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Introduction 
Prostate c ancer a ccounts f or one -third of  nonc utaneous c ancers di agnosed i n US m en,1 is a 
leading c ause o f can cer-related de ath a nd i s, a ppropriately, t he s ubject of  he ightened publ ic 
awareness and widespread screening. If prostate-specific antigen (PSA)2 or digital rectal screens 
are abnormal,3 a biopsy is considered to detect or rule out cancer. Pathologic status of biopsied 
tissue forms the definitive diagnosis for prostate cancer and constitutes an important cornerstone 
of therapy and prognosis.4

 

 There is, hence, a need to add useful information to diagnoses and to 
introduce n ew te chnologies th at a llow e fficient analyses o f c ancer to  focus limite d h ealthcare 
resources. F or t he r easons unde rlined a bove, t here i s a n u rgent ne ed f or hi gh-throughput, 
automated and objective pathology tools. Our general hypothesis is that these requirements are 
satisfied through innovative spectroscopic imaging approaches that are compatible with, and add 
substantially t o, c urrent pa thology pr actice. Hence, the o verall a im of th is p roject is  to  
demonstrate t he ut ility of  nove l F ourier t ransform i nfrared ( FTIR) s pectroscopy-based, 
computer-aided diagnoses for prostate cancer and develop the required microscopy and software 
tools to enable its application.  

FTIR spectroscopic imaging is  a  new technique that combines the spatial specificity of optical 
microscopy an d t he b iochemical co ntent o f s pectroscopy.5 As oppos ed t o t hermal i nfrared 
imaging, FTIR i maging m easures t he a bsorption pr operties of  t issue t hrough a  s pectrum 
consisting of  (typically) 1024 to 2048 w avelength elements per pixel.6 Since mid-IR (2-12 µm 
wavelength) spectra reflect the molecular composition of the t issue, image contrast arises f rom 
differences in endogenous chemical species. As opposed to visible microscopy of stained tissue 
that r equires a h uman eye t o d etect ch anges, n umerical c omputation i s r equired t o e xtract 
information f rom IR s pectra of  uns tained t issue. E xtracted i nformation, ba sed on a  c omputer 
algorithm, i s i nherently obj ective a nd automated. R ecent w ork ha s d emonstrated t hat t hese 
determinations ar e al so accu rate an d reproducible i n l arge pa tient po pulations.7

Figure 1

 Hence, w e 
focused, i n t he f irst year of  t his pr oject, on de monstrating t hat t he l aboratory results c ould be  
optimized using novel approaches to fast imaging. This is a critical step, since we propose next 
to analyze 375 radical prostatectomy samples. We have been able to optimize data acquisition 
parameters and develop a novel algorithm for processing data that enables almost 50-fold faster 
imaging. B riefly, th e id ea b ehind th e p rocess is  illu strated in  . In t his pe rformance 
period, we sought to use acquired data to establish the use of IR imaging for validating cancer 
diagnosis (task 2), develop a calibration and prediction model for grading and perform extensive 
validation (task 2). Finally, we sought to develop a m athematical framework to relate disparate 
pieces of information to outcome (task 3).  
 



 
Figure 1. (A) Conventional imaging in pathology requires dyes and a human to recognize 
cells. In chemical imaging data cubes (B), both a spectrum at any pixel (C) and the spatial 
distribution of any spectral feature can be seen. e.g. in (D) nucleic acids (left, at ~1080 cm-

1), and collagen specific (right, at ~ 1245 cm-1 )  Computational tools can then convert 
chemical imaging data to knowledge used in pathology (E). 

 
 
 
 
Body 
Specific activities and tasks as per statement of work during this performance period are 
described below. Details of performance for the past years periods are given in the past annual 
reports which is attached for quick reference of the reviewers. : 
 
Task 1. Perform infrared spectroscopic imaging on prostate biopsy specimens 
All activities for this task were completed in year 1 and 2 
 
Task 2. Analyze spectroscopic imaging data for biochemical markers of tumor and develop 
numerical algorithms for grading cancer 
Goal: Develop algorithm for malignancy recognition. Models will be constructed and optimized 
using Genetic Algorithms operating on identified metrics. Models will be tested and validated 
using ROC curves with pathologist marking as the ground truth. A protocol for segmenting 
benign from atypical condition will be available.  (Months 11-18) Three specific aims from the 
statement of work (SOW) are: 

a. Identify samples to be imaged (Months 1-3) by examining stained slides 
b. Obtain unstained samples to be imaged and define regions for calibration and 

validation (Months 4-7) 
c. Perform histologic identification on prostate samples and validate 
d. Reduce spectral metrics to those useful in identifying atypia (Months 8-12) 
e. Develop protocols and validate distinction between benign-appearing and atypical 

tissue (Months 12-18) 
f. Develop calibration for predicting cancer grade (Months 18-22) 
g. Develop protocols and validate Gleason grading of tumor (Months 18-27) 
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Activities: Task 2a-2d were accomplished in years 1 and 2.  
 
TASK 2E: DEVELOP PROTOCOLS AND VALIDATE DISTINCTION BETWEEN 
BENIGN-APPEARING AND ATYPICAL TISSUE  
We were able to accomplish task 2e entirely and a manuscript has been submitted (under 
review). An invention disclosure was filed with the office and technology management, who 
then decided to file a preliminary paten on the work.  
 
We develop a new fully-automated method to classify cancer versus non-cancer prostate t issue 
samples. T he c lassification a lgorithm u ses mo rphological f eatures – geometric pr operties of  
epithelial cells/nuclei and lumens – that are quantified based on H&E stained images as well as 
FT-IR images of the samples. By restricting the features used to geometric measures, we sought 
to m imic t he pa ttern r ecognition pr ocess e mployed b y hum an experts, a nd a chieve a  r obust 
classification p rocedure that can  p roduce co nsistently h igh a ccuracy a cross i ndependent da ta 
sets. W e s ystematically evaluate t he p erformance o f t he new m ethod t hrough c ross-validation, 
and ex amine i ts r obustness acr oss d ata s ets. W e al so s ummarize t he s pecific m orphological 
features that prove to be most informative in classification. 
 

 
Figure 2. IR imaging data and its use in histologic classification. 



(Upper row) IR imaging data (b) is acquired for an unstained tissue section (a). The 
data is then classified into cell types and a classified image (c) is obtained. The colors 
indicate cell types in a histologic model of prostate tissue. This method is robust and 
applied to hundreds of tissue samples using the tissue microarray (TMA) format. 
(Lower row) H&E (d) and IR classified (e) images of a part of the TMAs used. 
 
Methods: Several new methods were developed to accomplish the task. 

We begin with a description of the computational pipeline. As noted above, a key aspect of our 
approach is the use of FT-IR imaging data on a serial section that is H&E-stained to enhance the 
segmentation of nuclei and lumens. The first two components of the pipeline (§1-2) are geared to 
this f unctionality, while t he ne xt t hree c omponents ( §3-5) ex ploit t he s egmented f eatures 
obtained from image data to classify the tissue sample (Figure 3). 

 
 
Figure 3. Overview of  the approach. 
(a, b) FTIR spectroscopic imaging data-based cell-type classification (IR classified 
image), is overlaid with H&E stained image (a), leading to segmentation of nuclei and 
lumens in a tissue sample (b). (c,d,e) Features are extracted and selected (c), and used 
by the classifier (d) to predict (e) whether the sample is cancerous or benign. 
 
1. Image Registration 



Given two images, the image registration problem can be defined as finding the optimal spatial 
and intensity t ransformation of one image to the other. Here, two images are H&E stained and 
“IR cl assified” i mages which were acquired f rom ad jacent t issue s amples. T he IR cl assified 
image r epresents t he FT-IR i maging d ata, p rocessed as  i ndicated i n F igure 2 , t o cl assify ea ch 
pixel as a particular cell type. Although the two samples were physically in the same intact tissue 
and are structurally similar, the two images have different properties (total image and pixel sizes, 
contrast m echanisms an d d ata v alues). H ence, features to  s patially register th e ima ges are n ot 
trivial. T he H &E i mage pr ovides de tailed m orphological i nformation t hat c ould or dinarily be  
used for registration, but the IR image lacks such information. On the other hand, the IR image 
specifies the exact areas corresponding to each cell type, but the difficulty in precisely extracting 
such regions from the H&E image hinders us from using cell-type information for registration. 
The only obvious features are macroscopic sample shape and empty space ( lumens) inside the 
samples. T o ut ilize t hese t wo f eatures a nd t o a void pr oblems due  t o d ifferences i n t he t wo 
imaging techniques, both images are first converted into binary images. Due to the binarization, 
the i ntensity t ransformation i s not  ne cessary. As a s patial t ransformation, w e u se an  af fine 
transformation ( f ) where a co ordinate ( x1, y1) is t ransformed t o t he ( x2, y2) co ordinate af ter 
translations (tx, ty), rotation by θ, and scaling by factor s.  
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Accordingly, w e find the o ptimal p arameters o f th e a ffine tr ansformation th at min imizes th e 
absolute i ntensity d ifference b etween t wo i mages ( Ireference and Itarget). I n ot her w ords, i mage 
registration a mounts t o f inding t he opt imal pa rameter va lues 

( )* * * *

, , ,
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t t s

t t s I f I t t s
θ

θ θ= − . The downhill simplex method is applied to 

solve the above equation. An example of this registration process is shown in Figure 4. 
 

 
Figure 4. Image Registration. 



H&E stained images and IR classified images are first converted into binary images. 
The IR classified image is overlaid with the H&E stained image by affine 
transformation, with the optimal matching being found by minimizing the absolute 
intensity difference between two images. After registration, original annotations 
(color and/or cell-type information) of each image are restored 
 
2. Identification of epithelial cells and their morphologic features 
While a  num ber of  factors a re kno wn t o b e t ransformed i n cancerous t issues, e pithelial 
morphology is utilized as the clinical gold standard. Hence, we focus here on cellular and nuclear 
morphology o f epithelial nuc lei a nd l umens. These s tructures a re di fferent i n no rmal a nd 
cancerous tissues, but are not widely used in automated analysis due to a few reasons. First, as 
described above, simple detection of epithelium from H&E images is difficult. Second, detection 
of epithelial nuclei may be confounded by a stromal response that is not uniform for all grades 
and t ypes of  c ancers. W e f ocused f irst on a ddressing t hese t wo c hallenges t hat hi nder  
automatically parsing morphologic features such as the size and number of epithelial nuclei and 
lumens, distance from nuclei to lumens, geometry of the nuclei and lumens, and others (§3). In 
order to use these properties, the first step is to detect nuclei and lumens correctly and we sought 
to develop a robust strategy for the same. 
 
2.1. Lumen Detection  
In H &E s tained i mages, l umens a re r ecognized t o be  e mpty w hite spaces s urrounded b y 
epithelial cells. In normal tissues, lumens are larger in diameter and can have a variety of shapes. 
In cancerous tissues, lumens are progressively smaller with increasing grade and generally have 
less distorted elliptical or circular shapes. Our strategy to detect lumens was to find empty areas 
that are located next to the areas rich in epithelium. White spots inside the sample can be found 
from the H&E image, and the pixels corresponding to epithelial cells can be mapped on the H&E 
image f rom the IR classified image through image registration. We note that while lumens are 
ideally completely surrounded by epithelial cel ls (called complete lumens), some samples have 
lumens ( called in complete lu mens) th at v iolate th is c riterion b ecause o nly a p art o f lu men is  
present in the sample. To identify these incomplete lumens, we use heuristic criteria based on the 
size, shape, presence of epithelial cells and background around the areas, and distance from the 
center of the tissue. (See Supplementary Materials for details.) 
 
2.2. Nucleus Detection – single epithelial cells 
Epithelial nucleus detection by automated analysis is more difficult than lumen detection due to 
variability in  s taining a nd e xperimental c onditions u nder w hich th e e ntire s et o f H &E ima ges 
were acquired. Differences between normal and cancerous tissues, and among different grades of 
cancerous tissues, also hamper facile detection. To handle such variations and make the contrast 
of t he i mages consistent, w e pe rform s moothing and a daptive hi stogram e qualization pr ior t o 
nuclei identification. Nuclei are relatively dark and can be modeled as small elliptical areas in the 
stained images. This geometrical model is often confounded as multiple nuclei can be so close as 
to ap pear l ike o ne l arge, ar bitrary-shaped nuc leus. A lso, s mall f olds or  e dge s taining a round 
lumens can make the darker shaded regions difficult to analyze. Here, we exploit the information 
provided by the IR classified image to limit o urselves to epithelial cells, and use a thresholding 
heuristic on a  c olor s pace-transformed ima ge to i dentify nuc lei w ith hi gh a ccuracy. Epithelial 
pixels that are identified on the H&E images using the IR overlay provide pixels of dominated by 



one of  t wo c olors: bl ue or  pi nk, w hich a rise f rom t he nuc lear and c ytoplasmic c omponent 
respectively. For nuclei restricted to epithelial cells in this manner, a set of general observations 
were made that led us to convert the stained image to a new color space “RG–B” (|R + G – B|). 
(R, G , a nd B  r epresent t he i ntensity of  R ed, Green, a nd Blue c hannels, r espectively.) T his 
transformation, followed by suitable thresholding, was able to successfully characterize the areas 
where n uclei are p resent. T he t hreshold v alues are adaptively d etermined f or R ed an d G reen 
channels due to the variations in the color intensity. (See Supplementary Materials for details.) 
Finally, filling hol es a nd g aps w ithin nuc lei b y a  m orphological c losing ope ration, t he 
segmentation o f each n ucleus i s a ccomplished by u sing a w atershed a lgorithm f ollowed b y 
elimination of false detections. The size, shape, and average intensity are considered to identify 
and remove artifactual nuclei. Figure 5 details the nucleus detection procedure. 
 

 
 
Figure 5. Nucleus Detection. 
Smoothing and adaptive histogram equalization are performed to alleviate variability 
in H&E stained image and to obtain better contrast. “RG – B” conversion followed by 
thresholding characterizes the areas where nuclei exist. Morphological closing 
operation is performed to fill holes and gaps within nuclei, and a watershed algorithm 
segments each individual nuclei. The segmented nuclei are constrained by their shape, 
size, and average intensity and epithelial cell classification (green pixels) provided by 
the overlaid IR image. 
 
3. Feature Extraction 
As mentioned above, the characteristics of nuclei and lumens change in cancerous tissues. In a 
normal t issue, e pithelial c ells a re l ocated m ostly i n t hin l ayers a round lumens. In c ancerous 
tissue, these cells generally grow to fill lumens, resulting in a decrease in the size of lumens, with 



the shape of lumens becoming more elliptical or circular. The epithelial association with a lumen 
becomes i nconsistent a nd e pithelial f oci m ay adjoin l umens or  m ay also e xist w ithout a n 
apparent lumen. Epithelial cells invading the extra-cellular matrix also result in a deviation from 
the well-formed lumen structure; this is well-recognized as a hallmark of cancer. Due to filling 
lumen s pace a nd i nvasion i nto t he e xtra-cellular s pace, t he n umber d ensity o f ep ithelial cel ls 
increases in tissue. The size of individual epithelial cells and their nuclei also tend to increase as 
malignancy of  a  t umor i ncreases. M otivated by  s uch r ecognized m orphological di fferences 
between normal and cancerous tissues, we chose to use epithelial nuclei and lumens as the basis 
of the several quantitative features that our classification system works with. (See examples of 
such features in Figure 6.) It is notable that these observations are qualitative in actual clinical 
practice and have not been previously quantified. 
 

 
Figure 6. Examples Features. 



Each panel shows one example feature, along with the distributions of the feature’s 
values for cancer (red) and benign (blue) classes. 
 
3.1. Epithelial cell-related features  
We u se e pithelial c ell t ype c lassification f rom IR d ata to  measure ep ithelium-related f eatures. 
However, individual epithelial cells in the tissue are not easily delineated. Therefore, in addition 
to f eatures d irectly d escribing e pithelial c ells, w e a lso q uantify p roperties o f e pithelial n uclei, 
which ar e av ailable f rom t he s egmentation de scribed i n §2. T he qua ntities w e m easure i n 
defining features are: (1) size of epithelial cells, (2) size of epithelial nuclei, (3) number of nuclei 
in the sample, (4) distance from a nucleus to the closest lumen, (5) distance from a nucleus to the 
epithelial cell boundary, (6) number of “isolated” nuclei (nuclei that have no neighboring nucleus 
within a certain distance), (7) number of nuclei located “far” from lumens, and  ( 8) entropy of 
spatial di stribution of  n uclei ( Figure 6G ). S upplementary M aterials pr ovide s pecifics of  t hese 
measures and their calculation. 
 
3.2. Lumen-related features 
Features describing glands have been shown to be effective in PCa classification. Here, we try to 
characterize l umens a nd m ostly f ocus on t he differences i n t he s hape of  t he l umens. T he 
quantities we measure in defining these features are: (1) size of a lumen, (2) number of lumens, 

(3) lumen “roundness”, defined as 
2
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 where periL  is the perimeter of the lumen, areaL  is the 

size of the lumen, and r is the radius of a circle of  size areaL , (4) lumen “distortion” (Figure 6A), 
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 where 
cbLd  is the distance from the center of a lumen to the boundary of 

the l umen a nd AVG(·) and STD(·) represent t he a verage and s tandard de viation, ( 5) l umen 
“minimum boundi ng c ircle r atio” ( Figure 6 B), defined as t he r atio of  t he s ize of  a  m inimum 
bounding circle of a lumen to the size of the lumen, (6) lumen “convex hull ratio” (Figure 6C), 
which is the ratio of the size of a convex hull of a lumen to the size of the lumen, (7) symmetric 
index of  lumen bounda ry (Figure 6 E, s ee S upplementary M aterials), ( 8) s ymmetric i ndex o f 
lumen area (Figure 6F, see Supplementary Materials), and (9) spatial association of lumens and 
cytoplasm-rich regions (Figure 6D, see Supplementary Materials). Features (3) – (8) are various 
ways t o s ummarize l umen s hapes, w hile feature ( 9) i s m otivated b y t he l oss of  f unctional 
polarization of epithelial cells in cancerous tissues. 
 
3.3. Global & local tissue features 
We have described above the individual measures of epithelium and lumen related quantities that 
form the basis of the features used by our classification system. Normally, these features have to 
be s ummary m easures o ver t he entire t issue s ample o r d esired classification ar ea. H ence, w e 
employ average (AVG) or standard deviation (STD), and in some cases the sum total (TOT) of 
these q uantities f or f urther an alysis. T hese f eatures ar e called “global” features s ince t hey are 
calculated from the entire sample. However, in some cases global features may be misleading, 
especially where only a part of the tissue sample is indicative of cancer. Therefore, in addition to 
global f eatures, w e d efine “l ocal” f eatures b y s liding a r ectangular w indow o f a f ixed size 
(typically 100x100 pixels) throughout a tissue sample, computing the average or sum total of the 
feature in each window, and computing the standard deviation and/or extrema over the values for 



all windows (Figure 7). In all, 67 features (29 global and 38 local features) are defined capturing 
various aspects of tissue morphology.  
 
4. Feature Selection 
Feature selection is the step where the classifier examines all available features (67 in our case) 
with respect to  the tr aining s amples, and selects a subset to  use on test d ata. This selection is  
generally b ased o n t he criterion o f h igh accuracy on t raining da ta, but  a lso s trives t o e nsure 
generalizability beyond the training data. We adopt a two-stage feature selection approach here. 
In t he f irst s tage, w e generate a s et o f can didate f eatures (Ccandidate) by using t he s o-called 
minimum-redundancy-maximal-relevance ( mRMR) cr iterion. In each i teration, g iven a f eature 
set chosen thus far, mRMR chooses the single additional feature that is least redundant with the 
chosen features, while being highly correlated with the class label. Ccandidate is a set of features 
that is  e xpected to  b e close to  th e o ptimal f eature s et f or a  d ataset and a  c lassifier u nder 
consideration. It is constructed as follows. Given a feature set F = (f1, …, fM) ordered by mRMR, 
AUC of the set of i top-ranked features is computed for varying values of i. We limit the value of 
i to be ≤ 30. The feature subset with the best AUC is chosen as the Ccandidate. In the second stage, 
feature s election co ntinues w ith Ccandidate as th e s tarting p oint, us ing t he s equential f loating 
forward s election ( SFFS) m ethod. T his m ethod s equentially a dds n ew f eatures followed b y 
conditional deletion(s) of already selected features. Starting with the Ccandidate, SFFS searches for 
a feature x ∉ Ccandidate that maximizes the AUC among all feature sets Ccandidate ∪ {x}, and adds it 
to Ccandidate. Then, it finds a feature x ∈ Ccandidate that maximizes the AUC among all feature sets 
Ccandidate – {x}. If the removal of x improves the highest AUC obtained by Ccandidate, x is deleted 
from Ccandidate. A s l ong as t his r emoval i mproves upon t he hi ghest A UC obt ained s o f ar, t he 
removal step is repeated. SFFS repeats the addition and removal steps until AUC reaches 1.0 or 
the number of additions and deletions exceeds 20, and the feature set with the highest AUC thus 
far is chosen as the optimal feature set. The classification capability of a feature set, required for 
feature s election, i s m easured b y t he ar ea u nder t he R OC cu rve ( AUC), o btained b y cr oss-
validation on the training set. 
 
5. Classification 
We note that there are two levels of classification here. In the first, IR spectral data i s used to 
provide histologic images where each pixel has been classified as a cell type. In the second, the 
measures from H&E images and IR images are used to classify tissue into disease states. In this 
manuscript, we do not discuss the first classification task as its development and results are well-
documented. F or t he l atter t ask, w e u sed a w ell es tablished cl assification al gorithm, n amely 
support ve ctor m achine (SVM). Two c ost f actors a re i ntroduced t o de al with a n i mbalance i n 
training data. The ratio between two cost functions was chosen as  

number of negative training examples
number of positive training examples

C
C

+

−

=  

to make t he p otential t otal co st o f t he f alse p ositives an d t he f alse n egatives t he s ame. ( See 
Supplementary Materials for details.) 
 
6. Data preparation 
All of  t he H &E s tained i mages were a cquired on a  s tandard opt ical m icroscope a t 40x 
magnification. The s ize of each pixel i s 0.9636 um x 0.9636 um. On the other hand, the pixel 
size of  I R i mages i s 6.2 5um x 6.25um. T he a cquisition w as pr eviously de scribed i n pr evious 



years’ re ports. Two d ata s ets, stained unde r di fferent c onditions, were used i n t his s tudy. The 
first dataset (“Data1”) consists of 66 benign samples and 115 cancer samples, and the second set 
(“Data2”) includes 14 be nign and 36 cancer samples. These were previously acquired under the 
grant. 
 
Results and discussion: We then applied the methods to classify prostate tissue and the results 

are presented below. 

1. The classification system achieves AUC greater than 0.97 on both data sets 
We fi rst p erformed K-fold cr oss v alidation o n each d ataset. T he d ata s et w as d ivided i nto K 
roughly e qual-sized p artitions, o ne p artition w as le ft o ut a s the “ test d ata”, th e c lassifier w as 
trained on the union of the remaining K – 1 partitions (the “training data”) and evaluated on the 
test data. This was repeated K  times, with different choices of the left-out partition. (We set K = 
10.) In e ach r epetition, c ross-validation on t he t raining da ta was us ed t o s elect t he f eature s et 
with the highest AUC as explained in §4. T he correct and incorrect predictions in the test data, 
across al l K repetitions, were summarized into a  ROC plot and the AUC was computed, along 
with s pecificities when sensitivity e quals 90, 95 , or  99 %. S ince t he cross-validation ex ercise 
makes random choices in partitioning the data set, we examined averages of these performance 
metrics over 10 repeats of the entire cross validation pipeline. The average AUC for Data1 and 
Data2 were 0.982 and 0.974 respectively (Table 1, “feature extraction” = “IR & HE”). At 90%, 
95%, and 99% sensitivities, the average specificity achieved on Data1 was 94.76%, 90.91%, and 
77.80% respectively, while that on Data2 was 92.53%, 84.19%, and 49.54% respectively. 
  
One way to interpret the above values is to examine our automated pipeline as a pre-screening 
mechanism to identify the samples to be examined by a human pathologist. At a “true positive 
rate” of 99% (which means that only 1% of the cancer samples will be missed by the screen), the 
“false positive rate” is 22.2% (i.e., 22.2% of the benign samples will make it through the screen) 
on av erage for Data1 (Table1), t hereby reducing t he w orkload o f t he p athologist b y 4.5 -fold. 
While th e e rror rate o f manual p athology d eterminations is  g enerally a ccepted to  b e in  1 -5% 
range, i nclusion of  c onfounding c ancer m imickers r aises t he r ate t o a s hi gh a s 7.5% . Also 
noteworthy i s the observation that the same a lgorithm performs consistently well on bot h data 
sets, that were obtained from different staining conditions. This speaks to the robustness of the 
classification framework, an attribute that we investigated further in the next exercise. 
 
2. Classification system is robust to staining conditions 
Here, we t rained a cl assifier o n Data1 and t ested i ts pe rformance on Data2. W e obs erved a n 
average AUC of 0.956, with average specificity of 88.57%, 81.92%, and 26.86% at sensitivity 
equaling 90%, 95%, and 99% respectively (Table 2, “feature extraction” = “IR & HE”). These 
values are competitive with the cross-validation results on Data2 (Table 1), where the t raining 
and testing were both performed on (disjoint parts of) Data2.  
 
3. IR data is critical to classification performance 
To a ssess th e u tility o f the IR-based c ell-type c lassification, w e r epeated t he ab ove ex ercises 
after extracting features without the guidance of the IR data; i.e., epithelial cells were predicted 
from t he H&E i mages alone ( see Supplementary M aterials f or d etails). A ll o f t he f eatures 



defined in §3 were used, except for “Spatial association of lumens and apical regions”, since the 
distinction b etween c ytoplasm-rich an d n uclear-rich r egion i n epithelial cel ls w as u nclear i n 
H&E i mages. T he results f rom t his di sadvantaged c lassifier are s hown i n T ables 1 and 2  
(“feature ex traction” = “ HE only”). For both t ypes o f experiments, we obtained lower average 
AUCs an d s pecificity v alues. F or i nstance, t he A UC of  c ross-validation in  Data2 (Table 1 ) 
dropped from 0.974 to 0.880. Similarly, the results of validation between datasets (Table 2) were 
substantially worse now compared to the IR-guided classification, with the AUC dropping from 
0.956 t o 0.918. T his i ndicates th at feature extraction w ith th e h elp o f th e IR c ell-type 
classification is  c ritical to  c onsistent a nd r eliable c lassification o f c ancer v ersus b enign tis sue 
samples.  

Dataset Feature 
Extraction 

AUC Sensitivity 
(%) 

Specificity (%) Mf AVG STD AVG STD 

Data1 

IR & HE 0.982 0.0030 
90 94.76 1.64 

13 95 90.91 1.62 
99 77.80 5.52 

HE only 0.968 0.0052 
90 91.64 2.26 

11 95 83.90 1.91 
99 53.43 13.65 

Data2 

IR & HE 0.974 0.0145 
90 92.53 7.11 

7 95 84.19 10.84 
99 49.54 22.51 

HE only 0.880 0.0175 
90 61.34 10.31 

8 95 22.21 10.06 
99 11.21 6.01 

Table 1 . Classification results via cross-validation.  
AVG and STD denote average and standard deviation across ten repeats of cross-valdiation. Mf 
is the median size of the feature set obtained by feature selection from training data. Column 
“Feature Extraction” indicates if features were obtained using H&E as well as IR data, or with 
H&E data alone. 
 

Feature 
Extraction Dataset AUC Sensitivity 

(%) 
Specificity (%) Mf AVG STD AVG STD 

IR & HE 

Train 0.994 0.0006 
90 98.30 0.68 

13 

95 96.58 1.10 
99 91.55 2.55 

Test 0.956 0.0089 
90 88.57 5.96 
95 81.92 5.28 
99 26.86 15.50 

HE only 

Train 0.986 0.0021 
90 97.77 0.97 

10 

95 91.56 2.49 
99 79.29 4.47 

Test 0.918 0.0100 
90 65.51 8.37 
95 46.14 7.53 
99 13.29 6.94 



Table 2. Validation between datasets. 
A classifier is trained on Data1 and tested on Data2. AVG and STD denote the average and 
standard deviation. Mf is the median size of the optimal feature set. Column “Feature Extraction” 
indicates if features were obtained using H&E as well as IR data, or with H&E data alone. 
Column “Dataset” indicates if the performance metrics are from training data (Data1) or from 
test data (Data2). 
 
Previously, T abeshi et al. a chieved a n a ccuracy of 96.7%  vi a c ross va lidation i n c ancer/no-
cancer c lassification. Color, morphometric, and texture features were ex tracted, and al l images 
were acquired under s imilar conditions. We note that our  c lassification result (Table 1) , based 
solely on morphology, is comparable to their result; however the software developed by Tabeshi 
et al. was not available for evaluation in our data sets.  Color and texture features could provide 
additional information; however, their robustness to different data sets is questionable, and their 
interpretation i s not  a s obvious a s t hat of  m orphological features, which ar e u sed i n cl inical 
practice. D ifferent d ata sets m ay h ave v aried p roperties w hich m ay b e attributable t o s taining 
variations, i nconsistent image a cquisition s ettings, a nd i mage pr eparation. T he pe rformance of  
the same method based on texture features has been seen to greatly change from one data set to 
another. V ariations i n s taining m ay a ffect c olor f eatures. In contrast, m orphological f eatures 
were s hown t o b e r obust t o va rying i mage a cquisition s ettings. N onetheless, t he qu ality o f 
morphological features is subject to segmentation of histologic objects. Thus, any method based 
on morphological features will benefit from the IR cell-type classification. 

 
Figure 7. Global and Local Feature Extraction. 
Global features are extracted from the entire tissue sample, and local features are 
extracted by sliding a window of a fixed size across the tissue sample and computing 
summary statistics, such as standard deviation, of window-specific scores. In this 
example, the global feature “number of nuclei” has value 755, while one example 
position of the sliding window is shown, with “number of nuclei” = 29. 
 
4. Examination of discriminative features 
We examined the importance of each feature by its rank in the f irst phase of feature selection, 
based o n i ts “r elevance” t o t he cl ass l abel ( see S upplementary M aterials, m RMR). S ince 



different features (e.g., average or standard deviation, global or local features) based on the same 
underlying quantity (e.g., “lumen roundness”) generally have similar relevance, we examined the 
average relevance of features in each of 17 feature categories (Figure 8), for each data set. The 
complete lis t o f the in dividual f eatures a nd t heir r elevance a nd m RMR r ank ( for Data1) i s 
available in Figure 9. For Data1, lumen-related feature categories are most relevant in general, 
while epithelium-related feature categories are most important for Data2. It is surprising that the 
top 3 feature cat egories i n Data1 (Figure 8,  blue bars) – size of  lumen, l umen roundness, and 
lumen convex hull ratio –  have very low relevance in Data2, although we note that this may be 
in large part due to variations in staining and malignancy of tumors between the two data sets. 
Also, examining the features (or feature categories) with highest relevance alone may be slightly 
misleading, because this examination does not account for redundancy among features.  

 
Figure 8. Importance of 17 feature categories. 
The average “maximal relevance” of features belonging to each feature category is 
shown, for both data sets, sorted in decreasing order for the first data set. 
 



 
Figure 9. List of features and their maximal relevance and “mRMR rank”. 
In the second column, G and L represent global and local features, respectively. AVG, 
STD, TOT, and MAX denote the average, standard deviation, total amount, and 
extremal value of features. * In computing local features representing “size of lumen”, 
two options are available: one is to consider only the part of the lumen within the 
window, and the other is to consider the entire lumen into account. Asterisk indicates 
that the former option was chosen. 
 



 
Figure 10. Optimal features for distinguishing cancer and benign tissue samples. 
The four features shown here are always present in the optimal feature set chosen by 
the classifier. 
 
Conclusions  

In completing this task, we have presented a means to eliminate epithelium recognition 
deficiencies in classifying H&E images for presence or absence of cancer. The method is entirely 
transparent to a user and does not involve any adjustment or decision-making based on spectral 
data. We were able to achieve very effective fusion of the information from two different 
modalities, namely optical and IR microscopy, that provide very different types of data with 
different characteristics. Several features of the tissue were quantified and employed for 
classification. We found that robust classification could be achieved using a few measures, 
which are detailed to arise from epithelial/lumen organization and provide a reasonable 
explanation for the accuracy of the model. The choice of combining the IR and optical data is 
shown to be necessary for achieving the high accuracy values observed. We anticipate that the 
combined use of the two microscopies – structural and chemical – will lead to an accurate, robust 
and automated method for determining cancer within biopsy specimens. 
 
 
TASK 2F: DEVELOP CALIBRATION FOR PREDICTING CANCER GRADE 
(MONTHS 18-22) 
Motivation:  
Quality assurance in clinical pathology plays a critical role in the management of patients with 
prostate cancer as pathology is the gold standard of diagnosis and forms a cornerstone of patient 
therapy. Methods to integrate quality development, quality maintenance, and quality 
improvement to ensure accurate and consistent test results are, hence, critical to cancer 



management in any setting. These factors have a direct bearing on patient outcomes, financial 
aspects of disease management as well as malpractice concerns. One of the major failings in 
prostate pathology today is the rate of missed tumors and variability in grading.  It is well known 
that the grading of prostate tissues suffers from intra- and inter-pathologist variability. In the 
studies of intra- and inter-pathologist reproducibility, the exact intra-pathologist agreement was 
achieved in 43-78% of the instances, and in 36-81% of the instances, the exact inter-pathologist 
agreement was reported. It is also known that the variability of the grading could be reduced 
after pathologists are re-trained. There could be many ways to educate pathologists such as 
meetings, courses, online tutorials, and etc, but these are not time- and cost-effective for routine 
everyday decisions. Therefore, building an automated, fast, and objective method to aid 
pathologists to examine prostate tissues will greatly help to attain reliable and consistent 
diagnoses. This will reduce healthcare costs and the chances of malpractice lawsuits as well as 
improve patient outcomes in therapy. 
 
Innovation in our approach and potential benefits:  
When a pathologist examines tissue, he/she looks at a stained imaged of tissue and mentally 
compares it against a database of previous knowledge or information in books. In essence, the 
pathologist is manually matching structural patterns he/she has seen earlier and mentally 
recalling the diagnosis made such that he/she can make the same diagnosis in the specific test 
case. Here, we report developing a computer information and management and decision-making 
system that relies of one or more measures of the structure of tissue to provide images from a 
database that are similar to the sample under consideration. We emphasize that the system does 
not provide a diagnosis but simply provides the closest matching cases that enable a pathologist 
to make a diagnosis. We also propose here the new idea of constructing a database of pre-
examined prostate tissues and providing similar tissue samples with pathologists from the 
database while they examine an unknown tissue sample. To our knowledge, no such system 
currently exists. Further, we propose that our system may or may not use infrared chemical 
imaging data in comparisons. Comparing with the pre-examined tissues samples, we expect that 
pathologists to make more consistent and accurate decision. As we build a database of prostate 
tissue samples, we represent each tissue sample by its morphology. Given an unknown tissue 
sample, the similarities between the unknown sample and the tissue samples in the database are 
measured based on the morphological properties, and the most similar tissue samples are 
retrieved. The pathologist may indicate that certain matches were better than others, resulting in 
an updating of the database and matching algorithms as needed. The updating may be conducted 
in real-time.  
 
Work accomplished: 
Morphological features have been shown to be able to characterize prostate tissues and can be 
used for the diagnostic purpose. Here, 67 morphological features, which are based on lumens and 
epithelial nuclei, were extracted from each tissue sample. The database stores the morphological 
features for the tissue samples which have already been examined by pathologists. 
 
Once we have an unknown prostate tissue sample (query), first of all, the morphological features 
are extracted from the tissue sample. Secondly, the similarities between the query and the tissue 
samples in the database are computed using Euclidean distance based on the morphological 
features. Lastly, the most similar k tissue samples to the query are retrieved from the database.  



 
To assess the goodness of the method, we have tested our method on a dataset composed of 181 
tissue samples. In the dataset, 5, 23, 66, and 21 tissue samples are Gleason grade 2, 3, 4, and 5 
cancer (“Cancer”), respectively, and 20 and 46 tissue samples are BPH and normal (“Benign”), 
respectively. Due to the small number of tissue samples, Gleason grade 2 is ignored for the 
further consideration. As mentioned above, each of tissue samples is represented by 67 
morphological features.  
 
In order to measure the performance of the method, we adopted k-nearest neighbor (kNN) 
algorithm and predicted the grade of the query by majority voting. Both accuracy and kappa-
coefficient were computed for the predictions. Since pathologists may be more interested in 
grading of cancerous tissue samples, we also applied our method only to the “Cancer” tissue 
samples; i.e., Gleason grade 3, 4, and 5 samples. 
 
We performed Leave-one-out (LOO) cross-validation on the dataset. LOO leaves one example as 
a validation data and uses the remaining examples as training data. In our method, the validation 
data is the query, and the training data is regarded as the database. It should be noted that the 
number of tissue samples in each grade in the dataset varies. The imbalance in the dataset could 
affect the prediction made by kNN algorithm. To tackle the problem, we randomly selected the 
same number of tissue samples from each grade and performed LOO on the sub-dataset. This 
repeated 100 times, and the average accuracy and kappa-coefficient were computed over the 
repeats.  
 
Our method is subject to the choice of the number of nearest neighbors to consider for the 
prediction and the number of features to use for the similarity computation. To examine the 
effect of them, we computed the average accuracy and kappa-coefficient over 100 repeats as 
increasing the two factors (Fig. 1). The accuracy decreases as increasing the number of nearest 
neighbors, and the more features we use, the higher accuracy achieved. The highest average 
accuracy achieved for grading both “Cancer” and “Benign” samples (i.e, 5 grades) was 42% 
using 7 features and 1 nearest neighbor (Fig. 1a). By using 8 features and 1 nearest neighbor, the 
highest accuracy of 52% achieved for grading only “Cancer” samples (i.e., 3 grades) (Fig. 1c). 
Both cases also achieved the average Kappa coefficient of 0.27 (Fig. 1b, d). In Fig. 2, the 
distribution of the grade of the retrieved samples is shown. Distinction between “Cancer” and 
“Benign” samples is obvious (Fig 2a), but among “Cancer”, the retrieved samples often do not 
belong to the same grade with the query, especially between Gleason grade 3 and 4.  
 



 
Figure 11. Average accuracy and kappa coefficient. (a), (b) grading for both “Cancer” and 
“Benign” samples. (c), (d) grading for “Cancer” samples. Each line depicts the accuracy and 
kappa coefficient values of the corresponding number of features.  
  



 
Figure 12. Distribution of the grade of the retrieved samples. (a) grading for both “Cancer” 
and “Benign” samples. (b) grading for “Cancer” samples. For the samples in each grade, the 
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grade of retrieved samples are counted and the average number of samples are shown. The 
arrows denote ±1 standard deviation of the number of samples.  
 
TASK 2G: DEVELOP PROTOCOLS AND VALIDATE GLEASON GRADING OF 
TUMOR (MONTHS 18-27) 
 
The task above provides details of the development and LOO validation. More rigorous 
validations are needed but the preliminary results shows here have been used to validate the 
grading correspondence and the protocols we have developed, as noted above. 
 
It is important to place the magnitude of our advance in context. Several research efforts have 
been made to develop automated systems for the grading of prostate tissues. The majority of 
systems have been used texture and/or morphological features to characterize and classify tissue 
samples into correct classes. However, the information which pathologists will obtain by using 
such methods may be limited since these only provide the predicted grade in general. The 
prediction also relies on the training data. Most importantly, these prior efforts always sought to 
match a sample completely to provide a diagnosis, rather than provide matching candidates. 
Further, the role of other modalities in the process was not clear. Here, we may also use IR 
chemical imaging data in matching. Our premise is that tissue samples which have the same 
grade and similar characteristics and patterns with the sample of interest will afford more 
information to pathologists and hence, the system enables a matching to a database rather than 
seeking to provide an unequivocal diagnosis. 
 
Future outlook enabled by this progress: 
The matching system would be implemented first for a clinical trial and then, would be ready for 
commercial translation. While a true clinical trial is the next step, some further development of 
the actual methods may be expected. We have built the method into existing software as a user-
friendly software.   
 
 
Task 3. Develop mathematical framework to correlate spectral, spatial and clinical 
parameters with cancer progression 

a. Identify and validate spectral metrics and develop spatial metrics indicative of tumor 
grade (Months 27-30) 

b. Develop prediction algorithm for predicting outcome (Months 30-36) 
Activities: 
We have imaged 460 patients with full outcome data and identified several metrics that are 
indicative of tumor grade (please see task 2 as well). A mathematical framework for correlate the 
spectral, spatial and clinical parameters with cancer progression has been built using logistic 
regression. The prediction algorithm is available for use and will be validated. The task for this 
project was to develop the algorithms and, hence, the task is complete. 
 
 



 Task 4. Write reports and finalize algorithms into software (Months 33-36) 
 
 A number of reports (invention disclosure, conference etc.) have been written and manuscripts 
based on this work have been submitted and have been printed as detailed in the following 
sections. 
 
In summary, the promised work has been accomplished to a reasonable degree and has opened 
up significant doors to future progress in prostate pathology as a research direction as well as for 
patients and clinicians.
 
Key Research Accomplishments Å 
 
A genetic algorithm based  method to distinguish benign from malignant epithelium using infrared 
spectroscopic imaging data was shown to be effective. Large scale validation shows promising results and 
a manuscript is being written. 
 
Å We determined that one of the key factors in understanding our data was the spatial structure of the tissue, 
   that closely affected the IR data. A series of simulations were conducted after developing a rigorous optical
   model to predict distortions. Results are reported in two manuscripts in Anal. Chem.
 
 Å A combination of IR and conventional pathology imaging has been developed and extensively validated. 
   The manuscript has been submitted to BMC cancer.
 
 Å A method to correlate Gleason grades with measured data has been developed. Larger validation studies
   are needed. An invention disclosure has been filed and a patent will be filed soon. Subsequently, we will 
   submit a manuscript based on the work to Cancer Research.  



 

Reportable Outcomes………………………………………………………………      
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1. M.J. Walsh, M.V. Schulmerich, R. Bhargava “Progress, critical challenges and a roadmap for 

translating i nfrared s pectroscopic imaging f or c ancer hi stopathology” Chem. Rev., To be  
submitted (2010 – Invited) 

2. J.T. K wak, S .M. Hewitt, S . S inha, R. Bhargava “Multimodal m icroscopy f or a utomated 
histologic analysis of prostate cancer” BMC Cancer, Under review (2010)  

3. R.K. Reddy, R. Bhargava “Automated noise reduction for accurate classification of tissue from 
low signal-to-noise ratio imaging data” Analyst, Under Review (2010) 

4. R. K ong, R .K. Reddy, R. Bhargava “Characterization of  T umor Progression i n E ngineered 
Tissue using Infrared Spectroscopic Imaging” Analyst In press (2010) 

5. M.J. N asse, M .J. Walsh, R . R eininger, E .C. M attson, A . K ajdacsy-Balla, V . M acias, R. 
Bhargava, C .J. H irschmugl “ Fourier Transform I nfrared S pectroscopic Imaging w ith a  
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3. A.K. K odali, R. Bhargava "Nanostructured Probes t o E nhance O ptical a nd V ibrational 
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Oxford handbook of Nanoscience and Technology: Vol. III”, Oxford University Press, Oxford, 
UK (2010) 
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Conclusion……………………………………………………………………………  
The work accomplished demonstrates clear potential and protocols for classifying prostate tissue. 
If the protocols are validated in on-going larger studies and translated to the clinic, a new tool for 
prostate histopathology will be available for pathologists and benefits will be realized by 
patients. 
 So What Section 

An automated method to assist prostate pathologists is available and can rapidly determine the 
presence of cancer in biopsies. An automated aid to grading is available to aid pathologists in 
making accurate decisions. Clinical translation of these discoveries can directly improve prostate 
healthcare, resulting in better treatment of individuals. 
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Abstract Fourier transform infrared (FTIR) chemical im-
aging is a strongly emerging technology that is being
increasingly applied to examine tissues in a high-throughput
manner. The resulting data quality and quantity have
permitted several groups to provide evidence for applica-
bility to cancer pathology. It is critical to understand,
however, that an integrated approach with optimal data
acquisition, classification, and validation is necessary to
realize practical protocols that can be translated to the clinic.
Here, we first review the development of technology
relevant to clinical translation of FTIR imaging for cancer
pathology. The role of each component in this approach is
discussed separately by quantitative analysis of the effects
of changing parameters on the classification results. We
focus on the histology of prostate tissue to illustrate factors
in developing a practical protocol for automated histopa-
thology. Next, we demonstrate how these protocols can be
used to analyze the effect of experimental parameters on
prediction accuracy by analyzing the effects of varying
spatial resolution, spectral resolution, and signal to noise
ratio. Classification accuracy is shown to depend on the
signal to noise ratio of recorded data, while depending only
weakly on spectral resolution.

Keywords Fourier transform infrared spectroscopy .

FTIR imaging . Infrared microscopy . Prostate .

Histopathology .Microspectroscopy

Introduction

Cancer is one of the leading causes of death in the western
world and is becoming increasingly prevalent worldwide. It
is well established that appropriate therapy for cancers
diagnosed early generally leads to improved prognosis and
longer survival. Consequently, population screening tests to
detect disease are increasingly being deployed. The
emphasis in screening populations is on obtaining a high
sensitivity through simple diagnostic tests. For example, the
prostate-specific antigen (PSA) assay [1] helps triage
persons at risk for prostate cancer. A cutoff level (typically
4 ng mL−1) or increase in PSA velocity implies that the
screened person should be at heightened surveillance and
typically undergoes a biopsy to confirm disease. Morpho-
logic structures in biopsied tissue, as diagnosed by a
pathologist, are the only definitive indicator of disease
and form the gold standard of diagnosis [2]. Along with
clinical history, stage, and PSA values, pathologic diagno-
ses form a cornerstone of clinical therapy and serve as a
basis for a vast majority of research activity [3].

Typically, multiple samples are withdrawn from the
organ during biopsy. Extracted tissue samples are fixed,
embedded, and sectioned (typically to 1- to 5-μm thickness)
onto a glass slide for review. By itself, tissue does not have
much useful contrast in optical brightfield microscopy.
Hence, the prepared slide is stained with dyes. A mixture of
hematoxylin and eosin (H&E) is commonly employed,
staining protein-rich regions pink and nucleic acid-rich
regions of the tissue blue, for example, as shown in Fig. 1.
Using the contrast, a trained person can recognize specific
cell types and alterations in local tissue morphology that are
indicative of disease. In prostate tissue, epithelial cells line
three-dimensional ducts. In two-dimensional thin sections,
thus, the cells appear to line empty circular regions (lumen).
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Distortions in normal lumen appearance provide evidence
of cancer and characterize its severity (grade). The process
is fundamentally a manual pattern recognition that seeks
to match observations to known healthy or diseased
morphologies.

Manual examination of biopsies is very powerful in that
humans can not only recognize disease generally but can
also overcome confounding preparation artifacts, detect
unusual cases, and recognize deficiencies in diagnostic
quality This capability of considering and neglecting fea-
tures based on prior knowledge is crucial for accurate and
robust diagnoses. The process, however, is time consuming,
allows for limited throughput and, frequently, leads to
variance in subjective judgments about the disease severity,
i.e., grade [4]. As an alternative, computer-based pattern
recognition approaches to diagnose disease may provide
more accurate, reproducible, and automated approaches that
could reduce variance in diagnosis while proving econom-
ically favorable. Hence, attempts have been made to
characterize morphology using H&E image analysis as
well as biomarkers to stain for specific molecular features.
Automated approaches that can rival human performance in
usual clinical settings, however, are still unavailable.
Specifically, the attributes of high accuracy and robust
applicability are lacking.

The information content of H&E-stained images is
limited and attempts to automatically recognize structural
patterns indicative of prostate cancer, unfortunately, have
not led to clinical protocols. Similarly, probe-based molec-
ular imaging can provide exquisite information regarding
the location and content of specific epitopes but is limited
by complex diseases not expressing universally the same
epitopes or panels of markers. Stains used can generally
detect one feature that may aid diagnosis (e.g., AMACR)
but do not provide entire diagnostic information in
themselves. An exciting alternative is emerging in the form
of chemical imaging and microscopy [5]. As opposed to
conventional dye-assisted imaging or probe-assisted molec-
ular imaging, chemical imaging [6] seeks to directly
measure the identity and/or concentration of chemical
species in the sample using spectroscopy. Hence, no

molecular probes (MPs) are needed to see the presence of
specific epitopes; instead computer algorithms are used to
extract information from the data (instead of MP hybrid-
ization) and statistical methods are used to provide
confidence (as opposed to brown tints for MPs). The
approach is limited only by the ability of the technology to
sense specific types of molecules or otherwise resolve
chemical species and morphologic structures. Among the
prominent approaches are vibrational spectroscopic imag-
ing, both Raman and infrared (IR), as well as mass
spectroscopic imaging (MSI) [7, 8] and magnetic resonance
spectroscopic imaging (MRSI) [9]. While each technology
promises a specific measurement (e.g., proteins or meta-
bolic products) for specific situations (e.g., in vivo or ex
vivo), IR spectroscopic imaging [10] is particularly attrac-
tive for the analysis of tissue biopsies in that it permits a
rapid and simultaneous fingerprinting of inherent biologic
content, extraneous materials, and metabolic state [11–14].

IR spectroscopic imaging, generally practiced using
interferometry and termed Fourier transform infrared
(FTIR) spectroscopic imaging or, succinctly, FTIR imaging,
offers a particular combination of spatial, spectral, and
chemical detail [15]. Limitations of FTIR imaging include
coarser spatial resolution compared to Raman imaging or
high powered optical microscopy and lack of specific
molecular detail compared to MSI. Tissue biopsies are
examined as thin sections on a solid substrate. The tissue is
dehydrated and is stable due to fixation. Typically, struc-
tures of pathologic interest are several to hundreds of
micrometers in size, requiring fairly moderate magnifica-
tions for decision making. These conditions imply that the
need to image in vivo, at exceptionally high spatial
resolution, or in aqueous environments is not critical and
that standard pathologic laboratory processing can be
employed for IR imaging. Due to the linear absorption
process being utilized, the signal from IR spectroscopy is
large and readily obtained, promising relatively simple
instrumentation. Hence, the technology provides a platform
that is potentially useful for clinical practice in pathology. It
must be emphasized that no particular technology is ideally
suited to all applications but a careful matching of the

Fig. 1 Brightfield microscopy
images of unstained (left) and
stained (right) prostate tissue
sections. Hematoxylin and eosin
(H&E) stains provides contrast,
allowing a trained person to
recognize epithelial cells and
ductal structure (lumen), while
ignoring artifacts and confound-
ing morphologies. A trained
human can also learn to robustly
recognize patterns within lumen
that indicate cancer. The scale
bar corresponds to 100 μm
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technique to the application can lead to useful protocols.
While the potential advantages of FTIR imaging for
examining tissue biopsies is high, practical protocols for
clinical deployment are being developed by many groups.

Numerous recent reviews are available to address
biomedical applications of FTIR spectroscopy and imaging
[16–20], especially related to diseases and cancer. These
reviews address instrumentation, the applicability to various

systems, spectroscopic bases and classification algorithms
for decision making, and controversial aspects in the
backdrop of the evolution of the field. The commercial
availability of high-fidelity FTIR imaging instruments,
advances in computers and data analysis algorithms, and
increasing interest have combined to generate an increasing
volume of studies. At the same time, there is considerable
debate emerging on various aspects of the process. Reports
study a variety of organs that may not correlate in behavior,
utilize different sample acquisition and processing tech-
niques, employ different instrumentation, data acquisition,
or handling protocols, and apply a variety of decision-
making algorithms. While this has led to a lively community
of practitioners and exploration of various facets such as
resolution, biological diversity, and chemometric or statis-
tical methods, studies have generally focused on one aspect.
Many excellent studies have developed each of these
aspects to the point of routine use in advanced laboratory.
The focus in the field is now on understanding biochemical
signals and developing protocols from high quality data that
can actually lead to clinical acceptance. We contend that the
development of clinical protocols is necessarily integrative
and, in this manuscript, review first the salient aspects in
developing a practical, integrative approach to spectroscopic
imaging for cancer histopathology. Second, we discuss the
issues of spatial selectivity, sample size calculations,
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Fig. 2 Potential application of FTIR imaging for pathology. The
current paradigm of cancer diagnosis and grading upon biopsy
involves sample processing, staining, and pathologist review (left,
shaded boxes). To implement the paradigm of automated analysis
(right, unshaded boxes), IR chemical imaging is followed by
computer analysis for diagnosis. Since IR imaging is label-free and
non-perturbing, the sample can be stained, providing the pathologist
with both IR chemical and conventional stained images

Fig. 3 Correspondence of conventionally stained and FTIR chemical
images for pathology applications. a Hematoxylin and eosin (H&E)-
stained image of prostate tissue section. Hematoxylin stains negatively
charged nucleic acids (nuclei & ribosomes) blue, while eosin stains
protein-rich regions pink. The diameter of the sample is ca. 500 μm.
Simple univariate plots of specific vibrational modes provides for
enhancement or suppression of specific cell types. b Absorption at

1,080 cm−1 commonly attributed to nucleic acids, highlights nuclei-
rich epithelial cells in the manner of hematoxylin. c Spatial
distribution of a protein-specific peak (ca. 1,245 cm−1 ) highlights
differences in the manner of eosin. The entire spectrum can be
analyzed for a series of markers that provide more information than
H&E or univariate images, as shown in d where specific cells are
color coded based on their spectral features (e)
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optimization considerations, and potential improvements in
algorithms that can provide faster results. Tests to determine
performance and limits of accuracy are reported as a
function of experimental parameters. We focus here on
prostate histology as an illustrative test case, but emphasize
that the approach is applicable and similar insight is gained
with other tissues [21]. Further, exciting results have
recently been reported for diagnosis, grading, and classifi-
cation of prostate cancer [22–26], including the effects of
zonal anatomy [27] and cytokinetic activity on spectra [28].
An extension of the methodology here to pathology will
help formulate better protocols and allow a better under-
standing of the performance of classifiers.

Approach and essentials

The promise of chemical imaging for pathology is
illustrated in Fig. 2. Our approach has been to attempt
integration of our developments with current clinical
practice. Hence, we employ tissues that have been biopsied,
fixed, embedded, and sectioned as per usual clinical
protocols. We differ in the de-paraffinization step, suggest-
ing a gentle wash with hexane and do not stain the tissue.
Additionally, as IR chemical imaging only employs benign
light, it is non-perturbing and entirely compatible with all
downstream pathology processes. Hence, the sample may
be stained as usual (Fig. 2, dashed arrow, top). Visual-
izations similar to those observed in conventional pathol-
ogy are possible without staining the tissue. For example,

Fig. 3 correlates H&E and infrared spectral images.
Visualizations similar to H&E images may be “dialed-in”
by utilizing specific spectral features indicative of tissue
chemistry. Although, the IR data only demonstrate univar-
iate representations in the images, automated mathematical
algorithms can determine the cell types and their locations
within the image, while providing quantitative measures of
accuracy and statistical confidence in results [29]. These
data may be employed to directly provide diagnoses or to
inform the pathologist (Fig. 2, dashed arrow, bottom),
helping them make better decisions. Since the results are
images, information exchange between spectroscopists and
clinicians is facilitated. Spectroscopic analyses can poten-
tially be fully automated; thus, no additional users need to
be trained or knowledge base acquired by current clinicians.

A major challenge in the field is the development of
robust algorithms that employ spectral data to provide
histopathologic information. Both supervised and unsuper-
vised approaches have been employed. We believe that
unsupervised methods are more suited to research and
discovery. Supervised methods are preferred when the data
need to be related to known conditions, e.g., clinical
diagnoses. The development of supervised classification
of IR chemical imaging data for histopathology is fairly
straightforward [30]. The process is shown in Fig. 4. First, a
model for classification is selected. The model comprises
all possible outcomes for any pixel in the images and is,
hence, bounded by definition. We term each histologic
constituent of the model a class to denote that it may not
correspond to specific cell types or entities corresponding

Fig. 4 Process for relating path-
ologic or physiologic state to
FTIR chemical imaging data. A
model is chosen for supervised
classification (a). b–d Training
data is reduced in size and
optimized into a prediction
algorithm using gold standard
data. The developed algorithm
is validated against a second,
independent data set and the
accuracy is measured using
three different methods: ROC
curves, confusion matrices, and
image comparisons
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to morphology-based pathology. While this allows for
simplifications and allows the user to focus on specific
cells relevant in disease, it is also likely to prove useful in
the discovery of different chemical entities that appear
morphologically identical.

Next, data from a large number of tissue samples is
recorded. A set of pixels are specifically marked (gold
standard) by different colors to correspond to known
regions of tissue, usually by comparison with an H&E-
stained image or with immunohistochemically stained
images [21]. The recorded data set is reduced to a smaller
set of measures that capture the classification capability of
the entire data set. We termed these measures metrics.
There are numerous means of obtaining the metric data
set: manual selection of large spectral regions, principal
components analysis, genetic algorithms, or a sequential
forward selection algorithm. A numerical algorithm is then
chosen, for example, a linear discriminant analysis, neural
network, SIMCA, or modified Bayesian classifier [31]. The
classifier is optimized iteratively, if needed, to optimally
predict the training data set. Subsequently, the algorithm is
applied to a second data set (independent validation) that
has been independently marked for each class. A compar-
ison of the gold standard marking with the computation-
ally predicted class provides a measure of the accuracy.
We have employed three measures of accuracy: receiver
operating characteristic (ROC) curves [32] that represent
the sensitivity and specificity trade-off of the classifier,
confusion matrices that provide the fraction of pixels of
each class classified as pixels of all classes, and classified
images that can be compared pixel-for-pixel to other
images. Additionally, it is often instructive to drill into the
classifier to obtain the basis for classification or the
distribution of confidence intervals for various samples.
The last two factors are generally not apparent in previous
studies.

There are three key developments that are needed for
this approach to be successful: (a) high-fidelity FTIR
imaging instrumentation, (b) high-throughput sampling,
and (c) robust classification that provides statistically
significant results in a manner that can be appreciated by
non-experts in spectroscopy. We briefly review the three
developments next.

FTIR imaging

Need for spatially resolved data

The need for spatially resolved data has been recognized
[33], but the effect of limited resolution data on classifica-
tion is not entirely clear. The primary complication of
coarse spatial resolution, obviously, arises from boundary

pixels. These can be defined as pixels that are assigned to
one class but would likely yield more classes, to their
physical limits, were finer resolution available. As a
consequence, the spectral content of the boundary pixel is
likely to be mixed and will likely lead to errors in
classification. For example, the confounding contribution
of stromal spectra to cancerous epithelial cells in breast
tissue has been proposed [34]. As the resolution becomes
coarser, the fraction of pixels in an image that belong to
boundary pixels increases. Inclusion of these pixels has
been shown to be a primary contributor to error rates in data
[29], while their exclusion in accounting for accuracy
necessarily implies that not all pixels are included. We
sought to examine the effect of spatial resolution on the
prevalence of boundary pixels.

We binned data acquired at 6.25-μm pixel size from 148
samples in a validation data set (≈7000 pixels/sample) to 10-,
15-, 20-, 30-, and 50-μm pixel sizes. There is an important
distinction between pixel size and spatial resolution. The
pixel size denotes the best possible optical resolution, which
may be limited by longer wavelengths in the spectrum and
optical effects to yield a poorer measured resolution [35–38].
For each dataset, we classified the tissue and determined
neighbors of each pixel that did not belong to the class of
the pixel. Some pixels that have no neighbors of other
classes may still have empty pixels as neighbors. Since
neighboring empty pixels can only provide optical distor-
tion [39] but do not affect spectral content; we do not
consider them further. The number of neighbors for
epithelial pixels for different spatial resolutions may be
seen in Fig. 5. The first observation is that a large majority
of pixels have the same class pixels as all eight neighbors.
The fraction of pixels with all neighbors of the same class

Fig. 5 Neighbors of cell types other than epithelium or empty space
for different spatial resolutions. The inset shows the decrease in
percent epithelial pixels that do not have any other cell types as
neighbors
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decreases rapidly with decreasing resolution and stabilizes
at ca. 20 μm. Hence, a spatial resolution coarser than
20 μm is unlikely to have an effect on the classification but
is expected to lead to about 25% more epithelial pixels
being contaminated compared to 6.25-μm pixel sizes. The
precise effect on a specific sample is very dependent on the
sample morphology and is generally associated weakly
with pathologic state. While in itself, the statistic does not
imply that results from coarser resolution studies will be
invalid, practitioners must recognize that error rates may be
higher and that this contribution may be mitigated by using
commonly available imaging systems.

One danger of classifying mixed composition pixels is
whether they may be classified as an entirely different class
or disregarded from the data set as belonging to no class.
We simulated pixels of composition ranging from 0 to
100% for pairs of each class. We also added noise to
simulate different data acquisition conditions. An example
of the data can be seen in Fig. 6. Average spectra, one each
from the two classes, are baselined and added in ratios
varying linearly from 0 to 100%. Figure 6b demonstrates
the classification of the gradient data set. In general, the
classification works well, favoring the class with higher
concentration. The classifier is also stable at the noise levels
examined. A surprising result is that pixels between
epithelium and fibroblast-rich stroma are classified as
mixed stroma. This drawback, however, is the only
example of two classes mixing to yield an entirely different
one. The reason also stems from the definition of the mixed
stroma class. While the class was designed to handle those

stromal cells that were not clearly fibroblasts or smooth
muscle in origin but appeared mixed, a mix of epithelium and
fibroblast-type stroma also leads to the classification as mixed
stroma. Noise seems to have little effect on this behavior.

The full simulation of all classes (not shown) reveals that
mixed pixels generally can be classified as the constituent
classes with the higher concentration. Clearly, boundary
pixels at epithelial fibroblast-rich regions must be handled
with care. The increase in boundary pixels at lower
resolution also implies that this type of systematic mis-
assignment may arise more frequently. The rate of
occurrence of boundary pixels may be even lower for
synchrotron-based imaging that is conducted at higher pixel
density or in emerging approaches that utilize synchrotron-
based interferometers and array detectors. The simulated
example above, however, demonstrates that simply over-
sampling a spatial region to increase pixel density may
allow for better definition of the interface and assignment
of pixels, though it will not address spectral purity. Hence,
for analyses based on spectral discrimination, mixture
models will have to be developed based on entire spectra.
For example, multivariate curve resolution techniques hold
promise.

A further complication arises in using data from his-
tologic classification for pathologic diagnoses. For exam-
ple, the boundary epithelial pixels classified above may
disproportionately contribute to classification errors. We
have found evidence for the same in studies for both cancer
pathology and for histology in tissue from different organs.
For example, the boundary pixels in benign tissue get

0
20

40
60

80
100

120
140

P
ixe

l N
um

b
e

r (y-axis)

Epith

Fibrobla
Rich St

Mi
St

a b

c d
0 20 40 60 80 100 120 140

0.000

0.004

0.008

0.012

0.016

0.020

P
ea

k-
to

-P
ea

k 
N

oi
se

 (
a.

u.
)

Pixel Number (x-axis)

0 20 40 60 80 100 120 140

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

ba
bi

lit
y

Pixel Number (y-axis)

 Epithelium(0)
 F. Stroma (0)
 M. Stroma (0)
 Epithelium (25)
 F. Stroma (25)
 M. Stroma (25)

Fig. 6 Mixture models and
classification for prostate histol-
ogy. a Absorbance at
1,080 cm−1 for three classes and
their mixtures. The first column
contains mixtures of epithelial
cell spectra with the average
spectrum from fibroblast-rich
stroma and mixed stroma.
The second and third columns
contain mixtures with fibroblast-
rich and mixed stroma, respec-
tively. The concentration
changes from 0 to 100% linearly
along the y-direction as indicat-
ed by the color bar in c. b
Along the x-axis of the com-
posite image, the noise in each
cell increases linearly. Error
bars are standard deviations of
noise in the spectra. c Classified
image for the data, demonstrat-
ing the effect of composition
and noise on classification. d
Probability profiles of the three
cell types at columns 1 and 25,
demonstrating the effect of noise
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misclassified as cancerous, leading to the major source of
error in applying this approach to pathology. At this time,
the evidence is anecdotal and needs further investigation to
quantify the extent of the error and its mitigation by
advanced numerical processing. The last interesting aspect
of lower spatial resolution is that it tends to over-predict
certain classes. For example, Table 1 demonstrates the
regression results of each samples composition against that
obtained at 6.25 μm for three classes. While the regression
coefficient is high, it is clear that epithelial and mixed
stroma fractions are overestimated and fibroblast-rich
stroma is underestimated with decreasing pixel size. There
are differences based on underlying pathology. For exam-
ple, normal epithelium is generally encountered in 10- to
40-μm-wide strips, while high grade tumor may be
hundreds of micrometers to millimeters in size. Individual
sample variability reflected in the regression coefficient
decreases with increasing pixel size. In spectroscopic
models to predict diseases that include morphological units
but are based on average spectra, mixed pixels may lead to
estimates with large errors. For example, a 1:1 mixed region
of epithelial and fibroblast pixels at 6.25-μm pixel size
increases to ca. 1.19:1 for 50-μm pixel size. Hence, the use of
histologic mixture models at limited spatial resolution may
not be estimated correctly, providing evidence that the
percentage content of cell types in a limited field of view is
likely to be a less robust measure of tissue histopathology.

Evolution and capabilities of current instrumentation

To overcome confounding by mixing, as discussed above,
microscopectroscopy was proposed as an alternative [40].
Single spectra (non-FTIR) have been recorded from
microscopic samples for over 50 years [41] by restricting
light incident on the sample through an aperture. More than
one point, however, is required for tissue analysis. Hence,
sequentially rastering the point at which spectra are
recorded, termed mapping or point microscopy, was
proposed [42]. A practical instrument obtained by coupling
an interferometer, a microscope, and automated stage in the

late 1980s [43] helped in numerous materials science [44],
forensic [45], and biomedical [46, 47] studies. Unfortu-
nately, the mapping approach has a number of drawbacks in
realizing the goal of an FTIR microscopy analog to optical
microscopy [48].

More than 85% of cancer arises in epithelial cells, which
often form surface layers that are 10- to 100-μm wide. As
we demonstrated in the previous section, however, a
resolution higher than ca. 10×10 μm is preferable.
Consequently, the illuminated spot at the sample has to be
made smaller, throughput decreases proportionally, which
in turn decreases the signal to noise ratio (SNR) of acquired
spectra. Orders of magnitude brighter sources, e.g., syn-
chrotrons, may be employed to recover the lost SNR.
Unfortunately, synchrotron or free electron lasers [49] are
prohibitively expensive and no laboratory lasers exist for
the wide spectral region. An alternative is to average
successive measurements (co-adding) to increase statisti-
cally the SNR. Since the SNR increases only as the square
root of the number of averaged spectra, long averaging
periods are required. The situation may be mitigated by
using higher condensing optics, sources at higher temper-
atures, slightly faster scanning than used here,1 gain
ranging [50], or ultra-sensitive detectors [51]. Even if a
hypothetical instrument with all these advances were
constructed, ca. 10- to 20-fold reduction in time would be
obtained. Furthermore, this calculation underestimates the
time required by not considering losses due to diffraction or
stage movement.

In prostate tissue, for example, the situation is similar to
Fig. 1. Epithelial cells form 10- to 35-μm-wide foci around
the cross-sections of ducts. Ducts appear as white circles in
Fig. 1b, surrounded by epithelial cells that are depicted in
blue. To analyze this morphology, aperture dimensions of
ca. 6 μm×6 μm (≈ cell size) are proposed [31]; for this
case, the mapping approach would require ca. 1,028 h for a

1 There is no advantage to faster scanning once the modulation
frequency has reached optimum level for MCT detectors (1 MHz).
The reduced time to observe signal then decreases the SNR.

Table 1 Correlation of composition for samples between 6.25-mm pixel sizes and other pixel sizes

Pixel size (micron) Epithelium Fibroblast-rich stroma Mixed stroma

10 0.9913x(0.9976) 0.9847x(0.9923) 1.0300x(0.9957)
20 1.0156x(0.9906) 0.9671x(0.9775) 1.0473x(0.9787)
25 1.0404x(0.9896) 0.9768x(0.9624) 1.0262x(0.9617)
30 1.0720x(0.9773) 0.9683x(0.9507) 1.0175x(0.9363)
50 1.1180x(0.9459) 0.9410x(0.8947) 1.0390x(0.8723)

The first row in each cell denotes the composition factor for that pixel size and class. For example, for every 100 μm2 , the area of epithelial pixels
at 10-μm pixel size is 99.13% of that at 6.25-μm pixel size. Increasing/decreasing numbers represent pixels being increasingly/decreasingly
classified as that class. The ratios are not uniform for every sample and the regression coefficient of the best fit line passing through the origin is
provided in the second row of the each table cell. Increasing pixel sizes reflect greater variance from the fit line
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500 μm×500 μm sample [31]. Hence, mapping is not a
viable option. In contrast to point mapping using apertures,
large fields of view are measured in FTIR imaging.
Contributions from different sample areas in imaging are
separated by an array of mid-IR-sensitive detection ele-
ments in the manner of imaging with CCD devices for
optical microscopy. By coupling the multichannel detection
of focal plane array (FPA) detectors with the spectral
multiplexing advantage of interferometry, an entire sample
field of view is spectroscopically imaged in a single
interferometer scan [52]. Depending on the microscopy
configuration, thousands of moderate resolution spectra can
be acquired at near-diffraction-limited spatial resolution in
minutes [53, 54]. The time advantage over mapping is
nominally the number of pixels in the FPA (16- to 65,000-
fold) but the noise characteristics of FPAs are poorer than
sensitive single point detectors [55]. Hence, the SNR-
normalized advantage is lower [56]. Faster detectors are
being used for imaging and promise significantly higher
SNR in the same time. For example, we have employed a
128×128 element MCT array operating at ca. 16 kHz to
acquire a full data set in ca. 0.07 s [unpublished]. These
rates of data acquisition are approximately a factor of 10
higher than commercially available, but are required for
practical data acquisition times. Increase in data acquisition
speed remains a bottleneck for applications of IR imaging
to routine clinical studies. Coupled with the complexity and
cost of instrumentation, present technology provides pre-
liminary capability but is likely to prove a barrier to
practical clinical translation.

High-throughput sampling and statistical pitfalls

Quantitative analyses of results

The best imaging instruments (which employ sensitive
detectors and a small multichannel advantage) can acquire
data in about 0.1% of the time required for mapping for
equivalent parameters. Hence, point mapping studies in
pathology typically exceed numbers in only one of these
categories: spatial resolution (ca. 15–20 μm), numbers of
patients (ca. 50) or recorded small numbers of spectra per
patient (ca. 100). These numbers may typically be improved
an order of magnitude with imaging. For example, a recent
report analyzed ca. ten million spectra from ca. 1,000
samples at a spatial resolution of 6.25 μm [26]. This
quantitative validation is necessary for any automated
biomarker approach (vide infra) [57]. Studies are underway
in our and other laboratories to correlate spectral patterns
with other physiologic and pathologic conditions; recent
published studies verify the robustness and potentially wide
applicability of FTIR microscopy [58, 59].

Sample size

Though these studies demonstrate potential, [60, 61]
considerable debate exists on reproducibility and accuracy
measures for larger studies [29]. The first response of many
practitioners to new data is a question of validity based in
limited statistical confidence. A detailed understanding is
emerging from the work of several groups regarding
appropriate sample control [62] and confounding factors
due to biology [63]. Inherent differences between patient
cohorts, effects of sample preparations and measurement
noise are topics that can be addressed with the available
imaging technology but are yet to be fully explored. Hence,
validating robust spectral markers for large sample pop-
ulations [64, 65] is exceptionally challenging and the
chance for chance and bias influencing results exists.

Most importantly, the fundamental question of sample
size required has remained open. There are two major
concerns: first, the optimal sample size in forming calibra-
tion sets and a prediction algorithm. Second, investigators
must determine whether the results shown can be supported
by statistical considerations. While the first problem is
essentially one of optimizing a model and prediction
algorithm, the second impacts the quality of results and
claims of applicability directly. In this manuscript, we
examine only the second aspect. Determining the optimal
sample size to form robust models is a more involved
problem and is discussed elsewhere. The statistical validity
of obtained results and dependence on data acquisition
parameters are discussed later in this manuscript. Specifi-
cally, we estimate sample size based on the standard error
for the area under the curve for an ROC curve.

Gold standard

The selection of pixels as gold standards needs great care. It
must be done independently of any classifier training or
validation, thus ensuring a blinded study design. Once the
gold standard set is determined, it must not be changed.
This will ensure that there is no bias in the process. Care
must be taken to avoid pixels that do not lie on the tissue or
those that are at the boundary as these may artificially
inflate the error. The use of all pixels in an image has been
suggested and their exclusion has been proposed to
contribute selection bias. Selection bias, however, does
not arise in pixels that are chosen independent of validation
algorithms. The exclusion of boundary pixels is necessary
in both training (to avoid spurious probability distribution
functions) and validation (to prevent introduction of errors).
There are major technological difficulties in relating stained
visible to IR images from unstained tissue due to changes
during staining, leading to errors. Hence, it has been
proposed that the exclusion of boundary pixels in akin to
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the performance of a classifier with a reject option for the
boundary.

Sampling, archiving, and consistency

While it is unclear what an optimal sample size would be, it
is clear that a large number of tissue samples are needed for
effective validation. While it may theoretically be possible
to train on a single sample, validation of a protocol is
required on more samples. We recognized that one does not
need to observe the full surgically resected tumor for
validating IR protocols, but would need a representative
small section. Hence, we employed tissue microarrays
(TMAs) [66] as a platform for high-throughput sampling.
TMAs consist of a large number of small tissue samples
arranged in a grid and deposited on the same substrate.
They are typically manufactured by embedding cylindrical
cores in a receiving block and sectioning the block
perpendicular to the long axis of the core. Thin sections
are then floated on to a rigid substrate for analysis. The
technique facilitates rapid visualization of results of any
classification protocol, while revealing localization and
prevalence of any errors. Sample processing times may
easily be increased 100-fold, valuable tissues are optimally
utilized, and consecutive TMA sections can be used to
correlate with staining results. Construction and analysis of
TMAs has been automated, further increasing the through-
put. For spectroscopists, TMAs provide a ready source of
tissue to test hypothesis and develop prediction models.

The validity of employing TMAs for prostate cancer
research and, especially, for cancer grading has been
addressed by a number of authors [67]. For example, a
study of genitourinary pathologists [4] with images from
TMA cores assesses that ca. 90% considered this approach
useful for resident training and for pathology teaching.
Further, Gleason score was easily assigned to each TMA
spot of a 0.6-mm-diameter prostate cancer sample. Hence,
the utility of TMAs is not only in providing numerous
samples in a compact manner for the advantages above,
but also in consistency of the diagnoses and precision in
analyzing similar areas. Virtual tissue microarrays could
be constructed from different areas of large samples, thus
providing many sub-samples for within-patient and among-
patient comparisons. This approach has not yet been re-
ported but is likely a useful extension of the TMA concept.

Prediction algorithms and high-throughput data
analysis

Univariate algorithms

The major technological advances of fast FTIR microscopy
and high-throughput tissue sampling have been addressed

by imaging and TMAs respectively. There is still some
confusion and widespread disagreement, however, about
the “best” approach to extract histopathologic information
from FTIR imaging data. Several early manuscripts employ
univariate correlations to disease states [68]. While the
results were exciting, it is now realized that they were
statistically flawed and did not necessarily contain a
fundamental basis in cancer biology. To our knowledge,
there is no manuscript that has expressly demonstrated,
using statistics arguments, why univariate analyses are
likely to fail. There is widespread consensus and anecdotal
evidence, however, among practitioners that argues against
the approach. Consider the distributions for a univariate
measure (absorbance at 1,080 cm−1 that is normalized to
the amide I peak height) for benign and malignant cases as
shown in Fig. 7.

The normalized histograms reveal that for specific,
single samples the distribution of absorbance at pixels is
such that it clearly indicates the metric to be a good one for
cancer discrimination. When the distribution from all
samples is considered, however, there is little difference in
the distributions. Hence, many univariate measures de-
scribed in the literature do not hold up in wide population
testing. A TMA-based, high-throughput validation can
easily prove that the measure is not a good one but does
discriminate some samples. In Fig. 7, a cutoff value can
generally be found that distinguishes disease, leading to the
erroneous conclusion that the feature is universally indic-
ative of disease state. Since a typical infrared spectrum has
numerous frequencies and even non-chemically specific
features that can provide discrimination, a small number of
samples increases the probability of finding such discrim-
ination by chance alone. Univariate measures that appar-
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ently provide discrimination when none exists can be
equated to the false discovery rate (FDR) [69] of metrics.
The FDR is very different from the p-value for determining
that a metric separates two distributions; a much higher
FDR can be tolerated than can a p-value. Similarly, a false
negative rate has been proposed [70], which is not critical
for our case as we have observed high accuracy without use
of any erroneously left out metrics. While detailed cal-
culations and their underlying concepts are too lengthy to
reproduce here, for the sake of completeness, it suffices to
say that for the expected number of metrics demonstrating
discrimination, the FDR tends to zero for larger than ca.
30 samples. While correlations due to chance can be min-
imized by this approach, there is potential for unknown
bias or error in prediction for small numbers of samples.
Hence the algorithm must be integrated with sampling
considerations.

Multivariate algorithms

It was argued in the previous section that univariate
analysis may not provide a good measure of the population
distribution. It can alternatively be argued that the individ-
ual differences in univariate measures are masked if
population measures of the same are employed. Similarly,
multivariate techniques may mask the individual measures
in population testing. Hence, our philosophy has been to
employ a multivariate, supervised classification in which
the metrics are derived from univariate analyses. This
enables us to carefully examine each metric for both
population as well as individual sample relevance. While
unsupervised clustering approaches provide good insight
into spectral similarity, a supervised method forces a
relation to common clinical knowledge. For example, as
shown in Fig. 4 for prostate tissue, we consider a ten-class
model to determine histology. The drawback is that the
sensitivity of the approach to individual samples is lost at
the expense of generality. One could potentially combine
clustering and supervised classification. Clustering infor-
mation on the training data set would emphasize individual
sample distributions, which would allow for supervised
classification tailored to each cluster type. Such an
approach has not been implemented yet but is being
attempted in our laboratories to classify samples optimally.

Dimensionality reduction

It is well recognized that the spectrum at each pixel needs
to be reduced to a smaller set of useful descriptors that
capture the essential information inherent in the spectrum.
The reduction of full spectral information to essential
measures helps eliminate from consideration those spectral
features that have no information (non-absorbing frequen-

cies), little biochemical significance (e.g., apparent absorp-
tion at non-chemically specific frequencies), inconsistent
measures that may degrade classification, and those with
redundant information. The number of useful measures is
significantly smaller than the number spectral resolution
elements and, hence, the process is also termed dimension-
ality reduction. Dimensionality reduction and further
refinement (vide infra) also helps reduce the incidence of
prediction by chance alone, reduce computation time and
storage requirements. Potential measures of a spectrum’s
useful features are termed metrics and are defined manually
in our scheme.

It may be argued that the metrics are not selected in an
objective manner due to a human performing this task and
some computer routines must be employed. While the use
of an automated computer program is most certainly
objective and reproducible, the algorithm that drives such
programs is generated from spectroscopy knowledge. A
well-trained spectroscopist can recognize spectral features
and assign them to appropriate their biochemical basis.
While a computer algorithm may be able to enhance subtle
features in the spectrum, automated peak-picking algo-
rithms run the risk of substantial error as they are based on
some very specific criteria that may not be universally
valid. We believe that computer algorithms are more suited
to finding correlations and patterns that a human cannot for
the sheer size and complexity of data. Hence, the process of
determining which spectral features to consider is entirely
manual in our approach. It must be emphasized that the
universal set of metrics is selected manually but that the
data reduction step to a set of metrics to be used in
algorithms is entirely based on objective algorithms.
Manual refinement of metrics for classification is, obvious-
ly, not recommended for possibilities of overlooking
specific features, biasing the selection to specific feature
sets, or in determining the optimal set of metrics for a
classifier. Dimensionality reduction is also intimately linked
to the data quality and classification algorithm employed.

Classification algorithm

A number of supervised algorithms have been applied to
dimensionally reduced data, including those based on linear
discriminant analysis, neural networks, decision trees, and
modified Bayesian Classifiers. An intermediate step in
some of these algorithms provides for a fuzzy result in
which every pixel has a probability of belonging to every
class. For example, in our approach, each pixel can have a
probability (between zero and one) of belonging to each
class. A discriminant function then assigns each pixel to a
class based on a decision rule. The pre-discriminant data
set, termed rule imaging set, contains important informa-
tion. In our algorithm, it is a direct measure of the
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probability of the pixel belonging to the class. Hence, the
probability value may be used to compare the potential of
two protocols to distinguish a cell type or to quantify
confidence in results for tissue classified by different
methods.

Measures of accuracy and optimization

We prefer the use of the AUC for both optimizing
algorithms and for validating results. Confidence in the
value of the AUC, hence, is the primary test for the valid-
ity of developed algorithms and is characterized by the
standard error of the value. For example, in validating the
discrimination of epithelial from stromal pixels in a blinded
validation set, the cumulative distribution of AUC in a
TMA is shown in Fig. 8. More than 20% of the spots had
an AUC >95% and no AUC value below 0.8 was recorded.
One drawback of using ROC curves and AUC values is that
the results are valid for one at a time classification. Hence,
we have analyzed here the segmentation of epithelium from
all other cell types. The tissue is classified into ten classes
as before but the results are lumped into epithelial and non-
epithelial pixels. Further, not all TMA cores have all types
of cells. Hence, the two-class model also allows us to
examine a large number of samples. Last, we excluded
cores that did not contain at least 100 pixels of each class to
leave 103 cores for the analysis.

Quantitative measures of performance and accuracy are
perhaps the weakest portion of reports using IR spectros-
copy for cancer pathology. Typically, sensitivity and spec-
ificity have been employed as summary measures. While
these are indeed very relevant, we demonstrate that they are
insufficient and classification analysis must utilize more
measures to understand the process. Specifically, the use of

receiver operating characteristic (ROC) curves [71] is an
excellent direction. The area under the ROC curve is a
further summary measure that provides both a quantitative
understanding of the discrimination potential of the model
and a convenient measure to compare multiple classifica-
tion models. The third tool we introduced was the
confusion matrix. While ROC curves provide the potential
for correct classification of a binary rule at a time, con-
fusion matrices correspond to a particular point on the
ROC curve under the constraints of accuracy measures of
other classes. These also directly correspond to the final
segmentation of the rule image under an optimization
condition. The optimization condition may simply be the
maximization of the accuracy or may be the minimization
of certain types of errors.

Discriminant and class assignment

In a multi-class analysis, our approach to evaluating ROC
curves for a class is one at a time, i.e., all other classes are
essentially lumped in the rule data and the highest
probability of the lumped ensemble is compared to the
class whose ROC curve is being built. Hence, the AUC
values must be regarded as a potential for classification.
They are best suited to answer the binary question of
whether a pixel is correctly identified or not when
considering a single class. This method is ideally suited to
a cascaded classifier one at a time. Such a classifier has not
been reported yet but would provide a means to explicitly
determine the error for any given classification scheme.

Experimental parameters and classification

Here, we take advantage of the trading rules of FTIR
spectroscopy and imaging to model the effects of the
experimental parameters on the classification process.
While the signal to noise ratio (SNR) and resolution are
generally arbitrarily fixed in most studies, we demonstrate
their importance in classification.

Effect of signal to noise ratio

There are two issues: what is the “best” SNR to formulate
algorithms and second, provided an algorithm, what is the
least SNR that would provide adequate classification. Only
the latter issue is examined here. As with conventional
FTIR spectrometers, imaging spectrometers obey the
trading rules of IR spectroscopy. Hence, if an n-fold
reduction in SNR provides the same results, data acquisi-
tion will be n2-fold faster. Thus, in addition to an interesting
fundamental behavior of the classifier, the role of SNR has
a direct bearing on the speed at which data is acquired.
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We examined classification accuracy as a function of
average spectral noise. To strictly examine the effect of
noise, data must be acquired at different co-added spectral
numbers. The time required for imaging an array multiple
times, however, is prohibitive. Hence, we computationally
added random, Gaussian noise to the original spectral data.
Peak-to-peak and root mean square (rms) noise were
measured in the 1,950- to 2,150-cm−1 region adjacent to
the amide I peak.2 Representative single pixel spectra from
the data sets are shown, as a function of noise, in Fig. 9a.
We additionally plotted the observed noise levels against
the added noise to verify linearity (plot not shown). The
linear relationship conforms to the expected result and
provides a scaling factor to express the equivalent reduction
in data acquisition time (co-addition) that would be realized
at that noise level. For example, the addition of 0.005 a.u.
of noise raises the peak-to-peak noise from 0.0013 to
0.015 a.u., corresponding to a decrease in data acquisition
time by a factor of ca. 100 for this data set. In addition to
increasing noise, we employed an algorithm based on an
MNF transform [72, 73] to mathematically eliminate noise.
The observed peak-to-peak noise was 0.00017 a.u.,
corresponding to an increase in data acquisition time by a
factor greater than ca. 100. Hence, the data examined span
about 5 orders in magnitude of collection time.

The average height of the amide I peak was 0.42 a.u. in
all cases, providing a SNR of 2,500 (MNF-corrected data)
to 1.5 for the data sets. Accuracy as a function of the noise
level is shown in Fig. 9b. While the x-error bars indicate the
standard deviation of noise levels in pixels, the y-error bars
indicate the standard deviation in AUC values of all ten

classes. As a general rule, the classification improves with
lower noise levels. We first note that the classification does
not become perfect for any noise level and there is a
significantly diminishing return in increasing the SNR
beyond a level. At the other end, the ability to distinguish
classes is entirely lost at levels of ca. 0.1. Performance
across multiple data sets observed using our prediction
model indicates that the increases demonstrated at noise
levels lower than ca. 0.003 a.u. are within the variance.
Hence, there is little benefit to decreasing the noise levels
below ca. 0.003 a.u. for this data set, or to increasing the
SNR beyond ca. 150. It must be emphasized that the model,
prediction algorithm, and discriminant function are inti-
mately linked in a non-linear manner. While this makes it
impossible to predict the behavior generally of all classifi-
cation approaches, this simple exercise may be conducted
to determine the optimal data acquisition parameters. For
our selected metrics and model, it appears that the data
acquisition time can be decreased by a factor of ca. 3
without significant degradation in accuracy.

Spectral resolution

We next examined the effect of spectral resolution on the
results that would be obtained using the developed
algorithm. As in the previous section, the data were not
re-acquired but were downsampled from acquired data
using a neighbor binning procedure. Spectra from the same
epithelial class pixel, at different resolutions (Fig. 10a),
demonstrate the effect of downsampling on feature defini-
tion. Figure 10b demonstrates, first, that the peak-to-peak
noise levels over the region remain the same with spectral
resolution. As previously observed, noise is an important
control in comparing spectra; the peak-to-peak noise over
the same number of data points was preserved by neighbor
binning. In practice, the constant-throughput spectrometer
would provide a SNR (or noise level, in this case) that
decreases linearly with resolution. Since most array
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2 It is noteworthy that we are examining trends in the absorbance
spectra. Strictly, SNR should be measured in single beam spectra to
relate rigorously to theory. It can be shown, however, that the trend
will hold approximately for the absorbance spectra as well. Many
practitioners advocate the use of rms SNR. We are employing peak-to-
peak fluctuations over the same spectral range. Hence, the noise
values we obtain will be higher but will follow the same trend.
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detectors can be operated with higher integration times, it is
fair to assume that the time advantage in decreasing
resolution would be linear. Second, the performance of the
classifier is very nearly the same for finer spectral resolutions
and degrades only significantly for 32 cm−1. While the
results may appear to be surprising, a closer analysis of the
basis of the algorithms provides insight into the trends.

The classifier is based on absorbance and center of
gravity measures of the peaks. It is well established that
absorbance is measured accurately, provided that the
FWHH of the peak is not significantly smaller than the
resolution. The Ramsay resolution parameter, σ, is a useful
measure that was originally developed for monochromators
but has been shown to be applicable to FTIR spectrometers
as well [74]. While most bands are broad and peak
absorbance lower than ca. 0.7, absorbance values are not
expected to be adversely impacted from the measurement
process. With decreasing resolution, however, broadening
within complex peaks shapes may lead to observed changes
in the apparent absorption at a specific wavenumber. The
change itself may not have a significant influence on the
classifier performance as it depends on several such
metrics. A second type of metric calculates the area under
the curve. This is not expected to be impacted significantly
for most peaks. The third type of metric we have used is the
center of gravity of a spectral region. While spectral
analyses ordinarily attempt to locate the peak position and
use it as a metric, we chose the center of gravity for its
sensitivity to both position and asymmetrical shape changes
in complex spectral envelopes observed in biological
samples. Since the classifier is based on center of gravity
of a feature and not on the wavenumber of the peak
maximum, it is a very robust measure that is relatively
unaffected by spectral resolution or noise.

Generalization of developed algorithms to instruments
and practical approaches

The characterization of classification with regard to
spectrometer performance (SNR) and spectral resolution

provides information to optimize parameters on one spec-
trometer. It is unclear, however, if the calibration would
transfer to another spectrometer. We contend that the
potential for a successful transfer is high as the classifica-
tion process is relatively insensitive to resolution, implying
that it would only be weakly sensitive to apodization or to
small inaccuracies in wavelength scale. Similarly, if the
SNR of acquired data is used as control, perturbations due
to fixed pattern noise in focal plane array detectors or the
different use of electronic filters by different manufacturers
is likely to be insignificant in classifying tissue correctly.
Various instrument manufacturers also set the nominal
optical resolution differently in their instruments. The issue
of spatial resolution, of course, is more complex. Never-
theless, any resolution setting around the wavelength-
limited case will likely provide consistent results. To our
knowledge, there has been no comparison yet of classifier
performance across mid-IR FTIR imaging spectrometers
using algorithms developed on one specific instrument. The
developed protocol provides for such a framework and
detailed results are awaited from on-going work [75].

Outlook and prospects

An exciting period in imaging tissues spectroscopically
with low power, optical microscopy-comparable resolution
is emerging. Considerable work, however, needs to be
accomplished before this idea can become a clinical reality.
An ultimate goal of such studies is to provide a key
technology for emerging molecular pathology. The ap-
proach promises greatly reduced error rates, automation,
and economic benefits in current pathology practice. Look-
ing to the future, chemical imaging approaches will be
employed for diagnosing cancers in pre-malignant stages
prior to their apparent changes observable by conventional
means, predicting the prognosis of the lesion and intra-
operative imaging in real-time. Fundamental studies in drug
discovery and mechanisms of molecular interactions are
further examples that would be enabled by progress in this
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area. Doubtless, exciting applications lie ahead and prog-
ress is rapidly being made towards practical applications
but much work needs to be done to carefully apply this
powerful technology to multiple aspects of pathology.
Success in this endeavor promises to change the practice
of pathology radically and alter the clinical management of
cancer patients.
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Abstract Prostate cancer accounts for one-third of noncutaneous cancers diagnosed in US

men and is a leading cause of cancer-related death. Advances in Fourier transform infrared

spectroscopic imaging now provide very large data sets describing both the structural and

local chemical properties of cells within prostate tissue. Uniting spectroscopic imaging data

and computer-aided diagnoses (CADx), our long term goal is to provide a new approach to

pathology by automating the recognition of cancer in complex tissue. The first step toward the

creation of such CADx tools requires mechanisms for automatically learning to classify tissue

types—a key step on the diagnosis process. Here we demonstrate that genetics-based machine

learning (GBML) can be used to approach such a problem. However, to efficiently analyze

this problem there is a need to develop efficient and scalable GBML implementations that are

able to process very large data sets. In this paper, we propose and validate an efficient GBML

technique—NAX—based on an incremental genetics-based rule learner. NAX exploits mas-

sive parallelisms via the message passing interface (MPI) and efficient rule-matching using

hardware-implemented operations. Results demonstrate that NAX is capable of performing

prostate tissue classification efficiently, making a compelling case for using GBML

implementations as efficient and powerful tools for biomedical image processing.
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1 Introduction

Pathologist opinion of structures in stained tissue is the definitive diagnosis for almost all

cancers and provides critical input for therapy. In particular, prostate cancer accounts for

one-third of noncutaneous cancers diagnosed in US men. Hence, it is, appropriately, the

subject of heightened public awareness and widespread screening. If prostate-specific

antigen (PSA) or digital rectal screens are abnormal, a biopsy is needed to definitively

detect or rule out cancer. Pathologic status of biopsied tissue not only forms the definitive

diagnosis but constitutes an important cornerstone of therapy and prognosis. There is,

however, a need to add useful information to diagnoses and to introduce new technologies

that allow economical cancer detection to focus limited healthcare resources. In pathology

practice, widespread screening results in a large workload of biopsied men, in turn, placing

a increasing demand on services. Operator fatigue is well documented and guidelines limit

the workload and rate of examination of samples by a single operator. Importantly, newly

detected cancers are increasingly moderate grade tumors in which pathologist opinion

variation complicates decision-making.

For the reasons above, there is an urgent need for automated and objective pathology

tools. We have sought to address these requirements through novel Fourier transform

infrared (FTIR) spectroscopy-based, computer-aided diagnoses for prostate cancer and

develop the required microscopy and software tools to enable its application. FTIR

spectroscopic imaging is a new technique that combines the spatial specificity of optical

microscopy and the biochemical content of spectroscopy. As opposed to thermal infrared

imaging, FTIR imaging measures the absorption properties of tissue through a spectrum

consisting of (typically) 1024–2048 wavelength elements per pixel. Since IR spectra reflect

the molecular composition of the tissue, image contrast arises from differences in

endogenous chemical species. As opposed to visible microscopy of stained tissue that

requires a human eye to detect changes, numerical computation is required to extract

information from IR spectra of unstained tissue. Extracted information, based on a com-

puter algorithm, is inherently objective and automated (Lattouf and Saad 2002; Fernandez

et al. 2005; Levin and Bhargava 2005; Bhargava et al. 2006).

Uniting spectroscopic imaging data and computer-aided diagnoses (CADx), we seek to

provide a new approach to pathology by automating the recognition of cancer in complex

tissue. This is an exciting paradigm in which disease diagnoses are objective and repro-

ducible; yet do not require any specialized reagents or human intervention. The first step

toward the creation of such CADx tools requires mechanisms for reliable and automated

tissue type classification. In this paper we demonstrate how genetics-based machine

learning tools can achieve such a goal. Interpretability of the learned models and efficient

processing of very large data sets have lead us to rule-based models—easy to interpret—

and genetics-based machine learning—inherent massively parallel methods with the

required scalability properties to address very large data sets. We present the method and

the efficiency enhancement techniques proposed to address automated tissues classifica-

tion. When pushed beyond the relatively small problems traditionally used to test such

methods, an need for efficient and scalable implementations becomes a key research topic

X. Llorà et al.

123



that needs to be addressed. We designed the proposed a technique with such constraints in

mind. A modified version of an incremental genetics-based rule learner that exploits

massive parallelisms—via the message passing interface (MPI)—and efficient rule-

matching using hardware-oriented operations. We name this system NAX: NAX is compared

to traditional and genetics-based machine learning techniques on an array of publicly

available data sets. We also report the initial results achieved using the proposed technique

when classifying prostate tissue.

The remainder of the paper is structured as follows. We present an overview of the

problem addressed in Sect. 2, paying special attention to tissue classification. We discuss in

Sect. 3 the hurdles that traditional genetics-based machine learning implementations face

when applied to very large data sets. Section 4 presents our solution to those hurdles. We

also describe the incremental rule learner proposed for tissue classification. Last, we

summarize results on publicly-available data sets and the preliminary results for tissue

classification on a prostate tissue microarray in Sect. 5. Finally, in Sect. 6, we present

conclusions and further work.

2 Biomedical imaging and data mining

This section presents an overview of the problem addressed in this paper. We first intro-

duce infrared spectroscopic imaging as a potentially powerful tool for cancer diagnosis and

prognosis. Then, we explore the protocols that provide raw high-quality data that for data

mining. Finally, we conclude by focusing on the key task, tissue classification, by focusing

on prostate tissue.

2.1 Infrared spectroscopy and imaging for cancer diagnosis and prognosis

Infrared spectroscopy is a well-established molecular technique and is widely used in

chemical analyses. The fundamental principle governing the response of any material is

that the vibrational modes of molecules are resonant in energy with photons in the mid-

infrared region (2–14 mm) of the electromagnetic spectrum. Hence, when photons of

energy that are resonant with the material’s molecular composition are incident, a number

are absorbed. The number absorbed is directly proportion to the number of chemical

species that are excited. Hence, any material has a characteristic frequency-dependent

absorption profile called a spectrum. An infrared spectrum is often termed the ‘‘optical

fingerprint’’ of a material as it can help uniquely identify molecular composition—see

Fig. 1.

Researchers, including us, have contributed to develop an imaging version of spec-

troscopy that is essentially similar to an optical microscope. In this mode of spectroscopy,

images are acquired in the manner of optical microscopy with one important difference.

Instead of measuring the intensity of three colors for a visible image, several thousand

intensity values are acquired at each pixel in the image as a function of wavelength

(spectrum at each pixel). The resulting data set is three dimensional (2 spatial and 1

spectral indices) consisting typically of a size 256 · 256 · 1024, but extending to sizes

such as 3500 · 3500 · 2048. Since each data point is stored as a 16-bit number, the

data size typically runs into several tens to hundreds of gigabytes.
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2.2 Mining the spectra: Two sequential problems

Though the continued development of fast FTIR microspectroscopy represents an exciting

opportunity for pathology, handling the resultant data and rapidly providing classifications

remains a critical challenge. First, the sheer volume of data—potentially larger than 10 GB

a day—represents an organizational and retrieval challenge. Next, extraction of useful

information in short time periods requires the formulation of optimal protocols. Third, the

automated cancer segmentation problem is very complex and offers a number of routes and

levels of data that need to be analyzed to determine the optimal approach for application in

a laboratory.

The typical application is the need to extract information from the data set such that it is

clinically relevant. Hence, the output of the data mining algorithm to be developed is well-

bounded and clearly defined. For example, in the prostate there are two levels of interest. In

the first level, the pathologist examines the tissue to determine if there are any epithelial

cells. Since more than 95% of prostate cancers arise in epithelial cells, transformations in

this class of cells forms the diagnostic basis and a primary determinant of therapy. Other

cell types of interest are lymphocytes that may indicate inflammation, blood vessel density

that may indicate the development of new blood supply indicative of cancer growth and

nerves that may be invaded by cancer cells. Hence, any automated approach to pathology

must first identify cell types accurately. The second step in pathology follows. Once

Fig. 1 Conventional staining and automated recognition by chemical imaging. (A) Typical H&E stained
sample, in which structures are deduced from experience by a human. Highlights of specific regions in the
manner of H&E is possible using FTIR imaging without stains. (B) Absorption at 1080 cm–1 commonly
attributed to nucleic acids and (C) to proteins of the stroma. The data obtained is 3 dimensional (D) from
which spectra (E) or images at specific spectral features may be plotted
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epithelial cells are located, their spatial patterns are indicative of disease states. In our

imaging approach, we can identify both spatial patterns as well as chemical patterns in

epithelial cells. Hence, the task would be to use either or both to classify disease. In this

paper, we focus only on the accurate identification/classification of tissue types as the first

step of the path that leads to obtaining the correct pixels of epithelium.

2.3 Tissue classification for prostate arrays

Prostate tissue is structurally complex, consisting primarily of glandular ducts lined by

epithelial cells and supported by heterogeneous stroma. This tissue also contains blood

vessels, blood, nerves, ganglion cells, lymphocytes and stones (which are comprised of

luminal secretions of cellular debris) that organize into structure measuring from tens to

hundreds of microns. These structures are readily observable within stained tissue using

bright-field microscopy at low to medium magnifications. Hence, in applying FTIR

imaging (Levin and Bhargava 2005), we obtain the common structural detail employed

clinically and, additionally, spectral information indicative of tissue biochemistry. As

histologic classes contain identical chemical components, infrared vibrational spectra are

similar but reveal small differences in specific absorbance features. The technique pro-

posed by Fernandez et al. (2005) examines each cell types’ spectra and transforms each

spectrum into a vector of describing features—usually around the hundreds. A complete

description of this process is beyond the scope of this paper and can be found elsewhere

(Fernandez et al. 2005). Each pixel (cell present in the slice of micro array under analysis)

has an assigned spatial position in the array while the tissue type is assigned by a highly

experienced pathologist. Thus, the tissue classification can be cast into a supervised

classification problem (Mitchell 1997), where all the attributes are real-valued and the class

is the tissue type—ten classes: ephithelium, fibrous stroma, mixed stroma, muscle, stone,

lymphocytes, endothelium, nerve, ganglion, and blood. Figure 2 presents tissue types that

can be assigned by examining a stained image obtained, after the FTIR microsprectroscopy

on unstained tissue,by the pathologist. Each marked pixel in the image becomes a train-

ing example; hence, the usual smallest data set is around hundreds of thousand records

per array.

3 Larger, bigger, and faster genetics-based machine learning

Bernadó et al. (2001) presented a first empirical comparison between genetics-based

machine learning techniques (GBML) and traditional machine learning approached. The

authors reported that GBML techniques were as competent as traditional techniques. Later,

Bacardit and Butz (2006) repeated the analysis, obtaining similar results. Most of the

experiments presented on both papers used publicly available data sets provided by the

University of California at Irvine repository (Merz and Murphy 1998). Most of the data

sets are defined over tens of features and up to few thousands of records—in the larger

cases. However, a key property of GBML approaches is its intrinsic massive parallelism

and scalability properties. Cantú-Paz (2000) presented how efficient and accurate genetics

algorithms could be assembled, and Llorà (2002) presented how such algorithms can be

efficiently used for machine learning and data mining. However, there are elements that

need to be revisited when we want to efficiently apply GBML techniques to large data sets

such as the one described in the previous section.
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The GBML techniques require evaluating candidate solutions against the original data

set matching the candidate solutions (e.g., rules, decision trees, prototypes) against all

the instances in the data set. Regardless of the flavor used, Llorà and Sastry (2006)

showed that, as the problem grows, rule matching governs the execution time. For small

data sets (teens of attributes and few thousands of records) the matching process takes

more than 85% of the overall execution time marginalizing the contribution of the other

genetic operators. This number increases to 98% and above, when we move to data sets

with few hundreds of attributes and few hundred thousands of records. More than 98%

of the time is spent evaluating candidate solutions. Each evaluation can be computed in

parallel. Moreover, the evaluation process may also be parallelized on very large data

sets by splitting and distributing the data across the computational resources. A detailed

description of the parallelization alternatives of GBML techniques can be found else-

where (Llorà 2002).

Currently available off-the-shelf GBML methods and software distributions (Barry

and Drugow-itsch 1997; Llorà 2006) do not usually target large data sets. The two main

bottlenecks are large memory footprints and sequential-processing oriented processes.

Generally speaking, they were designed to run on single processor machines with

enough memory to fit the entire data set. Hence, designers did not paying much

Fig. 2 The figure presents the tissue labeling provided by a pathologist biopsy section of human prostate
tissue. Each spot represents the section of a needle. Different colors represent different tissue types
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attention to the memory footprint required to store the data set—usually completely

loaded into memory and the population of candidate solutions. These large complex

structures were geared to facilitate the programming effort, but they are not designed

toward the efficient evaluation of the candidate solutions. However, efforts have been

made to push GBML methods into domains which require processing large data sets.

Three different works need to be mentioned here. Flockhart (1995) proposed and

implemented GA-MINER, one of the earliest effort to create data mining systems based

on GBML systems that scale across symmetric multi-processors and massively parallel

multi-processors. Flockhart (1995) reviewed different encoding and parallelization

schemes and conducted proper scalability studies. Llorà (2002) explored how fine-

grained parallel genetic algorithms could become efficient models for data mining.

Theoretical analysis of performance and scalability were developed and validated with

proper simulations. Recently, Llorà and Sastry (2006) explored how current hardware

can efficiently speed up rule matching against large data sets. These three approaches

are the basis of the incremental rule learning proposed in the next section to approach

very large data sets.

Another important issue in real-world problems is the class distribution. Usually

most real problems have a clear class imbalance. Recently, Orriols-Puig and Bernadó-

Mansilla (2006) have revisited this issue, showing how GBML techniques successfully

learn and maintain proper descriptions for those minority classes. If not designed

properly, descriptions of majority classes will tend to govern the learned models,

starving the description of minority classes. Prostate tissue classification is a clear

example of extreme class imbalance. Figure 3 presents the tissue type class distribution.

The smaller tissue type has 64 records, where as the larger classes have several tens of

thousands records. hence, the developed approaches must account for class size

variation.

Fig. 3 Figure shows the tissue class distribution. Once the classes are reordered according to their
frequency in the data set, we can easily appreciate the extreme imbalance—the smaller tissue type has 64
records, where as the larger classes have several tens of thousands records

Histopathology using genetics-based machine learning

123



4 The road to tractability

We describe in this section the steps we took to design a GBML method (NAX) able to deal

with very large data sets with class imbalance. NAX evolves, one at a time, maximally

general and maximally accurate rules. Then, the covered instance are removed and another

maximally general and maximally general rule is evolved and added to the previously

stored one forming a decision list. This process continues until no uncovered instances are

left—this process is also referred as the sequential covering procedure (Cordón et al.

2001). Llorà et al. (2005) showed that maximally general and maximally accurate rules

(Wilson 1995) could also be evolved using Pittsburgh-style Learning Classifier Systems.

Later, Llorà et al. (2007) showed that competent genetic algorithms (Goldberg 2002)

evolve such rules quickly, reliably, and accurately. The rest of this section describes (1)

efficient implementation techniques to deal with very large data sets, (2) the impact of class

imbalance, and (3) the NAX algorithm proposed.

4.1 Efficient implementations

As introduced earlier, when dealing with very large data sets, and regardless of the flavor

of the GBML technique used, we may spend up to 98% of the computational cycles trying

to match rules to the original data set (Llorà and Sastry 2006). Each solution evaluation is

independent of each other and, hence, it can be computed in parallel. Moreover, even the

matching nature of a rule—the representation we will use from now on—is highly parallel,

since conditions require performing simultaneous checks against different attributes per

record. Thus, efficient implementation can take advantage of parallelizing both elements.

4.1.1 Exploiting the hardware acceleration

Recently, multimedia and scientific applications have pushed CPU manufactures to include

support for vector instructions again in their processors. Both applications areas require

heavy calculations based on vector arithmetic. Simple vector operations such as add or

product are repeated over and over. During 1980s and 1990s supercomputers, such as Cray

machines, were able to issue hardware instructions that enabled basic vector arithmetics. A

more constrained scheme, however, has made its way into general-purpose processors

thanks to the push of multimedia and scientific applications. Main chip manufactures—

IBM, Intel, and AMD—have introduced vector instruction sets—Altivec, SSE3, and

3DNow+—that allow vector operations over packs of 128 bits by hardware. We will focus

on a subset of instructions that are able to deal with floating point vectors. This subset of

instructions manipulate groups of four floating-point numbers. These instructions are the

basis of the fast rule matching mechanism proposed.

Our goal is to evolve a set of rules that correctly classifies the current data set rom

prostate tissue. Using a knowledge representation based on rules allows us to inspect the

learned model, gaining insight into the biological problem as well. All the attributes of the

domain are real-value and the conditions of the rules need to be able to express conditions

in a <n spaces. We use a similar rule encoding to the one proposed by Wilson (2000b)—a

variation of the original work proposed by Wilson (2000a) and later reviewed by Stone and

Bull (2003)—and widely used in the GBML community. Rules express the conjunction of

tests across attributes. Each test may be defined in multiple flavors but, without loss of
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generality, we picked a simple interval based one. A simple example of an if-then rule,

could be expressed as follows:

1:0� a0� 2:3 ^ � � � ^ 10:0� an� 23! c1 ð1Þ

Where the condition is the conjunction of the different attribute tests and the outcome is the

predicted class—a tissue type. We also allow a special condition—don0t care —which

just always returns true , allowing condition generalization. The rule below illustrates an

example of a generalized rule.

1:0� a0� 2:3 ^ �3:0� a3� 2 �! c1 ð2Þ

All attributes except a0 and a3 were marked as don0t care:
Each condition can be encoded using 2 floating-point numbers per condition, where ai

contains the lower bound of the condition and xi its upper bound. Thus, the condition ai £
a0 £ xi just requires to store the two floating-point numbers. For efficiency reasons we

store them in two separate vectors, on containing the lower bounds and the other con-

taining the upper bounds. The position in a vector indicates the attribute being tested. The

don0t care condition is simply encoded as ai [xi and, hence, we do not need to store any

extra information.

Matching a rule requires performing the individual condition tests before the final and
operation can be computed. Vector instruction sets improve the performance of this pro-

cess by performing four operations at once. Actually, this process may be regarded as four

parallel running pipelines. The process can be further improved by stopping the matching

process when one test fails—since that will turn the condition into false.

Figure 4 presents a C implementation the proposed hardware-supported rule matching.

The code assumes that the two vectors containing the upper and lower bounds are provided

and records are stored in a two dimensional matrix. Figure 5 presents the vectorized

implementation of the code presented in Fig. 4 using SSE2 instructions. Exploiting the

hardware available can speed between 3 and 3.5 times the matching process, as also shown

elsewhere (Llorà and Sastry 2006).

4.1.2 Massive parallelism

Since most of the time is spent on the evaluation of candidate rules when dealing with large

data sets, our next goal was to find a parallelization model that could take advantage of this

peculiarity. Due the quasi embarrassing parallel (Grama et al. 2003) nature of the candi-

date rule evaluation, we designed a coarse-grain parallel model for distributing the

evaluation load. Cantú-Paz (2000) proposed several schemes, showing the importance of

the trade-off between computation time and time spent communicating. When designing

the parallel model, we focused on minimizing the communication cost. Usually, a feasible

solution could be a master/slave one—the computation time is much larger than the

communication time. However, GBML approaches tend to use rather large populations,

forcing us to send rule sets to the evaluation slaves and collect the resulting fitness. These

schemes also increment the sequential sections that cannot be parallelized, threatening the

overall speedup of the parallel implementation as a result of Ambdhals law (Amdahl 1967).

To minimize such communication cost, each processor runs an identical NAX algorithm.

They are all seeded in the same manner, hence, performing the same genetic operations

and only differing in the portion of the population being evaluated. Thus, the population is

Histopathology using genetics-based machine learning

123



treated as collection of chunks where each processor evaluates its own assigned chunk,

sharing the fitness of the individuals in its chunk with the rest of the processors. Fitness can

be encapsulated and broadcasted maximizing the occupation of the underlying packing

frames used by the network infrastructure. Moreover, this approach also removes the need

for sending the actual rules back and forth between processors—as a master/slave approach

would require—thus, minimizing the communication to the bare minimum—the fitness.

Figure 6 presents a conceptual scheme of the parallel architecture of NAX:
To implement the model presented in Fig. 6, we used C and a message passing interface

(MPI)—we used the OpenMPI implementation (Gabriel et al. 2004). Figure 7 shows the

code in charge of the parallel evaluation. Each processor computes which individuals are

assigned to it. Then it computes the fitness and, finally, it just broadcast the computed

fitness. The rest of the process is left untouched, and besides the cooperative evaluation, all

the processors end generating the same evolutionary trace.

4.2 Rule sets as individuals

One main characteristic of the so-called Pittsburgh-style learning classifier systems—a

particular type of GBML—is that individuals encode a rule set (Goldberg 1989; Llorà and

Garrell 2001; Goldberg 2002). Thus, evolutionary mechanisms directly recombine one rule

set against another one. For classification tasks of moderate complexity, the rule sets are

1. void match_seq_rule_set ( RuleSet * rs, InstanceSet is, int iDim, int iRows ) {
2. int i,j,k,iCnt,iClsIdx,iGround,iPred;
3. register int iMatcheable;
4. Instance ins;
5.
6. iClsIdx = rs->iCorrectedDim;
7. clean_fitness_rules_set(rs);
8. for ( i=0 ; i<iRows ; i++ ) {
9. ins = is[i];
10. iPred=-1;
11. for ( j=0 ; iPred==-1 && j<rs->iLen ; j++ ) {
12. iMatcheable = 1;
13. for ( iCnt=0,k=j*(rs->iCorrectedDim+VBSIF) ;
14. iMatcheable && k<j*(rs->iCorrectedDim+VBSIF)+rs->iDim ;
15. k++,iCnt++ ) {
16. iMatcheable = iMatcheable &&
17. !( (rs->pfLB[k]<=rs->pfUB[k]) &&
18. ( ins[iCnt]<rs->pfLB[k] || ins[iCnt]>rs->pfUB[k]));
19. }
20. if ( iMatcheable )
21. iPred = rs->pfLB[j*(rs->iCorrectedDim+VBSIF)+rs->iCorrectedDim];
22. }
23. iPred = (iPred==-1)?rs->iClasses:iPred;
24. iGround=(int)ins[iClsIdx];
25. rs->pConfMat[iGround][iPred]++;
26. }
27. }

Fig. 4 This figure presents a sequential implementation of the rule matched process in C . A rule set is
match against a data set. Lines 16, 17, and 18 implement the condition test for one attribute. The
implementation also computes the confusion matrix that contains the ground truth versus predicted class
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not large. However, for complex problems, the potential number of required rules to ensure

proper classification may need large amounts of memory that become prohibitive. The

requirements increase even further in the presence of noise (Llorà and Goldberg 2003).

1. #define VEC_MATCH(vecFLB,fLB,vecFUB,fUB,vecINS,fIN,vecTmp,vecOne,vecRes) {\
2. vecFLB = _mm_load_ps(fLB);\
3. vecFUB = _mm_load_ps(fUB);\
4. vecINS = _mm_load_ps(fIN);\
5. \
6. vecRes = (__m128i)_mm_cmpgt_ps(vecFUB,vecFLB);\
7. vecTmp = _mm_or_si128(\
8. (__m128i)_mm_cmpgt_ps(vecFLB,vecINS),\
9. (__m128i)_mm_cmpgt_ps(vecINS,vecFUB)\

10. );\
11. vecRes = _mm_andnot_si128(_mm_and_si128(vecRes,vecTmp),vecOne);\
12. }
13.
14. void match_rule_set ( RuleSet * rs, InstanceSet is, int iDim, int iRows ) {
15. int i,j,k,iCnt,iClsIdx,iGround,iPred;
16. register int iMatcheable;
17. Instance ins;
18.
19. __m128i vecRes,vecTmp,vecOne;
20. __m128 vecFLB,vecFUB,vecINS;
21.
22. vecOne = (__m128i){-1,-1};
23.
24. iClsIdx = rs->iCorrectedDim;
25. clean_fitness_rules_set(rs);
26. for ( i=0 ; i<iRows ; i++ ) {
27. // Classify the instance
28. ins = is[i];
29. iPred=-1;
30. for ( j=0 ; iPred==-1 && j<rs->iLen ; j++ ) {
31. iMatcheable = 1;
32. for ( iCnt=0,k=j*(rs->iCorrectedDim+VBSIF) ;
33. iMatcheable && k<j*(rs->iCorrectedDim+VBSIF)+rs->iDim ;
34. k+=VBSIF,iCnt+=VBSIF ) {
35. VEC_MATCH(vecFLB,&(rs->pfLB[k]),
36. vecFUB,&(rs->pfUB[k]),
37. vecINS,&(ins[iCnt]),vecTmp,vecOne,vecRes);
38. iMatcheable = 0xFFFF==_mm_movemask_epi8(vecRes);
39. }
40. if ( iMatcheable )
41. iPred = rs->pfLB[j*(rs->iCorrectedDim+VBSIF)+rs->iCorrectedDim];
42. iPred = (iPred==-1)?rs->iClasses:iPred;
43. iGround=(int)ins[iClsIdx];
44. rs->pConfMat[iGround][iPred]++;
45. }
46. }

Fig. 5 This figure presents a vectorized implementation of the rule matching process presented in Fig. 4.
Lines 1–12 implement the parallelized test against four attributes using vector instructions. The code is
written using C intrinsics for SSE2 compatible architectures. This code runs on P4 or newer Intel processors
and Opteron or Athlon 64 AMD processors
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Parallelization may not help much if we need to send large rule sets across the commu-

nication network. For such reasons, GBML techniques work very well on moderate

complexity problems (Bernadó et al. 2001; Bacardit and Butz 2006). However, they need

to be modified to deal with complex and large data set, and also avoid the boundaries

imposed by the issues mentioned above.

4.3 NAX: Incremental rule learning for very large data sets

An incremental rule learning approach may alleviate memory footprint requirements by

evolving only one rule at a time, hence, reducing the memory requirements. However, one

rule by itself cannot solve complex problems. For such a reason, each evolved rule is added

to the final rule set, and the covered examples are removed from the current training set.

The process is repeated until no instances are left in the training set. This approach already

introduced by Cordón et al. (2001) and later also used by Bacardit and Krasnogor (2006)

allows maintaining relatively small memory footprints, making feasible processing large

data sets—as the prostate tissue classification data set. However, an incremental approach

to the construction of the rule set requires paying special attention to the way rules are

evolved. For each run of the genetic algorithm used to evolve a rule, we would like to

obtain a maximally general and maximally accurate rule, that is, a rule that covers the

maximum number of example without making mistakes (Wilson 1995).

Initialize

Evaluate Chunk

Selection

Recombination

Replacement

Finalize

Done?

Synchronize

Processor 0

Initialize

Evaluate Chunk

Selection

Recombination

Replacement

Finalize

Done?

Synchronize

Processor 1

Initialize

Evaluate Chunk

Selection

Recombination

Replacement

Finalize

Done?

Synchronize

Processor p

Fig. 6 This figure illustrates the parallel model implemented. Each processor is running the same identical
NAX algorithm. They only differ in the portion of the population being evaluated. The population is treated as
collection of chunks where each processor evaluates its own assigned chunks sharing the fitness of these
individuals with the rest of the processors. This approach minimizes the communication cost
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Llorà et al. (2007) have shown that evolving such rules is possible. In order to promote

maximally general and maximally accurate rules à la XCS (Wilson 1995), we compute the

accuracy (a) and the error (e) of a rule (Llorà et al. 2005). The accuracy is the proportion

of overall examples correctly classified, and the error is the proportion of incorrect clas-

sifications issued. For simplicity reasons, we use the proportion of correctly issues

classifications instead, simplifying the final fitness calculation. Let nt+ be the number of

positive examples correctly classified, nt- the number of negative examples correctly

classified, nm the number of times a rule has been matched, and nt the number of examples

available. Using these values, the accuracy and error of a rule r can be computed as:

aðrÞ ¼ ntþðrÞ þ nt�ðrÞ
nt

ð3Þ

eðrÞ ¼ ntþðrÞ
nmðrÞ

ð4Þ

Once the accuracy and error of a rule are known, the fitness can be computed as

follows.

1. void evaluate_population ( Population * pp, InstanceSet is, int iDim, int iRows )
2. {
3. int i;
4.
5. /* Compute the fragments of this processor */
6. int iFrag = pp->iLen/FCS_processes;
7. int iInit = FCS_process_id*iFrag;
8. int iLast = (FCS_process_id+1==FCS_processes)?
9. pp->iLen:
10. (FCS_process_id+1)*iFrag;
11. int iCnt = 0;
12. int j,k,l;
13.
14. /* Create the bucket for the broadcast */
15. float faFit[2*iFrag];
16. float faTmp[2*iFrag];
17.
18. /* Evaluate the given chunk assigned to the processor */
19. for ( i=iInit,iCnt=0 ; i<iLast ; i++,iCnt++ ) {
20. match_rule_set(pp->prs[i],is,iDim,iRows );
21. compute_raw_accuracy_fitness_rule_set(pp->prs[i]);
22. faFit[iCnt] = pp->prs[i]->fFitness;
23. }
24.
25. /* Broadcast each of the chunks */
26. for ( i=0 ; i<FCS_processes ; i++ ) {
27. MPI_Bcast((i==FCS_process_id)?faFit:faTmp,iCnt,MPI_FLOAT,i,MPI_COMM_WORLD);
28. if ( i!=FCS_process_id )
29. for ( l=0,j=i*iFrag, k=(i+1)*iFrag ; j<k ; j++,l++ )
30. pp->prs[j]->fFitness = faTmp[l];
31. }
32. }

Fig. 7 This figure presents an implementation of the proposed parallel evaluation scheme using C and MPI:
The piece of code presented below is the only one modified to provide such parallelization capabilities.
Each processor computes which individuals are assigned to it (lines 6–10), then it computes the fitness (lines
10–23), and then it just broadcast the computed fitness (lines 26–31)
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f ðrÞ ¼ aðrÞ � eðrÞc ð5Þ

where c is the error penalization coefficient. The above fitness measure favors rules with a

good classification accuracy and a low error, or maximally general and maximally accurate

rules. By increasing c, we can bias the search towards correct rules. This is an important

element because assembling a rule set based on accurate rules guarantees the overall

performance of the assembled rule set. In our experiments, we have set c to 18 to strongly

bias the search toward maximally general and maximally accurate rules.

NAX ’s efficient implementation of the evolutionary process is based on the techniques

described using hardware acceleration—Sect. 4.1.1—and coarse-grain parallelism—

Sect. 4.1.2. The genetic algorithm used was a modified version of the simple genetic
algorithm (Goldberg 1989) using tournament selection (s = 4), one point crossover, and

mutation based on generating new random boundary elements.

5 Experiments

This section present the results achieved using NAX: To allow the reader to compare with

other techniques, we compare the results obtained using NAX on small data sets provided by

the UCI repository (Merz and Murphy 1998) to other well-known supervised learning

algorithms. Finally, we present the first results on the prostate tissue prediction obtained

using NAX. Results focus on the viability of the NAX approach.

5.1 Some UCI repository data sets

The UCI repository (Merz and Murphy 1998) provides several data sets for different

machine learning problems. These data sets have been widely used to test traditional

machine learning and GBML techniques. Table 1 list the data sets used. Due to the nature

of the prostate tissue type classification, we only chose data sets with numeric attributes.

Three of these data sets are of relevant interest: (1) son, by far the one with larger

dimensionality, (2) gls, the one with large number of classes, (3) tao, proposed by Llorà

and Garrell (2001), having complex and non-linear boundaries.

Table 1 Summary of the data sets used in the experiments

ID Data set Size Missing
values(%)

Numeric
attributes

Nominal
attributes

Classes

bre Wisconsin Breast Cancer 699 0.3 9 – 2

bpa Bupa Liver Disorders 345 0.0 6 – 2

gls Glass 214 0.0 9 – 6

h� s Heart Stats-Log 270 0.0 13 – 2

ion Ionosphere 351 0.0 34 – 2

irs Iris 150 0.0 4 – 3

son Sonar 208 0.0 60 – 2

tao Tao 1888 0.0 2 – 2

win Wine 178 0.0 13 – 3
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We could have chosen complex algorithms as baselines for NAX . However, we would

not be able to use them to repeat the experimentation on the prostate tissue classification

domain. The algorithms used in the comparison presented in Table 2 were 0-R (Holte

1993) (a simple base line based on majority class classification) and C4.5 (Quinlan 1993).

Results show percentage of correct classifications and standard deviation from stratified

ten-fold cross-validation runs. Paired t-test comparisons showed no statistically significant

differences between the pruned tree produced by C4.5 and NAX results. This experiments

also helped validate the distributed implementation proposed by NAX: Further results on

empirical comparisons can be found elsewhere (Bernadó et al. 2001; Bacardit and Butz

2006).

5.2 Prostate tissue classification

With the previous results at hand, we ran NAX against the prostate tissue classification data

set. The original data set is defined by 93 attributes. In this paper, however, we used the

reduced version of this data set proposed by (Fernandez et al. 2005) which contains 20

selected attributes out of the 93 available. The dataset is form by 171,314 records. Our goal

was to explore how well NAX could generalize over unseen tissue—this is the first step to be

able to address the cancer prediction problem. The other reason that motivated such

experimentation was to achieve similar accuracy results as the ones published earlier by

Fernandez et al. (2005) using a modified Bayes technique. If NAX could perform at the

same level, we will also obtain a set of rules of interest to the spectroscopist. The inter-

pretation of the rules will provide insight on how to interpret the models provided by

NAX —which could not be done with the models early used by Fernandez et al. (2005).

We conducted stratified 10-fold cross-validation experiments to measure the general-

ization capabilities of NAX for this problem. Since the problem was rather small—larger

data set are being prepared to be run at the supercomputing facilities provided by the

National Center for Supercomputing Applications—we run the ten-fold cross-validation

runs in a 3GHz dual core Pentium D computer with 4 GB of RAM. NAX took advantage of

the hardware support to speedup the matching process and uses two MPI processes to

parallelize—as introduced in Fig. 6—the evaluation of the overall population. Each fold

Table 2 Experimental results: percentage of correct classifications and standard deviation from stratified
ten-fold cross-validation runs

ID 0–R C4.5 NAX

bre 65.52 ± 1.16 95.42 ± 1.69 96.43 ± 1.72

bpa 57.97 ± 1.23 65.70 ± 3.84 64.07 ± 8.36

gls 35.51 ± 4.49 65.89 ± 10.47 68.02 ± 8.69

h� s 55.55 ± 0.00 76.30 ± 5.85 75.56 ± 9.39

ion 64.10 ± 1.19 89.74 ± 5.23 89.19 ± 5.27

irs 33.33 ± 0.00 95.33 ± 3.26 94.67 ± 4.98

son 53.37 ± 3.78 71.15 ± 8.54 73.62 ± 9.72

tao 49.79 ± 0.17 95.07 ± 2.11 97.41 ± 0.92

win 39.89 ± 3.22 93.82 ± 2.85 94.34 ± 6.09

Paired t-test comparisons showed no statistically significant differences between C4.5 and NAX results

0–R result are just provided as guiding base line
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took about one hour to complete, with the entire classification lasting less than half a day.

We conducted a simple test of adding a second computer with an identical configuration.

The overall time for cross-validation was reduced to half. Rough estimates—which will

better measured when larger experiments are conducted on NCSA super computers—show

that the sequential portion is around 1:1000 for this small data set. Numbers get better as

data set increases, which demonstrates that we will be able to process very large data sets

and efficiently exploit larger numbers of processors.

We proposed another measure of effectiveness, namely how many records can be

processed per second. Using a single processor with the hardware acceleration mechanisms

built into NAX, and the evolved rule set formed by 1,028 rules, the average throughput was

around 60,000 records per second. For the prostate tissue classification, it took less than

three seconds to classify the entire data set. Once the rule set is learnt, the classification

problem falls again into the category of embarrassingly parallel problems (Grama et al.

2003). Since no communication is needed, the speedup grows linearly with the number of

processors added—with the proper rule set replication and data set chunking. Thus, with

the dual core box used we where able to just double the throughput (120,000 records per

second) by chunking the data set and use both processors.

The previous results show the benefits of hardware acceleration and parallelization, but

NAX was also able to achieve very competitive classification accuracy in generalization,

correctly classifying 97.09 ± 0.09 of the records (pixels) during the stratified ten-fold

cross-validation. Figure 8 presents the regenerated prostate tissue classification image

presented in Fig. 2 using a rule set assembled by NAX: Figure 8a presents the incorrectly

classified pixels. Most of the mistakes by the rule set involve similar tissues with few

training records available. This trend was also shown elsewhere (Fernandez et al. 2005).

C4.5 does not provide any statistically significant improvement (only a marginal, not

statistically significant, 0.7%) and provided large decision trees with more than 5,000

leaves—not to mention the lack of scalability when compared to NAX:
The rule set assembled by NAX represents an incremental assembling of maximally

general and maximally accurate rules. Thus, we can compute how the accuracy of such

ensemble improves as new rules are added. Figure 9 presents the overall accuracy as rules

are added. It shows an interesting behavior for classifying prostate tissue. Using only 20

rules out of the 1,028 evolved ones, the overall accuracy is 90%, the incorrectly classified

1.3% pixels, and 8.7% were left unclassified. After inspecting the misclassified pixels most

of them belongs to borders between tissues and mislabeling arises from the image dis-

cretization—one pixel containing different tissue types. Table 3 presents the initial four

rules that covering 80% of the instances belonging to the two larger tissue types—

epithelium and fibrous stroma. Such results are relevant, not only for their accuracy, but

also because of the insight they provide to the spectroscopist about the problem structure.

6 Conclusions and further work

This paper has presented the initial results achieved in predicting prostate tissue type using

GBML techniques. Being able to classify unseen tissue quickly, reliably, and accurately, is

the first step towards the creation of CADx systems that may assist a pathologist diag-

nosing prostate cancer. We have proposed two main efficiency enhancement techniques for

GBML—exploiting hardware parallelization via vector instructions and coarse-grain par-

allelism via the usage of MPI libraries—which allowed us to approach very large data sets.

These techniques, together with an incremental genetics-based rule learning approach to
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assemble rule sets formed by maximally general and maximally accurate rules, have led to

the creation of NAX, a system specialized on dealing with large data sets.

Results have shown accurate classification models for prostate tissue along with good

scalability of the NAX implementation. Results also reveal peculiarities of the underlying

problem structure. With very few rules—20—we were able to correctly classify up to 90%

Fig. 8 The figures presented
above show the regenerated
prostate tissue classification
image presented in Fig. 2. (a)
presents the correctly classified
pixels. (b) presents the
incorrectly classified pixels
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of the tissue. Our current work is focused on analyzing the larger data sets containing all

the available features and different tissue sources to test the parallelization scalability of

NAX on NCSA supercomputers. Once accomplished, the procedure will provide confidence

in creating a CADx system to generate a diagnosis based on the evolved models.
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ABSTRACT
Cancer diagnosis is essentially a human task. Almost univer-
sally, the process requires the extraction of tissue (biopsy)
and examination of its microstructure by a human. To im-
prove diagnoses based on limited and inconsistent morpho-
logic knowledge, a new approach has recently been proposed
that uses molecular spectroscopic imaging to utilize micro-
scopic chemical composition for diagnoses. In contrast to
visible imaging, the approach results in very large data sets
as each pixel contains the entire molecular vibrational spec-
troscopy data from all chemical species. Here, we propose
data handling and analysis strategies to allow computer-
based diagnosis of human prostate cancer by applying a
novel genetics-based machine learning technique (NAX). We
apply this technique to demonstrate both fast learning and
accurate classification that, additionally, scales well with
parallelization. Preliminary results demonstrate that this
approach can improve current clinical practice in diagnos-
ing prostate cancer.
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1. INTRODUCTION
Pathologist opinion of structures in stained tissue is the

definitive diagnosis for almost all cancers and provides criti-
cal input for therapy. In particular, prostate cancer accounts
for one-third of noncutaneous cancers diagnosed in US men,
and it is a leading cause of cancer-related death. Hence,
it is, appropriately, the subject of heightened public aware-
ness and widespread screening. If prostate-specific antigen
(PSA) or digital rectal screens are abnormal, a biopsy is
considered to detect or rule out cancer. Prostate tissue is
extracted, or biopsied, from the patient and examined for
structural alterations. The diagnosis procedure involves the
removal of cells or tissues, staining them with dyes to pro-
vide visual contrast and examination under a microscope by
a skilled person (pathologist).

The challenge in prostate cancer research and practice
is to provide a novel Due to personnel, tarining, natural
variability and biologic differences, the challenge in prostate
cancer research and practice is to provide accurate, objec-
tive and reproducible decisions. Conventional optical mi-
croscopy followed by manual recognition has been demon-
strated to be inadequate for this task. [18]. Hence, we have
recently proposed developing a practical approach to this
problem using chemical, rather than morphologic, imaging.
[19]. In this approach, Fourier transform infrared imag-
ing (FTIR) is employed to provide the entire vibrational
spectroscopic information from every pixel of a sample’s mi-
croscopy image. While the first steps of developing novel
imaging and sampling technologies is now reliable, [7] the
computational challenge of providing robust classification
algorithms that can rapidly provide decisions remains. Due
to the above advances in imaging and sampling, data from
thousands of patients is available to train and validate al-
gorithms for different disease states. While the application
and type of data are unique, a further confounding factor re-
quired efficiently processing large volumes of data generated
by FTIR imaging. The classification problem can be for-
mulated as a supervised learning problem in which several
million pixels (hundred of gigabytes) of accurately labeled
data are available for model training and validation. The
volume of tissue and (future) need for intra-operative diag-
noses imply that rapid and accurate diagnoses are crucial
to allow physicians to explore all possible courses of action.
Under these conditions, traditional supervised learning ap-

2098



proaches and implementations do not scale to provide diag-
noses in an appropriate time frame. Hence, efficiently pro-
cessing and learning models from gigabytes of FITR imag-
ing data requires a careful design of the supervised learning
algorithm. Moreover, the biological nature of the problem
requires that such models be interpretable to provide funda-
mental new insight into the disease process. Genetics-based
machine learning (GBML) techniques take advantage of the
“quasi embarrassing parallelism” [17] to provide scaleable,
fast, accurate, reliable, and interpretable models. In this
paper we present an approach engineered to the desired so-
lutiona and constraints of addressing this human task. A
modified version of a sequential genetics-based rule learner
that exploits massive parallelisms via the message passing
interface (MPI) and efficient rule-matching using hardware-
oriented operations is developed. We named this system NAX

[24], and we have shown that its performance is compara-
ble to traditional and genetics-based machine learning tech-
niques on an array of publicly available data sets. We now
show thatNAX—taking advantage of both hardware and soft-
ware parallelism—is able to provide prostate cancer diag-
noses that are human-competitive. In this paper, we present
preliminary results supporting this outcome.

The paper is structured as follows. Section 2 provides
an overview of our approach towards computer-aided diag-
noses for prostate cancer. Procedure and form of the data
are summarized in section 3. NAX is introduced in section
4, where we describe the basic components and design deci-
sions in this approach. In section 5 we present preliminary
results indicating that the approach presented in this paper
is human-competitive. Finally, section 6 summarizes some
conclusions and further research.

2. PROBLEM DESCRIPTION
Prostate cancer is the most common non-skin malignancy

in the western world. The American Cancer Society
estimated 234,460 new cases of prostate cancer in 2006
[31]. Recognizing the public health implications of this
disease, men are actively screened through digital rectal
examinations and/or serum prostate specific antigen (PSA)
level testing. If these screening tests are suspicious, prostate
tissue is extracted, or biopsied, from the patient and exam-
ined for structural alterations. Due to imperfect screening
technologies and repeated examinations, it is estimated that
more than 1 million people undergo biopsies in the US alone.

2.1 Prostate Cancer Diagnosis
The removal of a small section of prostate is most of-

ten accomplished by core biopsy. A needle is inserted into
the tissue and several (6-23) samples are obtained from dif-
ferent positions. Biopsy, followed by manual examination
under a microscope is the primary means to definitively di-
agnose prostate cancer as well as most internal cancers in
the human body. Pathologists are trained to recognize pat-
terns of disease in the architecture of tissue, local structural
morphology and alterations in cell size and shape. Specific
patterns of specific cell types distinguish cancerous and non-
cancerous tissues. Hence, the primary task of the patholo-
gist examining tissue for cancer is to locate foci of the cell
of interest and examine them for alterations indicative of
disease.

The specific cells in which cancer arises in the prostate

are epithelial cells. While epithelial-origin cancers account
for over 85% of all human cancers, they account for more
than 95% of prostate cancers. In prostate tissue, epithe-
lial line secretory ducts within the structural cells (collec-
tively termed ‘stroma’) that allow the tissue to maintain its
structure and function. Hence, a pathologist will first locate
epithelial cells in a biopsy and, to examine for cancer, will
mentally segment them from stroma.

Biopsy samples are prepared in a specific manner to aid
in recognition of cells and disease. The sample is sliced thin
(∼ 5µm thickness), placed on a glass slide and stained with
a dye to provide contrast. The most common dye is a mix-
ture of hematoxylin and eosin (H&E), which stains protein-
rich regions pink and nucleic acid-rich regions blue. Empty
space, lipids and carbohydrates are typically not stained and
characterized by white color in images. Staining allows the
pathologist to identify cells based on their nucleus and extra-
nuclear regions. Patterns of the same cell type characterize
structures. For example, epithelial cells arranged in a circu-
lar manner around empty space are characteristic of a duct
and endothelial cells similarly arranged are characteristic of
blood vessels. The empty space enclosed within a duct in
pathology images is termed a lumen. The distortion of the
circular pattern of epithelial cells around a lumen is charac-
teristic of cancer.

In low severity cancers, lumens are only slightly distorted,
while higher grades of cancer display a lack of lumen and
simply consist of masses of epithelial cells supported by little
stroma. The relative distortion and change in lumen shape
is organized into a grading scheme to assess the severity of
the disease, Gleason Scoring system, which is the primary
measure of disease that defines diagnosis, helps direct ther-
apy and helps predict those at danger of dying from the
disease. Since prostate cancer is multi-focal and the disease
quite variable, two dominant patterns of epithelial distortion
are selected and each is independently graded on a scale of
1-5. The grades are then summed to provide a Gleason score
ranging from 2 (low grade cancer) to 10 (maximum danger
cancer). This scale has been widely used since its creation
in the 1960s and currently forms the clinical standard of
practice. Manual Gleason scoring, however, has severe lim-
itations.

2.2 Limitations of Current Practice
Widespread screening for prostate cancer has resulted in

a large workload of biopsied men [16], placing an increasing
demand on services. Operator fatigue is well-documented
and guidelines limit the workload and rate of examination
of samples by a single operator (examination speed and
throughput). Importantly, inter- and intra-pathologist vari-
ation complicates decision-making. The consistency in de-
termining Gleason scores is rather poor. Intra-observer mea-
surements show that a pathologist confirms their own score
less than 50% of the time and are ±1 score no more than
80% of cases [2]. Hence, the diagnoses for ∼ 50% of cases
may change and may be significantly altered for ∼ 20% of
cases ultimately leading to changes in therapy for a patient
subset [30]. The numbers are decidedly cause for concern.
For example, a recent study including 15 pathologists and
537 prostate cancer patients, 70.8% of Gleason scores were
shown to be inaccurate when compared with the patient’s
final outcome [18]. Second opinions [29] improve assessment
and are cost-effective [10], not to mention their utility in mit-
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igating the effects of healthcare costs, lost wages, morbidity,
or potential litigation. In summary, the manual recognition
of spatial patterns leaves much to be desired from a process
perspective and has far-reaching social effects from a public
health perspective.

For the reasons underlined above, there is an urgent need
for high-throughput, automated and objective pathology
tools. We believe that this need is best met by employing
the power of computer algorithms and advanced processing
to address prostate cancer diagnosis and grading.

The information content of conventionally stained images
is limited, inherently non-specific and varies greatly within
patient populations and processing conditions. Hence, the
information derived from visible microscopy images is fun-
damentally limited and automated methods of analyzing
stained images have failed to provide a sufficiently robust al-
gorithm to diagnose disease. An alternative to morphology-
based microscopy are molecular microscopy techniques to
probe disease. Molecular technologies for disease diagnosis
are an exciting venue for investigations as they promise bet-
ter diagnostic capabilities through objective means and a
multitude of chemicals to provide insight into the changes
indicative of the disease process. In particular, spec-
troscopy tools allow for the measurement of many molecular
species simultaneously. Spectroscopic techniques in imaging
form, notably using optics, further enable the analysis to
be conducted without perturbing the tissue [11]. In this
manuscript, we present the analysis of prostate tissue with
one such technique, Fourier transform infrared (FTIR) spec-
troscopic imaging.

2.3 Molecular Imaging
Infrared spectroscopy is a classical technique for measur-

ing the chemical composition of specimens. At specific fre-
quencies, the vibrational modes of molecules are resonant
with the frequency of infrared light. By monitoring all fre-
quencies in the region, a pattern of absorption can be cre-
ated. This pattern, or spectrum, is characteristic of the
chemical composition and is hypothesized to contain infor-
mation that will help determine the cell type and disease
state of the tissue. Recently, FTIR spectroscopy has been
developed in an imaging sense. Hence, The data are similar
to optical microscopy. The first difference is that no external
dyes are needed and the contrast in images can be directly
obtained from the chemical composition of the tissue. The
second is that each pixel in the visible image contains RGB
values but in IR imaging contains several thousand values
across a bandwidth (2000 − 14000nm) that is ∼ 40 times
larger than the visible spectrum (400− 700nm) [7].

3. DATA AND METHODOLOGY

3.1 Experimental Details
Prostate tissues were obtained from Cooperative Hu-

man Tissue Network for the tissue array research program
(TARP) laboratory. Using these tissues, tissue microarrays
were prepared using a Beecher automated tissue arrayer con-
taining a video overlap system and 0.6mm needles. Appro-
priate institutional review board and National Institutes of
Health (USA) guidelines for the protection of human sub-
jects were followed. 5µm sections of tissue were floated on an
infrared transmissive optical window for FTIR spectroscopic
imaging. Another 5µm section obtained from the same point

Figure 1: Conventional Staining and Automated
Recognition by Chemical Imaging. (A) Typical
H&E stained sample, in which structures are de-
duced from experience by a human. Highlights of
specific regions in the manner of H&E is possible
using FTIR imaging without stains. (B) Absorp-
tion at 1080 cm-1 commonly attributed to nucleic
acids and (C) to proteins of the stroma. The data
obtained is 3 dimensional (D) from which spectra
(E) or images at specific spectral features may be
plotted.

on the tissue specimen was observed using traditional mi-
croscopy for comparison. Expert pathologists determined
the tissue classification using these microscopy samples by
staining with H&E. Pathologists’ classification were used
as the ‘gold standard’ for comparison with the results from
the methods mentioned in this paper.

Tissues were analyzed using a Michelson interferometer
attached to a microscope (Perkin-Elmer Spotlight 300) in
transmission mode at a resolution of 4cm−1 The sample
was then raster scanned to obtain images of the entire spec-
imen. Typical specimen size is 600µm × 600µm with each
pixel being 6.25µm× 6.25µm on the sample plane. Spectra
are composed of 1, 641 sample points of the spectral range
4, 000 − 720cm−1. Data acquisition using these techniques
required 40 minutes per cylindrical core of the tissue mi-
croarray to yield a root mean square signal to noise ratio of
500 : 1. A typical array was composed of approximately 2.5
million pixels and required 40 GB of storage space.

The data obtained from FTIR imaging is three-
dimensional. The x− and y−dimensions locate pixels on
the tissue-sample plane. The z-dimension values compose
the IR spectrum for the corresponding pixel. The spectra
can be analyzed to determine what type of tissue (epithe-
lium, stroma, or muscle) the specimen is as well as whether
the tissue is malignant or benign. We have developed this
technology to provide data from tissue in minutes and em-
ploy a high-throughput sampling strategy using Tissue Mi-
croarrays (TMA) to obtain data.[19] Samples from multiple
tissues, from multiple patients and multiple clinical settings
are included in the data set to maximize the sampling of
natural variability and ensure the development of robust
analysis algorithms. These high-throughput imaging and
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microarray technologies combine to provide very large data
sets—see Figure 1. A typical single core consists of 300×300
pixels on the x− y plane with 1641 bands on the z-axis. A
tissue microarray consists of several hundred such cores and
analysis of such large datasets (typically, tens of GB) is com-
putationally expensive.

3.2 Data Format
Each pixel’s z-dimension contains a spectrum character-

istic of the chemical composition of that region of the speci-
men. Certain spectral quantities provide measures of chem-
istry. For example, the height of each feature is propor-
tional to its abundance, the peak position is associated with
the vibrational identity and peak shape often reflects the
multitude of environments around the molecule. Therefore,
differences in spectral characteristics can be used in classifi-
cation and these exact spectral features are termed ‘metrics’.
For example, the ratio of absorbance of the spectral peak at
1080cm−1 to the spectral peak at 1545cm−1 is commonly
used to distinguish epithelial from stromal cells. Trained
spectroscopists determine these metrics based upon exam-
ination of spectral patterns. Hence, the reduction of ull
spectra to descriptive metrics forms an intelligent dimen-
sionality reduction strategy. Genetic algorithms form de-
cision rules based upon these metrics to classify pixels by
tissue type. Furthermore, the transparency of the genetic
algorithms allows the scientist to correlate specific rules to
biological features (tissue type and cancer classification) via
metrics based upon spectral characteristics.

4. APPROACH
In this section we review related work on the GBML com-

munity, highlighting previous efforts to deal with large data
sets. We also present the motivation and techniques that
lead to the design of NAX. Special attention is paid to the
description of the hardware and software techniques used,
as well as to the design of a scalable GBML algorithm.

4.1 Related Background
Bernadó, Llorà & Garrell [6] presented a first empir-

ical comparison between genetics-based machine learning
techniques (GBML) and traditional machine learning ap-
proached. The authors reported that GBML techniques
were able to perform as well as traditional techniques. Later
on, Bacardit & Butz [3] repeated the analysis again obtain-
ing similar results. Most of the experiments presented on
both papers were conducted using publicly available data
sets provided by the University of California at Irvine repos-
itory [28]. Most of the data sets are defined over tens of
features and up to few thousands of records. However, a
key property of GBML approaches is its intrinsic massive
parallelism and scalability properties. Cantú-Paz [8] pre-
sented how efficient and accurate genetics algorithms could
be assembled, and Llorà [21] presented how such algorithms
can be efficiently used as machine learning and data mining
techniques.

GBML techniques require evaluating candidate solutions
against the original data set matching the candidate solu-
tions (e.g. rules, decision trees, prototypes) against all the
instances in the data set. Regardless of the GBML flavor
used, Llorà & Sastry [25] showed that as the problem grows,
the matching process governs the execution time. For small
data sets (teens of attributes and few thousands of records)

the matching process takes more than 85% of the overall
execution time marginalizing the contribution of the other
genetic operators. This number easily passes 99% when we
move to data sets with few hundreds of attributes and few
hundred thousands of records. Such results emphasize one
unique facet of GBML approaches: scalability via exploiting
massive parallelism. More than 99% of the time required is
spent on evaluated candidate solutions. Each solution evalu-
ation is independent of each other and, hence, it can be com-
puted in parallel. Moreover, the evaluation process can also
be parallelized further on large data sets by splitting and
distributing the data across the computational resources.
A detailed description of the parallelization alternatives of
GBML techniques can be found elsewhere [21].

Currently available off-the-shelf GBML methods and soft-
ware distributions [5, 20] do not usually target dealing
with very large data sets. Three different works need to
be mentioned here. Flockhart [12] proposed and imple-
mented GA-MINER, one of the earliest effort to create data
mining systems based on GBML systems that scale across
symmetric multi-processors and massively parallel multi-
processors. The work review different encoding and par-
allelization schemes and conducted proper scalability stud-
ies. Llorà [21] explored how fine-grained parallel genetic
algorithms could become efficient models for data mining.
Theoretical analysis of performance and scalability were de-
veloped and validated with proper simulations. Recently,
Llorà & Sastry [25] explored how current hardware can be
efficiently used to speed up the required matching of so-
lutions against the data set. These three approaches are
the basis of the incremental rule learning proposed in the
next section to approach very large data sets—such as the
prostate tissue classification one.

4.2 The Road to Tractability
NAX evolves, one at a time, maximally general and max-

imally accurate rules. Then, the covered instance are re-
moved and another rule is added to the previously stored
one, forming a decision list. This process continues until
no uncovered instances are left. Llorà, Sastry & Goldberg
[26] showed that maximally general and maximally accu-
rate rules [32] could also be evolved using Pittsburgh-style
learning classifier systems. Later, Llorà, Sastry & Goldberg
[27] showed that competent genetic algorithms [15] evolve
such rules quickly, reliably, and accurately. From these early
works, it can be inferred that approaching real-world prob-
lems, such as the prostate tissue classification and cancer
diagnosis, using GBML techniques may produce the desired
byproduct: proper scalability. We discuss next efficient im-
plementation techniques to deal with very large data sets
using NAX [24].

4.3 Exploiting the Hardware
Recently, multimedia and scientific applications have

pushed CPU manufactures to include support for vector
instruction sets again in their processors. Both applica-
tions areas require heavy calculations based on vector arith-
metic. Simple vector operations such as add or product are
repeated over and over. During 80s and 90s supercomput-
ers, such as Cray machines, were able to issue hardware
instructions that took care of basic vector operations. A
more constrained scheme, however, has made its way into
general-purpose processors thanks to the push of multime-
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Figure 2: This figure illustrates the parallel model implemented. Each processor is running an identical NAX
algorithm. They only differ in the portion of the population being evaluated. The population is treated
as collection of chunks where each processor evaluates its own assigned chunk sharing the fitness of these
individuals with the rest of processors. This approach minimizes communication cost.

dia and scientific applications. Main chip manufactures—
IBM, Intel, and AMD—have introduced vector instruction
sets—Altivec, SSE3, and 3DNow+—that allow performing
vector operations over packs of 128 bits by hardware. We
will focus on a subset of instructions that are able to deal
with floating point vectors. This subset of instructions to
implemented by hardware vector operations against groups
of four floating-point numbers. These instructions are the
basis of the fast rule matching mechanism proposed.
Our set of rules seek both to correctly classify the prostate

data set and provide biological insight into the rules. All the
attributes of the domain are real-value and the conditions of
the rules need to be able to express conditions in a n spaces.
We use a rule encoding similar to the one proposed by Wil-
son [33] and widely used in the GBML community. Rules
express the conjunction of tests across attributes. Each test
can be defined in multiple fashions, but without loss of gen-
erality, we pick a simple interval based one. A simple exam-
ple of and if-then rule, could be expressed as follows:

1.0 ≤ a0 ≤ 2.3 ∧ · · · ∧ 10.0 ≤ an ≤ 23→ c1 (1)

Where the condition is the conjunction of the different at-
tribute tests, as introduced earlier, and the condition is the
predicting class. We also allow a special condition—don’t

care—which always returns true to allow generalized to
rules evolve. The rule below illustrates an example of a
generalized rule.

1.0 ≤ a0 ≤ 2.3 ∧ −3.0 ≤ a3 ≤ 2 −→ c1 (2)

All attributes except a0 and a3 were marked as don’t care.
Matching a rule requires performing the individual tests

before the final and condition can be computed. Vector
instruction sets can help improve the performance of this
process by performing four tests at once. Actually, this pro-
cess can be regarded as four parallel running pipelines. The

process can be improved further by stopping the matching
process when any one test fails. The code implemented as-
sumes that the two vectors containing the upper and lower
bounds are provided and records are stored in a two dimen-
sional matrix. As also shown elsewhere [25], exploiting the
hardware available can speed between 3 and 3.5 times the
matching process[24].

4.4 Massive Parallelism
Since most of the time is spent on the evaluation of candi-

date rules when dealing with large data sets, our next goal
was to find a parallelization model that could take advantage
of this feature. Due to the embarrassing parallelism model
[17] for rule evaluation, we designed a coarse-grain parallel
model for distributing the evaluation load. Cantú-Paz [8]
proposed several schemes, showing the importance of the
trade off between computation time and time spent commu-
nicating. When designing the parallel model, we focused on
minimizing the communication cost. Usually, a feasible so-
lution could be a master/slave one—the computation time is
much larger than the communication one. However, GBML
approaches tend to use rather large populations, forcing us
to send rules to the evaluation slaves and collect the resulting
fitness. This scheme also increments sequential instructions
that cannot be parallelized, reducing the overall speedup of
the parallel implementation as a result of Ambdhals law [1].
To minimize communication cost, each processor runs

identical NAX algorithms—all seeded in the same manner,
and, hence performing the same genetic operations. They
only differ in the portion of the population being evaluated.
Thus, the population is treated as collection of chunks where
each processor evaluates its own assigned chunk, sharing the
fitness of the individuals in its chunk with the rest of proces-
sors. in this manner fitness can be encapsulated and broad-
casted, maximizing the occupation of the underlying pack-
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(a) Original labeled array (b) Automatically classified array

Figure 3: This figure on the left-hand side presents the original labeled data contained in the P80 array. The
figure on the right-hand side presents the reconstructed image based on the predictions issued by the the
rule set evolved by NAX. Green represent non cancerous tissue spots; red represent malignant tissue spots.

ing frames used by the network infrastructure. Moreover,
this approach also removes the need for sending the actual
rules back and forth between processors—as a master/slave
approach would require—thus, maintaining the communi-
cation to the bare minimum—namely, the fitness. Figure 2
presents a conceptual scheme of the parallel architecture of
NAX.

To implement the model presented in Figure 2, we used
C and the open message passing interface (openMPI) imple-
mentation [13]. Each processor computes which individuals
are assigned to it. Then it computes the fitness and, finally,
it broadcasts the computed fitness. The rest of the process
is unchanged. Except for the cooperative evaluation, all the
processors generate the same evolutionary trace.

4.5 Lists of Maximally General and
Maximally Accurate Rules

One main characteristic of the so-called Pittsburgh-style
learning classifier systems—a particular type of GBML—is
that the individuals encode a rule set [14, 22, 15]. Thus
evolutionary mechanisms directly recombine one rule set
against another one. For classification tasks of moderate
complexity, the rule sets are not large. For complex prob-
lems, however, the potential number of rules required to
ensure accurate classification may use prohibitively large
amounts of memory. The requirements increase even fur-
ther in the presence of noise [23]. Hence, this family of
GBML techniques works very well on moderate complexity
problems [6, 3], but needs to be modified for complex and
large data sets.

A sequential rule learning approach may alleviate the re-

quirements by evolving only one rule at a time, hence, reduc-
ing the memory requirements [9, 4]. This allows maintaining
relatively small memory footprints that makes feasible pro-
cessing large data sets. However, an incremental approach
to the construction of the rule set requires paying special
attention to the way rules are evolved. For each run of the
genetic algorithm, we would like to obtain a maximally gen-
eral and maximally accurate rule, that is, a rule that covers
the maximum number of examples without making mistakes
[32]. NAX (our proposed incremental rule learner) evolves
maximally general and maximally accurate rules by com-
puting the accuracy (α) and the error (ε) of a rule [26]. In a
Pittsburgh-style classifier, the accuracy may be computed as
the proportion of overall examples correctly classified, and
the error is the proportion of incorrect classifications issued.
Once the accuracy and error of a rule are known, the fitness
can be computed as follows.

f(r) = α(r) · ε(r)γ (3)

where γ is the error penalization coefficient. We have set γ
to 18 to guarantee that the evolutionary process will pro-
duce maximally general and maximally accurate solutions.
Further details may be found elsewhere [24]. The above
fitness measure favors rules with a good classification accu-
racy and a low error, or maximally general and maximally
accurate rules. By increasing γ, we can bias the search to-
wards correct rules. This is an important element because
assembling a rule set based on accurate rules guarantees the
overall performance of the assembled rule set. NAX’s efficient
implementation of the evolutionary process is based on the
techniques described using hardware acceleration—section
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4.3—and coarse-grain parallelism—section 4.4. The genetic
algorithm used was a modified version of the simple genetic
algorithm [14] using tournament selection (s = 4), one point
crossover, and mutation based on generating new random
boundary elements.

5. RESULTS
NAX has shown competitiveness in evolving rule sets that

perform as accurately as the ones evolved by other genetics-
based machine learning and non-evolutionary machine learn-
ing techniques. However, NAXs key element is the ability to
deal with large data sets. In this paper, we present prelim-
inary results towards evolving a model capable of correctly
classifying pixels as cancerous or non-cancerous. The origi-
nal array of spots is presented in figure 3(a). Each spot cor-
responds to a different biopsy sample from a patient. The
pixels present in each spot correspond to the epithelial tis-
sue of the biopsy, we supress all other tissue types with
a prior classification filter based on Bayesian Likelihood.[7]
Each pixel of a spot is defined by 93 different metrics ex-
tracted from the processed infrared spectra—as described
in section 3. Finally, each pixel in the array was labeled
with the diagnostic class provided by a human pathologist.
Figure 3(a) presents in green all the non-cancerous pixels
while red identifies cancerous ones.

Our goal with the initial experiments here was to demon-
strate the usefulness of the proposed approach to computer-
aided diagnosis. Our current experimental efforts are plan-
ning mass experimentation on several tissue arrays using the
Tungsten cluster at the National Center for Supercomput-
ing Applications. These initial experiments were conducted
on a dual core Intel Xeon 2.8GHz Linux computer with 1Gb
of RAM. NAX was run using both processors. The training
time to obtain a model describing all the data took less than
ten hours—indicating that very competitive training times
can be achieved by just using more processors. The ob-
tained model was able to correctly classify > 99.99% of the
training pixels correctly. However, these results do not illus-
trate the generalization capabilities of the models evolved
by NAX. Hence, we ran a series of ten-fold stratified cross-
validation runs [34] to measure generalization and test per-
formance of the evolved models. It is important to mention
that tools such as WEKA [34] and other off-the-shelf data
miners were not able to handle the volume of data required
to evolve a model— either due to the large memory foot-
print required or by not being able to provide an accurate
model in a feasible time period. The results of the cross-
validation experiments using NAX correctly classified 87.34%
of validation pixels. Such results are more than encouraging,
because they show a human-competitive computer-aided di-
agnosis system is possible. Another interesting property is
that a few rules classify a large number of pixels—see Fig-
ure 4. Such a result is interesting for the interpretability
of the model, since a small number of rules have a great
expressiveness, and hence may provide valuable biological
insight. Most importantly, they allow us to classify tissue
accurately. Subsequent to this pixel level classification, each
circular spot in figure 3 was assigned as malignant or benign
based on the majority of pixels of he class in the sample. We
were able to accurately classify 68 of 69 malignant spots and
70 of 71 benign spots in this manner. While human accu-
racy is difficult to quantify due to the variation between
persons,a generally accepted anecdotal figure is about 5%
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Figure 4: Performance of the evolved model as a
function of the number of rules used.

error rates. The preliminary results we demonstrate here
could potentially reduce that five-fold to about 1%, provid-
ing a solution to this real-world problem by a combination
of novel spectroscopy and advanced machine learning.

6. CONCLUSION
In this manuscript, we present the application of advanced

genetics-based machine learning algorithms to a real-world
problem of large scope, namely, the diagnosis of prostate
cancer. As opposed to subjective human recognition of dis-
ease in tissue using light microscopy, we employed a chemical
microscopy approach that required extensive computation
but provided a decision without human input. Our devel-
opment of a learning algorithm based on maximally general
and maximally accurate rules was scalable to very large data
sets and parallelized to provide learning and classification
speed advantages. The algorithm was able to classify a ma-
jority of pixels correctly, resulting in overall error rates that
were comparable to human examination, the current gold
standard of care.
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[26] X. Llorà, K. Sastry, and D. Goldberg. The compact
classifier system: Motivation, analysis and first results. In
Proceedings of the Congress on Evolutionary Computation,
volume 1, pages 596–603. IEEE press, 2005. (Also as
IlliGAL TR No. 2005019 ).

[27] X. Llorà, K. Sastry, D. Goldberg, and L. de la Ossa. The
χ-ary extended compact classifier system: Linkage learning
in Pittsburgh LCS. In Advances at the frontier of Learning
Classifier Systems (Volume II), page in preparation.
Springer, 2007. IlliGAL report no. 2006015.

[28] C. J. Merz and P. M. Murphy. UCI repository for machine
learning data-bases, 1998.
http://www.ics.uci.edu/∼mlearn/MLRepository. html.

[29] W. Murphy, I. Rivera-Ramirez, L. Luciani, and
Z. Wajsman. Second opinion of anatomical pathology: A
complex issue not easily reduced to matters of right and
wrong. J. Urol, 165:1957–1959, 2001.

[30] J. Nguyen, D. Schultz, A. Renshaw, R. Vollmer, W. Welch,
K. Cote, and A. D’Amico. The impact of pathology review
on treatment recommendations for patients with
adenocarcinoma of the prostate. Urologic Oncology:
Seminars and Original Investigations, 22:295–299, 2004.

[31] A. C. Society. How Many Men Get Prostate Cancer?, 2006.
http://www.cancer.org/docroot/CRI/content/CRI 2
2 1X How many men get prostate cancer 36.asp?
rnav=cri.

[32] S. Wilson. Classifier fitness based on accuracy.
Evolutionary Computation, 3(2):149–175, 1995.

[33] S. Wilson. Get real! XCS with continuous-valued inputs.
Lecture Notes in Computer Science, 1813:209–219, 2000.

[34] I. H. Witten and E. Frank. Data Mining. Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann, San Francisco, CA., 2000.

2105



 1

Fourier transform infrared spectroscopic imaging: the 
emerging evolution from a microscopy tool to a cancer 

imaging modality  
 

Gokulakrishnan Srinivasan and Rohit Bhargava 

Department of Bioengineering and Beckman Institute for Advanced Science and Technology, 
University of Illinois at Urbana-Champaign, Urbana, Il 61801 
 
 
 
 
INTRODUCTION 
The integration of FTIR spectroscopy with m icroscopy facilitates recording of spatially resolved 
spectral information, allowing the examination of both the structure and chemical composition of 
a heterogeneous m aterial. W hile the fi rst such attem pt was over 50 years ago, 1 pr esent da y 
instrumentation largely evolved from the point microscopy detection of interferometric signals 
that developed in the m id-80s.2 The successful coupling of interf erometry for spectra l recording 
and m icroscopy for spatial specificity in these sy stems spurred interest in a variety of fields, 
including the m aterials,3 forensic 4 and biom edical arenas .5, 6  Point m icroscopy utilizes an 
aperture to restrict radiation incident on a sample and permits the recording of spatially localized 
data. The prim ary utilities of this form  of mi croscopy lay in acquiring  accurate spectra from 
small-size s amples, in determ ining the ch emical s tructure and com position of  he terogeneous 
phases at specified points and in building a two-dimensional map of the chemical composition of 
samples. Since th e data were acq uired at a single point, com position m aps could only be 
acquired by rastering the sam ple. Hence, the ap proach was  termed mapping or point m apping 
and involved as many spectral scans as the number of pixels in the map.  
 
The use of focal plane array (FPA) detecto rs for m icroscopy7, 8 allowed for the acquisition of 
large f ields of  view in a sing le interf erogram acquis ition sweep. The  m ultichannel de tection 
enabled by array d etectors was sim ilar to the c oncept of recording im ages with ch arge coupled 
devices in optical microscopy; hence, the approach was termed imaging.  The unique advantages 
of observing an entir e f ield of  view rapidly p ermitted applications that allowed monitoring of 
dynamic processes, spatially re solved spectroscopy of large samples or m any sam ples and 
enhancement of spatial resolution due to retention of radiation throughput that  was lost in point 
microscopy system s due  to diffraction at the aper ture. Just as for the previous generation of  
microspectroscopy instruments, applications  rapidly followed in the materials 9 and biomedical 
fields.10-14 Research a ctivity in this ar ea c an be  div ided into three m ajor catego ries: 
instrumentation and sampling methodologies, applications and data extraction algorithms. In this 
manuscript, we review key advances and recent developm ents in the context of biom edical 
imaging. We do not provide comprehensive overview but selectively highlight certain features of 
importance for cancer-related imaging. Last, we focus on one emerging application area, namely 
tissue h istopathology, and provide illus trative ex amples from  our laboratory in dicating the 
integrative nature of the three in developing protocols. 
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INSTRUMENTATION, SAMPLING AND DATA HANDLING TECHNIQUES 
 
Instrumentation 
Since im aging is largely based on new detector s with unique performance characteristics for  
spectroscopy, efforts in instrumentation have largely focused on the efficient integration of FPA 
detectors with inte rferometers. D ue to the size, d ifferent electro nics and unique noise 
characteristics of FPAs, an optim ization of data acquisition methodology was a prim ary activity 
in th e initial tim e period of av ailability of instrum entation. The first rational attem pt at 
understanding performance and optimizing the data acquisition process revealed the unique noise 
characteristics that limited the first generation of array detectors.15  Briefly, this paper established 
that the general behavior of FTIR spectrom eters is generally held for im aging spectrometers but 
the detector may serve to lim it the a pplicability of established practices in IR spectrom etry. An 
explicit op timization of  the data acquisition time revealed severa l strategies for speeding data 
collection for both  the step s can and rapid  scan mode.16 The first exam ple of rap id-scan FTIR 
imaging17was conducted using asynchronous sam pling, followed by descriptions of 
synchronously triggered sampling and generalized methodologies18 that could use any detector at 
any m odulation frequen cy using  po st-acquisition t echniques. Advances  in detector techno logy 
have now allowed for rapid scan im aging to b ecome routine for larg e FPA dete ctors, while 
innovative new detectors have be en developed (first by P erkinElmer) that trade off a large 
multichannel dete ction advantage o f arrays ag ainst the sp eed of  sm aller dete ctor array s to  
provide a very high performance instrument.19  
 
At present, rapid scan im aging has becom e th e m ode of choice for most m anufacturers and 
detector sizes have proliferated from the classic 64 x 64 format to range from 16 x 1 to 256 x 256 
formats (see figure 1). While the sm aller detectors require rastering to im age most samples and 
can provide data of higher quality more efficien tly, larger detectors are generally employed for  
their large field of view  and are useful for st udying dynamics. It is intere sting to note that the 
linear array approach has an entirely different  detector technology and considerations for 
electronics compared to the two-dimensional FPAs. While it is beyond the scope of this article to 
discuss the differences, the use of “macro” electronics that are offset from the actual detector and 
AC mode of operation are the two major differences  that affect data. Consequently, comparisons 
in performance are slightly more complicated. On the large format FPA front, the latest advance 
seems to be a detector developed jointly by NIH and FBI personnel in 2005. The detector can 
operate at 16 KHz for 128 x 128 pixel snaps ( Bhargava, Levin, Perlman and Bartick, 
Unpublished). This is in  the speed regim e of single elem ent detectors. Hence, the developm ent 
can truly lead to the acquisition of an entire im age in a single interferometer mirror sweep in the 
same time that it tak es to acquir e 1 spectrum  with a benchtop IR spectrom eter. To handle the 
large data output, we designed on-chip co-add ition and various correcti ons. W e believe that 
similar detector system s, operating in a fast re gime and integrating proc essing with electronics, 
are likely to be the technology of tomorrow for FTIR imaging.  
 
The wide variety of instrumentation makes comparisons difficult, especially when manufacturers 
provide different specifications for instrum ents. We have proposed a comparison index for these 
systems based on perform ance per unit tim e. R ecognizing that spectra l resolution, tim e for  
scanning, data processing (e.g. apodization) and resultant im age size are the prim ary 
determinants of performance, a measure can be fo rmulated to describe perform ance. For a fixed 
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data process ing scheme (filtering, apodization etc.), th e time taken to acquire 1 m egapixels of 
data for 8 cm -1 resolution at a signal to noise rati o (SNR) of 1000:1 is found to be a good 
measure. We would lik e to  em phasize that th e performance is the perf ormance of the en tire 
imaging spectrometer and not due to the detector alone. Efficient coupling of the interferom eter 
and optimization of the optical train will both affect performance as will the correct setup of the 
experiment. This index also does not consider the ease of use or “user-friendliness” of systems. 
These are other important considerations and must also be considered by organizations interested 
in FTIR imaging technology. The issue of time resolution for acquiring data is one such concern. 
The first approach is the kinetics approach in which the interferometer is repeatedly scanned and 
imaging data sets are se quentially acquired as quickly as possible. Clearly, rapid scan is favored 
and the availability of fast readout detectors is  m andatory for fast e vents. The lim it to this  
method is t he readout speed of the array (fram es in m s) as interferom eters can generally be 
scanned fast enough and the integr ation time required is typically in the tens of m icroseconds 
regime. An exam ple is shown in figure 2 to  dem onstrate applicability in  m onitoring 
polymerization kinetics. 
 
Though rapid scan im aging has disp laced th e step -scan m ode in m ost new instrum entation, a 
very im portant application of  the step-s can approach rem ains in tim e-resolved im aging.20-22 
Briefly, the method is applicable to systems that can be repeatedly and reproducibly excited and 
relax back to their grou nd state. At each m irror re tardation, the FPA is repeated ly triggered to 
acquire data. At the sam e time, the sam ple is  excited once and the dyna mics of excitation and 
decay of the excited state are m onitored. Mirror stepping, data acquisition and sample excitation 
are all precisely synchronized. Figure 3 dem onstrates the synchronizatio n. Time resolved FTIR 
imaging was first demonstrated using polymer-liquid crystal composites. Examples of the types 
of data that m ay be obta ined are also shown in figure 3. Last, the technology was extended to 
provide significantly higher tim e resolution than could be obtained by the electronics of the 
detector alone. 23 W hile FPA detectors are slo w com pared to single point detectors used in 
conventional FTIR spectroscopy, the cause is the need to read out data  from several thousand 
pixels and not from  the need to  r ecord d ata f rom all p ixels. Hence, by staggering the data 
recording tim e over m ultiple sam ple excitation s, higher te mporal reso lution m ay be obtain ed. 
With current detectors, a time resolution of ~30 μs should be possible. 
 
Sampling 
Interferometer Issues 
Among the sampling configurations, the first clearly was the optim ization of the m icroscope for 
transmission and sampling. Unexpected issues were  encountered in initial devices. For exam ple, 
the detector for the m ono-wavelength laser provides a fringe pattern to allow for tracking mirror 
retardation. The signal from this laser is measured by a small detector located at the center of the 
beamsplitter (to minimize errors) with an arm that ex tends out to  the edge. When imaged onto 
the FPA, th is laser detector leads to a pattern  with low s ignal levels. Hence, the field of view is 
not uniform, leading in turn, to lower signal to noise ratios (SNR) for the affected region. Many 
manufacturers, hence, have re-designed th eir spectrom eters for im aging us e. Another 
manufacturer has avoided this issue by aligning their microscope to sample only the unaffected 
part of the beam . Since the non-im aging sp ectrometer did not require im aging and the 
interferometer was simply coupled to a microscope, these issues were slowly addressed.  
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Sampling Modes: Transmission, Transmission-reflection, Reflection and Attenuated Total 
Reflection 
A vast m ajority of studies re port the use of transm ission sampling. Other major developments 
have been the incorporation of reflective slides, 24, 25, 26 the integration of ATR elements for both 
microscopy and large sam ple im aging, integra tion of A TR technology with various sam ple 
forming accessories, gra zing angle a ccessories a nd m ulti-sample access ories. Refle ctive s lides 
actually result in reflection-absorp tion that allows the beam  to sample the signal twice, though 
with a different phase and lower signal due to half the objective being used for transmitting light 
to the sam ple and the other ha lf being used to acquire light fr om it. A detailed  theore tical 
understanding of the confounding e ffects has not been published,  though an example of the 
possible data correction algorithm  has been repo rted. ATR imaging is also highly prevalent and 
available as attachments to conventional imaging microscopes, using the sam ple chamber of the 
spectrometer and using it as a solid immersion lens.27 We discuss examples of ATR imaging next.  
 
ATR 
In the Attenuated Total Reflection (ATR) mode, an IR tr ansmitting crystal of precise geometry 
of high refractive index is em ployed as a solid im mersion lens. Light is totally reflected at the 
sample-crystal in terface and an ev anescent fiel d pene trates into the sam ple to provide th e 
interaction to be observed usi ng th e tr aveling wave. Since  the s ample inte raction is large ly 
determined by the lens and not by the sam ple, pr ecise and  controlled de pth of interaction is 
available. The sample, however, needs to be in good contact to allow effi cient coupling with the 
evanescent wave. ATR im aging allows users to work  with relatively thick sam ple sections that 
do not require m uch sa mple preparation expertis e or tim e. The first use of ATR i maging was 
reported by Digilab in analyzing large samples that were not sectioned, as for transmission. ATR 
imaging microscopy was dem onstrated soon after, 28 followed by other novel accessories. There 
were other unpublished attem pts that one of th e authors is aware of: In 1999, f or exam ple, 
Snively et al. (personal communication, unpublished) de monstrated im aging data from  a n 
inverted ZnSe prism  acting as a single bounce AT R. Soon after, we employed a Ge crystal but 
found the signal to nois e ratio of the im aging system of that tim e to be very poor. In addition to 
the ease of sam ple preparation, another m ajor advantage of ATR i maging lies in improving the 
limited spatial resolution of transmission microscopy.29 The authors assessed that they were able 
to achieve a spatial resolution of 1μm with a Ge internal reflection element  
 
Both micro and m acro sampling has been extens ively utilized.30 A spatial reso lution of 3-4 μm 
using a Ge ATR element was claimed based on more stringent criteria than used previously.29 Ge, 
ZnSe and diam ond30 crysta ls hav e been the  m aterials of choice for m ost applications. In 
particular, Kazarian and co-workers  have extensively employed ATR-FTIR imaging for various 
applications including drug release; polym er/drug formulations and biological system s.30-33 The 
same group has provided other innovative sampling configurations  f or specific experim ents, 
including a compaction cell that allows compaction of a tablet directly on a diamond crystal with 
a subsequent im aging.34 The changes in the distribution of  a tablet consisting of hydroxypropyl 
methylcellulose (HPMC) and caffeine upon contact with water were studied . In this m anner,  
conventional dissolution m easurements were combin ed  with a concurrent assessm ent of the 
compacted tablet structure.35 As opposed to the organic solv ent-polymer dissolution experiments 
reported ea rlier, th is co nfiguration allows for easy handling and im aging of water-induced 
dissolution. The setup can also provide high throughput analysis  of m aterials under controlled 
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environments.36 Microdroplet sam ple deposition system  was combined with a hum idity control 
device to im age about 1 00 samples deposited o n the su rface of an ATR crystal simultaneously. 
The approach was extended to 165 sam ples and we re reported to study para llel dissolution of  
formulations.37  
 
Multi-sample Accessories and Sampling 
While imaging the structure of m aterials has been the prim ary focus of FTIR im aging, a number 
of applications utilize the imaging of multiple samples. The first examples were from the field of 
catalyst res earch.38 Typically 2-12 sam ples could be im aged and  analyzed  un der the s ame 
conditions. High throughput validation or m ethod development was the prim ary goal in these 
studies. Tissue m icroarrays (TMAs) provide th e sam e funct ion in biom edical im aging. TMAs 
consist of tens to hundreds of samples arranged on a grid form at. This allows for easy 
visualization of the structure and classification accuracy across many patients and the statistical 
measures needed for rig orous validation. The p rimary utility  of the m ultisample image in this  
case is to provide wide-ranging sam pling and convenient archiving or  data storage, not 
necessarily to provide a higher throughput. 14, 39 With the appropriate geom etry, many sam ples 
can be im aged to understand their dynam ics in a concerted fashion. To accommodate the 
samples, the field of view is often expanded. This results in a lowe r spatial resolution. For 
imaging multip le samples, thoug h, the spatial reso lution can be conserved but tem poral 
resolution is restricted. 
 
BIOMEDICAL APPLICATIONS 
Bone 
Bone has been the tiss ue studied most by FTIR i maging. Bone composition changes with 
development, environment, genetics, health and disease, is amenable to imaging at the resolution 
length scale of i maging and has a lim ited chemical composition that is characterized using IR 
spectroscopy.40  For almost 30 ye ars until the late 1980s, 41 bone structure was studied using 
single element detectors in FTIR spectrom eters. Typically, ground bone was analyzed using the 
conventional KBr pellet m ethod. This pellet method obviously destroye d local structures, 
precluding an understanding of molecular variat ions due to disease. Nevertheless, it was 
sensitive to chemical composition and did provide useful information. With microscopy and now 
with FTIR imaging, sample integrity is m aintained and ability to acquire spectral infor mation at 
anatomically discr ete sites is possible. From  the resu lting spectra, se veral im portant pie ces o f 
information can be obtained. For example, a) relative mixture composition of hydroxyapatite and 
collagen by calculating the ratio of the integ rated ν1, ν3 phosphate and amide 1 (mineral: matrix 
ratio), b) carbonate sub stitution by calcu lating th e ratio of carbonate/p hosphate ratio from  the 
ratio of integrated ν2 carbonate peak (850-900 cm-1) and ν1, ν3 phosphate contour (900-1200 cm -

1), c) crystallinity of the mineral phase from the ratio of 1030/1020 peak intensity.42 These assays 
illustrate several quantities important to bone res earch and disease diagnoses that can be read ily 
performed. Though a c omplete discussion is available in the reference 40, 42- 44, we pick three 
illustrative examples demonstrating the applicability in disease and in research. 
 
IR spectral analys is of healthy and  dis ease bo ne has been  reviewed b y Boskey et al.42 with  
particular emphasis on  changes  in  bones compos ition, ph ysiochemical status  of m ineral and  
matrix of bones during osteoporosis and the e ffect of therapeutics  on these param eters. 
Osteoporosis or porous bone is a bone disease ch aracterized by low bone  mass and structural 
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deterioration of bone tissue. This  leads to bon e fragility  and an increased sus ceptibility to  
fractures, es pecially at the hip, s pine and wris t. FTIR im ages of t he m ineral content and 
crystallinity in trabecular bone of norm al and osteoporotic sam ples clearly depicts that the 
trabeculae in diseased tissue are thinner. Moreover, the mineral/matrix ratio in osteoporotic bone 
is significan tly reduced,  whereas crystallin ity is increased.  These advances dem onstrate the 
potential and applicability of the technique to characterize diseased tissue. Bone mineral changes 
between a healthy m ouse model and Fabry diseased  (lipid s torage disease) mouse model were 
also an alyzed in which  globotriaosyl ceramide (Gb3) accu mulates in tissues. 43 No significant 
differences in the bone mineral properties were observed between Fabry and healthy mice, which 
might reflect the sim ilar lack of m ajor bone phe notype in hum an patients with Fabry’s disease 
and m ay also be related to the developm ental age of the se anim als. The study provides an 
example of the applicability to laboratory research. 
 
Calcified tissue in biopsies from adults with osteomalica has been studied.44 Osteomalacia results 
in a deficiency of the primary mineralization of the matrix, leading to an accumulation of osteoid 
tissue and reduction in bone’s m echanical strength. A decrease in trabecu lar bone content with 
absence of changes in m atrix or m ineral is no ticed when ilia c crest biopsies of individuals with 
vitamin D deficient osteom alacia are com pared to normal controls. These findings support the 
assumption that, in osteomalacia, the quality of the organic matrix and of mineral in the centre of 
the bone does not vary, where as less-than optimal mineralization occurs at the bone surface.  
 
Brain 
Monkey brain tissues were one am ong the firs t tissues exam ined by using FTIR im aging.12 
Lately, the applications have experienced a rena issance with app lications to the h uman brain . 
Grossly, brain can be divided into two types of  matter, na mely gray m atter and white m atter. 
These names derive simply from  their appearance to the naked eye. Gray matter consists of cell 
bodies of nerve cells while white matter consists of th e long filaments that extend from the cell 
bodies - th e "telephone wires" of th e neuronal network, transmitting the el ectrical signals that  
carry the messages between neuro ns. A visualizat ion of the two com partments formed the first  
demonstrative application of FTIR microspectroscopic imaging. 
 
FTIR im aging and m ultivariate s tatistical ana lyses (unsuper vised hie rarchical clus ter analys is) 
were applied alongwith histology and immunohistochem istry in an anim al m odel having 
Glioblastoma m ultiform (GBM). 45 GBM is a highly m alignant human brain tumor that is 
considered to be the one of  the most difficult to treat effectively.46 Authors were able to identify 
the tumor growth as chemically distinct from the surrounding brain tissue. The distribution of the 
absorbance of am ide I in im ages highlighted high concentrations of proteins in the corpus 
callosum and regions of basal ganglia for healt hy brain. Low absorbance was generally observed 
in the cortex, whilst a h igher absorbance was obser ved at outer layer of the cortex. For a GBM  
bearing animal, the highest absorbance was found at the tumor site. In contrast to healthy brain, a 
lower absorbance of the am ide I band was observe d at the corpus callo sum when com pared to 
that in the cortex and the caudoputam en. The  study demonstrates a powerful application of 
simple analyses tha t can indicate disease. I t also highlights the m ultitude of spatial and spectra l 
clues that can be use to diagnose or understand the disease. 
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In addition to prim ary disease sites, diagnoses me tastatic spread from  various cancers was also 
reported.47 A m ultivariate cla ssification algo rithm wa s used to disting uish norm al tissue f rom 
brain metastases successfully and to  classify the primary tumor of brain m etastases from renal 
cell carcinom a, lung cancer, colorectal cancer, a nd breast cancer. In the cluster averaged IR 
spectra fro m a brain m etastasis o f renal cell carcinoma, the m ain spectral d ifferences were  
observed for the three tissue regions in the region from 950 to 1200 cm-1 and from 1500 to 1700 
cm-1. Band intensities of 1026, 1080 and 1153 cm -1 are at m aximum in the sp ectrum of black 
cluster and minimum in the spectrum of light gray  cluster. The comparisons of the IR spectra of 
normal brain tissue and brain m etastases of lung, breast cancer and colorectal cancer were made 
and found that these spectra do not contain spectral features at 1026, 1080 and 1153 cm-1 that are 
indicative of the presence of glycogen. It was concluded that these afore mentioned spectral 
features would be cons idered as a b iomarkers for brain m etastases of the prim ary tumor renal  
cell carcinoma. In addition to these three bands, the spectral differences were observed for the 
bands at 1542 and 1655 cm-1, owing to the presence of amide I and amide II vibrations. It is clear 
from the results that th e m aximum protein co ncentrations correlate with m inimum glycogen 
concentrations in the IR im age. However, the p rotein and glycogen properti es evident in the IR 
image are not visible in the unstained cryosec tion. It is noteworthy th at sim ple univariate 
analyses provide the end clues to the disease. Even on application of multivariate techniques, the 
most prominent and easy to understand biom arkers of disease are those defined by conventional 
spectroscopic knowledge as being important for identification, namely, features and their  
absorption. 
 
In the clus ter–averaged IR spect ra of white m atter from the three norm al brain tissu e samples, 
intense bands at 1060, 1233, 1466, 1735, 2850 and 2920 cm -1 due to the high lip id concentration 
in white m atter were no ticed. Intensity changes were due to  inter-sample and patien t to patien t 
variances of the same tissue type. In addition, cluster-averaged IR spectra of a brain metastasis of 
(renal cell carcinom a, breast cance r, lung cancer, and colorectal  cancer) and gray m atter of 
normal brain tissue were compared after baseline subtraction and then normalization with respect 
to the am ide I band. S ignificant differences in  the band p ositions, in tensities and  area were 
observed between these sam ples which were then used as potential candidates to differentiate 
normal and tumor tissue and for the identification of the primary tumor. Here, authors used only 
eight spectroscopic features for LDA model. They were able to classify correctly for three out of 
three normal brain tissue and 16 out of 17 brain m etastases samples. Hence, though univariate  
analyses and features provide useful recognitio n, their in tegration into a multivariate algorithm 
provides for automated recognition of clinical importance. It may also be argued, however, that it 
is questionable whether the sm all numbers of samples e mployed represent a true perform ance 
condition for the algorithm  or are sim ply reflective of bias arising from th e clinical setting or 
sample sources. The advent of faster imaging approaches and advanced sampling techniques like 
TMAs can allow for larger numbers of samples to be analyzed and such doubts about the validity 
of studies be put to rest. 
 
Similarly, tissues from  rat Gliom a models have been characterized  an d used to d iscriminate 
healthy from tum or  sections using pr incipal component analysis and K- means.48 Pseudo color 
maps reported were con structed on 8-means clusters, where each clus ter is cons isting of si milar 
spectra. The lipids/protein ratio (1466/1452 cm -1) was found to be decreased and the band at 
1740 cm -1 becam e weak and alm ost vanish ed as com pared to the corresponding b ands in  the 
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healthy tissue. In addition to the above m entioned differences, significa nt differences between 
healthy and tumor affected tissue were observed in the finger print region. In the healthy tissue, a 
weak band at 1172 c m-1, representing the stretching m ode of C-O groups were observed. 
Reduced intensity as well as shifting of peak to 1190 cm -1 was noted for tum or and surrounding 
tumor spectra. Tum or ti ssue was observed to co ntain a decreased intens ity of the asymmetric 
phosphate stretching and C-C stre tching and an increased intens ity of the symmetric phosphate 
stretching when com pared to th e healthy tissue. Variations in  lipid  features (m ethylene and 
methyl stretching) were also observed. The m ajor point here is that the entire spectrum contains 
numerous points of difference betw een healthy and diseased tissue. Results were found to be in 
agreement with those obtained from pathology. 49 The structural difference around the tum or was 
noted, which could be ascribed to the peritumoral aedoma observed during glioma development. 
An increase in the perm eability of the blood-brain barrier and aggravation in the m ass effect of 
tumors are the rationale for aedom a, which is  associated with brain tum or. Funda mental 
understanding can be enhanced by a com plete understanding of the spectral differences but 
prediction algorithms need only a few measures of the spectral data to be effective.  
 
 
Breast  
Two major applications in breast tissue deal with complications arising from artificial alterations 
of the tissue and the evolution of cancer. W hile breast augm entation by im plants is highly 
prevalent, its com plications have been di scussed m ore recently. On the o ther hand, the 
conventional m ethod for diagnosing and evaluati ng the prediction of breast disease is a  
histopathological exam ination of biopsy sam ples, a practice that has som e shortcom ings. For  
breast implants, a major question is the containment of filling material as its leakage can lead to 
potential diseases. The silicone gel in im plants is very different chem ically from  s urrounding 
tissue and its presence in tissue sections indicates a definite leak f rom the im plant either due to  
material failure as a consequenc e of aging. A spectroscopic im age50 generated from  the  
asymmetric stretching modes of the m ethyl groups attached to silicon in the gel allowed for the 
examination of  silicone  in the tissu e. Due to th e unique ch emical contr ast em ployed in FTIR 
imaging, such presence can be discerned within th e tissue, even when  optical m icroscopy 
contrast was poor. An e xample of presence of Dacron (a comm ercial na me for poly(ethylene 
terepthalate)) f ixative p atch th reads in the brea st tis sues was shown. 50 It was noted that th e 
technique is capable of rapid analysis within minutes of sectioning the tissue.  
 
A few reports have also applied F TIR im aging for diagnosing breast diseases. B reast tum or 
tissues were characterized by both FTIR I maging and point m apping techniques and advantages  
over the other were evaluated.51 Similar comparisons had previously been reported for polymeric 
materials, analyzing both static and dyna mic sam ples.52 Com parison im ages f rom the two 
methods, imaging data provided a clearer structure in the tumor area than the data obtained from 
point mapping. Since breast tum or cells are ~10 µm  in diam eter, point m apping data (with an 
aperture of 30 µm ) would always  contain s the spectrum  of tum or cells as well as  from  the 
contributions of other com ponents surrounding th e cells. The study clearly  indicated that the 
conventional point mapping approach can fail to detect a sm all number of malignant cells due to 
its poor resolution capabilities. N evertheless, th e contam ination problem , i.e., the spectral 
contributions of other com ponents surrounding th e cell is found to be less severe in case of 
ductal carcinoma in situ (DCIS). The study illustrates the need for matching the appropriate level 
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of spatia l r esolution to  the task. W hile the 30 μm resolution m ay be appropriate for som e 
applications, it was clearly insufficient for detecting smaller numbers of cells. 
 
Artificial network and K-means cluster analysis have also been employed for the classification of 
FTIR imaging data from nor mal and malignant immortalized human breast c ell lines.53 Normal 
cells, carcinoma cells, mixed normal and carcinoma cells were used. Dif ferences in the spe ctral 
backgrounds between the training and test  data were observed, which confounds the 
reproducibility of recorded spect ra and, thus, causes the classifi er to fail. Using rejection 
thresholds in the application of the ANN classifi er was reported to be helpful in identifying 
doubtful classifications. Another study54 reported imaging fibroadenoma, a benign breast tum or. 
Data were evaluated using unsupe rvised cluster analysis by ut ilizing two spec tral r egions, 
namely 1000-1500 and 2800-3000 cm -1. The  distribution of four m ain tissue com ponents- 
epithelium, retro nuclear basal epithelial regions, mantle zone and distant connective tissue were 
visualized. The spectral features from  each co mponent were d iscussed in d etail. Furtherm ore, 
comparing epithelia from  fibroaedenom a and DC IS, t he authors determ ined that subtle 
distinctions between the IR characteristics of  these two are reproducib le. The initial study used  
tissue from a single patient. 
 
The work was recen tly extended 55 to diagnose benign and m alignant lesions from  22 patients. 
The study utilized only spectra from well-defined tum or areas ow ing to the heterogeneity of 
tissues. Based on the cluster analysis and on comp arison with the H & E i mages, four classes of 
distinct b reast tissue s pectra were identified - fibroadenom a (FA), ductal carcinom a in situ 
(DCIS), connective tissue and adipose tissue. Fu rther, ANNs were developed as an autom ated 
classifier to differentiate the four classes. All spectra of connective tissue and adipose tissue were 
classified co rrectly, where the sp ectral featu res are clearly different fr om each other and from 
tumors as well. Differentiating fibroadenoma from DCIS was more difficult. A toplevel/sublevel 
strategy was further applied and was able to di fferentiate 93% between fibroadenom a and DCIS 
spectra by employing principal component analysis. From the mean spectra, it was found that the 
DCIS has more lip id content than th e fibroadenoma. Invasive ductal carcinom a (IDC) could not 
be well characterized due to contamination from surrounding cells, illustrating the limited spatial 
resolution.  
 
Cervical Cancer 
The cervix is the lower part of the uterus (wom b) in which two m ajor types of cancers occur: 
squamous c ell carcinom a and adenocarcinoma. About 80% to 90% of cervical cancers are  
squamous cell carcinomas, and the remaining 10% to 20% are adenocarcinomas. Less commonly, 
cervical can cers h ave features  of bo th squamous cell carcin omas and adenocarcino mas. These 
are called adenosquam ous carcinomas or m ixed carcinomas. Typically, the Papanicolaou (Pap) 
test checks for changes  in the ex foliated ce lls of  cervi x to find the presence of any infection, 
abnormal (unhealthy) cervical cells, or cervical cancer. FTIR spectroscopy, m icro spectroscopy 
and FTIR im aging have been widely utilized to study cervical cancer and to perform  the sa me 
function using computer analyses of spectra. 26, 56-60 While the first reports in diagnosing cervical 
cancer are now generally not regarded as leading to solutions, 56 two groups have provided 
definitive proof of the potential of IR  spectroscopy by careful m icroscopy studies. 26, 57, 45, 59, 60  
While FTIR images of the amide I and υasy PO2

- bands with H&E stained im age were compared 
and only a rough correlation with the pathological features or ce ll types were obtained, cluster 
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maps of two, five and eight clusters resultin g from  UHC analysis for the whole spectrum 
demonstrated good segm entation. In five cluste rs, m ost cell types ar e apparent including 
superficial (1), interm ediate (2), parabasal (3), and connective tissu e (5) upon correlation with 
the stained im age. As in univariate im ages, the connective tissue region (5 ) is split in to two 
clusters. Furthermore, by comparing between the UHC analysis of the whole spectrum  and only 
the am ide I region, authors dem onstrated that m inimizing the spectral regi on for analysis and 
using fewer clusters does not le ad to the loss of us eful information. Both univariate FTIR and 
multivariate images of the sam ple with sev eral endocervical ducts within th e connective tissue 
were shown. These end ocervical ducts lined with columnar endocervical cells were apparen t in 
all those images, in particular even with two clusters.  
 
Cultures derived from  cervical cancer cells (HeL a) are one of the m ost popular m odel systems 
and have been studied using FTIR im aging.61 The cells were directly grow n as sparse 
monolayers onto low-e slides. FTIR im age of amide I band region was shown; where large 
differences in spectral intensities associated with the cells were  observed even though these cells 
are from a hom ogeneous and exponential cell cultu re. Cluster analyses of nor malized spectra 
shows distinct differences that were not ap preciated in the univariate im age. Sim ilarly,62 IR  
imaging with fuzzy C- m eans clustering and hierar chical cluster analysis were utilized to study 
the th in sections of cervix u teri encom passing norm al, precancero us and squ amous cell  
carcinoma. These studies dem onstrate th at IR  i maging, in com bination with multivariate 
techniques, is capab le o f segm enting cervical ti ssues in a m anner that is com parable to H&E 
stained im age dif ferentiation and is signif icantly m ore sensitiv e in term s of  the chem ical 
composition of the cells – whether it be due to metabolic or disease reasons. 
 
 
Prostate 
Prostate cancer is the most prevalent internal cancer in the US. 63 Hence, its pathologic diagnosis  
and correct interpretation of  disease state is crucial. 64 FTIR im aging has been proposed as 
solution that can potentially he lp pathologists by providing an objective and reproducible 
assessment of disease in a m anner that is easily understood by clinicians. It is also a good m odel 
system for the development of FTIR imaging protocols. We first review progress in the field and 
then describe efforts in our and collaborator’ s laboratories towards for mulating a practical 
algorithm for prostate cancer pathology. W hile a number of studies exam ined hum an prostate 
tissue with IR spectroscopy 65-68  microscopy approaches have recently been extensively utilized 
to study both fundam ental propert ies of prostate tissu e and to determ ine structural units in 
normal and disease states.69-75 An understanding of the tissue is now emerging as a result of these 
studies. While the fundamental properties of the tissue are being exam ined, we have focused on 
developed statistically validated diagnostic methods. 
 
We have utilized high throughout im aging with the express purpose of correlatin g spectra to  
clinical practice.39, 64, 76 It is instructive to f irst examine the approaches of some previous studies 
and then describe our approach in som e detail.  A variety of techniques have been reported for 
analyzing prostate tis sue, including unsupervis ed multivariate data analysis te chniques such as  
agglomerative hierarchical clustering (AH), fuzzy C-means (FCM), or k-m eans (KM) clustering 
to cons truct infrared  sp ectral m aps of tissue structures. 77 The resu lts f rom these multivar iate 
techniques confirmed the standard  histopathological techniques and found out to be helpful for 
identifying and discrim inating the tissues struct ures. Agglomerative hierarchical clustering was 
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found to be  the best method am ong the cluster imaging m ethods in term s of segm enting the 
tissue. While these techniques comprise one en d of the approach in using large spectral regions 
and completely objective methods, the other extreme has also proven to be useful. In the second 
paradigm, careful exam ination of th e spectral d ata yields so me measures that prove useful. For 
example, the ratio of peak areas at 1030 and 1080 cm -1, corresponding to the glycogen and 
phosphate vibrations respectively w ere utilized as a diagnostic m arker for the differentiation of  
benign from malignant cells.69 Authors summarized that the use of this r atio in association with 
FTIR spectral im aging provides a basis for estim ating areas of  malignant tissue within def ined 
regions of a specimen. While it may be argued that the former is not based on clinical knowledge 
and is m ore suited for discovery, it also involve s the choice of selecting specific num ber of 
clusters and their subsequent interpretation. The latt er is based on a single parameter whose 
utility for universal diagnoses rem ains to be tested. Nevertheless, these studies indicate that both 
approaches provide information about the tissue that is useful.  
 
Our approach has used elem ents from  both patt ern recogn ition and  sp ectroscopic analyses of 
univariate measures. 39, 76 In all cases, one starts with the acq uired imaging data (figure 4). Since 
the data set is large  (typically 10-1000 GB), it is advisable to reduce  the dimensionality of data 
using som e num erical procedure. Com pression al gorithms, principal com ponents analyses or 
simply storing only the information needed for classification (if the algorithm is known) is useful.  
We sought expressly to relate th e recorded IR im aging data to  clinical knowledge base. Hence 
we started with a m odel tha t is d erived f rom clin ical practice. Clear ly, the appro ach limits the 
discovery of new knowledge but it  assures the clinician that al l quantities of im portance for 
diagnoses will be considered. The acquired d ata is labeled with known cell identity or diseas e 
states.  These pixels are best identified by a combination of very careful manual labeling and test 
for absorbance fidelity. 78 Spectra from  the label regions are em ployed via average values, 
medians and standard deviation analyses to determ ine a set of  spectral features that are  
descriptive of the major features of all spectra. We first note that the characteristic IR absorbance 
spectra of ten histological classes com prising prostate tissue look sim ilar. Though sm all 
differences in spectral featur es were observed at m any freque ncies, summary statis tics ar e 
limited in their exam ination of spectra for classification. Furthe r, the sm all differences indicate 
that noise and biological variability m ay rende r univariate m easures less reliab le. The larg e 
number of classes usually im plies that univariate analyses cannot  distinguish all histological 
classes present in the tissues and h ence the n eed for multivariate analyses is appa rent. Here th e 
similarity of the spectral features for all classes works in ou r favor. Very similar baseline points 
are obtained  from  an analysis  of all spectra a nd only subtle feature di fferences are noted to  
distinguish the various class spectra. Hence,  unknown spectra can be processed in the sam e 
specified manner, without introducing any bias. Each  of  these f eatures is term ed a m etric to  
denote that it is a useful m easure of the spectrum. Individual metrics can allow segm entation of 
various tissue types if they are sufficiently different in a sampled population. 
 
We then employ the equivalent of a t-test in tha t th e overlap between th e absorban ce 
distributions of metrics is dete rmined and equated to the error in prediction. The m etrics are  
arranged in the order of increasi ng overlap. Hence, we have an or dered set that differentiates at 
least two classes. To o btain ov erall accu racy, we em ploy a m odified Bayesian a lgorithm to 
provide the probability of each cla ss for every pixe l. This fuzzy result is employed to determine 
the area un der the curv e (AUC) of a receiver ope rating characteristic (ROC) curve. The ROC 
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curve is built from  accepting the probability of each  class at an increasing threshold  that varies  
between 0 and 1. For optim ized threshold values , the f uzzy classif ication is  tu rned in to a  
classified im age, where each pixel is assigned a distinct class. W e note that the m ethod 
incorporates analysis of all spec tral features, a selection of the best features based on statistical 
analysis of data and an optim al prediction of  the class of each pixel based on an objective 
selection rule from  the fuzzy classification. Th e m ethod is very powerful in that it em ploys 
spectral features th at are ordi narily em ployed by spectroscopists as m etrics, which perm its a 
spectroscopic analysis of the basis of decision-making. Further, the method explicitly obtains the 
fuzzy rule data for final classification. The value of  the rule data for each  class is actually the 
probability of belonging to the clas s without co nsideration for the prior pr evalence of the class . 
Hence, the method can allow direct comparisons between performances for different classes. The 
dependence of the process on various experimental parameters has also been reported. 
 
The com plication inh erent in trans lating the  re sults f rom sm all data se t of  patien ts to clinica l 
applications is well recognized in the spectrosc opy community. The variability in data, arising 
from variations within and between patients, sample preparation an d handling, is likely to 
provide noisy estim ates of perfor mance. Hen ce, statistical stab ility m ay be obtained by 
examining a large num ber of sam ples. Similarly, large num ber of patients m ay be e mployed to 
provide calibration models, likely improving the robustness of the developed algorithm. We have 
described a high throughput sa mpling method from tissues.14, 39, 76 Briefly, the approach uses a 
combinatorial sam pling of tissue type and pathol ogy to first acquire sm all sections of tissues  
from large archival cases. These sm all sections are arranged in a g rid pattern and p laced on the 
same substr ate. The  sa mple is  te rmed a tissu e microarray to ref lect the s imilarity with cDNA 
microarrays. For spectroscopic im aging and th e developm ent of autom ated algorithm s, the 
approach represents a large num ber of cases that can b e used both f or accu rate prediction 
algorithm building and for extensive validations. The same approach is likely to prove useful for 
extensions to determining pathology. Figure 5 dem onstrates the typical workflow of a  validation 
algorithm and methods used for statistical comparison. We strongly suggest a variety of methods 
for m easuring performance as each m ethod ha s its own advantages and disadvantages. For 
example, summary measures from ROC curves only provide information about accuracy but do 
not provide which class the inaccuracies arise from. Similarly, confusion matrices provide cross-
class information but do not provide global performance measures in the mold of ROC curves. 
 
OUTLOOK 
FTIR im aging has experienced rapid growth in  the past 10 years and is increasingly being 
applied to biomedical tissue, especially for the analyses of cancer. The major trends em erging in 
instrumentation include faster detectors and nove l modes of data collection (e.g. tim e –resolved 
imaging), of sampling (e.g. ATR) and application areas. For biomedical samples, the information 
content is quite rich and is often available through simple univariate analysis. For more complex 
applications, e.g. cancer diagnoses, the data ac quisition, sampling and data analyses m ust be 
integrated in a coherent manner to provide a practical solution. We anticipate that the technology 
and its application to biom edical problem  wi ll continue to grow with  the cooperation of 
instrument m anufacturers, appl ications scientists, num erical methods developers and 
communities that can utilize the information effectively, e.g. pathologists or surgeons. 
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Figure 1. Various MCT FPA detectors employed for FTIR imaging since the first reports using Santa 
Barbara Focalplane (SBFP) array detectors. The years in parentheses are the first reports of use for 
FTIR imaging. Perkin-Elmer introdcued the concept of utilizing a small linear array for very high signal to 
noise ratios, an approach that has since been adopted by Thermo. Our research efforts have involved 
the use of a high end, custom-built detector that allows for fast imaging. 
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Figure 2. FTIR spectroscopy and imaging permits examination of molecular conformation changes preceding and during polymer 
crystallization. (A) The distribution of crystalline and amorphous fractions as a function of time for undercooling PEO ~ 13o C 
below its melting point can be observed by the intensity of any peak that is different (B). The pixels crystallizing first can be 
analyzed prior to crystal formation for pre-ordering transitions. (C) Different regions of the sample have different kinetics 
(symbols) which are not apparent in the average spectral change (line) (D) The kinetic data (noisy)can be fit with a smooth curve(symbols), which are not apparent in the average spectral change (line). (D) The kinetic data (noisy)can be fit with a smooth curve 
and the rate of crystallization obtained. (E) spatial variation of crystallization rate (E, left) correlates with the onset of crystallization 
(E, right). Those regions that start to crystallize late also have a lower rate and lower ultimate purity, likely due to diffusion of 
impurities. 
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ABSTRACT 
 
Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that combines the molecular 
selectivity of spectroscopy with the spatial specificity of optical microscopy. We demonstrate a new concept in obtaining 
high fidelity data using commercial array detectors coupled to a microscope and Michelson interferometer. Next, we 
apply the developed technique to rapidly provide automated histopathologic information for breast cancer. Traditionally, 
disease diagnoses are based on optical examinations of stained tissue and involve a skilled recognition of morphological 
patterns of specific cell types (histopathology). Consequently, histopathologic determinations are a time consuming, 
subjective process with innate intra- and inter-operator variability. Utilizing endogenous molecular contrast inherent in 
vibrational spectra, specially designed tissue microarrays and pattern recognition of specific biochemical features, we 
report an integrated algorithm for automated classifications. The developed protocol is objective, statistically significant 
and, being compatible with current tissue processing procedures, holds potential for routine clinical diagnoses. We first 
demonstrate that the classification of tissue type (histology) can be accomplished in a manner that is robust and rigorous. 
Since data quality and classifier performance are linked, we quantify the relationship through our analysis model. Last, 
we demonstrate the application of the minimum noise fraction (MNF) transform to improve tissue segmentation. 
 
Keywords:  Breast Cancer, FT-IR Spectroscopy, Hyperspectral, Histopathology, Imaging, Diagnostics, MNF Transform 
 
 

1. INTRODUCTION 
 
As histologic analysis of biopsied tissue forms the standard in definitive diagnosis of breast lesions, it is estimated that 
more than 1.6 million women undergo breast biopsies each year in the US alone. Biopsy samples are fixed to ensure 
tissue stability1 and then sectioned for staining.2 Microscopic examinations of stained tissue sections by a trained 
pathologist are the gold standard used in diagnosing breast cancer.3 Unfortunately, these evaluations are time consuming4 
and do not always lead to an unequivocal diagnosis. For example, a study of 481 breast cancer patients from 1982-2000 
at a regional cancer center indicated that 73% of ductal carcinoma in situ (DCIS) patients are referred by a general 
pathologist to an expert pathologist for review.5 After review, 43% of these cases received different treatment 
recommendations. Another study found that 52% of cases referred to a multidisciplinary tumor review board received 
different surgery recommendations.6 Clearly, the diagnostic process is sub-optimal. Rapid, objective second opinions are 
desirable. The use of emerging biological understanding and technologies for diagnoses could provide additional 
information in tumor evaluation and help make accurate therapy decisions. Further, it is likely that the morphologic 
parameters of current diagnoses are insufficient and additional information must be added. This information is typically 
biochemical in nature. For example, staining for human epidermal growth factor receptor 2 (HER2) can identify 25-30% 
of breast cancers.7 Such examples of success, unfortunately, are uncommon for cancers in complex tissues. Hence, 
alternative methods are urgently required to aid diagnostic pathology. 
 
One such means is the use of molecular spectroscopy. For example, Fourier transform infrared (FT-IR) spectroscopy is 
traditionally used for molecular identifications and biomolecular structure elucidations, but is not currently applied in 
clinical pathology.8 An IR spectrum provides a unique molecular fingerprint with a quantitative measure of the 
molecular bonds present in an examined material.9 Thus it should give a reproducible measurement of tissue 
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composition. Tissue, however, is microscopically heterogeneous and the measurement of chemical composition must be 
made in the context of knowledge of tissue structure (histology).10 The recent emergence of FT-IR imaging couples 
spectroscopy and microscopy to permit rapid acquisition of spectra from tens of thousands of pixels at a high spatial 
resolution. Each pixel (spectrum) typically contains thousands of data points in the mid-IR wavelength region (2-
12µm).11 Automated classification can then be employed for rapid computerized tissue image analysis, as has been 
practiced in both the spectral processing and image processing communities. The end goal of the measurement and 
associated data processing steps is to permit the rapid segmentation of different types of tissue without the need for 
chemical dyes or contrast agents.10 Last, the use of FT-IR imaging only involves light interacting with a sample and, 
unlike conventional biochemical analysis methods, does not alter the tissue in any manner. Thus it can provide additional 
information for pathology without the necessity of additional materials, tissue samples or changes in clinical protocols. 
 
In this manuscript we use breast tissue as an example to illustrate the application of FT-IR imaging coupled with 
computerized classification for histopathology. Specifically, we demonstrate that a combination of FT-IR imaging, 
classification algorithms and integrated computational methods for enhancement of acquired data can be used in tandem 
to optimize the development of practical protocols for automated histopathology. Previous studies report on the potential 
for IR spectroscopy in breast pathology,12,13,14,15,16,17 but no complete study on the spectral features of different histologic 
types of breast tissue exists. Preliminary efforts indicate significant spectral variation between different types of breast 
tissue and breast tumors,18,19,20 but a protocol for clinical translation is lacking. We combine fast FT-IR imaging and 
tissue microarray sampling to demonstrate the effectiveness of our approach for automated breast histopathology on 
normal and malignant tissue from five patients. This approach is distinct from that in Raman spectroscopy, where 
histologic models are used in analyzing spectra.21,22 As a first step towards automated tissue segmentation, we 
distinguish breast stroma and epithelium. This is a critical step, as over 99% of breast tumors arise in the epithelial tissue 
lining milk ducts and lobules.23 False color classified images denoting stroma and epithelium are produced, followed by 
analysis of data collection parameters. We evaluate the impact of spectral resolution and noise on classification accuracy 
to demonstrate potential for faster data acquisition without loss in classification confidence. This study presents an initial 
effort in developing applications for FT-IR imaging in clinical pathology. 
 
 

2. METHODOLOGY 
 
2.1 Data Acquisition 
 
The first studies to examine IR spectra of tissue began over fifty years ago,24 but the field did not truly make progress 
due to limitations in instrumentation. Today, a combination of an IR microscope, Michelson interferometer and focal 
plane array (FPA) detector25 permits efficient data acquisition for large sample areas. The data presented in this study is 
collected using the Perkin-Elmer Spotlight 400 imaging spectrometer. A spatial pixel size of 6.25 µm and a spectral 
resolution of 4 cm-1 were employed, with 2 scans averaged for each pixel. An IR background is collected with 120 scans 
co-added at a location on the substrate where no tissue is present. No undersampling was employing in data acquisition 
and a NB medium apodization function was used. A ratio of the background to tissue spectra is then computed to remove 
substrate and air contributions to the spectral data. The Spotlight software atmospheric correction algorithm is applied to 
eliminate remaining atmospheric contributions to the tissue spectra. As opposed to other configurations that employ a 
large FPA detector, this instrument employs a linear array detector that is raster scanned to acquire data from large 
sample areas. We use a combination of instrument control and post-processing software to computationally re-organize 
data acquired into large image sizes. Images of stained tissue are acquired using a standard Zeiss optical microscope. 
 
2.2 Tissue sampling 
 
Tissue microarrays (TMAs) permit facile comparison of small tissue samples from numerous patients26 and are an 
especially useful sampling medium for spectroscopic analyses.27 A TMA contains numerous small round tissue samples, 
termed cores, which are extracted from biopsy samples from different patients. Two paraffin-embedded TMAs were 
obtained from a commercial source (US Biomax) for this study. The first TMA section is placed on a glass slide and 
stained with hematoxylin and eosin (H&E) dyes. In H&E staining, hematoxylin stains nucleic acids and eosin stains 
protein-rich tissue regions. This section is used for visual morphology interpretation by a pathologist. The second TMA 
section is placed on a barium fluoride (BaF2) substrate for FT-IR imaging. Though the arrays contained a large number 
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of samples, a smaller subset of malignant and normal tissue cores from five patients with invasive ductal carcinoma 
(IDC) is selected for this study as the illustrative example. Each of the ten cores is 1.5 mm in diameter; hence, at a 6.25 
µm pixel size, approximately 280,000 spectra are collected for each core. This results in the collection of over 560,000 
spectra for each patient and approximately 2.8 million total spectra for all ten cores. This large spectral dataset facilitates 
rigorous validation of classification protocols at a pixel level. Paraffin is removed from the TMA by immersion in 
hexane with continuous stirring at 40 0C for 48-72 hours. Spectra are recorded at several locations on the TMA every 24 
hours during this period to monitor paraffin removal with the disappearance of the 1462 cm-1 peak.  
 
2.3 Image analysis and classification 
 
A supervised segmentation method is used for FT-IR image classification. This algorithm has been described in detail 
elsewhere,28 but is based on a modified version of a Bayesian classifier. First, the spectral profile of 1641 bands is 
reduced to a set of 89 useful metrics by examination of spectra from manually selected stroma and epithelium tissue 
regions. Metrics are manually selected to include peak ratios, peak areas, and peak centers of gravity. A metric profile M 
is generated for each pixel in each tissue image of the form 

M m m m mnm
= [ , , ,... ]1 2 3 , nm=89     (1) 

where each mi is the value for a single metric and nm is the total number of manually selected metrics. Frequency 
distributions for stroma and epithelium are determined for each metric and used to estimate the probability of a given 
metric profile representing either of these two classes. The probability of an image pixel from each class ci being 
represented by a given metric profile is determined using Bayes’ Rule  

p c M
p M c p c

p Mi
i i( )

( ) ( )
( )

=       (2) 

where p M ci( )  is estimated from the metric class frequency distributions and p M( )  is the probability of a given metric 
profile. The prior probability of particular tissue class p ci( )  in this model cannot be determined due the manual 
selection of tissue classes on FT-IR images, and is estimated as 0.5. Other ways to estimate or optimize the class prior 
probability may be utilized; we have noticed anecdotally, however, that the choice of this value across a large range does 
not significantly affect the classification results. Classification accuracy is estimated with receiver operating 
characteristic (ROC) analysis for selected tissue regions. The area under the ROC curve (AUC) is used to evaluate 
classifier sensitivity and specificity and estimate the potential of the algorithm for accurate histology determinations. The 
classification algorithm is trained on a large array dataset and separately validated on a second array. It is notable that we 
do not develop the entire classification algorithm anew here. First, the central idea of this manuscript is to demonstrate 
the optimization of a developed protocol and second, the sample sizes chosen here are insufficient for de novo algorithm 
development. Data is analyzed using the Environment for Visualizing Images (ENVI) software and with programs 
written in-house using Interactive Data Language (IDL).  
 
2.4 Spectral resolution and noise analysis 
 
Spectral resolution and noise are two common experimental variables that affect results in IR spectral analyses. The 
effects of spectral resolution and spectral noise are evaluated here in the context of quantitative histologic segmentation 
to minimize data collection time. As per the trading rules of IR spectroscopy, data collection time is expected to decrease 
linearly with spectral resolution and a quadratic rate with reduction in signal-to-noise ratio (SNR).29 Ideally, these 
parameters would be analyzed by acquiring data at different spectral resolutions and numbers of spectral co-adds. 
However, the time required to collect multiple images for the TMA is prohibitive. Instead, computational methods are 
used to examine these parameters using the original FT-IR images acquired at 4 cm-1 and 2 scans per pixel. First, spectral 
resolution is evaluated by downsampling the data using a neighbor binning procedure to resolutions of 8, 16, 32, 64 and 
128 cm-1. Classification is then performed on downsampled datasets to determine the coarsest spectral resolution needed 
for satisfactory stroma and epithelium segmentation. For a fine spectral resolution data set at 4 cm-1, the effect of noise is 
evaluated by adding to each spectrum noise in Gaussian distributions with standard deviations of 0.001, 0.01, and 0.1 au. 
Classification accuracy is estimated by evaluating the AUC at each noise standard deviation. Computational noise 
reduction with the minimum noise fraction (MNF) transform30 is evaluated by reducing noise in all the data sets. 
Classification is performed with the same algorithm on these MNF transformed images to determine the impact of this 
noise reduction algorithm on stroma and epithelium segmentation. 
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3. DATA 
 
The classification model presented in this manuscript involves segmentation of stroma and epithelium, which are the two 
most prominent tissue classes in fixed breast tissue used for pathology evaluation.31 In practice, the recognition of 
epithelial cells is especially critical for cancer diagnoses, as the vast majority (>99%) of breast cancers arise in this cell 
type.23 Hence, the two class model is of practical significance. While seemingly simple and practical, however, the 
model can potentially be confounding as stroma consists of many cell types with disparate spectral characteristics. This 
model was employed to develop a classifier using training data from a TMA with forty patients. Final model calibration 
for sixty eight tissue cores yielded an AUC value of 0.99 with an eight metric classifier.32,33 In this study we validate this 
classifier with one malignant and a matched normal TMA core from a subset of five patients. As seen in Figure 1A and 
B, absorbance images based on spectral features closely compare with images of H&E stained tissue. Hence, using 
conventional pathology knowledge we can select image pixels that unequivocally correspond between the two images - 
representing both stroma and epithelium. These pixels are selected by examining FT-IR images at 1080 cm-1 to highlight 
asymmetric PO2 stretching vibrations in glycoprotein in epithelium,14 1236 cm-1 to highlight CH2 wagging vibrations 
associated with collagen proteins,34 1652 cm-1 to highlight C=O stretching vibrations at the protein amide I mode,34 and 
3292 cm-1 to highlight NH bending vibrations at the protein amide A mode (shown as an example in Figure 1B).35 We 
emphasize that multiple vibrational modes must be examined in tandem and pixels identified with great care and 
diligence as these form the gold standard for future comparisons. Over 185,000 pixels are marked in these ten tissue 
cores to serve as the gold standard for ROC analysis (as shown in Figure 1C). Selecting this large set of pixels is 
important to achieve a reasonable sample size to accurately estimate classification potential for the entire data set. 
Boundary pixels are not marked to avoid errors associated with mixed pixels in FT-IR images.27 A qualitative 
comparison of stained and classified images indicates that stroma and epithelium segmentation is reasonable (Figure 
1D), and this is confirmed with an AUC value of 0.98 after quantitative ROC analysis. Stroma and epithelium are easily 
identified on false color classified images without detailed examination and interpretation. This is advantageous over 
traditional staining methods that require the use of chemical dyes and subsequent expert pathologist examination for 
evaluation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Conventional H&E stained images, FT-IR spectral images and classification. (A) An H&E stained image of tissue 

cores from five invasive ductal carcinoma patients. Each row represents a single patient, with malignant tissue samples 
on the left and normal samples on the right. (B) An FT-IR image at 3292 cm-1 denotes the NH bending vibration at the 
amide A protein mode. Brighter regions denote relatively protein-rich stroma. (C) A ground truth FITR image with 
pixels marked as stroma or epithelium serves as the gold standard for ROC analysis and classification evaluation. (D) A 
classified FT-IR image in which all pixels are labeled as stroma or epithelium accurately corresponds to the H&E 
stained image. The classification does not require stains or human interpretation. 
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4. RESULTS 
 
4.1 Effect of spectral resolution on tissue segmentation 
 
The impact of spectral resolution on classification performance is evaluated by downsampling spectra at every pixel with 
a neighbor binning and interpolation procedure. FT-IR image data sets are acquired at 4 cm-1 spectral resolution and are 
downsampled to 8, 16, 32, 64, and 128 cm-1 resolution. As seen in Figure 2A, an average spectrum at each resolution 
from epithelial cells in the gold standard demonstrates that important spectral elements remain identifiable at coarser 
resolutions. While we anticipate that the area under the peaks would be preserved, peak shapes begin to change at a 
courser spectral resolution of 32 or 64 cm-1 due to overlaps in the complicated spectral response. It would not be 
surprising to note that the most robust predictors of class incorporate best both biological diversity and spectral noise 
(arising from both measurement and artifacts). Hence, we anticipate that the use of these metrics would also prove robust 
when spectra are downsampled. Figure 2B demonstrates that the classification accuracy is not significantly affected until 
the spectral resolution is decreased to 128 cm-1.  
 
The result is indeed surprising as numerous prior biomedical studies with vibrational spectroscopy have employed 4 cm-1 
to 16 cm-1 spectral resolution. There are two important differences between the problem here and a majority of those 
studies. First, many of the reported studies used sensitive spectral analysis tools (e.g. second derivatives) or were looking 
for fine spectral features. Second, models for pathology may have needed more complex information. Here, we are 
examining a 2 class problem of very distinct cell types. Hence, the acceptable classification at very coarse resolutions is 
likely permitted by the significant biochemical differences between stroma and epithelium in the metrics selected. 
Previous studies have provided evidence of clear differences in IR spectra from DNA-rich tissues such as epithelium and 
RNA and protein-rich tissues such as stroma,14,20 especially in the IR fingerprint region from 500-1500 cm-1.8  We 
hypothesize that a more complex model with additional tissue classes would likely require a higher spectral resolution 
for reasonable classification, but that this resolution is not required to distinguish stroma and epithelium.  
 
A powerful feature of the algorithm we employ is the utilization of prominent spectral features for classification. Here, 
the features selected as classification metrics are not very sensitive to changes in spectral resolution.36 Absorbance values 
are accurate if the peak full width at half maximum (FWHM) is not significantly less than the spectral resolution. As 
biological materials have broad and overlapping lineshapes, the condition holds even for very coarse resolutions. 
Therefore, the values of spectral metrics are not significantly altered even if some details in the spectrum are affected at 
coarser spectral resolutions. The center of gravity metrics used for classification are particularly robust, as they 
incorporate peak position and shape and are not strongly influenced by peak modifications in downsampled spectra. Care 
must be exercised in making this extrapolation to all data quality. For example, for poor signal to noise ratio spectra, the 
center of gravity calculation will be sensitive to noise.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Spectral resolution effect on classification. (A) Epithelial spectra obtained by downsampling data acquired at 4 cm-1 
indicate that IR spectrum quality degrades appreciably at a spectral resolution coarser that 16 cm-1, as anticipated for 
condensed phase biological materials. (B) AUC analysis for stroma and epithelium segmentation for each resolution 
demonstrates a significant decrease in classification accuracy only at a very course spectral resolution beyond 64 cm-1. 
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The effective classification in downsampled FT-IR images presented in this manuscript indicates potential for faster data 
acquisition without significant loss in classification accuracy. Figure 2 suggests that no significant classification 
differences are observed in images up to 64 cm-1. Since data acquisition time is estimated to decreased linearly with 
spectral resolution,29 FT-IR images could be acquired 16 times as fast without any loss in classification performance for 
the two class model presented in this manuscript. Again, we emphasize that the results are preliminary and should be 
carefully validated. Nevertheless, the idea of optimizing data acquisition by modeling the results of other experimental 
conditions is an important one that should be pursued in practical translation of these protocols for clinical use. 
 
4.2  Effect of spectral noise on tissue segmentation 

 
Evaluation of acceptable spectral noise for FT-IR image classification is important for efficient data collection. For 
practical applications, it is advantageous to acquire data with the lowest SNR that permits reasonable classification. Raw 
data is acquired with a peak-to-peak noise value of 0.011 au, a root mean square (rms) noise value of 0.008 au, and an 
average amide I height of 0.328 au. To assess the impact of spectral noise on classification accuracy, Gaussian noise is 
added with a standard deviation of 0.001, 0.01, and 0.1 au. Figure 3 provides a qualitative evaluation of histologic 
images from the acquired data set (Figure 3A) and from the data sets with added Gaussian noise (Figures 3B-D).  
 
These images indicate that acceptable classification is achieved when noise is added at a standard deviation of 0.001 au 
(Figure 3B), but that classification accuracy appreciably decreases with the addition of noise at or above a standard 
deviation of 0.01 au. This is expected, since adding noise at a standard deviation of 0.001 au does not significantly 
change the FT-IR image data SNR. The data set with noise added at a standard deviation of 0.01 au (Figure 3C) produces 
a classified image with regions of distinguishable stroma and epithelium, although there are numerous stray pixels that 
are not correctly classified, similar to salt and pepper noise. Upon the addition of noise of ~0.1 au, classified images 
become completely indistinguishable (Figure 3D), including the misidentification of many pixels on the empty region of 
the slides as tissue. This loss in classification accuracy is caused by an underlying broadening of spectral metric 
distributions for each class. This broadening bridges the difference in metric values. The overlap in values in turn 
decreases classification confidence as measured by the AUC. Hence, we have used the AUC as a reasonable measure of 
the classification accuracy at every experimental condition. 
 
A plot of AUC against the added noise (Figure 3E) demonstrates that the AUC value remains relatively constant with the 
addition of low levels of noise. It then decreases to a mean AUC of 0.77 with the addition of noise at a standard 
deviation of 0.01 au and falls to a mean AUC of ~0.5 at a noise standard deviation of 0.1 au. It is surprising that the 
stroma AUC actually falls below 0.5. Though the AUC values should not be below 0.5 for classified images, our 
algorithm contains a pixel rejection step. A pixel is rejected if the measured metric values do not lie within the prior 
probability distributions. Hence, a small number of pixels are rejected at low noise levels and are not accounted. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Effect of noise on FT-IR image classification. Classified images are shown for (A) raw data, (B) data with Gaussian 
noise added at a standard deviation of 0.001 au, (C) data with Gaussian noise added at a standard deviation of 0.01 au, 
and (D) data with Gaussian noise added at a standard deviation of 0.1 au. (E) The AUC values for classification with 
noise added at a standard deviation of 0.001, 0.01, and 0.1 au confirm that classification accuracy is reasonable with a 
small amount of additional noise but unsatisfactory in data with a noise standard deviation at or above 0.01 au.  
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For the two class stroma and epithelium segmentation model presented in this manuscript, an AUC value of 0.77 does 
not indicate sufficient classification confidence. We would expect nearly perfect discrimination of theses two types of 
tissue since there are numerous spectral features that distinguish epithelium and stroma.14,20,32,34 An estimated 
classification accuracy of 0.5 for this model is equivalent to random guessing and does not provide any information 
about tissue histology. Examination of the curve in Figure 3E indicates that some additional spectral noise at a level of 
0.001 can be present without loss in classification accuracy for this two class model. We did not observe any difference 
in this behavior with pathology of the tissue. Breast tumor tissue is often very heterogeneous and precise pixel 
classification is needed to produce reasonable automated classification results. Hence these results represent a good 
starting point to optimize a practical protocol. There may also be a patient or clinical setting dependence of these optimal 
operating points that remains to be probed. From the plot, it is likely that we are close to the operating point of a practical 
protocol, as addition of a small amount of noise (>0.01 au) makes the classification unstable.  
 
Last, the classification algorithm was optimized using a noise level similar to that of the acquired data set presented in 
this manuscript. Hence, the optimal metric sets and discriminant function are obtained for that noise level. It would not 
prove surprising if a de novo training and optimization of lower quality data could yield similar results. A de novo 
classification algorithm development, however, is not guaranteed to produce equivalent results for the higher noise cases 
and will fail where overlap between the prior distributions is significant due to noise broadening. Hence, we believe that 
the conditions found here are close to optimal.  
 
4.3 Noise reduction with the MNF transform 

 
In this manuscript, we have used an instrument with a high performance detector that has a low multichannel detection 
advantage. FT-IR imaging using large focal plane array (FPA) detectors, however, is a promising avenue for rapid data 
acquisitions due to the large multichannel advantage. Imaging with FPAs, unfortunately, often results in low signal-to-
noise (SNR) data due to the poor detector characteristics and other limitations.37 From the trading rules of FT-IR 
spectroscopy,29 achieving a factor of n improvement in SNR would result in a increase of n2 in data collection time. An 
alternative to improve SNR is to employ post-processing algorithms to reduce noise. One such avenue for noise 
reduction is the use of the minimum noise fraction (MNF) transform. The MNF transform can be used in a mathematical 
procedure to remove uncorrelated contributions from the spatial and spectral domains. First, a forward transform is used 
to perform a factor analysis and re-order spectral data in the order of decreasing SNR. The MNF calculation is a two-step 
process. A noise covariance matrix is estimated and used to decorrelate and rescale the noise in the data. Subsequently, a 
standard PCA performed on the noise-whitened data. A second step is to select only those factors that correspond to a 
sufficiently high SNR by examining the eigenvalue images. The first few eigenvalue images generally correspond to 
higher SNR values and contain most of the useful information. Noise reduction is achieved by suppressing the later 
factors corresponding largely to noise or zero-filling components and inverse transforming the data. A noise reduction by 
a factor greater than 5 could be achieved by this technique if the initial SNR is sufficiently high.38,39 Though the utility of 
this method is demonstrated for IR imaging,40 its use has not been widespread. Further, the use of MNF transformed data 
for tissue classification has not been attempted.  
 
We propose to use the MNF transform route as a method for fast data acquisition without loss in classification accuracy. 
The protocol involves rapid data collection at a low SNR, followed by application of MNF transform for noise reduction. 
Classification is then performed on these noise-reduced images. It must be noted that the gain here is through 
computational techniques and does not involve changes in instrumentation hardware or data acquisition time. A 
secondary advantage that may arise is that decreasing the variance in spectral data could also decrease the biologic 
variance in the data and should improve separation of tissue classes. Excessive image noise will broaden spectral metric 
distributions for each class, which increases the error associated with each metric and decreases classification 
confidence. Therefore, if the metric distribution mean values for each class are sufficiently different decreasing noise 
will decrease the area of metric distribution overlap and improve segmentation confidence.  
 
The impact of noise reduction on classification is demonstrated in Figure 4. The MNF transform-based protocol is 
applied to the acquired data set and the data sets with Gaussian noise added as discussed in the previous section. 
Classified images are displayed for each noise level after MNF transform-aided noise reduction (Figures 4A-D). The 
AUC values for the MNF transformed image sets are compared with the AUC values for noisy images (Figure 4E).  
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Fig. 4. Improvement in automated FT-IR image classification with the application of the MNF transform. Classified images 
from  MNF transformed FT-IR images are shown for (A) raw data, (B) data with Gaussian noise added at a standard 
deviation of 0.001 au, (C) data with Gaussian noise added at a standard deviation of 0.01 au, and (D) data with 
Gaussian noise added at a standard deviation of 0.1 au. (E) Comparing AUC values for original FT-IR images and 
MNF transformed FT-IR images demonstrates that classification improves with noise reduction, especially when the 
noise has a standard deviation of 0.01 - 0.1 au.  

 
Evaluation of classified images and AUC values indicates that the MNF transform improves classifier performance for 
each image. Given that the classification accuracy was very high, the effects of MNF transform are significant only when 
the noise level degrades the original data. Nevertheless, it can be seen from the figure that the high accuracy is recovered 
for an order of magnitude increase in data noise. Therefore, application of the MNF transform on data acquired with 
these noise distributions will make a significant difference in classifier performance. Specifically, we can acquire data 
with a noise standard deviation of 0.01 au and provide accuracy levels that are comparable to those obtained in our 
measurements of lower noise. This finding is significant in that noise levels of 0.01 au are commonly obtained in rapidly 
acquired FT-IR imaging data sets with large array detectors. Further, since the classification accuracy seems to be little 
affected by spectral resolution, we can anticipate that it will be little affected by the choice of an apodization function 
and other minor sources of error for a reasonable spectral resolution. Hence, we contend that the protocol developed here 
would be well-suited to rapid imaging with large array detectors. 
 
 

5. CONCLUSIONS 
 
Recent developments in FT-IR imaging and data processing facilitate new applications for this technology. In this 
manuscript, we report an initial application in automating histopathology of breast tissue. Supervised segmentation of 
breast stroma and epithelium in FT-IR images is presented and nearly-perfect classification accuracy is estimated. The 
impacts of spectral resolution and noise on image classification are evaluated. Results in this paper demonstrate that 
spectral resolution can be decreased 16-fold without loss in classification accuracy. The classification algorithm is more 
sensitive to noise, but noise reduction with the MNF transform can improve classification accuracy while decreasing the 
time required for data collection. This evaluation of the impact of experimental parameters on classification accuracy 
represents a first step in developing a practical protocol for rapid and automated histopathology. 
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