume2 . a v a i l a b l e V o l u m e s ()
i f (o p t i o n s . l i s t) :

i n c l u d e l e g e n d = {True : ”+” , F a l s e : ” ”}
fmt =” { : 1} { : 10} { : 25} {} ”
p r i n t (fmt . f o r m a t (” ” , ” Source ” , ” C r e a t i o n Time ” , ” Volume Name”))
p r i n t (fmt . f o r m a t (” ” , ”−−−−−−” , ”−−−−−−−−−−−−−” , ”−−−−−−−−−−−”))
f o r v in v o l s :

p r i n t (fmt . f o r m a t (i n c l u d e l e g e n d [i n c l u d e v o l u m e (v , o p t i o n s . l o c a l)] ,
v . o r i g i n a t i n g M a c h i n e () , v . c t i m e () , v . volumeName ()))

p r i n t (” ”)
p r i n t (”+ means volume w i l l be i n c l u d e d i n a n a l y s i s ”)
e x i t (0)

s een = s e t () # f o r seen MD5 codes
d e s t d i r = ” ”
i f not o p t i o n s . n o e x t r a c t :

i f l e n (a r g s) ! = 1 :
Demand t h a t we d i d n o t g e t an e x t r a c t d i r
p r i n t (”No e x t r a c t i o n d i r e c t o r y p r o v i d e d .\ n ”)
p a r s e r . p r i n t h e l p ()
e x i t (1)

d e s t d i r = a r g s [0]

i f os . p a t h . e x i s t s (o p t i o n s . r e p o r t f n) and not o p t i o n s . zap :
p r i n t (”{} e x i s t s . D e l e t e i t o r s p e c i f y a new r e p o r t f i l e n a m e wi th −− r e p o r t o p t i o n ” . f o r m a t (o p t i o n s . r e p o r t f n))
e x i t (1)

Unmount a l l t h e mounted images

Walk and d i g e s t o n l y t h e non−l o c a l shadow volumes

9

P r o c e s s a l l o f t h e f i l e s
r e p o r t = open (o p t i o n s . r e p o r t f n , ’w’ , e n c o d i n g = ’ u t f −8 ’)
p r i n t (”\ t ” . j o i n ([’ Pa th ’ , ’MD5’ , ’ S i z e ’ , ’ Machine ’ , ’ Volume ’ , ’ D e s t i n a t i o n F i l ename ’]) , f i l e = r e p o r t)
f o r v in v o l s :

i f not i n c l u d e v o l u m e (v , o p t i o n s . l o c a l) :
c o n t i nu e

p r i n t (” P r o c e s s i n g {} from {} ” . f o r m a t (v . volumeName () , v . o r i g i n a t i n g M a c h i n e ()))
p r o c e s s (seen , d e s t d i r , v , r e p o r t)

A.2 ShadowVolume2.py
Code t a k e n from Br ian Madden
import r e
from s u b p r o c e s s import c a l l , Popen , PIPE

c l a s s ShadowCopy :
def i n i t (s e l f , a t t r s) :

s e l f . a t t r s = a t t r s
def o r i g i n a t i n g M a c h i n e (s e l f) :

re turn s e l f . a t t r s [’ O r i g i n a t i n g Machine ’]
def c t i m e (s e l f) :

re turn s e l f . a t t r s [’ c r e a t i o n t ime ’]
def volumePath (s e l f) :

re turn s e l f . a t t r s [’ Shadow Copy Volume ’]
def volumeName (s e l f) :

re turn s e l f . vo lumePath () . s p l i t (’ \\ ’) [−1]

def v s s a d m i n l i s t p a r s e (v s s a d m i n o u t) :
””” T h i s f u n c t i o n t a k e s t h e o u t p u t frmo t h e vssadmin command and r e t u r n s
a s e t o f o b j e c t s t h a t d e s c r i b e each shadow copy ”””

r e t = [] # l i s t t o r e t u r n
c u r r e n t = None # copy we are c u r r e n t l y p r o c e s s i n g
f i x 1 = r e . compi l e (” C o n t a i n e d .∗ c o p i e s a t ”)
f o r l i n e in v s s a d m i n o u t . s p l i t l i n e s () :

i f l i n e ==” ” :
i f c u r r e n t :

r e t . append (ShadowCopy (c u r r e n t))
c u r r e n t = None

c o n t i nu e
i f l i n e . s t a r t s w i t h (” C o n t e n t s o f shadow copy s e t ID : ”) :

c u r r e n t = {} # s t a r t o f t h e new one
i d = l i n e . s p l i t (” : ”) [1] [1 :]
c u r r e n t [’ i d ’] = i d
c o n t i nu e

i f not c u r r e n t : # n o t i n t h e da ta
c o n t i nu e

I f we g e t here , we have a name , a colon , and a v a l u e
l i n e = l i n e . s t r i p () # remove w h i t e p s a c e
c o l o n = l i n e . f i n d (’ : ’) # we o n l y want t o work w i t h t h e f i r s t co lon , so we can ’ t s p l i t
i f colon >=0:

10

name = l i n e [0 : c o l o n]
v a l u e = l i n e [c o l o n + 2 :]
i f name . e n d s w i t h (” c r e a t i o n t ime ”) : name=” c r e a t i o n t ime ”
c u r r e n t [name] = v a l u e

re turn r e t

def a v a i l a b l e V o l u m e s () :
” R e t u r n a l i s t o f a v a i l a b l e shadow volumes ”
l i s t o u t p u t = Popen ([’ vssadmin . exe ’ , ’ l i s t ’ , ’ shadows ’] , s t d o u t =PIPE) . communicate () [0]
l i s t o u t p u t = l i s t o u t p u t . decode (’ u t f −8 ’)
re turn v s s a d m i n l i s t p a r s e (l i s t o u t p u t)

def d i s k p a r t e x e c (cmd) :
”””Run d i s k p a r t . exe w i t h cmd and r e t u r n t h e r e s u l t s as a s t r i n g a r r a y ”””
p = Popen ([’ d i s k p a r t ’] , s t d i n =PIPE , s t d o u t =PIPE) ;
p . s t d i n . w r i t e (cmd+”\n ”)
p . s t d i n . c l o s e ()
re turn p . communicate () [0] . decode (’ u t f −8 ’) . s p l i t l i n e s ()

B User Documentation
shadowcopy.py is a tool that extracts and de-duplicates files from multiple shadow volumes
contained within a Windows Vista or Windows 7 NTFS file system. It produces a directory
containing all of the files and .txt file containing all file names, the shadow volume from which
they came, their lengths and hash values.

Microsoft Shadow volumes are part of the Volume Snapshot Service (VSS) that are used by
the New Technology File System (NTFS) to implement system restore points. System restore
points are created automatically when new software is installed or manually when requested by
the user.

shadowcopy.py is implemented as a Python 3 script that calls command-line tools are provided
by Microsoft as part of Windows. These tools allow a user to access the shadow volumes located
on the local drive or on disk images that are in the Microsoft Virtual Hard Drive (VHD) format.

shadowcopy.py can also convert a raw disk image into the VHD format using the vhdtool.exe
utility which can be downloaded from the Microsoft website.

C Requirements
The following are requirements for shadowcopy to function properly.

• Microsoft Windows Vista, 7, or later

• Python 3.2 / 3.2.1 (If later versions come out, these may or may not work depending on
syntax and library revision)

• vhdtool.exe: A tool that converts raw/dd images into VHD images.

11

• Administrator Access: The tool requires the end-user have access to the ”Administrator”
account on the system being used to inspect the shadow volumes. If the program is run, it
might(and generally will) ask for the administrator password on the system to run. This
is a requirement for the built-in command-line tools Microsoft provides.

D How To Use
The following section describes how to use shadowcopy.

D.1 The Command Line Menu
shadowcopy is a command line tool and does not have a GUI (later versions may incorporate a
GUI). The following is a screenshot of the program output when shadowcopy is invoked with
no options.

Figure 1: The command-line output of shadowcopy in a Windows 7 shell

As mentioned in the requirements, the images shadowcopy requires are VHDs but if the user
can only provide a raw/dd image, then shadowcopy will automatically convert the image to a
VHD prior to any other operation.

D.2 Modes of Operation
shadowcopy has two main modes of operation: walking shadow volumes on the local machine
or walking shadow volumes on a VHD that is mounted. The following syntax are examples that
will invoke an instance of using either mode:

Local Machine python shadowcopy.py –local –noextract –reportfn=”c:\some\report\path\
name\report.txt”

Mounted VHD python shadowcopy.py –noextract –reportfn=”c:\some\report\path\ name\report.txt”

The following is a list of the options available for use:

12

• –list: Shows the shadow volumes that are available both locally and non-locally (mounted
VHD)

• –local: Option to only analyze the local machine shadow volumes (generally not needed)

• –image: Option to analyze a specific image by specifying the VHD filename. This option
will also convert the image if it is still a .raw/.dd file.

• –maxsize=MAXSIZE: Specifies a maximum file size in bytes

• –minsize=MINSIZE: Specifies a minimum file size in bytes

• –noextract: Option flag to not extract all files being walked

• –reportfn: Specifies a report filename to output results to. This includes the file names,
the shadow volume from which they came, their lengths and hash digests.

• –zap: Option to overwrite the report file if it already exists.

D.3 Mounting a VHD for walking
shadowcopy currently does not use automatic mounting of VHD files. The current workaround
is to manually mount a VHD file which is described as folows.

1. Right-click on Computer and select ”Manage”.

2. In the computer management window, select ”Disk Management” from the ”Storage” tree
on the left-most menu. Once there, go to the ”Actions” menu on the right side and select ”More
Actions”. This will bring up a dialog for VHD management. Select ”Attach VHD”.

3. In the ”Attach Virtual Hard Disk” dialog, select the .vhd desired.

4. Once selected, check the ”Read-only” box.

From there, you can refer back to Section D.2 to walk the mounted VHD shadow volumes for
processing and analysis.

D.4 shadowcopy Output
shadowcopy will output a digest in a tab-delimited text file digest. This allows the end-user to
see all files that have been contained in the shadow volumes, md5 hashes, and the full path the
file was located in on the filesystem.

13

Figure 2: The context menu when right-clicking on Computer

Figure 3: The context menu when clicking on ”More Actions” under the ”Disk Management” menu
in Computer Management

Figure 4: The Attach Virtual Hard Disk dialog

14

Figure 5: The Attach Virtual Hard Disk Dialog with ”Read-only” checked

15

References
[1] Brian Carrier. The Sleuth Kit and Autopsy: Forensics tools for Linux and other Unixes,

2005. URL http://www.sleuthkit.org/.

[2] Richard Drinkwater. Volume shadow copy forensics.. cannot see the wood for
the trees?, 2010. URL http://forensicsfromthesausagefactory.blogspot.com/2010/02/

volume-shadow-copy-forensics-cannot-see.html.

[3] Sanderson Forensics. Computer forensics software - reconnoitre - vsc, 2011. URL http:

//www.sandersonforensics.com/content.asp?page=588.

[4] Rob T Lee. Vista and windows 7 shadow volume forensics, 2008. URL http://

computer-forensics.sans.org/blog/2008/10/10/shadow-forensics.

[5] Rob T Lee. Shadow timeslines and other volume shadow
copy digital forensics techniques with the sleuthkit on windows,
2010. URL http://computer-forensics.sans.org/blog/2010/03/16/

shadow-timelines-and-other-shadowvolumecopy-digital-forensics-techniques-with-the-sleuthkit-on-windows/.

[6] Microsoft. Frequently asked questions: Virtual hard disks in windows 7 and windows
server 2008 r2, 2010. URL http://technet.microsoft.com/en-us/library/dd440865(WS.

10).aspx.

[7] Microsoft. Backup: Volume shadow copy service, 2011. URL http://msdn.microsoft.

com/en-us/library/bb968832(v=VS.85).aspx.

[8] PATCtech. Ekl software shadow scanner, shadow volume analyzer, 2011. URL http:

//www.patctech.com/forensics/utilities/eklshadow.shtml.

[9] Technology Pathways. Volume shadow copy with prodiscover, 2011. URL http:

//toorcon.techpathways.com/uploads/VolumeShadowCopyWithProDiscover-0511.pdf.

[10] Vassil Roussev. Data Fingerprinting with Similarity Digests, pages 207–225. Springer,
2010.

[11] Guidance Software. Guidance software encase, 2011. URL http://www.guidancesoftware.

com/forensic.htm.

[12] Tuxera. Ntfs-3g + ntfsprogs, 2011. URL http://www.tuxera.com/community/

ntfs-3g-download/.

[13] Wikipedia. dd (unix), 2011. URL http://en.wikipedia.org/wiki/Dd_(Unix).

16

Initial Distribution List

1. Research and Sponsored Programs Office, Code 41
Naval Postgraduate School, Monterey, CA 93943

2. Defense Technical Information Center
Ft. Belvoir, Virginia

3. Dudly Knox Library
Naval Postgraduate School
Monterey, California

4. GDS Program Office, Defense Information Systems Agency
Fort Huachuca, AZ
gds@disa.mil

17

Code taken from Brian Madden

import re

from subprocess import call,Popen,PIPE

class ShadowCopy:

 def __init__(self,attrs):

 self.attrs = attrs

 def originatingMachine(self):

 return self.attrs['Originating Machine']

 def ctime(self):

 return self.attrs['creation time']

 def volumePath(self):

 return self.attrs['Shadow Copy Volume']

 def volumeName(self):

 return self.volumePath().split('\\')[-1]

def vssadmin_list_parse(vssadmin_out):

 """ This function takes the output frmo the vssadmin command and returns

 a set of objects that describe each shadow copy"""

 ret = [] # list to return

 current = None # copy we are currently processing

 fix1 = re.compile("Contained.*copies at ")

 for line in vssadmin_out.splitlines():

 if line=="":

 if current:

 ret.append(ShadowCopy(current))

 current = None

 continue

 if line.startswith("Contents of shadow copy set ID:"):

 current = {} # start of the new one

 id = line.split(":")[1][1:]

 current['id'] = id

 continue

 if not current: # not in the data

 continue

 # If we get here, we have a name, a colon, and a value

 line = line.strip() # remove whitepsace

 colon = line.find(':') # we only want to work with the first colon, so we can't split

 if colon>=0:

 name = line[0:colon]

 value = line[colon+2:]

 if name.endswith("creation time"): name="creation time"

 current[name] = value

 return ret

def availableVolumes():

 "Return a list of available shadow volumes"

 list_output = Popen(['vssadmin.exe','list','shadows'],stdout=PIPE).communicate()[0]

 list_output = list_output.decode('utf-8')

 return vssadmin_list_parse(list_output)

def diskpart_exec(cmd):

 """Run diskpart.exe with cmd and return the results as a string array"""

 p = Popen(['diskpart'],stdin=PIPE,stdout=PIPE);

 p.stdin.write(cmd+"\n")

 p.stdin.close()

 return p.communicate()[0].decode('utf-8').splitlines()

""" shadowcopy command line tool """

This program browses and extracts data from VHDs that contain shadow volumes
c:\vhd - where the VHD gets mounted
c:\vhd\

VHD_DIR='c:\\vhd'

import sys,os,glob,platform,ctypes
from subprocess import call,Popen,PIPE
import ShadowVolume2

def get_vhd(fname):
 """Return the filename of the VHD for fname."""
 (root,ext) = os.path.splitext(fname)
 if ext.lower()==".vhd":
 return fname # it's already a vhd
 # See if the .vhd is there; if it isn't, make it
 vhdname = root + ".vhd"
 if os.path.exists(vhdname):
 return vhdname # there was a vhd there already; use it

 print("Converting %s to %s" % (fname,vhdname))
 p = call(['vhdtool.exe','/convert',fname])
 if p!=0:
 print("Cannot convert; vhdtool returns error code %d" % p)
 exit(1)
 return vhdname

def make_needed_dirs(fn):
 "Make all of the directories required to get to path fn"
 import os.path
 if len(fn)>0 and not os.path.exists(fn):
 (head,tail) = os.path.split(fn)
 make_needed_dirs(head)
 os.mkdir(fn)

def make_filename_distinct(fn):
 """If filename.ext exists, replace with filename.NNN.ext, where NNN is between 0 and 999
 If we have more than 999 files, just keep incrementing..."""
 import os.path
 if not os.path.exists(fn):
 return fn
 counter = 0
 while True:
 (path,ext) = os.path.splitext(fn)
 newfn = path+".{:03}".format(counter)+ext
 if not os.path.exists(newfn):
 return newfn

def include_volume(v,include_local):
 """Returns True if volume v should be included."""
 import platform
 if not include_local: include_local=False # handle case of include_local==None
 return include_local == (platform.node()==v.originatingMachine())

READSIZE=65536		# read in 64kb
def process(seen,destdir,v,report):
 """Scan through the shadow volume denoted by v. Look for files
 that have a hash not in seen. Write the files not seen to dest.
 Save results in report.
 """
 import mmap,hashlib,csv
 global options
 for (dirpath,dirnames,filenames) in os.walk(v.volumePath()):
 print("{}".format(dirpath))
 for filename in filenames:
 shadow_fn = os.path.join(dirpath,filename)
 try:
 st = os.stat(shadow_fn)
 if options.minsize <= st.st_size <=options.maxsize:
 with open(shadow_fn,"rb") as f:
 map = mmap.mmap(f.fileno(),length=0,access=mmap.ACCESS_READ)
 md5 = hashlib.md5(map)
 if md5.digest() not in seen:
 # This file hasn't been seen before.
 # Write the file's info to the report and copy it to the destination
 original_fn = shadow_fn.replace(v.volumePath(),"");
 dest_fn = shadow_fn.replace(v.volumePath(),destdir)
 dest_fn = make_filename_distinct(dest_fn)
 print(original_fn,
 md5.hexdigest(),
 os.path.getsize(shadow_fn),
 v.originatingMachine(),
 v.volumeName(),
 dest_fn,sep='\t',file=report)

 # If we are extracting, make the directories and copy the data
 if not options.noextract:
 make_needed_dirs(os.path.dirname(dest_fn))
 # Now copy over the file data
 map.seek(0)
 with open(dest_fn,"wb") as fdest:
 while True:
 buf = map.read(READSIZE)
 if len(buf)==0: # End of file!
 break
 fdest.write(buf)
 # put back times
 os.utime(shadow_fn,(st.st_atime,st.st_mtime))
 os.utime(dest_fn,(st.st_atime,st.st_mtime))

 # Now we've seen this file!
 seen.add(md5.digest())
 except (WindowsError) as ex:
 print("Windows cannot read: {}; \n{} continuing...".format(shadow_fn,str(ex)))
 print("\t".join([shadow_fn, str(ex)]),file=report)
 continue
 except (IOError) as ex:
 print("Windows cannot open: {}; \n{} continuing...".format(shadow_fn,str(ex)))
 print("\t".join([shadow_fn, str(ex)]),file=report)
 continue

if __name__=="__main__":
 from optparse import OptionParser
 global options
 import sys,time

 parser = OptionParser()
 parser.usage = """usage: %prog [options] <EXTRACT-DIR>

<imagefile> may be a .vhd or a .raw. If it is a .raw, it will
be converted to a .vhd IN PLACE, so be sure you have enough disk
and the vhdtool.exe to do the conversion

Note: this script must be run as administrator.

"""
 parser.add_option("--list",help="Show the shadow volumes that are avaialble.",
 action="store_true")
 parser.add_option("--local",help="Analyze only the local machine",
 action="store_true")
 parser.add_option("--image",help="Analyze a selected image (converts if necessary to VHD)",
 action="store_true")
 parser.add_option("--maxsize",help="Specifies maximum size of a file to extract",
 type='int',default=1024*1024*1024*1024)
 parser.add_option("--minsize",help="Specifies minimum size of a file to extract",
 type='int',default=1)
 parser.add_option("--noextract",help="Do not extract the shadow data",
 action="store_true")
 parser.add_option("--reportfn",help="Specify report output filename",
 default="report.txt")
 parser.add_option("--zap",help="Overwrite report file if it exists",
 action="store_true")

 if len(sys.argv)==1:
 parser.print_help()
 exit(0)

 global options
 (options,args) = parser.parse_args()

 if not ctypes.windll.shell32.IsUserAnAdmin():
 print("This script must run as the Windows Administrator")
 exit(1)

 # If the c:\vhd directory does not exist, create it.
 #if not os.path.exists(VHD_DIR):
 # os.path.mkdir(VHD_DIR)
 # If there are any mounted items in the directory, unmount them

 # Get all volumes (local and non-local) for listing
 vols = ShadowVolume2.availableVolumes()
 if(options.list):
 include_legend = {True:"+",False:" "}
 fmt ="{:1} {:10} {:25} {}"
 print(fmt.format("","Source", "Creation Time", "Volume Name"))
 print(fmt.format("","------", "-------------", "-----------"))
 for v in vols:
 print(fmt.format(include_legend[include_volume(v,options.local)],
 v.originatingMachine(),v.ctime(),v.volumeName()))
 print("")
 print("+ means volume will be included in analysis")
 exit(0)

 seen = set() # for seen MD5 codes
 destdir = ""
 if not options.noextract:
 if len(args)!=1 :
 # Demand that we did not get an extract dir
 print("No extraction directory provided.\n")
 parser.print_help()
 exit(1)
 destdir = args[0]

 if os.path.exists(options.reportfn) and not options.zap:
 print("{} exists. Delete it or specify a new report filename with --report option".format(options.reportfn))
 exit(1)

 # Unmount all the mounted images

 # Walk and digest only the non-local shadow volumes

 # Process all of the files
 report = open(options.reportfn, 'w',encoding='utf-8')
 print("\t".join(['Path','MD5','Size','Machine','Volume','Destination Filename']),file=report)
 for v in vols:
 if not include_volume(v,options.local):
 continue
 print("Processing {} from {}".format(v.volumeName(),v.originatingMachine()))
 process(seen,destdir,v,report)

