Title: After Effects of Welding Armor Steels

Author: Matt Rogers

Performing Organization:
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA

Abstract:
The original document contains color images.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 AUG 2011</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>After Effects of Welding Armor Steels</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>22261</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACOM/TARDEC/RDECOM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22261</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Presenters:

Matt Rogers
Welding Engineer

- Dec 2009 Welding Engineer @ TARDEC
- Welding Engineer, 6 years Application Engineering experience
- Bachelors of Science in Welding Engineering Technology from Ferris State University
- Associates Degree in Welding Technology
- 14 years Welding Experience
Overview

• Materials and Types for Cracking
 – Hot Cracking
 – Cold Cracking
• Types of cracks
• Causes
 – Hydrogen
 – Electrode Selection
 – Electrode Storage
• Inspection Methods
 – PT, UT, RT, MT
• Preventions
• Conclusion
• MIL-DTL-46100, MIL-DTL-12560J, & MIL-DTL-32332

• Hot Cracking
 – Definition: Cracks in the weld, which results from stress in the material during solidification of the pool

• Cold Cracking
 – Definition: Cracks in the weld, which occur after the weld has solidified and cooled to ambient temperatures.
LEGEND:

1. CRATER CRACK
2. FACE CRACK
3. HEAT-AFFECTED-ZONE CRACK
4. LAMELLAR TEAR
5. LONGITUDINAL CRACK
6. ROOT CRACK
7. ROOT SURFACE CRACK
8. THROAT CRACK
9. TOE CRACK
10. TRANSVERSE CRACK
11. UNDERBEAD CRACK
12. WELD INTERFACE CRACK
13. WELD METAL CRACK
1. CRATER CRACK
2. FACE CRACK
3. HEAT-AFFECTED-ZONE CRACK
4. LAMELLAR TEAR
5. LONGITUDINAL CRACK
6. ROOT CRACK
7. ROOT SURFACE CRACK
8. THROAT CRACK
9. TOE CRACK
10. TRANSVERSE CRACK
11. UNDERBEAD CRACK
12. WELD INTERFACE CRACK
13. WELD METAL CRACK
1 CRATER CRACK
2 FACE CRACK
3 HEAT-AFFECTED-ZONE CRACK
4 LAMELLAR TEAR
5 LONGITUDINAL CRACK
6 ROOT CRACK
7 ROOT SURFACE CRACK
8 THROAT CRACK
9 TOE CRACK
10 TRANSVERSE CRACK
11 UNDERBEAD CRACK
12 WELD INTERFACE CRACK
13 WELD METAL CRACK
1. CRATER CRACK
2. FACE CRACK
3. HEAT-AFFECTED-ZONE CRACK
4. LAMELLAR TEAR
5. LONGITUDINAL CRACK
6. ROOT CRACK
7. ROOT SURFACE CRACK
8. THROAT CRACK
9. TOE CRACK
10. TRANSVERSE CRACK
11. UNDERBEAD CRACK
12. WELD INTERFACE CRACK
13. WELD METAL CRACK
1. CRATER CRACK
2. FACE CRACK
3. HEAT-AFFECTED-ZONE CRACK
4. LAMELLAR TEAR
5. LONGITUDINAL CRACK
6. ROOT CRACK
7. ROOT SURFACE CRACK
8. THROAT CRACK
9. TOE CRACK
10. TRANSVERSE CRACK
11. UNDERBEAD CRACK
12. WELD INTERFACE CRACK
13. WELD METAL CRACK
1. CRATER CRACK
2. FACE CRACK
3. HEAT-AFFECTED-ZONE CRACK
4. LAMELLAR TEAR
5. LONGITUDINAL CRACK
6. ROOT CRACK
7. ROOT SURFACE CRACK
8. THROAT CRACK
9. TOE CRACK
10. TRANSVERSE CRACK
11. UNDERBEAD CRACK
12. WELD INTERFACE CRACK
13. WELD METAL CRACK
1. CRATER CRACK
2. FACE CRACK
3. HEAT-AFFECTED-ZONE CRACK
4. LAMELLAR TEAR
5. LONGITUDINAL CRACK
6. ROOT CRACK
7. ROOT SURFACE CRACK
8. THROAT CRACK
9. TOE CRACK
10. TRANSVERSE CRACK
11. UNDERBEAD CRACK
12. WELD INTERFACE CRACK
13. WELD METAL CRACK
1. CRATER CRACK
2. FACE CRACK
3. HEAT-AFFECTED-ZONE CRACK
4. LAMELLAR TEAR
5. LONGITUDINAL CRACK
6. ROOT CRACK
7. ROOT SURFACE CRACK
8. THROAT CRACK
9. TOE CRACK
10. TRANSVERSE CRACK
11. UNDERBEAD CRACK
12. WELD INTERFACE CRACK
13. WELD METAL CRACK
LEGEND:

1. CRATER CRACK
2. FACE CRACK
3. HEAT-AFFECTED-ZONE CRACK
4. LAMELLAR TEAR
5. LONGITUDINAL CRACK
6. ROOT CRACK
7. ROOT SURFACE CRACK
8. THROAT CRACK
9. TOE CRACK
10. TRANSVERSE CRACK
11. UNDERBEAD CRACK
12. WELD INTERFACE CRACK
13. WELD METAL CRACK
1 CRATER CRACK
2 FACE CRACK
3 HEAT-AFFECTED-ZONE CRACK
4 LAMELLAR TEAR
5 LONGITUDINAL CRACK
6 ROOT CRACK
7 ROOT SURFACE CRACK
8 THROAT CRACK
9 TOE CRACK
10 TRANSVERSE CRACK
11 UNDERBEAD CRACK
12 WELD INTERFACE CRACK
13 WELD METAL CRACK
Causes

- Hydrogen cracking has been one of the biggest problems when welding of armor steels
- Cracks are delayed since hydrogen does not become entrapped above 200°C (392°F)
- Depending on the rate of hydrogen diffusion, the delay of the cracks can change
- Diffusion rates depend on the steel’s microstructure and temperature, lower temperatures mean slower diffusion
Hydrogen Cracking

- Is the process by which various metals, including high-strength armor steels, become brittle and fracture following exposure to hydrogen
- Begins during the welding procedure where there are elevated temperatures
- Usually happens 24-48 hours after the weldments are at ambient temperatures
Causes:

Conditions of Hydrogen Embrittlement

Three Conditions of Hydrogen Cracking

- **The presence of hydrogen**
 - Delivered by gases released from the electrode coating or flux, and some from the atmosphere

- **A susceptible microstructure**
 - Determined by the chemistry of the electrode and base metal and the welding parameters
 - Martensitic microstructures are above ≈ 35 HRC are susceptible
 - All current armor steels are martensitic

- **Tensile stress**
 - Caused by thermal expansion and contraction of the weld as it is deposited, aligning the base materials, and handling
 - Martensitic structures have inherent residual stresses due to the 4% Volume expansion.
- Shielding gas also contains hydrogen from organic elements in the coating and moisture
- Different electrodes cause different hydrogen content in the weld metal
- SMAW electrodes produce the widest range of hydrogen content
- GMAW electrodes produce the smallest range of hydrogen content
- Electrodes must be stored and handled properly
<table>
<thead>
<tr>
<th>Hydrogen Designation</th>
<th>Maximum Average Content, mL(H₂)/100g</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>>15</td>
<td>Cellulosic electrodes, flux cored electrodes</td>
</tr>
<tr>
<td>Medium</td>
<td>10</td>
<td>Basic electrodes, flux cored electrodes, solid wire electrodes</td>
</tr>
<tr>
<td>Low</td>
<td>5</td>
<td>Basic electrodes, flux cored electrodes, solid wire electrodes</td>
</tr>
<tr>
<td>Very Low</td>
<td>3 to 5</td>
<td>Baked basic electrodes, solid wire electrodes</td>
</tr>
<tr>
<td>Ultra Low</td>
<td>≤3</td>
<td>Baked basic electrodes, solid wire electrodes</td>
</tr>
</tbody>
</table>
Basic vs. Low Hydrogen Electrodes

• Basic Electrodes
 - Most common type of electrode
 - Typical levels of hydrogen found in welds created using this type of electrode is 5ml/100g

• Low Hydrogen Content Electrodes
 - Typical levels of hydrogen found in welds created using this type of electrode is 3ml/100g
 - Electrodes are packed in hermetically sealed containers. This keeps moisture out for extended periods of time
Ceramic Weld Backings

- Used to reduce costly gouging and grinding
- Ceramics are absorbent to liquids and other materials
- Improper handling may result in moist ceramic backings releasing hydrogen into the weldments
• 48 hour holds
 - AWS D1.1 : ASTM 514, ASTM517
 - Ground Combat Vehicle Weld Code (GCVWC) : ASTM 514, ASTM517
 - MIL-DTL-46100, MIL-DTL-12560J, & MIL-DTL-32332

• Inspection Methods
 - Visual
 - PT
 - MT
 - UT
 - RT

• No cracks are allowed on Armor!!!
Prevention

- Reduce Source of H_2

- Low Hydrogen Processes
 - SMAW
 - FCAW

- Electrode Selection
 - Solid Core Wires or Metal Core
 - Non-Low Hydrogen Rods

- Electrode Storage
 - Rod ovens
 - Room temperatures/dew point control
 - Time spent in atmosphere

- Minimize causes of residual stresses
 - Fixture Gaps
 - Control Heat Input
Conclusion

• Materials and Types for Cracking
 – Hot Cracking
 – Cold Cracking

• Types of cracks

• Causes
 – Hydrogen
 – Electrode Selection
 – Electrode Storage

• Inspection Methods
 – PT, UT, RT, MT

• Preventions
 – Hydrogen
 – Electrode Selection
 – Electrode Storage
Any Question???

TARDEC - RDTA-EN / Materials, Environmental and Corrosion Team

Matt Rogers
Welding Engineer

Office: 586.282.5969
DSN: 786.5969
Fax: 586.282.5806

6501 E. 11 Mile Road
RDTA-EN/ME/MMS267
Warren, MI 48397-5000

matthew.j.rogers62.civ@mail.mil