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ABSTRACT

The F-35B Joint Strike Fighter is critical to the future of Marine Corps fixed-wing
aviation. The ability to man the Joint Strike Fighter with properly trained pilots is as
important as the development and acquisition of the aircraft itself. This thesis examines
the Integrated Training Center (ITC) model, which simulates the training process in order
to determine expected time to train for Marine pilots trained at Eglin Air Force Base,
Florida. First, we demonstrate that weather is an important factor in the Integrated
Training Center model. Legal and financial constraints restrict modification of the ITC
model, so we create a replica that is statistically similar to the flight management process
found in that model. We then modify the replica model to more accurately reflect reality.
This improved model uses a continuous-time Markov process to model weather. We
show that the independent weather assumption in the ITC model is inappropriate. We
recommend modifying the ITC model to reflect good weather as a resource necessary to
conduct a flight, and one that is only intermittently available. Ultimately, these tools will
be provided to decision makers so that they may implement these changes to make

better decisions.
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THESIS DISCLAIMER

The reader is cautioned that the computer programs presented in this research may
not have been exercised for all cases of interest. While every effort has been made,
within the time available, to ensure that the programs are free of computational and
logical errors, they cannot be considered validated. Any application of these programs

without additional verification is at the risk of the user.
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EXECUTIVE SUMMARY

The F-35B Joint Strike Fighter (JSF) is a critical step in the future of the
Marine Corps’ fixed-wing aviation. This aircraft (A/C) will make a significant difference
in combat effectiveness and its success will play a vital role in the future of the
Marine Corps. The ability to man the JSF with properly trained pilots is as important as

the development and acquisition of the A/C itself.

Time to Train (TTT) estimates have a major influence on manpower requirements
for pilot training, as instructor pilots (IPs) and trainees are a large part of the costs
involved in the training cycle. If TTT estimates are inaccurate, there could be
considerable delays that negatively impact the manning of operational squadrons. These
delays could adversely affect the combat effectiveness of the Marine Corps
(Rabachault, 2011).

The Marine Corps needs to understand the length of time required to train pilots
in order to appropriately assign resources to this process and make accurate plans. The
Integrated Training Center (ITC) model simulates the training process in order to
determine TTT (Kenny, 2010). The ITC model is useful, but contains many flaws that

significantly impact the training estimates.

TTT estimates depend upon many factors, both controllable and uncontrollable.
The ITC model takes a set of input data and simulates the induction, training, and
graduation of student pilots until all pilots have completed their respective courses.
Student TTT is one output of the ITC model, which assesses the training capacity and
acquisition requirements for the first JSF ITC currently located at Eglin Air Force Base,
Florida.

The ITC model is essentially a series of queues that approximate the resources
students utilize in the training process and accounts for the time students spend actually
using those resources and waiting to use them. Students are serviced by various training
resources such as classrooms, A/C, and simulators. Students progress through the

training process using those available resources. If resources are not available, they go
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into waiting queues until the resources are on hand. The model records student entry and
exit times as object attributes for both students and resources (Kenney, 2009). The ITC
currently uses an independent Bernoulli trial, similar to a dice roll, to approximate flight
cancellations due to weather. This could result in one student’s flight being cancelled

within a few minutes of another pilot taking off.

The ITC model is written in Model Simulator Software (MODSIM 111) and is
proprietary software; therefore, the user cannot make modifications. In order to analyze
the effects of weather changes on the model, it is necessary to replicate the ITC model’s
use of weather. This thesis uses Simkit, a discrete-event simulation software, to replicate
the weather portion of the ITC model. It also uses Simkit to simulate the weather in a
different model using a stochastic process, which will hold up entire groups of students
during bad weather. This thesis takes a more realistic approach when modeling weather-

related flight cancellations.

This thesis investigates the ITC model through experimental design and
regression analysis. Summer and winter cancellation rates are some of the most
important factors in the current model. This research confirms that weather is important
in the ITC model and that small changes in bad weather rates using the current model can

result in significant delays in TTT.

A replica model, which is statistically similar to the flight management process
found in the ITC model, is created in Simkit. This model is necessary because we cannot
modify the ITC model directly. We analyze the weather piece and verify that summer
and winter cancellation rates are important in this model. Then, we analyze resource
utilization rates to ensure we are not overusing resources. No resource limitations are
placed on this model helping in the analysis of A/C usage to determine if usage levels are
acceptable or not. This creates an issue, in that the estimates shown here are lower
bounds. This thesis shows that slight changes in weather can significantly impact the
TTT for each pilot.

An improved model, similar to the replica model, is also created in Simkit. This

model contains a continuous-time Markov process that models the state of the weather.
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In this model, the weather is treated as a resource that is only intermittently available.
The process whereby the weather changes approximate the four seasons is flexible
enough to model the weather of most geographical locations. This model is also
analyzed for resource utilization. This resource utilization is found to be much more
volatile than in the replica model. This resource utilization can greatly impact the TTT
estimates generated using the ITC model. Finally, with this model, we demonstrate that
modeling the effect of weather on flights as independent Bernoulli trials is inappropriate

and leads to inaccurate training time estimates.

We recommend modifying the ITC model to reflect good weather as a resource,
necessary to conduct a flight, and one that is only intermittently available. One way to do
this is to wuse a continuous-time Markov process, as we demonstrate in

this thesis.
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. INTRODUCTION

If the F-35B is canceled, the service has no other option for replacing its
aging Harrier jets capable of operating off smaller ships. . .. That would
eventually leave the nation with half as many ships deploying fighter jets.

. There is not a plan B. . . . This is bigger than the Marine Corps,
[General Amos] concluded.

—G.C. Kovach, 2010, p. 1
A. OVERVIEW

The F-35B Joint Strike Fighter (JSF) is a critical step in the future of
Marine Corps’ fixed-wing aviation. This aircraft (A/C) will make a significant difference
in combat effectiveness and its success will play a vital role in the future of the
Marine Corps. The ability to man the JSF with properly trained pilots is as important as

the development and acquisition of the A/C itself.

In January 2011, Defense Secretary Robert Gates expressed concern with the
increasing costs associated with the F-35 program when he said, “The culture of endless
money that has taken hold must be replaced by a culture of restraint.” He singled out the
Marine Corps’ variant F-35B and ordered “a two-year probation,” saying it “should be

canceled” if corrections are unsuccessful (Rabachault, 2011, p. 1).

With an estimated budget of over $380 billion, the JSF is one of the most
expensive procurement programs ever in the Department of Defense. Time to Train
(TTT) estimates have a major influence on manpower requirements for pilot training, as
instructor pilots (IPs) and trainees are a large part of the costs involved in the training
cycle and need to be addressed properly. If underestimates are not addressed early, then
there will be considerable delays that negatively impact the manning of operational
squadrons. These delays will also have adverse effects on the combat effectiveness of the
Marine Corps (Rabachault, 2011).

The Marine Corps needs to understand the length of the training cycle in order to
effectively train F-35B pilots. The Integrated Training Center (ITC) model simulates the
training process in order to determine TTT (Kenny, 2010). The ITC model is useful, but
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there are many flaws with it that may significantly impact the training estimates it

produces for the Marine Corps (Lucas, 2010).

B. BACKGROUND

The JSF program is the Department of Defense’s focal point for the next-
generation strike A/C weapon system for the Navy, Air Force, Marine Corps, and our
allies. The JSF has three variants: the F-35A Conventional Takeoff and Landing A/C
used by the Air Force, the F-35B Short Takeoff and Vertical Landing used by the
Marine Corps, and the F-35C used by the Navy for Carrier Launch and Recovery. This

research focuses on the F-35B.

1. Training Process

The ITC model takes a set of input data and simulates the induction, training, and
graduation of student pilots until all of them have completed their respective courses.
Student TTT is an output of the ITC model. TTT depends upon the syllabus written into
the ITC model or the information changed directly in the Graphical User Interface (GUI).
Delays to the training process occur when resources are not available for use. The ITC
model assesses the training throughput and capacity for the first JSF ITC located at
Eglin Air Force Base (AFB), Florida, as well as for other training facilities abroad. It is
also being used as a guide for resource acquisitions for the training center.

2. ITC Model

The ITC model is a Monte Carlo queuing-based model that uses uniform
distributions as a basis for all random behavior. The model is implemented in Model
Simulator Software (MODSIM) I1l, which is software that enables an object-oriented,
discrete-event simulation framework (Goble, 1997). Queues of students are serviced by
various training resources such as classrooms, A/C, and simulators. Students progress
through the training process using the available resources. If resources are not available,
they go into waiting queues until the resources are on hand. The queues use a
first-in-first-out system. Wait queues hold students who are waiting to train, while

resources are held by resource queues that are available for use. Student entry and exit
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times are recorded as object attributes for both students and resources. The following

resources are accounted for using the ITC model (Kenney, 2009):

Training Devices: Devices such as the Full Mission Simulators (FMS)
help students to gain a better understanding of the A/C before stepping
into the cockpit.

Classrooms: Rooms are set apart and can accommodate up to 12 pilots
per class. These rooms are used mostly for annual training and some
general knowledge instruction.

Self-Paced, Computer-Based Training Work Stations: These are only
available if a space is available. Most of the preflight instruction is based
upon these programs. Once a certain level is reached, an event-based test
is given to ensure the learning has taken place.

Mission Brief/Debrief Rooms: These are smaller rooms to be utilized
before and after training flights or FMS flights, in order to allow feedback
to pilots on areas for improvement.

Military IPs: IPs are the instructors who teach the pilots as they go
through their training. They are limited to the number of training A/C
available. For new A/C, like the F-35B, the IPs also need training.

Military Maintainer Instructors: These instructors are limited to
approximately 30 hours of training per week, with another 10 hours set
aside for counseling, syllabus and course content review, lesson
preparation, and other instructor-related duties.

Contract Academic IPs: Contracted instructors who will be relied upon
for expertise and to conduct a majority of the training during the start of
the program until IPs are able to be created from within.

Training A/C: A/C purchased specifically for use at the training facility.

Runways and Training Airspace: These resources, such as military
operating areas, low-level routes, scored target ranges, etc., will have
availability only during specific times. They will be utilized as necessary
when pilots are ready to fly the actual A/C.

The ITC currently uses an independent Bernoulli trial to simulate weather. As a

student enters the flight queue a random number is generated, and if that number falls

below the weather cancellation rate, he is not allowed to fly. Each student that enters the

flight queue is tested independently of anyone else. This could result in student A being

cancelled for weather and a few minutes later student B is allowed to fly (Lucas, 2010).



3. Discreet-Event Simulation (DES) and Simkit

Weather is not represented correctly in the ITC model. The model is written in
MODSIM I11 and is proprietary software; therefore, the user cannot modify it. In order to
analyze the effects of weather changes on the model, it is necessary to replicate the ITC
model’s use of weather in the flight event. Simkit is a DES modeling language that was
developed at the Naval Postgraduate School. It uses the Java programming language for
all its object-oriented programming (Buss, 2001). This thesis uses Simkit to replicate the
weather portion of the ITC model. It also uses Simkit to simulate an improved weather
model using a stochastic approach to weather. These two models create a way of
comparing improvements to the weather model. This thesis goes into further details
about the Simkit models in Chapters 11l and IV.

C. OBJECTIVES

Using design of experiments (DOE) and simulation, this thesis studies the ITC
model and the impact of weather on the expected TTT for Marine pilots being trained at
Eglin AFB. This thesis analyzes the effects of extending the model to more realistically
account for weather. These changes will greatly improve the ability of the model to give
better TTT estimates.

This thesis confirms that weather is important in the ITC model. It describes a
Simkit model that is statistically similar to the flight event process found in the ITC
model. It also develops a Simkit model that more accurately models weather. The
assumption of weather being modeled as an independent Bernoulli trial is inappropriate
and leads to inaccurate TTT estimates. We recommend modifying the ITC model to
reflect weather as a resource, necessary to conduct a flight, and one that is only
intermittently available. Ultimately, these tools will be provided to decision makers so
that they may implement these changes to make better decisions, based upon more
accurate TTT estimates.



D. RESEARCH QUESTIONS

First, how significant is weather to the current model? Second, how sensitive are
TTT estimates with respect to weather? Finally, a comparison of the proposed Simkit
model to the current model is done to see if the proposed changes are statistically
significant. This comparison is done using linear regression analysis, which allows a

guantitative comparison of distinct models.

E. SCOPE, LIMITATIONS, AND DATA ASSUMPTIONS
1. Scope

The scope of this thesis is to determine the significance of weather on the current
model, in order to improve the TTT estimates that the ITC model produces. We do this
using robust analysis in order to decide whether the difference between the current model

estimates are statistically different from estimates using the improved model.

2. Limitations

The most important limitation of this thesis is that researchers cannot change the
ITC model. The model is written in MODSIM 11l and the model itself is proprietary
software. Changing the model requires the Marine Corps to incur excess costs. The
Marine Corps can either pay a contractor to make changes, or buy the rights to the model
and make the changes themselves. Funds for doing so, however, are not available at

this time.
3. Model Assumptions

a. ITC Model Assumptions

This thesis assumes the latest plan for resource allocation is up-to-date and
accurate. The plan is written into Course of Action (COA) 4, which consists of 14
syllabai, A/C induction schedules, IP induction schedules, and other basic resources

required for this model to run. Using the latest COA gives one the opportunity to study



TTT according to the most recent resource allocation numbers provided by the
Marine Corps. For a more comprehensive list of the model assumptions, see

Appendix A.

b. Simkit Model Assumptions

The first assumption is that the Simkit replica is a good distillation of the
MODSIM model and that it correctly imitates the model as it stands. The MODSIM code
is not accessible due to its proprietary nature. Therefore, we ensure that a similar arrivals
process is achieved while producing similar output in all other areas. Another
assumption of the model is that approximations made about past weather conditions are
good predictors for future events. Also, that the efforts placed into approximating
weather are sufficient for Eglin AFB.

F. LITERATURE REVIEW

Mustafa Azimetli’s (2008) thesis, “Simulation of Flight Operations and Pilot
Duties in LANTIRN Fighter Squadrons using Simkit,” uses a weather simulation to
determine how often they can keep their Low-Altitude Navigation and Targeting
Infra-Red for Night LANTIRN fighter squadrons up and running. His analysis uses a
weather simulation that splits the weather into three categories of flight. The three
categories allow certain pilots to fly, depending upon their training levels, etc. He uses a
Markov chain process to create current weather categories. Similarly, this thesis uses a
Markov chain process to generate weather. However, this thesis uses probabilities to go
from good to bad weather, and vice versa, moving students in and out of a weather wait
queue. All pilots are in a training environment and the breakup of the experience
categories is not a necessary piece. Azimetli uses METAR reports that are simulated
from weather reports in Turkey. Although he uses a similar weather simulation, his
simulation evaluates the use of the LANTIRN A/C. This thesis gives more realistic
estimates to the current TTT estimates given by the ITC model.

Axtell, Axelrod, Epstein, and Cohen (1996) coin the term docking, for making
two simulation models match. In their case study, they compared two different models to

see if they could accomplish the same task. Similarly, this thesis compares two different
6



models—scripted in different software, by different authors, and at a different time—to
accomplish the same thing. The ability to compare models is an important component of
this thesis; however, it differs in its attempts as it does not replicate the entire model, but
only a small part of it. Docking as a thread of research is primarily found in the agent-
based modeling community and, to our knowledge, this is the first application to discrete

event simulation.

This thesis develops a Simkit version of the flight event process and docks it to
the ITC model. Using Azimleti’s thesis as a point of departure, we modify the Simkit

model to more appropriately model the effects of weather on flight operations.

G. THESIS OUTLINE

Chapter Il discusses the ITC model makeup. It also discusses the analysis that
shows how important weather is to this model. Chapter Il is the SimkKit replica of the
A/C flight event found in the ITC model. We discuss how it runs and show the analysis
of how it functions. Chapter IV reviews the proposed changes to the weather model
using Simkit. Analysis is done to illustrate how weather changes affect resource
utilization in this improved Simkit model. It also does a comparison analysis of the two
different Simkit models showing the significance of the proposed changes. Chapter V
provides the conclusions, recommendations, and suggestions for further research using

this model.
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1. 1TC MODEL AND WEATHER

A. ITC MODEL

The ITC model covers the entire life cycle of a student pilot, from inception to
graduation. It takes the pilots through a set of events, controlled by syllabi, using
MODSIM IlI, which is a DES modeling software program that controls the flow of
students through the training cycle (Kenny, 2010). The time it takes to go through this
training process is TTT.

As explained in Chapter I, there are many inputs and outputs. The inputs are
described as variables and can be found in Table 1. In the ITC model, all of the variables
found in Table 1 can be manipulated in the simulation. However, most of them are
prewritten into a COA worksheet that is then read into the model using text files. These
text files create the scenario and control a number of factors running the ITC model.
Some of these text files are the syllabus schedules that pilots go through. Others are the
plan for purchasing A/C and utilization of IPs. All of the 36 variables are written into the
text files and read into the ITC model at the instantiation of the run. The GUI screens,
depicted in Appendix B, allow the user to access the individual variables. In this way,
changes can be made to the variables without touching the individual text files. There are
a lot of output measures that can be analyzed. In this chapter, we focus upon the most

significant of these outputs, mean TTT.



Table 1.  All of the decision and noise variables controllable by the GUI.

Decision Variables

Noise Variables

Unclassified Classrooms

Winter Cancellation Rates

Classified Classrooms

Summer Cancellation Rates

Interactive Courseware Work Stations

Probability of Mechanical Failure

FMSs

Time for Repairs

Mission Readiness Trainer (MRT) Flight Simulator

A/C Flight Preparation Time

Mission Planning Station

A/C Refly Rate

Brief/Debrief Rooms

Simulator Refly Rate

A/C Two-Seat

FMS Planning Time

AJ/C Systems Maintenance Trainer

FMS Briefing Time

Weapons Load Trainer

FMS Debriefing Time

Ejection System Maintenance Trainer

MRT Planning Time

Engine Trainer

MRT Briefing Time

Outer Mold Line Train Lab

MRT Debriefing Time

Military Operating Area Slots

Low Levels

Target Slots

Runways

IPs

Contract Instructors

Training Days/Year

Hours in a Day

Choice of Syllabus

Induction of IPs

The ITC model estimates the amount of time pilots take to go through the training

cycle, while encountering a number of possible delays. As this model is written, pilots

must advance from one training event to the next in order—no skipping or changing of

events is allowed. If delays occur, they occur at the time the event is scheduled. Weather

is just one of the delays that can occur during the training cycle. This thesis will show

that weather is an important factor in this model.

B. ITC WEATHER

The AJ/C flight event is one of many events simulated in the ITC model. The

flight event is read in as part of the syllabus found on the text files. The flight events are

the basis of this analysis, as it is the only location where weather affects the TTT
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estimates. Each syllabus has a certain number of hours that it requires pilots to fly. The
flowchart for the flight event and weather is found in Figure 1. The flowchart shows the
process that a student goes through in order to fly a scheduled event. It also shows the
approximate times that it takes in order to go through the briefs and possible

maintenance cycle.

4. Aircraft Flight Event

Available Return MPS Available Return A/C
Phialy A/C Servicing (GUI)
MPS Q AlCQ
Man A/C
Taxd AIC Repair (GUI) Next Event
W Fly T
Start Taxi No
Plan A~ Brieft o~ Debrief AIC Debrief @ % D
% : O 1.0hrs A~ 175hrs 30 minutes " 25hrs et
A *. R e 'S 5 minutes A " Yes
. = Syllabus !
If Cancel for Weather 6 minutes H
4.0 hour delay 30 minutes H
. )
Available '
[€—— Return Instructor(s) after 1.0 hour break
Instructor Q ¥ !
[]
Available | Available __j Return
Brief Room Q| Return Brief Room Debrief Room Q Debrief Room

h 4

Figure 1.  The flowchart on which the ITC model bases its A/C flight events.

Weather is a very simple component of the ITC model. It uses a system that
divides the year into two different seasons—summer and winter. Both the summer and
winter cancellation rates can be adjusted using the Scenario User interface found in
Appendix B. The effect of weather is simulated using a Bernoulli trial. A uniform
random number is drawn and compared to the designated cancellation rate. If the number
is greater than the cancelation rate percentage during that season, then the A/C is allowed
to fly. Those that fall under the rate are then placed in the weather wait queue for four
hours while the system continues on. As already discussed, other students coming into
the queue directly after the one that is cancelled are checked with a similar Bernoulli trial
and will either fly or go into a weather wait queue independent of what happened to the

student prior.
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C. DESIGN OF EXPERIMENTS (DOE)
1. Measure of Effectiveness (MOE) and Factor Selection

An MOE is “a qualitative or quantitative measure of the performance of a model
or simulation or a characteristic that indicates the degree to which it performs the task or
meets an operational objective or requirement under specified conditions” (MOE, 1998,
p. 136). The MOE used in this section ismean TTT.

The variables are usually divided into three groups: decision factors, noise
factors, and artificial factors. The decision factors are those that are controllable in the
real world; the noise factors are uncontrollable real-world factors; and the artificial
factors are those specific to simulation, such as initial state and warm-up periods
(Sanchez, 2000). Table 1 is a description of the variables and which ones are used in the
DOE for this analysis. The key variables highlighted in Table 1 are summer and winter
cancelation rates, A/C and simulator refly rates, probability of mechanical failure rates,
time to repair A/C, and A/C preparation time. The weather factors are vital to the
analysis in this thesis. The others are chosen because planning does not control their
outcome. All the decision variables are input automatically according to the latest COA,
and, although they affect the overall TTT, keeping them constant allows one to analyze
the most important data in the uncontrollable factors. By adjusting the noise variables,
we are better able to understand how much effect uncontrollable variables will have on
the overall TTT. This knowledge helps decision makers create better training schedules
by allotting an appropriate amount of time for the training. It also gives them the ability

to make a case for necessary resources.

2. Nearly Orthogonal Latin Hypercubes (NOLHSs)

An initial design of seven factors makes it impossible to run a model with the
entire set of possible parameter space. A full-factorial design, with 10 factors and 10
levels each, would require 10 billion design points. In an example using 20 replications,
200 billion runs of simulation would be required. In the event that each simulation took
one second, the entire experiment would take over 6,300 years to run. A much more
efficient design is needed (Sanchez, 2008).
12



To construct a more efficient design, we use an NOLH experimental design
spreadsheet developed by Dr. Susan M. Sanchez at the Naval Postgraduate School (NPS)
in 2005. A NOLH design facilitates an investigation into the domain of numerous
factors. These designs allow one to see the effects of one factor independent of other
factors. They also maintain the benefits of orthogonality, such as independence of
estimates of variables, while providing the added benefit of space-filling properties
giving superior analytical performance. This benefit allows one to explore a model with
more depth. In this thesis, we evaluate seven factors, as shown in Table 2. To cover

more of the design space, the (N,)> sheet is used with a wrapping technique (Cioppa,

2002). This gives a more appropriate response surface to test for nonlinear behavior. It
is important to note that these designs lose very little in orthogonality, which means that

we stay away from multicollinearity issues (Cioppa & Lucas, 2007).

Table 2. NOLH design spreadsheet with factor names and levels (9 of 65).

low level 0 0 0 1 0 0 0
high level 60 60 99 24 40 40 4
decimals 0 0 0 1 0 0 0
factor name|WxCanc|SxCancProbA/Cfail| TimeToRep| FightRefly| SimRefly| NextSortie
60 6 43 5.3 35 25 3

54 60 12 9.6 19 8 3

53 26 90 4.6 1 24 3

34 53 99 10.3 38 6 3

56 2 46 6 28 29 2

58 56 31 7.5 18 9 1

41 28 96 6.8 0 26 2

32 41 93 8.9 36 10 1

39 15 22 13.2 29 13 0

Using the (N,)s> sheet and wrapping it once results in 66 design points. In order

to ensure independence, the center design point is deleted from the second group of
numbers, leaving a total of 65 design points. These 65 design points are then run through

the ITC model with 50 replications each, totaling 3,250 runs of simulation, with
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120 pilots going through each run, giving information on 390,000 pilots in 14 different

syllabi. Of the 14 syllabi, two are upgrades and the TTT levels are significantly shorter.
The space-filling properties of the DOE are shown in Figure 2. The points in the

matrix are distributed evenly across the matrix. This strengthens the design and allows

access to 2" order effects.
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Figure 2.  The space-filling properties of the 7-factor DOE using a scatterplot matrix.

D. DATA ANALYSIS

Before a full analysis on the data is performed, it is necessary to do preliminary
work on the output information. First, we take into account the warm-up and cool-down
14



periods of the ITC model. To account for these periods, 150 days is chopped from the
beginning and end of the data. Those points that fall in the first 150 days and end in the
last 150 days are not used in the analysis. Next, the output of the run is broken down into
many categories. An example of the output can be found in Table 3. The first column
describes which pilot (1-120) was training and the next column gives a class number,
depending upon the start date. The third column is the syllabus each pilot flew, the fourth
is the time they started that syllabus, and the fifth is the completion date. Next, it gives
the overall TTT; followed by calendar weeks; the approximate number of months, weeks,
and days according to the syllabus start time; and scheduled no training days. Then, it
gives the study planning time, followed by flight hours and simulation hours of use in the

syllabus.

Table 3.  Output spreadsheet from simulation runs (11 of 390,000 rows shown).

Study
Planning
Class Start Start Finish Time to Calendar MO/WK/ Hours Flight |Sim CQ

Pilot Number Class.Type Day Time Day Train Weeks DAYS Day Hours Hours Refly DPF rep
Pilot0001 1 DCMA_Initial_Cadre.txt 411 7:00:00 460 50 11 2:02:01 2 B 29 NA 01
PilotQ002 NA DCMA_Initial_Cadre.txt 411 7:00:00 4682 52 12 2:02:03 2 B 34 NA 01
Piloz0005 3 DCMA_Initial_Cadre.txt 461 7:00:00 458 38 5 1:03:04 0 B 36 NA b1
Pilot0006 NA DCMA_Initial_Cadre.txt 461 7:00:00 502 42 9 2:00:03 0 10 31 NA 01
Piloz0003 2 B1.0_TX_ALL B_Eglin.txt 431 7:00:00 507 77 17 3:03:04 0 24 49 NA 0D 1
Piloz0004 NA B1.0_TX_ALL B_Eglin.txt 431 7:00:00 507 77 17 3:03:04 0 25 53 NA 01
PilotQ012 NA B1.0_Tx3_A_Eglin.txt 486 7:00:00 531 46 10 2:01:02 1 12 19 NA 01
Piloz0011 6 B1.0_TX3_A_Eglin.txt 486 7:00:00 531 46 10 2:01:02 1 12 21 NA D 1
Pilot0014 NA B1.0_Tx4_A_Eglin.txt 486 7:00:00 538 53 12 2:02:04 1 18 25 NA 0 1
Piloz00L13 7 B1.0_Tx4_A_Eglin.bet 486 7:00:00 538 53 12 2:02:04 0 15 22 NA D 1
PilozO008 NA TX3 B1.0.txt 461 7:00:00 574 114 26 5:03:02 1 36 62 NA 01

The information found in the output is specified by many different class types, as
seen in Table 3. After some simple analysis of all of the different classes, we are able to
show that each class performs similarly. This thesis uses a single class to describe
weather and its effects. This was to limit the repetition in graphs and charts. In order to
choose a single class, we had to analyze which class would be the most appropriate to
generalize all classes over. Of the 14 syllabi, the least similar syllabi are the upgrades,
the initial cadre group, and the other three syllabi that lead into the two upgraded syllabi.
Due to their shortened length of training days, they would not be helpful in predicting
overall TTT for a student going through a normal training cycle.
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Table 4 shows summary statistics for all 14 of the different classes based upon
TTT; the first six are the syllabi explained above. That left eight syllabi to decide from.
Being as they are all similar to the others, we choose one with an average length of
training days and the largest number of students going through it. The syllabus
TX3 B2.0.txt has 58,500 pilots train using its syllabus under differing design points

and replications.

Table 4.  Summary statistics on the 14 different syllabi. Highlighted is the class used in

this analysis.

- Median Min Max

Class.Type M Rows (Training.Day Mean{Training.Days) Std Dew(Training.Days) (Training.D (Training.D
1 B1LOTH_ALL B _Eghntxt 19500 &3 6425374350 £.820724182 49 96
2 B1.0O_TX3_A_Eqlin.txt 6500 42 42 458451538 3.946616085 34 BB
3 B1.0_TX4_A_Eqglin.txt 6500 50 50,553602308 4. 7101600004 41 74
4 B2.0_Tx3_Upgrade.txt 78000 20 21.331B46154 4. TEEEE3RAZ3 15 (4]
5 B2.0_TX4_Upgrade.txt 32500 22 23.0347692N 5520115333 16 Fi
6 DCMA_Initial_Cadre.txt 13000 48 44, THTESZN 64425577031 32
T TX1_B1.0.txt 6500 118 12112861538 17.608348245 = o] 197
8 TX1_B2.0.txt 6500 136 138. 71692308 14.840440472 109 200
9 TX3 B1.0txt 45500 104 105.37169231 11.280036999 B 185
10 T3 B2.0 Erv.bat 16500 138 135.0885641 11.718354921 110 183
11 T¥3 B2.0.txt 58500 118 12142523077 12. 302685696 o6 m
12 TX4_B1.0:txt 38000 111 113.02441026 12507590722 B85 185
13 T¥4 _B2.0_Env.ixt 26000 148 1459, 19484615 12414948178 120 191
14 T4 _B2.0.txt 32500 126 12752393848 12.32870603 1 212

To better understand the response variable, we show a histogram with some of the
summary statistics in Figure 3. This shows that the mean TTT is about 121 days to train
and the standard deviation is about 10 days. The response variable is somewhat
symmetric with what seem to be a couple of outliers. The outliers seem to be caused by a

high rate of A/C failure, as well as an extreme amount of time to repair.
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Figure 3.  Distribution of the response variable.
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An ordinary least squares (OLS) model is fit to mean TTT with the seven factors,

to include all second-order interactions. Stepwise corrected Akaike Information Criterion

(AICc) forward helps determine those factors that are important (SAS, 2009). Figure 4

shows the progression of R? for the AICc stepwise model selection process. The vertical

line shown on the graph depicts the best fit model according to the AICc. The adjusted

R? is about 0.90, as shown in Figure 5. This does not mean that we have the best fit

model. In fact, it may indicate that we over fit the model. Using the AICc method, we

kept 14 of the original 28 significant terms. More analysis is vital in order to decipher if

we have chosen a good model.

17



RSguare

RSquare vs. Number of Factors Using Stepwise AlCc

1.0

Reference line is chosen model

0.9

0.8

0.7

0.6

0.5

0.4

0.3

o == o
A

Figure 5.

Mumber of Factors

R? progression with number of significant factors.

v Summary of Fit

0.904938
RSquare Adj 0.87832
Root Mean Square Error 3.537647
Mean of Response 121.4252
Observations {or Sum Wgts) 65

15 20 25

RSquare
—RSquare

Summary of fit on the linear model using mean TTT as the MOE.

The sorted parameter estimates help one to identify the important factors in the

model and how they rank accordingly. Summer and winter cancellation rates are both

among the most highly statistically significant factors in the model. The OLS model,

shown in Figure 6, illustrates that both summer and winter cancellation rates are

important in the model. Every five percentage-point change in either summer or winter
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cancellation rates equates to approximately a one-day increase in mean TTT.

For

example, increasing the summer cancellation rate from 0.2 to 0.25 increases expected

mean TTT by approximately one day.

Sorted Parameter Estimates

Term Estimate
FlightRefly 0.3417278
SumChx 0.2193404
ProbACFail 0.1156315
TimeToRepair 0.4822408
WnCNx 0.1754402
{ProbACFail-49.5077)*(TimeToRepair-12.5031) 0.0189804
SimRefly 0.1855317
{ProbACFail-48.5077)*(TimeMextSortie-2.01231) 0.0392162
TimeNextSortie 1.0805913

Figure 6.  Sorted parameter estimates using mean TTT as the MOE.

E. VALIDATION

Std Error t Ratio

0.036547
0.024438
0.014759
0.083831
0.024436
0.002653
0.036547
0.013148
0.365444

9.35
8.98
7.83
7.58
7.18
7.15
5.08
2.98
2.96

Prob=|tl
<.0001*
<.0001*
=.0001*
=.0001*
<.0001*
<.0001*
<.0001*
0.0044*
0.0047*

It is important to evaluate the residuals versus the predicted plot in order to

validate the model. Figure 7 depicts the predicted mean training days’ values versus the

residuals. The points seem to have no particular pattern, demonstrating constant

variance. This supports the first assumption that there is likely constant variance.

Residual by Predicted Plot
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Figure 7. Mean TTT residuals by predicted plot.

According to the qq Normal plot, we can see that there is some granularity, as

well as being a little right skewed, as shown by the bar chart in Figure 8. Overall, it

seems to show that the points are approximately normally distributed.
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Figure 8.  Normal QQ plot of residuals with histogram.

F. CONCLUSIONS

Weather is important in the ITC model as currently modeled. Using linear
regression analysis, we show that winter and summer cancellation rates are significant
factors. We use a model that maximizes adjusted R? without over-fitting the model.
Through the use of residual analysis, the assumptions of normality are tested. We
conclude that the model is a valid model. Everything found supports the claim that
weather is important in the ITC model. All analysis in this thesis is demonstrated through

the exclusive use of JMP Statistical Discovery software.!

1 Additional information about the JMP Statistical Discovery software can be found at www.jmp.com.
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I11. REPLICA SIMKIT MODEL

A. SIMKIT MODEL DESIGN

The purpose of this thesis project is to examine the manner in which weather is
modeled in the ITC model, to propose improvements, and to quantify the benefits. The
most effective way to accomplish this is to modify the ITC model directly, and compare
the legacy and improved models. However, the ITC model cannot be modified for legal
and financial reasons. A replica of the ITC model flight event management process is
created and implemented in Simkit. This is the important part, because it is the only

place weather has an effect on TTT.

A flow chart of the Simkit replica model that recreates the A/C flight events found
in the ITC model is shown in Figure 9. The flow in the ITC model and the replica model
are similar. The primary difference between the replica model and the ITC model is that
the replica model has unconstrained resources. For example, the model is not limited to a

certain number of A/C, brief rooms, or IPs.
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Figure 9.  Flowchart of the Simkit replica model.

The Simkit replica model is implemented in 10 different Java classes. An event
graph diagram of this model is found in Appendix C. The following is a brief description
of how the model works. First, an arrival process governs the arrival of flights into the

system. In the current implementation, the interarrival times are exponentially
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distributed, which is an appropriate assumption given the necessity to abstract away from
all nonflight-related evolutions on the syllabi. One of the parameters over which we data

farm is the shape parameter.

Next is the Flight and FlightCreator process. As flights arrive according to the
arrival process, the Flight Creator class creates Flight objects. A flight object possesses
the number of students involved in the flight, the length of the flight, as well as the time
at which the flight object entered the system. The number of students required for each
flight is either one or two. Similarly, the flights on a given syllabus, for a particular
course of study, may range from approximately one to three hours. In order to maintain a
sense of generality, the FlightCreator determines the number of students and duration for
a flight according to probability distributions. A simple Bernoulli trial is used to
determine the number of students, while a Triangular distribution, with a lower bound of
0.5 and an upper bound of 3.0, is used to determine duration. The probability of the
Bernoulli trial and the mode of the Triangular distribution are varied according to the

experimental design.

If there is sufficient daylight remaining to fly an event, the system checks the
weather according to a Bernoulli trial. The probability of the Bernoulli trial depends
upon the season. The SeasonChanger class simply alternates between summer and
winter, thereby enabling the WaitCollector class to utilize the appropriate weather
cancellation rate. If the random number it generates falls below the assigned cancellation

rate for that period, flights are sent into a weather wait queue.

In reality, a flight that is delayed due to weather may find that the required
training range is no longer available. Similarly, in the ITC model, a pilot may emerge
from a weather delay and have to wait for an IP to become available. In order to account
for this phenomenon in the replica model, every flight that emerges from the weather
delay queue experiences a Bernoulli trial to determine if an additional delay will be
applied. If so, an additional delay of from 1 to 5 days is imposed in order to simulate the
possibility of delays exacerbated by the weather delay. This additional wait time
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accounts for some of the time delays associated with the unavailability of resources.
Students, for whom additional flight wait time is imposed, do not undergo another

weather check.

The BriefClass processes the remainder of the flight event. It manages the
utilization of resources such as brief rooms, IPs, A/C in use, and completed flights. At
various points in the flight evolution, the brief rooms, IPs, and A/C are released. Finally,
the ITCModelExe class instantiates all the relevant objects and manages the entire
process. This class listens to all the other processes while recording the output

information.

Other  important  features in  this model are the  FllelO,
ReadCommaSeperatedinput, and the OutputCatcher processes. The first two read in
Comma Separated Value (.csv) sheets and convert them into arrays that are used for
farming later. The first sheet, DOE.csv, is the design spreadsheet that has all the factors
and their assigned values. The second sheet is Seed.csv, which is a seeding worksheet.
This worksheet provides the ability to replicate the experiment elsewhere, using a
different machine, and still get the same values. The OutputCatcher process allows
access to the output. It captures the data on a separate screen and saves it to a comma

separated text file. This allows JMP to access the information for processing.

B. SCOPE, LIMITATIONS, AND ASSUMPTIONS

It is important to replicate the original model closely, in order to obtain useful
results. This model does not recreate the entire ITC model. It recreates the flight process
portion of the model only. This is the only place where weather has an effect upon the
training process found in the ITC model. We compare the number of arrivals from the
ITC model to the number of arrivals coming through this model, and we find that the

arrival process is similar to the ITC model’s arrival process.

Resources are not restricted in this model. In order to overcome this weakness, an
additional delay is placed upon some of the flights that are delayed due to weather. This
rescheduling delay is simulated by an additional delay time of up to five days, as

explained in the WaitCollector process.
23



C. EXPERIMENTAL DESIGN

In the interest of time and simplicity, the model assumes unlimited resources such
as briefing rooms, IPs, and A/C required. All resources are measured, which helps
decision makers understand resource usages. Resource utilization rates are analyzed as

well, to show differences between the replica model and the model found in Chapter 1V.

The MOE for this model is slightly different than the MOE for the ITC model.
This model does not estimate total mean TTT because the model only includes flight
events. Instead of mean TTT, it uses Mean_DWQ. DWAQ is a response variable found in

Table 6; it is the mean delay in wait queue by design point.

The list of decision variables is also different from the Simkit model. This model
does not limit the resources, so many of the decision variables are output instead of input.

Table 5 is a list of decision and noise variables found in the replica model.

Table 5.  List of Decision and Noise Variables in the Simkit replica model.

Decision Variables Noise Variables

Arrival Rates

Winter Cancellation Rates

Number of Students per Flight

Summer Cancellation Rates

Flight Duration

In-Brief Times

IP Break Time

Debrief Time

Aircraft Flight Preparation Time
Post Flight Preparation Time
Maintenance Time

Additional Time

This thesis implements the 12 factors listed in Table 5ina (N,)% NOLH design.
It replicates each design point 50 times, for a total of 3,250 runs. We use common
random numbers for each replication, so as to reduce variance due to random number
selection between runs (Law & Kelton, 2000). The simulation completes this experiment
in approximately 15 minutes on a desktop computer, with a Pentium 4 central processing
unit, 3.6 gigahertz speed, and 3.0 gigabytes of random access memory. Common random
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numbers are used to decrease the variance caused by simulation (Law & Kelton, 2000).
Appendix D is a scatterplot matrix that shows the space-filling properties of our

design space.

D. ANALYSIS

The model exports its output data in a comma separated text file, which facilitates

import into JMP. A sample of the output is shown in Table 6.

Response variables include DWQ, mean and maximum number of students in the
weather wait queue, as well as the mean and maximum number of students in the wait
queue. Additional response variables include max A/C in use, maximum IPs in use, and

maximum brief rooms in use.

The simulation runs for a three-year period, similar to the ITC model. This model
is not limited by resources, but it is able to show resource usage. It also accounts for

resources, to give decision makers the ability to identify resource utilization rates.

Table 6. A part of the output file that is saved as a .csv file.

rep |[dp |time wxWaitQ mean |wxWaitQ max PWQ wxWaitQ delay max wxWaitPersQ mean
0 0 |36000 0.67 8 8.9 144 1.31
0 1 |36000 0.89 10| 9.84 149 1.12
0 2 36000 0.73 8 856 144 1.2
0 3  |36000 0.53 7| 147 144 0.6
0 4 136000 0.13 7 15 138.42 0.21
0 5 |36000 0.66 10| 9.99 147.62 0.72
0 6 |36000 0.29 6] 3.76 138.83 0.52

A histogram and summary statistics of DWQ are shown in Figure 10. The mean
response is 14.3 hours, with a standard deviation of 7.2 hours. All mean delay times fall
at or below 33 hours.
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~ DWQ

—— * Quantiles * Moments
——{ < F——— | 1000% maximum 333634 Mean 143712
99.5% 33.3634 Std Dev 7.2670702
g7 5% 33.1034 Sid Err Mean 0.9013691
90.0% 224724 Upper395% Mean 16.171892
75.0% Quartile 19.5604 Lower 25% Mean 12570508
50.0% median 141678 N 65
25.0% quartile  B.4548
—1— 10.0% 5.84312
1 1 2.5% 1.82929
o 5 10 15 20 25 30 35 5w 1.5182
0.0% minimum  1.5182

Figure 10.

Distribution of the response variable Mean_DWQ.

A partition tree is used to explore the data and identify important factors. The

first four splits of the tree are all weather-related variables, WxCanc and SxCanc, which

confirms their relative importance. Adjusting weather at different levels allows one to

account for the majority of the variation in the response variable. These five splits

(shown in Figure 11) result in an R? of approximately 0.8.

Split Prune Numbar
—————— —  RSguar RMSE N of Splits  AlCe
0803 35044433 5 § 351817
l
= All Rows
Counl B5 Log'Worth Diflercnce
Mian 143712 14 578023 80872
Sid Do 7257002
|
= WaCnnc<0.33 = WaCanc>=0.33
Count 35 LogWarth Difference Count 30 LogWerth Difference
Mean  9.75B4057 10787523  7.72004 Mean  1B.755127 4.7554645 786167
St Doy 4 B24TEAT Sud Dev  5.6041478
[ | [ |
= SxCanc<.J7 = Sxlance=0.97 = SxCanc<.43 = SaCance=0.43
Count 23 LogWorth  Difference || Count 12| | Count 20 LogWorth Difference || Count 10
Mpan TA0ETINS 42080641 4.16305 || Maan 14,634633 | | Moan 1713457 21053171 5. 74401 || Mapan 2495624
Sid Devw 29168582 Std Dev  3.BASA005 | | Sid Dev 3 B0SEGTY Std Dwee 52023632
I—l——l » Candidates * Candidates
= WiCancdd11 || = WaCancoell11 = AddTime<0.419 | = AddTimes=0.418
Coun 8 Count 15 Count 5 § Count 15
Mlean 4.597325 | Mean B.55T1733 Mean 12.82656 || Maan TE.5TO5T3
5td Dev 24750004 | 51d Dev  1.9627567 Std Dev  3.5450871 | 51d Dew 26856039

» Candidates L Candidates

Figure 11.

- Candidates |- Candidates

Partition tree with Mean_DWQ as a response variable.

The partition tree also keeps track of R? at every split and Figure 12 is a graphical

representation of the R® at every split. As seen below, very little predictive power is
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gained by going beyond the 5th split. This helps to determine a stopping point. The
steps in Figure 11 only show up to five splits, whereas Figure 13 gives the history out to

nine steps.

Split History

1.00

'D-mllllllll
6 1 2 3 4 5 & 7 8 9 10

Mumber of Splits

Figure 12.  Partition tree split history.

An OLS model is fit to Mean_DWQ with all 12 factors, to include second-order
interactions. With Mean_DWQ as the MOE and using the AICc method, 17 of the
original 79 factors enter the model, which results in an adjusted R? of 0.993, as shown in

Figure 13.

Summary of Fit

RSquare 0.995453
RSquare Adj 0.993938
Root Mean Square Error 0.5658086
Mean of Response 14.3712
Observations (or Sum Wagts) 65

Figure 13.  Summary of fit for OLS model using Mean_DWQ as MOE.

The sorted parameter estimates show how important the factors are in this model.
Analyzing the sorted parameter estimates shown in Figure 14 reveals that SxCanc and
WxCanc rates affect Mean_DWQ significantly. Increasing weather rates from, say,
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0.3-0.35, increases the mean delay time by about 1.5 hours. The AddTime parameter is
the probability that a flight experiences a delay, in addition to a weather delay. The sign
is positive, as expected. For every 0.1 increase in the probability of added time,
approximately two additional hours are spent in the weather wait queue. In addition, it is
unsurprising that WxCanc*AddTime and SxCanc*AddTime are the two most important
interactions. As the weather cancellation rates increase, the addTime becomes more
important. The weather delays are expected to be important, but arrival rates (Lambda)
do not make as significant an impact as expected.

Sorted Parameter Estimates

Term Estimate Std Error t Ratio Prob=Itl
WxCanc 30.58688 0.388757 76.54 <.0001*
SxCanc 23.400662 0.399766 58.54 <.0001*
AddTime 18.507408 0.598663 30.91 <.0001*
(WxCanc-0.30031)*(AddTime-0.50012) 33.648145 3.398B631 8.80 <.0001*
(SxCanc-0.30031)*(AddTime-0.50012) 26.75647 3.137364 8.53 <.0001*
(% Studs-0.50031 }‘(WxCanc -0.30031) B.54B85706 1.727B43 5.53 =.0001*
(Lambda-0.08502)*(InBrf-1.75031) -73.73404  15.12965 -4.87 <.0001*
(FltDur-1.75077)*(Post-0.50015) 3.046066 0.712845 4.27 <.0001*
(Lambda-0.06502)* (Maint-1.00154) -74.30098 17.99443 -4.13 0.0001*
FltDur 0.288362 0.095802 3.02 0.0040*
(WxCanc-0.30031)*(SxCanc-0.30031}) -3.196259 2.416072 -1.32 0.1821
Post 0.2313033 0.478097 0.48 0.6314
Maint 0.037149 0.236516 0.16 0.8759
% Studs 0.0250762 0.239604 0.10 0.9171
InBrf 0.0188482 0.2389619 0.08 0.8376
Lambda 0.0401288 4.790B17 0.01 0.9934

Figure 14.  Sorted parameter estimates of the OLS model using Mean_DWQ as MOE.

E. VALIDATION
1. Regression Validation

Figure 16 shows the residuals by predicted plot, which demonstrates constant
variance. The correlation of estimates coefficients matrix shows that no correlation
above 0.17 exists between any of the terms, which indicates there are no issues with
multicolinearity. These estimates fall well below 0.9, which is the level Hamilton (1992)

discusses as high correlation. A qg-plot of the residuals is shown in Figure 15, as is the
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residual by predicted plot and goodness-of-fit test. All of these indicate that the errors are

sufficiently distributed in a normal manner.

assumptions for an OLS model.

This model satisfies the necessary

Figure 15.

Residual by Predicted Plot = Fitted Normal
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Mean_DWQ Residuals by Predicted Plot, QQ normal plot of residuals with

2.

histogram and goodness-of-fit test.

Maximum Aircraft Utilization

One of this model’s important simplifying assumptions is that resources such as

briefing rooms, IPs, and A/C in use are unconstrained. In order to evaluate the impact of
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these assumptions, it is necessary to examine the areas of the design space where any of
these resources exceed their maximum capacities. This section examines
Max_A/CInUse, which is the mean of the maximum number of A/C flown by design
point. A fully operational training squadron is only assigned 20 A/C and only a portion
of those are expected to fly on any given day. Therefore, it is reasonable to conclude that
for areas of the design space where Max_A/CInUse exceeds 20, the estimate of
Mean_DWQ is a lower bound. This is because in the ITC model, as in reality, flights that
are delayed due to weather may subsequently be delayed because the aircraft originally
intended for the flight is reassigned to a different flight. Figure 16 gives the distribution
of the Max_A/CInUse for the 65 design points. Appendix E shows the distributions of
the Max A/C, Max brief rooms, and the Max IPs in use over the 3,250 data points.

* Max_A/CinUse

- . Quantiles Moments
——{ < —| 1000% maximum 2564 Mean 18.147077
99 5% 2564 Std Dev 3.7751299
97.5% 24,808  Std Err Mean 0.4682472
90.0% 23448 Upper95% Mean 19.082508
75.0% quartile 21.58 Lower95% Mean 17.211646
50.0% median 18.24 N 65
25.0% quartile 14.94
— 10.0% 13.128
] 2.5% 11.396
10 12 14 18 18 20 22 24 286 0.5% 11.24
0.0% minimuem 11.24

Figure 16.  Distribution of the Max_A/CInUse by 65 design points.

These distributions acknowledge how each resource is utilized and whether there
is enough of that resource available. If there are insufficient resources available, then
longer delays will occur. The additional time added in the model attempts to account for

the lack of resource restriction found in this model.

An OLS model is fit to Max_A/CInUse with all 12 factors, to include all
two-way interactions. Stepwise AICc is employed to ascertain the appropriate factors.
This results in an adjusted R? of 0.984 (shown in Figure 17). The sorted parameter
estimates are also shown in Figure 17. The most important parameter is %Studs. As the
proportion of flights with two students increases, i.e., as %Studs decreases, Max A/C In
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Use increases. With A/C usage as our parameter, it makes sense that the number of

students flying, and how often they are flying, is near the top of the predictive

parameters.
Summary of Fit
RSquare 0.988627
RSquare Adj 0.984836
Root Mean Square Error 0.464883
Mean of Response 18.14708
Observations (or Sum Wagts) 65
Sorted Parameter Estimates
Term Estimate
%Studs -10.6671
Lambda 131.10362
WxCanc -1.999293
SxCanc -1.961494

(%Studs-0.50031)*(WxCanc-0.30031)  9.4800284

(SxCanc-0.30031)*(Maint-1.00154) 11.587136
(InBrf-1.75031)*(Maint-1.00154) 3.0552142
FltDur 0.3022131
(%Studs-0.50031)*(InBrf-1.75031) -4.577881
(WxCanc-0.30031)*(SxCanc-0.30031) -6.808917
Maint 0.5452336
(%Studs-0.50031)*(SxCanc-0.30031) -3.613176
(FItDur-1.75077)*(SxCanc-0.30031) -2.407713
(FItDur-1.75077)*(Maint-1.00154) -0.625548
(Lam bdaﬂ.DBSOE}'(%StudsﬂSOﬂSﬂ -13.06033
InBrf 0.0142581

Std Error
0.196853
3.936608
0.328478
0.328461
1.718393
2.788458
0.784305

0.07871
1.378481

2.358826
0.194319
1.313848
0.876783
0.282355
22.26475
0.196925

t Ratio
-54.19
33.30
-6.09
-5.97
5.52
4.16
3.90
3.84
-3.32
-2.89
2.81
-2.75
-2.75
-2.22
0.59
0.07

Prob>Itl
<.0001*
<.0001"
<.0001*
<.0001*
<.0001"*
0.0001*
0.0003*
0.0004"*
0.0017*
0.0058"
0.0072"
0.0084*
0.0085*
0.0315*
0.5602
0.9426

Figure 17.  Summary of fit and sorted parameter estimates for OLS model with

Max_A/CInUse as MOE.

This model satisfies the assumptions of an OLS model, as revealed in Figure 18.

This figure shows the residuals by predicted plot, which implies constant variance.

It

also shows the qqg norm plot, which suggests the errors are normal. A goodness-of-fit test

concludes that Ho cannot be rejected because it results in a p-value of 0.47.
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Figure 18. Residuals vs. predicted plot, qq norm plot of residuals with histogram, and
goodness-of-fit test.

For 75.7% of the replications, Max A/C In Use is less than or equal to 20 A/C.

This is important because normal usage rates will not allow more than 20 A/C to fly, and
most likely something less than this. The reality is that it is impossible to use more A/C
than the squadron is assigned, so Mean_DWQ discussed in this chapter are low estimates,

and larger delays are expected.
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F. CONCLUSIONS

The replica model demonstrates that weather is important in that it makes an
impact on the Mean_DWQ. The replica model correctly replicates the ITC model’s
Flight Events. The two models observed react similarly under similar points of interest.
The two models agree with importance of terms, and both models suggest that a
significant amount of time is added to either TTT or DWQ as weather cancellation

rates increase.

The thesis also examines resource utilization rates. These rates will become more
significant as a comparison is done between the replica Simkit model and the improved

Simkit model discussed in Chapter 1V.
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V. IMPROVED SIMKIT MODEL

A. SIMKIT MODEL DESIGN

The improved Simkit model is similar to the replica model, but the one primary
difference is the way weather is modeled. Instead of using independent Bernoulli trials to
simulate the effect of weather, a stochastic process approach is used. A simple,
continuous-time Markov process that alternates between good and bad weather is used.
In essence, good weather is a resource that has limited availability. When it is available,
all flights may use it; but when it is unavailable, all flights must wait until the

weather changes.

The improved Simkit model flowchart, shown in Figure 19, illustrates the
differences between the replica model and the improved model. The weather check
occurs in the same place as the replica model. If it is bad weather, every student that
comes into the queue goes directly into the weather wait queue, and when the weather
changes from bad to good, all students are released from the wait queue. All students are
checked to see if they have enough time to fly that day. If not, they go into an overnight
wait queue and they have to recheck weather upon their release in the morning.

Yas Weather Mo

Dealayed
4
=
Suffident
Time in Day

e rnight

Woeather Delay
Queue

X

Add Additianal h 4 Debrief
Time to Flight | g Fre-Brief

h 4 F l
Releme i

Weather Delay felese
Queus Flight Students and
IF*s

oN

Return
Aircraft

Queue

Figure 19. Flowchart of the improved Simkit model.
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The improved Simkit model uses 11 different Java classes. Appendix C shows
the event graph diagrams for this model. Most of them are the same as the Simkit replica

model. This section explores the differences between them.

The first change is the Season Changer. In this model, SeasonChangerV2 puts the
weather into four seasons, vice two. The duration of the seasons are varied in the
DOEL.csv spreadsheet. Three of the four season durations are input as number of days in
the design spreadsheet. The fourth is found by taking 360 days and subtracting the other

three seasons’ duration times.

Next is WheatherChanger, which uses a Markov process to transition from good
to bad weather and back again. The duration of good and bad weather during two of the
seasons are created using exponential distributions with Lambda rates, thus creating a
continuous-time Markov process (Ross, 2007). During the other two seasons, the

DOEL.csv spreadsheet gives parameters that increase or decrease these Lambda values.

The WaitCollectorV2 is similar to the WaitCollector; however, there is no longer
an independent Bernoulli trial to check the weather. All flights coming into the weather
checker during bad weather are delayed at least until the weather changes back to good.
All students who go through the weather wait queue check to see if additional time is

required, as explained in Chapter IlI.

Finally, the ITCModelExeV2 class works the same as the ITCModelExe. There
are a few basic changes to the listener events, but essentially it controls the entire process.

B. SCOPE, LIMITATIONS, AND ASSUMPTIONS

The same limitations and assumptions carry into this model from the replica
model. An additional assumption has to do with the weather. This thesis relies upon
weather data that is not location-specific, as found in the DOEL.csv. It allows for the
duration of the seasons and the duration of bad and good weather to fluctuate in the
design. This construct is flexible enough to be able to model the weather in nearly any
geographic location.
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C. DESIGN OF EXPERIMENTS (DOE)

There are many similarities between the DOE found in Chapter I1l and the DOE
here in Chapter IV. The MOE is the same. The list of variables is slightly different, as
shown in Table 7. There is an increased number of Noise Variables and, instead of

summer and winter cancelation rates, we now have good and bad weather durations.

Table 7. List of Decision and Noise Variables in the improved Simkit model.

Decision Variables Noise Variables
Arrival Rates (Lambda0) In-Brief Times
Number of Students per Flight |Debrief Time
Flight Duration Aircraft Flight Preparation Time
IP Break Time Postflight Preparation Time

Maintenance Time

Additional Time

Good Weather Duration (Lambdal)
Bad Weather Duration (Lambda2)
Winter Duration Adjustment (deltal)
Winter Duration Adjustment (delta2)
Summer Duration Adjustment (delta3)
Summer Duration Adjustment (delta4)
Spring Duration (timel)

Summer Duration (time2)

Fall Duration (time3)

The 19 factors listed in Table 7 are used in a (N,);; NOLH design, which

increases the number of design points to 129. Each design point is replicated 50 times,
for a total of 6,450 runs. The seeds used with this model are the same as the ones used in
the replica model. This use of common random number seeds reduces the variations
caused by simulation (Law & Kelton, 2000). The entire experiment runs in
approximately 25 minutes on a desktop computer with a Pentium 4 central processing
unit, 3.6 gigahertz speed, and 3.0 gigabytes of random access memory. The results are
collected using the same collection process found in Chapter Il1l. The max pairwise

correlation of coefficient estimate is 0.65.
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D. ANALYSIS

The output of this model is the same as the output from Chapter 111, except for the
design points, which are slightly different. Figure 20 is a histogram of the primary
response variable. Mean DWQ is 8.8 hours, with a fairly high Standard Deviation of
5.2 hours. All mean delay times fall at or below 25.5 hours. The fact that the mean

weather delay went down is a bit surprising.

*'Mean_DWQ
.......... Quantiles Moments
H e F—H: = - 100.0% maximum 25512 Mean 8.6265287
99.5% 25512 Std Dev 5.2689017
a7.5% 232197 5td Err Mean 0.4639009
90.0% 17138  Upper95% Mean 9.7444359
75.0% quartile 11.0224 Lower 95% Mean 7.90B6214
50.0% median 71868 N 129
25.0% quartile  5.0456
_|_|_|_I_I_ 10.0% 3476
et I | I e | t 2.5% 2.689
5 10 15 20 25 0.5% 2 Bagp

0.0% minimum  2.6322

Figure 20. Distribution of the response variable Mean_DWQ.
The important factors in this model are found using a partition tree. There are 11
splits required before anything other than a property of weather enters the model. The

first six splits are shown in Figure 21. An R? of about 0.8 is obtained with these six

splits. Weather factors account for the majority of the variation in the response variable.
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Figure 21.  Partition tree with Mean_DWQ as a response variable.

An OLS model is fit to the new data using all 19 factors, with all two-way
interactions. Stepwise AICc forward is used to help determine the factors that enter the
model. This results in an adjusted R? of about 0.963, as shown in Figure 22. It is found

that 16 of the original 19 factors, and 21 interaction terms, for a total of 37 terms out of

the 191 possible, are statistically significant.

Figure 22.

- Summary of

R3quare
RSquare Ad]

Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Fit
0.973578

0.863238

1.01021

B.B26528
129

Summary of fit for OLS model using Mean_DWQ as MOE.
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To understand the importance of each factor, we examine the sorted parameter
estimates shown in Figure 23. Good and Bad in Figure 23 refers to Lambdal and
Lambda2 from Table 7. Also, BadIinc and GoodDec refer to delta2 and deltal from
Table7. It is clear that weather affects are extremely important in this model. The

additional time shows that it increases the overall DWQ by an average of 7.5 hours.

Sorted Parameter Estimates

Term Estimate Std Error tRatio ProbeItl
Bad -226.7507 4882512 -46.35 <.0001*
Good 1028.735 47.77992 2153 <0001
Badlnc -10.53002 0.764538 -13.77 <0001
AddTime TAT46822  0.76441 9.78 <0001
(Goodine-0.45016)*(SpringDur-85.0078) 0948728 0.109949 -8.63 <0001
(SpringDur-85.0078)*(Summer Dur-80.031)  0.0043021 0.000502 8.57 <.0001*
(FltDur-1.75039)* (DeBrf-3.001558) 18567334 0316947 617 <.0001*
(Bad-0.05205)*(Badinc-0.60031) 205726589 487674 5.84 <.0001*
Summer Dur 0.044181 0.007644 5.78 <.0001*
GoodDec 1.860534 0.38232 4.87 <0001

Figure 23.  Sorted parameter estimates of the OLS (10 of 37 variables are shown).

E. VALIDATION
1. Mean DWQ

This model satisfies the necessary OLS assumptions for a model. Figure 24
shows the residuals by predicted plot, which is not as clear as the previous plots. There
seems to be a little shape to the points, but not enough to throw out the assumption of
constant variance. The errors seem normally distributed, as shown by the qg-plot and the
p-value from the goodness-of-fit test is around 0.94. Both of these are found in
Figure 24 (Hamilton, 1992).
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Residual by Predicted Plot ~/Fitted Normal

3 v Parameter Estimates

Type Parameter  Estimate Lower 95% Upper 35%
Location 327e-16 -0.140204 0.1492036
Dispersicn o 0.856447 07631523 05758347

i 2 _‘ X ) -2log(Likalinood) = 325.105733432T27
Sy et | ¥ Goodness-of-Fit Test
R . Shapiro-Wilk W Test
oo 0.895228 0.9486

MNote: Ho = The data is from the Normal distribution. Small p-
| T T values reject Ho.

]
1

=
1

Mean_DWO Residual
=}
]

'~ Residual Mean_DWQ
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[0%8 '3 100.0% maximum 25363 Mean 3.27e-16
16441F095 = ggse 25363 Std Dev 0.856447
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- 0.02
233l

Figure 24. Mean_DWQ Residuals by Predicted Plot, QQ normal plot of residuals with
histogram and goodness-of-fit test.

2. AJ/C Utilization

Figure 25 gives the distribution of the Mean (aircraftinUse_max), which is the
mean of the maximum number of A/C flown at each repetition by the 129 design points.
Appendix F shows the distributions of the Max A/C, Max brief rooms, and the Max IPs
in use over the 6,450 data points. As is evident, the number of A/C utilized using this

approach is significantly higher than the replica model. This suggests that wait times are
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more affected by resources than with the replica model. Mean A/C utilization is around

30 A/C, vice a mean of 18 A/C from the previous model.

* Max_A/CinUse

— Quantiles
l . - 100.0% maximum
99.5%
a97.5%
90.0%
75.0% quartile
50.0% median
25.0% quartile
10.0%
T T 1 L Py 2.5%
10 20 30 40 50 60 70 B0 90 100 (gse
0.0% minimum

Moments
8256 Mean
9256 Std Dev
54.1 5td Err Mean
44.52  Upper 95% Mean
33.42 Lower 95% Mean
2576 N
21.96
18.04
12.87
11.16
11.16

Figure 25.  Distribution of the Max_A/CInUse by design point.

28.922481
11.310088
0.9957977
30.892837
26.952125

129

Next, an OLS model is fit using the Max_A/CInUse, by design point, which

results in an adjusted R? of 0.9533 (shown in Figure 26). The sorted parameter estimates

are shown in Figure 27. The %Studs worked the same in this model as in the previous

replica model.

Summary of Fit

RSquare
RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)
Figure 26.  Summary of fit for the Max_A/CInUse OLS model.

Sorted Parameter Estimates

Term Estimate
%eStuds -18.65051
Bad -284 6647
Lambda 33443108
AddTime -32.42984
Badinc -20.54
{AddTime-0.50006)"(Bad-0.05205) 1087.14988
(#6Studs-0.50016)*(AddTime-0.50006) 47 507681
(DeBrf-3.00155)"(Post-0.50008) -13.41778
(Bad-0.05205)*(Badinc-0.60031) 518.71987
{Lambda-0.06501)*(Badinc-0.60031) -532.1887

Std Error
0.739487
11.83009
14.78799

1.84827
1.848543
120.4692
7.202556
2.963797
121.3382
125.2698

0.966474
0.953356
2442673
28.92248

129

t Ratio Probsitl
2522 <.0001*
-24.91 <.0001"
22,62 || <0001
-17 55 | <.0001"
-11.11 | <.0001*
9.02 “IJ <.0001"
6.60 <.0001*
-4.53 ] <.0001"
427 L[] =0001*
-4.25 i <0001*

Figure 27.  Sorted parameter estimates Max_A/CInUse
(10 of the 37 variables shown).
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This model also satisfies the OLS assumptions, as shown in Figure 28. The
residuals by predicted plot implies constant variance. The qgq norm plot had only minor
granularity and some slight heavy tails, suggesting some outliers, but the errors seem
normal (Hamilton, 1992).

Residual by Predicted Plot
10
3 :
J= - e
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3 o+ “?”;g-e i
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16445085 B 095% 9.18619  Std Dev 2.0708765
1284f0s 8 975% 387519  Sid Err Mean 0.1823305
- 0.8 § 80.0% 239284 Upper95% Mean 03607721
06711 o7 750%  quartile 098053 Lower95% Mean -0.360772
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oezlf 03 10.0% -2.5308
ek | T 25% -4 1886
0.5% -8.1527
1281p 01 00%  minimum -8.1527
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Figure 28.  Residual by predicted, QQ norm plot, and goodness-of-fit test.

The extreme Max number of A/C in use is surprising, so a contour plot is created

to get a better understanding of what the surface looks like. The contour plot
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(Figure 29) shows that for a majority of the time, fewer than 30 A/C are used under
normal operations. The normal expected %Studs, according to the current syllabi, is
greater than 0.7. The contour plot clearly shows that when %Studs is above 0.7 the
system typically uses less than 30 A/C and that the numbers fall closer to the 20 A/C
assigned to the squadron.

Contour Plot for Mean(aircraftinUse_max)
1,1 Maan{ascralinllse_max)
[P
N = 30
P
£- 1]
<= 6l
B == 70
B - 80
P

Figure 29.  Contour plot for Mean of the Max_A/C against %Studs and
arrival Lambda.

F. MODEL COMPARISON REPLICA SIMKIT VS. IMPROVED SIMKIT

1. DOE for the Comparison

One of the most obvious ways in which the ITC model diverges from reality is the
assumption that weather affects all flights independently. Under this assumption, it is
possible for two flights to arrive within minutes of each other, and for one to experience
good weather and the other to experience a delay. To properly examine the effect of this
assumption on the response variables of interest, it is necessary to set up a design that
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allows the improved model to have the same weather cancellation rates as the replica

model. Table 8 shows the design for the replica model.

Table 8.  Replica model design.

WinterCanx [SummerCanx| All Other Factors’ Default | Weather Canx Rate
0.1 0.1| See Table 10 0.1
0.2 0.2| See Table 10 0.2
0.3 0.3| See Table 10 0.3
0.4 0.4| See Table 10 0.4
0.5 0.5| See Table 10 0.5
0.6 0.6 See Table 10 0.6

To compare the two models against each other, the design uses a single rate for
weather cancellations, as seen in Tables 8 and 9. In the long run, a weather cancellation
rate for the replica model of, say, 0.2, will result in approximately 20% of all flights
being delayed due to weather. For the improved model, by manipulating Good_Lambda
and Bad_Lambda, we can achieve similar ratios of bad weather to good weather. For
example, the second row of Table 9 results in bad weather approximately 20% of

the time.

It is not clear, however, what the average duration of the good or bad weather
should be. We code a value known as base, to facilitate comparison along this margin.
For example, with a base of 50 hours, a ratio of 10 hours of expected bad weather and
40 hours of expected good weather yields a long-term weather cancellation rate of 0.2.
Similarly, a ratio of 20 hours of expected bad weather and 80 hours of expected good
weather also yields an approximate weather cancellation rate of 0.2. We select base
levels of 50, 100, 150, and 200 hours. While time prevents us from determining the

correct base, we are able to characterize its effect on the result.

Finally, all effects of seasonal changes were removed for the purposes of this
experiment. The only difference between the simulations based upon this design is the
way weather affects flights. The replica model uses a Bernoulli trial, while the improved

model uses a continuous-time Markov process.
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Table 9.

Improved model design. (Base is the base number of hours for weather.)

All Other Hours | Weather | Hours
Good Lambda| Bad Lambda | Base Factors’
Bad |Canx Rate| Good
Default

0.022222222 0.2 50| Tables 10 & 11 5 0.1 45
0.025 0.1 50| Tables 10 & 11 10 0.2 40
0.028571429| 0.066666667 50| Tables 10 & 11 15 0.3 35
0.033333333 0.05 50|Tables 10 & 11 20 0.4 30
0.04 0.04 50(Tables 10 & 11 25 0.5 25
0.05| 0.033333333 50|Tables 10 & 11 30 0.6 20
0.011111111 0.1 100|Tables 10 & 11 10 0.1 90
0.0125 0.05 100({Tables 10 & 11 20 0.2 80
0.014285714| 0.033333333 100|Tables 10 & 11 30 0.3 70
0.016666667 0.025 100({Tables 10 & 11 40 0.4 60
0.02 0.02 100|Tables 10 & 11 50 0.5 50
0.025| 0.016666667 100({Tables 10 & 11 60 0.6 40
0.007407407| 0.066666667 150({Tables 10 & 11 15 0.1 135
0.008333333| 0.033333333 150|Tables 10 & 11 30 0.2 120
0.00952381| 0.022222222 150({Tables 10 & 11 45 0.3 105
0.011111111] 0.016666667 150|Tables 10 & 11 60 0.4 90
0.013333333] 0.013333333 150({Tables 10 & 11 75 0.5 75
0.016666667| 0.011111111 150|Tables 10 & 11 90 0.6 60
0.005555556 0.05 200(Tables 10 & 11 20 0.1 180
0.00625 0.025 200|Tables 10 & 11 40 0.2 160
0.007142857| 0.016666667 200(Tables 10 & 11 60 0.3 140
0.008333333 0.0125 200|Tables 10 & 11 80 0.4 120
0.01 0.01 200(Tables 10 & 11 100 0.5 100
0.0125/ 0.008333333 200|Tables 10 & 11 120 0.6 80

All the other factors are held constant at default values for both models.

The

default values are shown in Table 10. LambdaO is the arrival rate, and %Stud is the

number of students flying single or in a group of two.
DeBrief Time, IP Break, Pre Flight, Post Flight, and Maint Time are all in hours.

Flight Duration, Brief Time,

ProbAdd is placed at 0.0, which essentially drops the additional time that is added in the

previous runs.
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Table 10.  List of variable defaults that both models have in common.
Flight | Brief [DeBrief| IP Pre Post | Maint | Prob
[0)
Lambda0) %6Stud Duration| Time | Time | Break | Flight | Flight | Time | Add
0.065 0.7 1.8 1.75 3.0 1.0 0.5 0.5 1.0 0.0

In this thesis, it is desired to see what differences there are in the model strictly
due to weather changes. The additional factors found in the improved model are set to
ensure that they do not impact the improved model, as seen in Table 11. The variable
names and functions are from Table 7. Deltas are values from 0.0-1.0 and show a

percentage of change; 1.0 means no change. Times are in days.

Table 11.  Variable defaults found only in the improved model.
Deltal Delta2 Delta3 Delta4 Timel Time2 Time3
1.0 1.0 1.0 1.0 90 90 90

For a proper analysis of variance it is necessary to use the same population in
different experimental designs, which is what is done with this DOE (Devore, 2009).
Weather is the only point of variation between the two models. The weather rates range

from 0.1-0.6 in both models, while the response variables remain the same.

2. Analysis of Variance (ANOVA) Tests

Using the new design, the model’s output is combined into one set of data using
the concatenate function in JMP. An indicator variable, Model, denotes the model type.
For example, a “1” refers to the replica model and a “2” refers to the improved model.
Another indicator variable, Base, refers to the number of hours used as the base. A “1”in
the base refers to the replica model, while all other bases refer to the improved model and

its base number of hours.
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A one-way ANOVA, with base as a factor and Mean DWQ as the response
variable is shown in Figure 30. The replica model is assigned Base = 1; while the
improved model has four levels as shown in Table 9. The highly significant F-statistic
indicates differences between the models.

Summary of Fit
Rsquare 0.254264
Adj Rsquare 0.252269
Root Mean Square Error 16.50303
Mean of Response 18.2177
Observations (or Sum Wats) 1500
Analysis of Variance
Sum of
Source DF Squares Mean Square FRatio Prob>F
Base 4 138825.13 347063 127.4327 <.0001"
Error 1495 407163.15 272.3
C. Total 1499 545988.28
Means for Oneway Anova
Level MNumber Mean StdError Lower 95% Upper 95%
1 300 6.4374 0.95280 4,568 B.306
50 300 98280 0.95280 7.959 11.697
100 300 171236 0.9528B0 15.255 18.993
150 300 252230 0.95280 23.354 27.092
200 300 324766 0.95280 30.608 34.346

Std Error uses a pooled estimate of error variance

Figure 30. ANOVA of the two different models by Base Value.

Figure 30 only shows that there are differences, not which levels are different. A
Tukey honestly significant difference (HSD) procedure (Devore, 2009) reveals
significant differences in Mean DWQ between all but the replica model and the lowest

base level of the improved model. The results are shown in Figure 31.
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~'Comparisons for all pairs using Tukey-Kramer HSD

q* Alpha
2.73115 0.05
Abs(Dif)-HSD

200 150 100 50 1
200 -3.680 3.574 11,673 1B.968 22.359
150 3.574 -3.680 4419 11.715 15.105
100 11.673 4419 -3.680 3615 7.006
50 1B.868 11.715 3615 -3.68B0 -0.289
1 22.359 15105 7006 -0.289 -3.680

Positive values show pairs of means that are significantly different.

Level Mean

200 A 32.476600

150 B 25222067

100 C 17123567

50 D 9.828000

1 D 6.437367

Levels not connected by same letter are significantly different.

Level -Level Difference StdErrDif LowerCL UpperCL p-Value
200 1 26.03923  1.347467 223591 2971936 <0001*
200 50 2264860  1.347467 1B.9685 2632873 <0001*
150 1 18.78560  1.3474R7 151055 2246573 <0001*
150 50 1539497  1.347467 11.7148  19.07510 <.0001*
200 100 15.35303  1.347467 116729 1903316 <0001"
100 1 10.68620  1.347467 7.0061 1436633 <0001"
150 100 8.09940  1.347467 44183 1177953 <0001*
100 50 7.28557  1.347467 36154 1087570 <0001°
200 150 7.25363  1.347467 35735 1083376 <.0001*
50 1 339063  1.347487 -0.2895 707076 0.0875

Figure 31.  Part of the results found under the Tukey HSD procedure.

A boxplot graphically depicts the differences in the Mean DWQ in Figure 32. It
clearly shows that as the base number of hours increases, the Mean DWQ increases as
well. Using 150 hours as the base hours for weather will more than double the delay of
the replica model. This large of a difference clearly demonstrates that the independence
assumptions found in the ITC model are faulty and this results in artificially low
TTT estimates.
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Mean_DWQ vs. Base
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Figure 32. Boxplot of the Mean_DWQ at each Base level.

G. CONCLUSIONS

Three things are clarified in this chapter. First, weather is an important factor in
the improved model. Second, aircraft utilization behavior indicates that the improved
model likely underestimates DWQ due to the unconstrained resource assumption. Third,
we find evidence that for the same long term probability of weather cancellations, the
improved model estimates a higher DWQ than the replica model. Since the estimated
DWQ for the improved model is likely a lower bound, it is plausible that the replica
model (and by extension, the ITC model) substantially underestimates the contribution of
weather delays in the total TTT. We find that the independent weather assumption in the

ITC model is faulty and recommend modification.
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IV. CONCLUSIONS AND RECOMMENDATIONS

A CONCLUSIONS

This thesis answers three questions. The first question is if weather is an
important factor in the ITC model. Chapter Il investigates the ITC model through DOEs
and regression analysis. Summer and winter cancellation rates are some of the most
important factors in the ITC model. This signifies that weather is important in the
ITC model.

The next question is how sensitive TTT is with respect to weather. Chapter Il
also answers this question. We discover that a slight change in bad weather rates in the
current model can result in substantial delays in TTT. For example, a small change in
weather cancellation rates from 0.05-0.1 results in a full day of delay per pilot. Small

changes in weather can drastically impact the TTT for each pilot.

The bulk of this thesis concentrates on the last question. If a change is made in
the current model to more accurately reflect weather, are more accurate TTT estimates
generated and are they statistically different than the current model? To answer this
question, we create two new models—a replica model of the ITC model and an improved
model, with proposed weather changes in it. These are necessary to quantify the
differences that exist between the current way weather is modeled and the

proposed approach.

In Chapter 111, we analyze the replica model, which replicates the flight event
from the ITC model. This is the only event that is affected by weather in the ITC model.
To ensure that the ITC model and the replica model behave similarly, we compare the
results of the two models. The same factors are important in the ITC model and the
replica model. The two models also produce similar results in the number of pilots that
train during similar durations of time. Resource limitations are not used in the replica
model, which is one major difference between the two models. Analysis of the A/C

usage allows decision makers to determine if the usage is acceptable or not.
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The improved model found in Chapter IV is similar to the replica model, with an
improved weather check.  The replica model is modified in Simkit using a
continuous-time Markov process to change states from bad to good and back again. The

season changer uses four distinct weather durations instead of two.

The importance of weather in the improved model is evaluated using Mean DWQ
and resource utilization rates. Mean DWQ is affected significantly by changes in weather
patterns. Resource utilization rates increase significantly using the improved model. We
demonstrate that these models are different both visually and graphically, using resource

utilization rates and boxplots.

Quantifying the differences in these models is important so that decision makers
know if these changes are worth spending money on. To quantify the results, a
controlled DOE is run. We populate both models with identical input data and seed
information. Weather is the only point of variation in the two models, and doing this
reduces variances caused by simulation. The analysis evaluates the output of the two
models using ANOVA techniques. We also use Student’s t tests to establish that the
models are different. The results of these tests validate that there are statistically
significant differences in the two models. It proves that the independence assumption
made in the ITC model is faulty. This implies that TTT estimates in the original ITC

model are underestimated and improvements need to be made.

B. RECOMMENDATIONS

We show that the independent weather assumption in the ITC model is
inappropriate. We recommend modifying the ITC model to reflect good weather as a
resource, and that it is necessary to conduct a flight, which is only intermittently
available. One way to do this is to use a continuous-time Markov process, as we

demonstrate in this thesis.
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C. SUGGESTIONS FOR FURTHER RESEARCH

One area for further research, directly related to the weather, is to fit the model to
METAR data for Eglin AFB, Florida. Azimetli’s thesis does this using METAR data for

the air bases in Turkey.

Another area of analysis is to evaluate the effect that maintenance has on response
variables in the current implementation. Also, it would be important to evaluate the
effect of extending the ITC model to more realistically account for maintenance.
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APPENDIX A. ITC MODEL GROUND RULES AND
ASSUMPTIONS

1. Normal operating hours for the Integrated Training Center are 0700-
2300 Monday through Friday. Briefing rooms and equipment will be
available to support a 0700 take off and commencement of simulator
events at 0700. Simulation of a single shift operation can be accomplished
by giving all students the same work day start time (i.e. 0800) with a work
day length of 9 hours (workday ends at 1700).

2. Students are inducted evenly throughout the year and commence
training on Monday of their induction week. The induction files can be
adjusted to simulate a non-uniform flow of students into the ITC.

3. More than one class may be inducted in the same week.

4. The optimum pilot class size for JSF is 6 students. The current ITC
classroom design for pilots can accommodate up to 12 students per class.

5. Maintainer class size is 12 students. The current ITC classroom design
for maintainers can accommodate up to 16 students per class.

6. Pilot and Maintainer classes are service unique.
7. The first flight brief for the day occurs at 0445 for a 0700 takeoff.

8. The first flight simulator brief of the day occurs at 0600 for a 0700
simulator event.

9. The student workday is a 9.0 hour day (start to finish) and students are
assigned a specific “start workday time”. The intention of the 9.0 hour
day is to give each student 8.0 hours per day when training can be
accomplished and 1.0 hour per day for a meal break. Maintenance
training for the U.S. Services is accomplished on two shifts.

10. In no case will students and instructors be scheduled for a training
event sooner than 12.0 hours following the completion of their last event
from the previous day. As an example, a student and/or instructor who
finishes a flight debrief at 2200 will not be scheduled for a training event
before 1000 the next day.

11. Maximum crew duty day for instructor pilots is 12.0 hours measured
from the start of the first training event to engine shutdown. This ground
rule is based on a United States Air Force Instruction 11-202 Volume 3
General Flight Rules, “For single seat aircraft or when only one pilot has
access to the flight controls, the maximum flight duty period is 12 hours.”
The normal instructor work day is 9.0 hours.

12. Aircraft System Maintenance Trainer events contain 12 students and 2
instructors.
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13. Ejection System Maintenance Trainer events contain 4 students and 1
instructor.

14. Weapons Load Trainer events contain 4 students and 1 instructor.

15. Engine module replacement training utilizes training devices provided
by Pratt & Whitney & General Electric with a ratio of 1 instructor for
every 4 students.

16. A Full Mission Simulator event and flight event will be permitted on
the same day for the same student if they can both be accomplished within
the students 9.0 hour work day.

17. Flight simulator set up time is 15 minutes for each training event
(after initial daily startup).

18. Students will be permitted to fly more than one flight event on the
same day. This only occurs for short flights such as Field Carrier Landing
Practice events due to work day length restrictions.

19. Student planning time for each flight event is 1.0 hour utilizing the
Mission Planning Station.

20. Brief time for training flights is 2.25 hours prior to takeoff.
21. Flight debriefs end 3.0 hours after landing.
22. Day flights land before 1900 and night flights takeoff after 1900.

23. Airborne aggressor requirements are satisfied by Training Squadron
JSF aircraft flown by Training Squadron instructor pilots.

24. After landing, there is a 10% probability the aircraft will require
repair. Time to repair is 3.0 hours followed by a 1.5 hour preparation time
for the next flight event. These parameters are adjustable via the user
interface.

25. Aircraft turnaround time for the next flight event is 1.5 hours and is
adjustable via the user interface.

26. Cancellations for weather occur after student planning and prior to
commencement of the flight brief. Weather cancellation rates are 5% and
are adjustable via the user interface.

27. Re-fly rates for flights and simulator events are 8% and 5%
respectively and are adjustable via the user interface. The re-fly decision
is made at the end of debrief.

28. Navy Carrier Qualification (CQ) re-fly rate is 12.5%. Students who
repeat CQ will re-fly all simulator and flight events associated with the
CQ phase of training.

29. Students will not re-fly the same flight or simulator event more than
once.

56



30. Student planning time for each Full Mission Simulator event is 30
minutes and is adjustable via the user interface. Student planning utilizes
a Mission Planning Station.

31. Full Mission Simulator brief time is 60 minutes and is adjustable via
the user interface.

32. Full Mission Simulator debrief time is 30 minutes and is adjustable
via the user interface.

33. The number of Military instructor pilots is equal to the number of
training aircraft in accordance with direction received from the Services
and the JSF Program Office. All airborne flight instruction is provided by
Military instructor pilots.

34. When determining maintainer instructor quantities, actual on-task
training time for each instructor is limited to approximately 30 hours per
week. This allows 10 hours per week of instructor time for student
counseling, syllabus review, course content review, lesson preparation,
and completion of other instructor duties.

35. After completing a flight debrief, the instructor will not be scheduled
for a subsequent flight brief for 1.0 hour.

36. On each training day, there is a 2% probability that each instructor
and student may be unavailable for a 2.0 hour time period. This is
intended to account for medical appointments and unexpected absences
for both instructors and students.

37. Minimum allowable spacing between flights on the same low-level
route is 10 minutes.

38. Landing aircraft have priority over departing aircraft for the runway.

39. There are a total of 246 days per year that are available for. This
parameter is selectable via the user interface.

40. Students will take a 15-minute break in between non-like training
events (e.g. simulator to classroom, classroom to simulator, etc.). Breaks
during successive classroom training events will be handled by the
instructor (Kenney, 2009, pp. 8-10).
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APPENDIX B. ITC MODEL GUI SCREENSHOTS

1. Below is the Scenario User Interface, where the user inputs the pilot induction

schedules and various factors such as Classrooms available (Unclassified, Classified,

Brief Rooms, FMS, etc.), Runways available, and Weather Cancellation percentages.

Schoolhouse Configuration

F-35 Program Information
Maon Expoart Contralled Information - Feleazable to Forsign Persons

Lockheed Martin Proprietary [nformation

Facility/ Aircraft Resources Student Sullabusz Inductions
Unclassified Classrooms 3 Pilat Syllabus |Multiple j
Classified Classrooms 4 Pilat Inductions |SATAFE_Eglin_Pilat_Rampup_CED_New_Block = |
1C% Wwhark, Stations 24
Full Mizzion Simulator 4 [ Induct FMS [ Maint. Skil Setz » 3 [Single Induction File)
MRT Flight Sirmulatar 1 | J
Mizzion Planning Station 20
Brief/Debrief Rooms 45 Awionics Syllabus |Avi0nics_|nitial_2. tt j
Aircraft [Single Seat) 150 [ Induct &ircraft Beriaes ishetars |Zer0_.&vi0nics.txt ﬂ
Aircraft [Twao Seat) i}
ASMT 7 Mecharical Syllabuz |Mechanica|_| nitial_2. st j
WLT ] Mechanical Inductions |ZerD_Mechanical. [ j
ESMT 1
Enghe Treie 3 wieapons Syllabus |Wea|:-ons_lnitial_2. bt j
Okl [ Weapons Inductions |Zer0_Weap0ns.th ﬂ

Mote: If CFS = 0, will use FMS Copyright Lockheed b artin Corporation, O ctober 2007

Airzpace _Runway Availability

MOA Slats 0
Low Levels 30 Oct-Feb |15 Mar-Sept |15

Low Lewel Entry Spacing = B minutes Target Slats an

Runways 5

Sortie weather cancellation rate [%)

MOAT arget Slot holds One Mission

Mote: Simulation Starts inJanuary

Cancel

X
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2. This is the Instructor User Interface and allows the user to input the number of IPs
available, Number of Civilian Instructors available, and how the instructors will be used.
It also allows the user to input the Maintenance resources, which are only important if the

maintenance piece is on. It will not be used in this thesis.

Instructor Properties E

Filot Irstructor bix Maintenance lnstructor Besources

Al Milikary Instructars
[10] Awionics Instructors
" Civilian - Simulators
. ) [11]) Mechanical Instructars
% Civilian - Simulatars - Claszrooms

" Civilian - Sim/Class/Fly [thiu BFM)

1717

[12] “Weapons Instructors

Maintenance Instructor bMix LEAF Rl LS L
[30] Crew Chigf Line/PF Mech Mech |19
f+ Al Military o )
[31] Awionics AT ComdMav Arion

" Civilian - Clazsrooms _
[22] Propulzion AD

[33] Electrical/Ere  AE Eleclnst
Filat Instructar Resources

[2d] Weapons A0 Ordnance Wphne |12
Flight Instructors * Induct IP's IT [35) Earess AME  Seat/Fit Equip
Contract Instructors 15 [36) Fuels
[3¥] Hydraulics
ASMT Properties 5] HiDY
[39] Structures Ak AF Mech
Instructors Per ASMT 2 'rl [40) Survival Equip
[41] TED Maint Instr #12 ALIS Uszer
[42] TBD Maint Inztr #13 ALIS [TR4)

[43] TBD kaint Inztr #14 SEF
k. Canicel
4 4 [44] TED K aint Instr #15 SE [TGA)
[45] TED Maint Instr #16
[46] TED Maint Instr #17

T T
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3. Finally, the Attribute User Interface. This is where the user is allowed to manipulate
factors such as Probability of Mechanical Failure, repair times, number of A/C and Sim
refly rates, length of the different briefs involved pre and post flight, the number of
training days available to fly in, and the number of hours available each day to train.

Simulation Parameters E
Full Path to Excel |E:"»F'r-:|gram Filzz'Microzoft Office’OFFICE12\excel.exe
dircraft Repairs Re-Fly Rates
Frobatility OF kMech. Failure 20 oo

&/C ReFly Rate |‘I 2 o

Sim. Re-Fly Rate |5 X

Time for Repair [Hrs.) 3.0
aircraft Flight Prep [Hrz.) 15

Bnef # De-Brief

FtS Planning Time |D.5 MRAT Flanning Time |D.5
FidS Briefing Time |'I . MRT Briefing Time |EI.5
FtdS De-Briefing Time |D.5 MRT De-Bnefing Time |EI.5

HOTE: All above times are in hours.

Training |nteruptions

Training Duration

Training Daps & . |24E

Res Lt Calc Bazed on |'I B Hrz. /D ay

[ Safety Stand-Down
[ PT Test
[ Al-Officer Meetings [A0M]

ak i Cancel

......................
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APPENDIX C. EVENT GRAPH DIAGRAMS FOR THE REPLICA MODEL AND THE

IMPROVED MODEL

{ts}

{tw}

winterCanxRate weatherGood &

AddTime

summerCanxRate

2
weatherGood &
No AddTime

wxQueue.rem(i);
briefRoomsinUse++;
instructorPilotsInUse += numStuds;

Flight (i) ++; No TimelnDay

wxQueue.add(i);

z
z3
42
EX
S w
=] =
o8 a8
g e 35
®a
58
g8
L a
<
R

wxQueue.rem(i);
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{ta} ~ exp(Lambda0)
{to} = No Time Delay
{t.} = Overnight Delay
{t.} = 4 Hour Delay
{ts} = 1-5 day delay
{ts} = Summer Time
{tw} = Winter Time
{tg} = Brief Time

{tp} = TotallPTime

{tr} = TotalA/CTime

instructorPilotsInUse -= numStuds;

L aclnUse -= (numStuds * 2);
End Brief (i)

briefRoomslInUse - -;
aclnUse += (numStuds * 2);

CompletedFlight ++;



weatherGood &
AddTime

TimelnDay

2
weatherGood &
No AddTime

instructorPilotsInUse -= numStuds;

Flight (i) ++; No TimelnDay wxQueue.rem(i);
’ briefRoomsinUse++;

instructorPilotsinUse += numStuds;

wxQueue.add(i);

L aclnUse -= (numStuds * 2);
End Brief (i)

EndOvernight
Queue (i)

pegiayream

briefRoomsInUse - -;
aclnUse += (numStuds * 2);
CompletedFlight ++;

wxQueue.rem(i);
overNightWxQueue.rem(i);

{ta} ~ exp(Lambda0)
{to} = No Time Delay
{t1} = Overnight Delay
{t.} = 4 Hour Delay
{ts} = 1-5 day delay
{ts} = 0-5 day delay
{tg} = Brief Time

{te} = TotallPTime

{tr} = TotalA/Ctime

Release

Queue (i)

Overnight
Queue (i)

No TimelnDay

2

overNightWxQueue.add(i);

64



lambdaG = lambdal*delta0;
lambdaB = lambda2*deltal;

lambdaG = lambdal;

lambdaG = lambdail;
lambdaB = lambda2;

lambdaB = lambda2;

lambdaG = lambdal*delta2;

{to} = No Time Delay
lambdaB = lambda2*delta3;

{tc} = Spring Duration
{ts} = Summer Duration
{tr} = Fall Duration

{tw} = Winter Duration
{tsag} ~ €xp(lambdaB)
{tcood} ~ exp(lambdaG)

GoodWeather

Bad Weather

Release
Queue (i)

65



THIS PAGE INTENTIONALLY LEFT BLANK

66



APPENDIX D. CHAPTER Il SPACE-FILLING PROPERTIES
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APPENDIX E.

CHAPTER 111 RESOURCE UTILIZATION

BAR GRAPHS WITH ASSOCIATED QUANTILES AND MOMENTS

~laircraftinUse_max

| — | * Quantiles
I E I [ 100.0% maximum
[ ] 899.5%
97 5%
90.0%
75.0% quartile
50.0% median
25.0% quartile
10.0%
2.5%
10 20 30 0.5%
0.0% minimum

Distribution of the A/C utilization rates from the 3,250 design points.

~ briefRoomsinUse_max

— * Quantiles

! |—1I]—| I 100.0% maximum
99.5%
97.5%
20.0%
75.0% quartile
50.0% median
25.0% quartile
10.0%

T i T T 2.5%

A4 R &7 8 a 10N 0.5%
0.0% minimum

Wk LA~ E0O0

* Moments

Mean

Std Dev

Std Err Mean
Upper 95% Mean
Lower 95% Mean
M

* Moments

Mean

Std Dev

Std Err Mean
Upper 85% Mean
Lower 95% Mean
N

18.217231
43755186
0.0767517
18.367717
18.066744

3250

54566154
0.9431979
0.0165448
5.4800547
54241761

3250

Distribution of the brief room utilization rates from the 3,250 design points.

~ instructorPilots_max

— v Quantiles
LT 3—— | 1000% maximum
99 5%
a7 5%
80.0%
75.0% quartile
50.0% median
H H 250%  quartile
n . 10.0%
L L I T T I L I L 2.5%
586789 11 13 1% 17 18 21 0.5%
0.0% minimum

* Moments

Mean

Std Dev

Std Err Mean
Upper 85% Mean
Lower 95% Mean
M

Distribution of the IPs’ utilization rates from the 3250 design points.
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APPENDIX F.

CHAPTER IV RESOURCE UTILIZATION

BAR GRAPHS WITH ASSOCIATED QUANTILES AND MOMENTS

~/Max_A/CinUse

p— v Quantiles

|—BB—| 100.0% maximum
99.5%
a7.5%
90.0%
75.0% quartile
50.0% median
25.0% Quartile
10.0%

LE L0 B B B B8 B RS BT B Bl B R R B RS R B | 25%

10 30 50 70 90 110 130 150 170 180 pgey
0.0% minimum

Distribution of the A/C utilization rates from the 6,450 design points.

~*'Max_BriefRoomsinUse

= * Quantiles
H]B_| 100.0% maximum
99 5%
a7.5%
90.0%
5.0% quartile
50.0% median
25.0% quartile
10.0%
N I LT I N 1 25%
10 20 30 40 50 0.5%
0.0% minimum

188

66
46

26
20
16

10

55
29
21
14

.
AR DE =

* Moments

Mean

Std Dev

Std Err Mean
Upper 95% Mean
Lower 95% Mean
M

* Moments
Mean
Std Dev
Std Err Mean
Upper 95% Mean
Lower 85% Mean
M

28.922481
14.210626
0176943
29.269348
2B.575614
6450

9.191938
4.2889578
0.0534038
8.2966271
8.0872489

6450

Distribution of the brief room utilization rates from the 6,450 design points.

~ Max_IPsinUse
e v Quantiles
H]B—I 100.0% maximum
98.5%
97 5%
90.0%
75.0% quartile
50.0% median
25.0% quartile
10.0%
| P70 PO RN T-PRALE] VT LI PO 25%
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0.0% minimum

Distribution of the IPs’ utilization rates from the 6,450 design points.
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