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Introduction 
Extended interaction klystrons (EIKs) employ resonant 
sections of a periodic structure in order to increase the 
interaction between the beam and the circuit, compared to 
that achievable in a conventional klystron using a single 
gap per cavity and the same beam.  EIKs have been 
demonstrated at frequencies up to 218 GHz CW and 229 
GHz pulsed.  Using modern fabrication techniques, the 
relatively simple circuit structures employed in these 
devices may be produced for use at much higher 
frequencies, including the sub-millimeter and terahertz 
ranges.  Recent examples of millimeter wave EIK designs 
have been described by Shin, et. al [1], Roitman, et. al., [2], 
and Toreev et.al. [3].  An overview of the state of the art in 
millimeter and sub-millimeter EIKs as of mid-2007 is 
given by B. Steer, et. al. [4].  Hyttinen, et. al. [5] have 
designed, built, and demonstrated a 9W CW EIK at 218.35 
GHz.  Amplifier gain is 23 dB, bandwidth is 0.4 GHz, and 
power added efficiency is 0.50%. 

A schematic of a 3 cavity EIK is shown in Figure 1.  The 
basic principles of operation are identical to those of a 
conventional klystron, i.e. the input cavity produces a 
velocity modulation on the beam, which develops into 
density modulation as the beam propagates from input to 
output.  The multi-gap structure of the EIK cavities 
increases the strength of beam-wave interaction as 
compared with a single gap, as measured by the quantity 

)2/(/ 2 UVQR   where V is the decelerating voltage 

seen by the beam,   is the angular frequency of the wave, 
and U is the energy stored in the cavity.  Since both V and 
U are approximately proportional to the number of gaps, 
R/Q increases approximately proportionally to the number 
of gaps.  The number of gaps in any one cavity is limited 
by stability and other considerations.  Large values of (R/Q) 
translate into large values of the gain-bandwidth product. 

It is this enhancement of (R/Q) that, in part, makes EIKs 
especially attractive for high frequency applications.  In 
particular, since the circuit and beam tunnel both 
necessarily become smaller as the operating frequency is 
increased, the amount of current that can be propagated 
through the beam tunnel is reduced.  Large values of (R/Q) 
help compensate for this reduced current.  Furthermore, the 
relatively large values of (R/Q) and the resulting large gain 
per unit length make for shorter circuit lengths, which are 
consequently easier to fabricate and align.  For these 
reasons, the EIK is an excellent candidate for development 
and application as an amplifier in the sub-millimeter and 
higher range of frequencies. 

In this paper we describe our efforts to develop an EIK 
operating at a central frequency of 670 GHz (0~ 0.447 
mm) and meeting certain ambitious RF performance 
metrics for power, gain, bandwidth, and power added 

 
Figure 1: Schematic of a 3 cavity EIK 
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Figure 4: Assembled beam stick.  The electron gun is 
at the top; the (air-cooled) collector is at the bottom.  
The magnet is not shown.  Total length of the beam 
stick is approximately 9”. [CPI/Canada] 

efficiency.  In order to meet these metrics, the development 
has proceeded in stages, including a (1) beam stick, (2) low 
gain, narrow bandwidth EIK, (3) high gain, narrow 
bandwidth EIK., and (4) high gain, wide bandwidth EIK. 

Beam Stick Development 
A beam stick is an assembly consisting of an electron gun, 
a drift tube, a collector, and a focusing magnet.  No RF 
components are included, but the beam parameters 
(voltage, current, diameter) are those determined by the 
amplifier design.  There is a basic tradeoff between beam 
tunnel size and beam current: the larger the beam tunnel, 
the more current may be propagated through it, but the 
weaker the interaction of each electron with the circuit.  
The beam tunnel diameter must be small enough, however, 
provide RF isolation between cavities. 

For sub-millimeter devices, a new ‘emittance dominated’ 
beam regime is encountered in the design of the electron 
gun, in which the cathode temperature and surface 
roughness, rather than space charge force, are the primary 
determinants of the achievable minimum beam size.  This 
fact alone greatly complicates design of the gun and rules 
out the direct frequency scaling of lower frequency device 
designs to this frequency regime.  Consequently we are 
compelled to back off from a pure scaled design and accept 
certain compromises in RF performance. 

Using the MICHELLE beam optics code [6], we have 
designed a high compression electron gun, as illustrated in 
Figure 2.  This gun can produce approximately 100mA at 
25kV in a beam diameter of about 0.004”, corresponding to 
a current density of nearly 800 A/cm2.  The fill factor is 
approximately 0.8, but there is significant amount of beam 
scalloping, due to thermal effects.  This scalloping greatly 
reduces the effective fill factor, and thereby greatly reduces 
the gain from what could be obtained with an ideal, 
perfectly laminar beam.  An alternative design using a 
beam scraper could increase the average fill factor, but the 
requirement of high operating efficiency rules this out.  The 
mod anode design permits operation over a range of current 

and voltage without loss of beam focus.  This feature will 
allow adjustment of the gun operating parameters to help 
meet our RF performance goals (See below). 

The beam tunnel length in the beam stick was chosen to be 
approximately 0.685”.  The beam tunnel was produced by 
machining two ‘half-tunnels’ in copper alloy blanks and 
diffusion bonding the blanks together to form the complete 
tunnel.  However, this technique has proven to be difficult 
to carry over to an EIK circuit, in which the circuit 
thickness is only ~0.011”.  We consequently plan to use 
sink EDM (electrical discharge machining) to produce the 
beam tunnel in a blank in which the complete ladder circuit 
has been pre-machined.  Use of sink EDM in this way 
limits the achievable length of beam tunnel, however.  Our 
best result to date for ~.005” is approximately 0.790”, 
though a new generation of EDM machines shows promise 
of greatly extending this limit. 

Use of a highly depressed collector will be essential to meet 
the amplifier efficiency goal of 0.75%.  A single-stage 
depressed collector with a non-collecting grading electrode 
has been designed to achieve a collection efficiency of 99% 
under DC operation.  A trajectory plot of the beam in this 
collector is shown in Figure 3. 

A single ‘doughnut’ shaped magnet fits over the gun end of 
the beam stick.  It will maintain a magnetic field of ~1.1 T 
over the length of the beam tunnel.  The cathode is shielded 
from the magnetic field. 

The beam stick has now been fabricated and assembled.  A 
photo of the completed beam stick is shown in Figure 4.  At 
this writing the beam stick is being pumped down in 
preparation for testing.  We expect to have data on beam 
propagation and collector efficiency and comparisons with 
simulations to present at the conference. 

 
Figure 2: MICHELLE simulation of the mod anode 
electron gun with thermal beam to be used in the 670 
GHz EIK.  The radial scale is expanded by x20 compared 
to the horizontal scale. [Beam-Wave Research] 

Figure 3: MICHELLE simulation of single stage high 
efficiency depressed collector for a 670 GHz EIK.
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