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Abstract

In this note we use the theory of Boolean functions to find a new
elementary proof for Moser’s conjecture that states that in the bounded
sequence of nonnegative integers divisible by 3 there are more integers
with an even number of 1s in their base-2 representation. This proof is
simpler than the original proof by D. J. Newman in 1969. We further
apply the method to prove a similar result for p = 5, which was also
done by Grabner in 1993. The methods seems to be extendable to
other primes, but the computations for the relevant constants will be
quite complex.
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1 Introduction

The well-known Thue-Morse sequence T = {t(n) : n = 0, 1, 2, . . .} is defined
by t(n) = parity of the sum of the bits occurring in the binary representation
of the nonnegative integer n. Thus the sequence T , grouped in blocks of 4,
is

T = 0110 1001 1001 0110 1001 0110 0110 1001 · · · (1)

For brevity, we call T the “TM sequence”. We denote the 2n-length
initial segment of the TM sequence by T2n . It is easy to see from the
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definition that the TM sequence can also be generated by

T1 = t0 = 0,

T2n = T2n−1T2n−1 , n ≥ 1,
(2)

where B denotes the complement of B.
Let Fn2 be the vector space of dimension n over the two-element field

F2. Let us denote the addition operator over F2 by ⊕ (this is just ad-
dition modulo 2). A Boolean function on n variables may be viewed as
a mapping from Fn2 into F2. We order Fn2 lexicographically, and denote
v0 = (0, . . . , 0, 0), v1 = (0, . . . , 0, 1), v2n−1 = (1, . . . , 1, 1). We interpret
a Boolean function f(x1, . . . , xn) as the outputs of the function obtained
from all its inputs in lexicographic order, i.e., a binary string of length 2n,
f = [f(v0), f(v1), f(v2), . . . , f(v2n−1)]. We will sometimes omit the com-
mas in this representation of a Boolean function, and group the outputs in
convenient blocks of size 4.

The purpose of this paper is to show how ideas from the theory of
Boolean functions can be used to prove results concerning the TM sequence.
The first part of the paper is devoted to a new proof of a conjecture of
L. Moser [5] (see also [6]). To state this, we define for integers m > 0 and i,

Sm,i(n) =
∑

0≤j≤n,
j≡i (modm)

(−1)t(j). (3)

Now, the conjecture of Moser says that S3,0(n) > 0 for any n ≥ 1, that
is, in any bounded sequence of the arithmetic progression ≡ 0 mod 3 of
nonnegative integer written in base-2, there are always more such integers
with an even number of 1’s in their binary expansion. The conjecture was
first proved by D. J. Newman [5] (with a different notation from ours) using
generating functions. We give a simpler proof using Boolean functions, and
our method also gives some better estimates for S3,0(n). We use the same
method to show a similar result for p = 5, as well.

2 An Improvement of Newman’s Proof of Moser’s
Conjecture

We will always have m = 3 in (3) in this section, so we define

Si(n) = S3,i(n) for i = 0, 1, 2.
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We also define the following set B of 4-bit strings:

B = {A = 0011, Ā = 1100, B = 0101, B̄ = 1010,
C = 0110, C̄ = 1001, D = 0000, D̄ = 1111}.

(4)

These strings are needed in the following lemma, which characterizes all the
Boolean functions in n ≥ 2 variables that are affine (that is, linear in all the
variables and with a constant term 0 or 1).

Lemma 1. (Folklore Lemma [7, Lemma 3.7.2]) Any affine function f =
[t1, . . . , t2n ] on n variables, n ≥ 2, is a linear string of length 2n made up of
4-bit blocks I1, . . . , I2n−2 given as follows:

1. The first block I1 is one of A,B,C,D, Ā, B̄, C̄ or D̄.

2. The second block I2 is I1 or Ī1.

3. The next two blocks I3, I4 are I1, I2 or Ī1, Ī2.

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

n− 1. The 2n−3 blocks I2n−3+1, . . . , I2n−2 are I1, . . . , I2n−3 or Ī1, ..., Ī2n−3.

Our next lemma (which also appeared in [2]) shows that initial strings
of the TM sequence can be simply characterized in terms of linear Boolean
functions.

Lemma 2. The initial segment of length 2n, n ≥ 2, of the TM sequence is
the truth table of the Boolean function

f(x1, x2, . . . , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn,

defined on Fn2 (ordered lexicographically).

Proof. By the Folklore Lemma (or directly using (2)) it is easy to see that
x1⊕ · · ·⊕xn = CC̄ · · · , which by (2) is exactly the initial segment of length
2n of the TM sequence.

By Lemma 2, we can write (1) as

T = CC̄C̄CC̄CCC̄ . . . (5)

A simple induction argument using (5) gives Table 1. More precisely, to
compute S0(2k), we partition the multiples of 3 from 0 to 2k − 1 into two
subsets, the odd, respectively, even parity numbers. Since the even number
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Table 1: Values of Si(2m − 1) for m ≥ 2 (so k ≥ 1)

i Si(22k − 1) Si(22k+1 − 1)
0 2 · 3k−1 3k

1 −3k−1 −3k

2 −3k−1 0

are of the form 6n, and t(6n) = t(3n), this corresponds to S0(2k−1). The
odd numbers are of the form 6n + 3, and since t(6n + 3) = 1 − t(3n + 1),
this corresponds to −S1(2k−1). Therefore, we obtain S0(2k) = S0(2k−1) −
S1(2k−1). In a similar way, S1(2k) = −S0(2k−1) + S2(2k−1) and S2(2k) =
S1(2k−1)− S2(2k−1). By induction, we get Table 1 for all k ≥ 1.

Our next lemma will enable the evaluation of Si(n) from the binary
expansion of n, by iterative use of the formulas from Table 1.

Lemma 3. For any positive integers k and r ≤ 22k−1, we have for t = 0, 1, 2

St(22k − 1 + r) = St(22k − 1)− Su(t)(r − 1), (6)

where u(t) in {0, 1, 2} is defined by u(t) ≡ t + 2 (mod 3). For any positive
integers k and r ≤ 22k+1 − 1, we have for t = 0, 1, 2

St(22k+1 − 1 + r) = St(22k+1 − 1)− Sv(t)(r − 1), (7)

where v(t) in {0, 1, 2} is defined by v(t) ≡ t+ 1 (mod 3).

Proof. To establish (6), let T (22k+1) denote the first 22k+1 elements t(n),
0 ≤ n ≤ 22k+1− 1, and let TR and TL denote the right and left halves of the
string T (22k+1), respectively. By Lemmas 1 and 2, we have TR = TL and
plainly

St(22k − 1 + r) =
∑

t(j)∈TL,
j≡t (mod 3)

(−1)t(j) +
∑

t(j)∈TR,j≤22k−1+r,
j≡t (mod 3)

(−1)t(j). (8)

The first sum on the right-hand side of (8) is St(22k−1) and since the number
of entries in TL is ≡ 1 (mod 3), it follows from the definition (3), using
TR = TL, that the second sum on the right-hand side of (8) is −Su(t)(r−1).
This proves (6).

An analogous argument proves (7); in this case the number of entries in
TL is ≡ 2 (mod 3).
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Now we turn to giving a lower bound for S0(n). Suppose the binary
expansion of n is

n = 2k(1) + 2k(2) + · · ·+ 2k(j), k(1) > k(2) > . . . > k(j) ≥ 0. (9)

Then by Lemma 3

S0(n) = S0(2k(1)− 1)−Sp(2)(2
k(2)− 1) + · · ·+ (−1)j−1Sp(j)(2

k(j)− 1), (10)

where the subscripts p(i), 2 ≤ i ≤ j are determined by (6) or (7).
Suppose the binary expansion of n is given by (9), so we can expand

S0(n) in the form (10). Now we can follow Newman’s argument in our
notation. From Table 1 we find that the first two terms in (10) satisfy

S0(2k(1) − 1) ≥ 3(k(1)−1)/2 and Sp(2)(2
k(2) − 1) ≤ 0 (11)

and that all of the other terms satisfy

|Sp(i)(2k(i) − 1)| ≤ (2/3)3k(i)/2. (12)

Using (11) and (12) in (10) gives

S0(n) ≥ 3(k(1)−1)/2 − 2
3

j∑
i=3

3k(i)/2 ≥ 3(k(1)−1)/2

(
1− 2

3

∞∑
i=1

(
√

3)−i
)

= 3(k(1)−1)/2

(
1− 2

3
(
√

3− 1)−1

)
> 3k(1)/2/20 > (n/3)α/20,

where α = log 3/ log 4, thus obtaining Newman’s bound.
However, from (10) we easily get a stronger lower bound than Newman’s:

Theorem 1. For any positive integer n, we have S0(n) > 0, and in fact
S0(n) ≥

√
3

9 n
α, where α = log 3/ log 4 = .79 . . ..

Proof. First suppose the binary expansion of n is given by (9) with k(1) =
2m for some integer m. Then, from Table 1 and Lemma 3, the first two
terms in (10) are are bounded below by 2 · 3m−1 and 0. Now it follows
trivially from Table 1 that for m ≥ 2 (note we need to consider the cases
j odd and j even separately, but the trivial lower bounds are the same) we
have

j ≤ 2m =⇒ Si(2j − 1) ≥ −3m−1 (13)

and
j ≤ 2m− 1 =⇒ −Si(2j − 1) ≥ −3m−1 (14)
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Using these bounds for the remaining terms in (10), we obtain

S0(n) ≥ 2 · 3m−1 − 3m−2 − 3m−2 − 3m−3 − 3m−3 · · ·
= 2 · 3m−1 − 3m−1 + 1 > 3m−1 = 22mα/3
> nα/(3 · 2α) = (

√
3/9)nα = .19 . . . nα,

which is stronger than Newman’s bound.
If the binary expansion of n is given by (9) with k(1) = 2m+ 1, then the

estimate along the same lines as above is

S0(n) ≥ 3m + 3m−1 − 3m−1 − 3m−2 − 3m−2 · · ·
= 3m − 3m−1 + 1 > (2/3)3m = (2/3)22mα

> 2nα/(3 · 4α) = (2/9)nα = .22 . . . nα,

which is even better.

The exact lim inf of S0(n)/nα was calculated by Coquet [1, Theorem
1]. It is 2

√
3/3α+1 = .48 . . .. He also found the exact lim sup, which is

55/(3 · 65α) = .67 . . ..

3 The case p = 5

Some other primes p also satisfy Sp,0(n) > 0 for any n ≥ 1, or more generally
Sp,0(n) > 0 for all but finitely many n ≥ 1. The complete list of all primes
p < 1000 with the latter property was obtained by Drmota and Ska lba [3];
the list is 3, 5, 17, 43, 257, 463. It is no surprise that extensive calculations
were required to prove this.

Our Boolean functions method can be used to obtain such results for
individual primes p, and here we explain the case p = 5. The method
for any p imitates the proof we already gave for p = 3, but of course the
complexity of the calculations increase as p increases. We should mention
here that the result for p = 5 was proven by Grabner [4] who showed that

S5,0(n)′ =
∑

0≤j<n,
j≡0 (mod 5)

(−1)t(j) = nβΦ(log16 n) +
η5(n)

5
,

where Φ is a continuous nowhere differentiable periodic function of period 1,
β = log 5/ log 16, and η5 = 0 for n even, and (−1)t5n−1 for n odd. Therefore,
the sum S5,0(n)′ > 0.
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Table 2: Values of S5,i(2m − 1) for m ≥ 3 (so k ≥ 1)

i S5,i(24k−1 − 1) S5,i(24k − 1) S5,i(24k+1 − 1) S5,i(24k+2 − 1)
0 2 · 5k−1 4 · 5k−1 5k 5k

1 0 −5k−1 −5k −5k

2 −2 · 5k−1 −5k−1 0 −5k

3 5k−1 −5k−1 0 5k

4 −5k−1 −5k−1 0 0

An induction argument analogous to the one used to obtain Table 1 gives
Table 2. The only difference is that we must run the induction over four
columns (in general, we would expect p− 1 columns) instead of 2. We omit
the routine details.

Our next lemma enables the evaluation of S5,0(n) from the binary ex-
pansion of n, by iterative use of the formulas from Table 2.

Lemma 4. For each i, 1 ≤ i ≤ 4, and for any positive integers k and
r ≤ 24k−2+i − 1, we have for 0 ≤ t ≤ 4

S5,t(24k−2+i − 1 + r) = S5,t(24k−2+i − 1)− S5,ui(t)(r − 1), 1 ≤ i ≤ 4, (15)

where the values of ui(t) ∈ {0, 1, 2, 3, 4} are given by

ui(t) ≡ t+ 2i (mod 5), 1 ≤ i ≤ 4.

Proof. The argument is exactly like the proof of Lemma 3, but here we need
to consider four cases instead of two, corresponding to the four columns in
Table 2. We omit the details.

Following the argument in the proof of Theorem 1, we obtain:

Theorem 2. For any positive integer n, we have S5,0(n) > cnβ, where
β = log 5/ log 16 = .58 . . . and c > 0 is an absolute constant (one can take
c = 0.066).

The constant c is very far from the best possible one, so we omit the
tedious computations needed to get it. We are grateful to Ms. Thanh
Nguyen for carrying out these computations.
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