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ABSTRACT 

Automated systems perform functions that were previously executed by a 

human. When using automation, the role of the human changes from operator to 

supervisor. For effective operation, the human must appropriately calibrate trust 

in the automated system. Improper trust leads to misuse and disuse of the 

system. The responsibilities of an automated system can be described by its 

level of automation. This study examined the effect of varying levels of 

automation and accuracy on trust calibration. 

Thirty participants were divided into three groups based on the system’s 

level of automation and provided with an automated identification system. Within 

the Virtual Battlespace 2 environment, participants controlled the video feed of an 

unmanned aircraft while they identified friendly and enemy personnel on the 

ground. Results indicate a significant difference in the ability to correctly identify 

targets between levels of automation and accuracy. Participants exhibited better 

calibration at the management by consent level of automation and at the lower 

accuracy level. These findings demonstrate the necessity of continued research 

in the field of automation trust. 
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EXECUTIVE SUMMARY 

The employment of automated systems is expanding across the modern 

battlefield. The growth of automation has not eliminated the human from the 

system; it has transformed the human’s role. With the trend toward increasing 

automation, human roles have changed from operators to supervisors. This 

change does not necessarily mean that human workload has been reduced. 

Instead, cognitive resources are applied to different tasks, such as anticipating 

the automation and understanding the actions of the automation. Nonetheless, 

highly automated systems will be critical for the supervision of multiple 

unmanned systems across the battlefield. The changing but continuous role that 

humans maintain with automated systems requires an understanding of the 

human-automation relationship. One aspect of this relationship that had yet to be 

explored was the process by which humans calibrate trust in automated systems.  

This study examined the calibration of trust at three levels of automation 

and two levels of accuracy. The levels of automation were decision support, 

management by consent, and management by exception. Accuracy of the 

automation was set at 75% and 90%. The experiment was a mixed design in 

which level of automation was a between subjects factor while accuracy was a 

within subjects factor. The experiment was conducted in the Human Systems 

Integration Laboratory at Naval Postgraduate School using Virtual Battlespace 2 

software. Thirty participants were tasked to identify enemy and friendly targets as 

the operator of a video feed from an unmanned aircraft. In support of the task, 

participants were given the assistance of an automated identification system. 

Participants were divided into three groups and provided with information about 

the responsibilities of the automation. The descriptions corresponded to one of 

three levels of automation listed above. 

The results of this study suggest that a system’s level of automation may 

influence an operator’s ability to calibrate trust. There was a statistically 

significant difference in the correct identification percentage between levels of 



 xiv

automation. When informed that a system was automated at the management by 

consent level, participants outperformed groups at the decision support and 

management by exception levels. Better performance may indicate better trust 

calibration, but not in the direction hypothesized. The accuracy of the automated 

system also influenced the correct identification percentage. Performance was 

better at the 90% accuracy level but a greater percentage of automation errors 

were identified at the 75% accuracy level. The difference was statistically 

significant. We hypothesized that trust calibration would decrease as accuracy 

decreased, but trust calibration appeared to increase as accuracy decreased. 

This study explored the process of trust calibration in automated systems. 

New automated systems are fielded regularly and the level of automation should 

be carefully considered early in system development. An understanding of the 

cognitive processes in play on a human-automation team is vital to the future 

integration of highly automated systems onto the battlefield. We must examine 

the manner in which humans build trust in automated systems and how trust 

relates to effective operation. The goal of future research should not be to divide 

the tasks between humans and machines; the efforts need to focus on how 

humans and machines work together. 
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I. INTRODUCTION  

A. PROBLEM STATEMENT 

Automated systems are widely used in civilian and military applications. 

Examples can be as simple as the turn-by-turn directions available in a car’s 

global positioning system or as complex as the flight controls of unmanned 

aircraft systems (UAS). According to Lee and See (2004), automation is 

technology that actively selects data, transforms information, makes decisions or 

controls processes. The United States military has recognized the value of 

automation on the battlefield across the spectrum of military operations. By 

October 2006, coalition UASs had logged nearly 400,000 flight hours and 

unmanned ground vehicles had responded to more than 11,000 improvised 

explosive device situations (Department of Defense [DoD], 2007). An unmanned 

vehicle is a powered vehicle that does not carry a human operator, can be 

operated autonomously or remotely, can be expendable or recoverable and can 

carry a lethal or nonlethal payload (DoD, 2007). The need for unmanned systems 

continues to grow. Each year, Combatant Commanders submit an integrated 

priorities list of their theater’s capability gaps. In 2008, 17 of the top 99 prioritized 

gaps could have been addressed by unmanned systems, including 2 of the top 

10 (DoD, 2007).  

According to the United States Air Force (USAF) UAS Flight Plan 2009–

2047 (Department of the Air Force [DAF], 2009a), “Unmanned aircraft systems 

are one of the most “in demand” capabilities the USAF provides to the joint task 

force.” Part of the USAF vision in this document was to harness automated 

systems to maximize Joint Force combat capabilities. One of ten key 

assumptions in the UAS Flight Plan was that automation is vital to increasing 

effects and cutting costs. As technologies advance, automated systems will 

compress the time to observe, orient, decide, and act. This sequence of activities 

is commonly referred to as the OODA Loop. A UAS will interpret the situation and 

act with little or no human interaction. As automation becomes more 
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sophisticated the need for an operator will be reduced. However, automation 

does not replace humans in the system; it changes the nature of the task. Rather 

than operating a UAS, the human will supervise its actions. 

In a supervisory control environment, automation can be designed with 

varying levels of autonomy. In a highly automated system the computer makes 

all decisions and acts on its own. A minimally automated system might simply 

present the supervisor with options and defer to the supervisor to make the 

decision. Several classification systems to describe levels of automation have 

been proposed. Table 1 is the earliest description of levels of automation, 

developed by Sheridan and Verplank (1978). 

Table 1.   Levels of Automation (From Sheridan & Verplank, 1978) 

Automation 

Level 
Automation Description 

1 The computer offers no assistance: human must make all decisions & actions 

2 The computer offers a complete set of decision/action alternatives, or 

3 narrows the selection down to a few, or 

4 suggests one alternative, and 

5 executes that suggestion if the human approves, or 

6 allows the human a restricted time to veto before automatic execution, or 

7 executes automatically, then necessarily informs humans, and 

8 informs the human only if asked, or 

9 informs the human only if it, the computer, decides to. 

10 The computer decides everything and acts autonomously, ignoring the human

 

The Combatant Commanders and Military Departments identified 

precision target location and designation as the number two capability need to be 

filled by UASs (DoD, 2007). Target identification and designation capability can 
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be supported with varying levels of automation. A system with Level 3 

automation might select the most likely targets for the supervisor to designate, 

while Level 6 automation would designate a target on its own, but give the 

supervisor an opportunity to veto the decision. 

Employing an automated target designator has some inherent risk; targets 

must be identified with a high degree of certainty. Unfortunately, a highly 

automated system is not equivalent to a highly accurate system. There are 

numerous examples of the failure to correctly use automation in the military. The 

USS Vincennes disaster in 1978, and the destruction of a British Tornado and 

American F/A-18 in 2004 with a Patriot missile system, are two examples (Fisher 

& Kingma, 2001; 32nd Army Air and Missile Defense Command, 2003).  

Highly automated decision aids are useful for rigid tasks, but they are not 

suited for decisions in dynamic environments. In dynamic situations, the 

automation may not be programmed to adapt, leading to a catastrophic failure for 

which the human supervisor is not prepared. For example, the DoD UAS 

Roadmap (2007) identifies the challenge of developing automation that considers 

rules of engagement. Not every situation is black and white; the supervisor must 

be capable of stepping in when the automation fails to interpret the gray areas. In 

automated systems, inability to adapt to novel situations is known as the 

“brittleness problem” (Guerlain & Bullemer, 1996; Guerlain, 1995). 

Automation is often sold as a solution to reduce operator workload and 

enhance situational awareness. The USAF views any implementation of 

automation in the near future as a tool to decrease workload (DAF, 2009a). The 

assumption is that human and automation teams perform better than a human 

alone. Some research has shown that automation can improve performance in 

rigid situations requiring little flexibility in decision making (Endsley & Kaber, 

1999). However, other research has shown that human operators often make 

errors through misuse or disuse of automated aids (Parasuraman & Riley, 1997). 

Misuse occurs when an operator over relies on an automated aid. The authors 

cite the crash of Eastern Flight 401 into the Florida Everglades as an example of 
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misuse. The crew did not realize the autopilot had disengaged and failed to 

monitor altitude, allowing the airliner to crash. Disuse is the under reliance on 

automation. Whenever an individual ignores an alarm, the system is being 

disused. 

Simply improving the reliability of an automated aid will not lead to 

appropriate automation reliance or increase the overall performance of the 

human-automation team. Sorkin and Woods (1985) demonstrated that a more 

reliable automated aid did not lead to the best overall performance. The 

supervisor and automation work as a team and the operator must determine the 

appropriate circumstances to rely on automation. One of the factors known to 

influence a supervisor’s decision to rely on automation is trust. Trust is the 

attitude that an agent will help achieve an individual’s goals in a situation 

characterized by uncertainty and vulnerability (Lee & See, 2004). However, trust 

alone is not enough to ensure appropriate reliance. An optimally automated 

system with high detection rates and low false alarm rates may seem more 

trustworthy, but the supervisor must know when to trust the system and when not 

to trust the system. Inappropriate levels of trust result in disuse or misuse of an 

automated aid.  Overreliance or misuse occurs when the supervisor trusts an 

automated aid that is less reliable than manual operation. Distrusting an 

automated aid that is more reliable than manual operation leads to under-

reliance or disuse. 

Since errors in the level of trust in self—and trust in automation—lead to 

misuse and disuse, it is important that supervisors appropriately calibrate their 

trust. Calibration is the correspondence between a person’s perception of the 

reliability of an agent and the true reliability of that agent (van Dongen & van 

Maanen, 2006). In order to achieve the best performance, supervisors of 

unmanned systems must be capable of calibrating trust in the system. 

Appropriate calibration results in decreased misuse and disuse of automated 

systems.  
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Accurate calibration is crucial in a military environment where operators 

must make quick decisions while relying on the guidance of automated aids. We 

must understand the process by which operators calibrate their trust in 

automation. Though the concept of trust in automation has been thoroughly 

researched, there are some topics remaining to be addressed. For one, 

researchers have yet to examine how trust is calibrated with specific levels of 

automation. The current study investigated how levels of automation impact an 

operator’s ability to calibrate trust in the system. 

B. OBJECTIVES 

This research explored how operator performance was affected by a 

system’s level of automation and accuracy. Specifically, this study: 

 Assessed the ability of the human operator to calibrate trust at 

varying levels of automation 

 Assessed the ability of the human operator to calibrate trust at 

varying automation accuracy levels 

C. RESEARCH QUESTIONS 

 How do we measure trust calibration? 

 Is the ability to accurately calibrate trust associated with level of 

automation? 

 Is the ability to accurately calibrate trust associated with automation 

accuracy? 

D. HUMAN SYSTEMS INTEGRATION (HSI) 

The human plays a central role in every weapons system. Manned or 

unmanned, there will always be some type of interaction between the system and 

the human. The Naval Postgraduate School (2010) describes HSI as follows: 

Human Systems Integration (HSI) acknowledges that the human is 
a critical component in any complex system. It is an interdisciplinary 
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approach that makes explicit the underlying tradeoffs across the 
HSI domains, facilitating optimization of total system performance. 

By following the principles of HSI, practitioners can optimize total system 

performance across the system’s lifecycle. Simply recognizing the role of the 

human in the system is just the first step toward performance optimization. The 

integration of the human into the system must be approached from multiple 

domains. The HSI domains are: 

 Human Factors Engineering 

 Human Survivability 

 Health Hazards 

 System Safety 

 Habitability 

 Manpower 

 Personnel 

 Training 

The true HSI process occurs when the HSI practitioner defines the human 

requirements in each of these domains and considers the tradeoffs that must 

occur. Tradeoffs among the HSI domains create a balance among cost, schedule 

and technical performance parameters. This is how total system performance is 

optimized. 

Three of the HSI domains are particularly relevant to the present study; 

human factors engineering, training, and personnel. Human factors engineering 

“involves the understanding and comprehensive integration of human capabilities 

into system design” (DAF, 2009b). Human factors engineers integrate cognitive, 

physical, sensory, social capabilities to create human-systems interfaces in 

support of operation, maintenance, support and sustainment. According to 

Wickens, Lee, Liu, and Becker (2004), the goal of human factors is to design 
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systems that enhance performance, increase safety, and increase user 

satisfaction. In the context of the present study, an understanding of the human’s 

interaction with automation can influence the design of interfaces that support 

optimal performance. The ability to accurately calibrate trust could decrease the 

disuse and misuse of automated systems. Proper use of the system is directly 

related to performance, safety, and user satisfaction. 

Training, “encompasses the instruction and resources required to provide 

personnel with the requisite knowledge, skills, and abilities to properly operate, 

maintain, and support systems” (DAF, 2009b). According to the Defense 

Acquisition University, training program design uses “analyses, methods, and 

tools to ensure systems training requirements are fully addressed and 

documented by systems designers and developers to achieve a level of 

individual and team proficiency that is required to successfully accomplish tasks 

and missions” (Defense Acquisition University, 2011). The HSI practitioner must 

determine who needs instruction, what to teach them, and how to provide the 

instruction. The results of the present study can influence training program 

design for unmanned vehicle operators. Understanding the complexities of trust 

calibration can change the who, what, and how of training program design. 

HSI practitioners working in the personnel domain consider the “total 

human characteristics and skill requirements for a system to support full 

operational capabilities necessary to operate, maintain, and support a system” 

(Defense Acquisition University, 2011). The knowledge, skills, abilities and 

aptitudes translate directly to personnel requirements and methods to recruit, test 

and select personnel. The personnel selected for a system influence training, 

manpower, and design requirements. The results of the present study will 

support HSI practitioners attempting to define knowledge, skill, ability, and 

aptitude requirements for unmanned vehicle operators. 
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E. THESIS ORGANIZATION 

This thesis is divided into five chapters. Chapter II provides a review of the 

relevant literature regarding levels of automation, trust, and calibration. Chapter 

III describes the method used to conduct the experiment. The discussion 

includes details regarding participants, materials, variables, and procedures. 

Chapter IV is a report of the results of the experiment. The thesis ends with a 

discussion of conclusions that can be drawn from the results, as well as 

recommendations for follow-on research. 
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II. LITERATURE REVIEW 

A. OVERVIEW 

This literature review is divided into three sections. It begins with a 

discussion of levels of automation. The second section describes the concept of 

trust in automation. The third section concludes the literature review with an 

examination of the process of trust calibration. 

B. LEVELS OF AUTOMATION 

Unmanned systems have the capacity to execute actions that previously 

required a human to complete. Functions now allocated to unmanned systems 

include tasks that humans do not wish to perform or cannot perform as 

accurately or reliably (Parasuraman, Sheridan, & Wickens, 2000). Researchers 

have devoted a great deal of effort to determine just what tasks machines 

perform more accurately and reliably. The challenge of allocating functions to 

humans and machines has led researchers to ask, “What can humans do better 

than machines?” The earliest attempt to divide responsibility between humans 

and machines resulted in Fitts’ List (Fitts, 1951). The list, also known as MABA-

MABA, describes tasks that men are better at performing and tasks that 

machines are better at performing. Fitts’ List is shown in Table 2. 
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Table 2.   Fitts’ List (From Fitts, 1951) 

Men Are Better At 

   Detection of small amounts of sensory information. 

   Perception of patterns. 

   Improvisation and flexibility of procedures. 

   Exercising judgment. 

   Recall of relevant information at the appropriate moment. 

   Performing inductive reasoning. 

Machines Are Better At 

   Rapid response to data. 

   Application of great force smoothly and precisely. 

   Executing repetitive, routine functions. 

   Performing deductive reasoning and computations. 

   Brief storage of information for immediate use. 

   Execution of multiple tasks simultaneously. 

 

Fitts’ List served as a starting point to describe the division of labor 

between humans and machines. However, the list does not describe the division 

of responsibility when humans and machines work together. Humans rely on 

automated systems to perform tasks that machines are better at performing. A 

device that accomplishes a function that was previously carried out by a human 

operator is an automated system (Parasuraman et al., 2000). While automation 

is required to replace tasks previously performed by humans, the capabilities and 

responsibilities of automation are not equal. Automation is not an all or none 

quality; tasks may be partially or completely controlled by the automated system. 

Highly automated systems are granted greater control over tasks and require 

less human interaction.  
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Simply describing a system as highly automated does not convey 

sufficient information about the capabilities of the automation. The construct of 

levels of automation was developed to serve as a more precise description of an 

automated system’s capabilities and the requirements of the human operator. 

The earliest description of the levels of automation appeared in a technical report 

to the Office of Naval Research written by Sheridan and Verplank (1978). The 

authors developed a model to describe the division of responsibility between 

humans and automation. High level of automation corresponded with greater 

automation responsibility. Ten levels of automation were defined. Level 1, a 

completely manual task, had the least automation and Level 10, a completely 

computer controlled task, had the most automation.  

Sheridan and Verplank’s model for human automation interaction was 

followed by several similar models. Rouse and Rouse (1983) proposed three 

levels of automation to describe the human-automation relationship. Manual 

control, Sheridan and Verplank’s first level, was described as dormant 

automation. The system remains inactive unless initiated by the operator. 

Management-by-consent was equivalent to Level 5 in Sheridan and Verplank’s 

model. At this level, automation proposes action but cannot act without approval 

by the operator. The third level, management-by-exception, was parallel to 

Sheridan and Verplank’s Level 6 in which automation will act unless explicitly 

directed not to by the operator. While the levels described by Rouse and Rouse 

could be mapped to similar descriptions in Sheridan and Verplank’s model there 

were several gaps. Notably, Rouse and Rouse did not include Levels 2, 3, and 4 

in which the automation provides suggestions to the operator. In addition, they 

excluded Levels 7–10 in which the automation acts without input from the 

operator.  

Endsley (1987) developed a level of automation hierarchy to specifically 

describe expert decision aid systems. Many aspects of Sheridan and Verplank’s 

model were incorporated into the new hierarchy. Notably, Levels 2, 3, and 4 were 

combined into a single level called “Decision Support.” This removed the 
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distinction between multiple alternatives, few alternatives and a single decision 

option. In addition, the author removed levels seven, eight, and nine from the 

earlier model, eliminating the description of how the system provides feedback to 

the operator. The changes made by Endsley resulted in a five level hierarchy: 

1. Manual Control—No assistance from the system 

2. Decision Support—Operator receives recommendations from the 

system 

3. Consensual Artificial Intelligence—System performs task if operator 

consents 

4. Monitored Artificial Intelligence—System performs task unless 

operator vetoes 

5. Full Automation—No operator interaction 

A more recent scale of human automation interaction was presented by 

Sheridan (2002, p 53) as a simplification of the original model. The model still 

retains the original format, describing the role of the computer and the human at 

each level. However, two levels have been removed from the earlier model. 

Levels 2 and 3 were combined to do away with the distinction between a system 

that presents a complete list of alternatives and a system that provides a narrow 

selection. The second change was the removal of Level 9, the level at which the 

system informs the operator only if the automation deems it necessary. The 

remainder of the scale of degrees of automation was unchanged. The revised 

scale of degrees of automation is depicted in Table 3. 
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Table 3.   Revised Scale of Degrees of Automation (From Sheridan, 2002) 

A Scale of Degrees of Automation 

1. The computer offers no assistance: human must do it all. 

2. The computer suggests alternative ways to do the task 

3. The computer suggests one way to do the task AND 

4. …executes that suggestion if the human approves, OR 

5. …allows the human a restricted time to veto before automatic execution, OR 

6. …executes automatically, then necessarily informs the human, OR 

7. …executes automatically, and then informs the human only if asked. 

8. The computer selects the method, executes the task, and ignores the human. 

 

Careful examination of the various scales of automation reveals 

similarities. For one, each scale includes a management by consent and 

management by exception level. Management by consent is the level of 

automation at which the system suggests a solution and will act on that solution 

with the consent of the human (Rouse & Rouse, 1983). On Sheridan’s (2002) 

scale, it falls under Level 4 and is also referred to as consensual artificial 

intelligence by Endsley (1987). Management by exception is the level of 

automation at which the system selects a solution and allows the human time to 

veto the action before it is automatically executed (Rouse & Rouse, 1983). 

Management by exception corresponds with Level 5 on Sheridan’s (2002) scale; 

Endsley (1987) calls this monitored artificial intelligence. There is also some 

agreement about the level that Endsley calls decision support. Both Sheridan’s 

(2002) scale of degrees of automation and Sheridan and Verplank’s (1978) levels 

of automation include a level at which the automation simply provides 

recommendations for the operator. However, Rouse and Rouse (1983) did not 

include this level in their description. 
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Level of automation describes the division of responsibility between a 

human and an automated system. However, the level of automation does not 

describe how operators use and perceive the system. Regardless of the level of 

automation, operators must develop trust in the system. Mistrusted automated 

systems will used inappropriately and ineffectively.  

C. TRUST IN AUTOMATION 

Trust is a critical component in the interaction between humans and 

machines. Interest in trust began as an examination of human-human trust. In 

this context, trust has been defined as “a psychological state comprising the 

intention to accept vulnerability based upon positive expectations of the 

intentions or behavior of another” (Rousseau, Sitkin, Burt & Camerer, 1998). 

While this definition is accepted, trust has been difficult to define with a single 

statement. Barber (1983) described trust as a combination of three expectations: 

1) natural and moral laws will persist; 2) those we interact with are technically 

competent; and 3) those we interact with will carry out their fiduciary 

responsibility. Persistence, competency, and fiduciary responsibility together are 

the building blocks of trust. We must also consider the dynamics of trust, or how 

our perceptions of persistence, competency, and fiduciary responsibility are 

developed. Rempel et al. (1985) proposed that trust is a dynamic expectation 

and follows a developmental sequence based on predictability, dependability and 

faith. Early in a relationship trust is based on predictability, which is a result of 

consistent behavior. As time goes on dependability will become the dominant 

factor in trust. Specific behaviors become less important than a stable disposition 

in times of risk or vulnerability. The final stage of trust development is faith. 

Individuals look at past predictability and dependability then form expectations of 

behavior for future situations. 

Human-automation researchers saw trust as a significant factor 

influencing overall performance. When attempting to define trust in automation, 

researchers drew parallels from sociological studies of human-human 
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interactions. Just like interpersonal relationships, humans and machines form a 

dyad in which trust is a significant factor of performance.  Muir (1987) was among 

the first to consider trust in the man-machine domain. She developed a two-

dimensional framework for studying trust that was a cross of the components of 

trust and the dynamic formation of trust (Table 4).  Muir viewed persistence, 

competency, and responsibility as the most complete characterization of the 

components of trust, while trust was formed by predictability, dependability and 

faith.  Muir (1994) proposed a model for trust in human-automation relationships 

in which humans compare their perceptions of persistence, competence and 

responsibility with their expectations. The product of the comparison between 

perceived performance and expected performance is trust. 

Table 4.   Basis of expectation (From Muir, 1987) 

    Basis of Expectation At Different Levels of Experience 

Expectation   

Predictability       
(of acts) 

Dependability         
(of dispositions) 

Faith                         
(in motives) 

Persistence     
       Natural Physical 

 

Events conform 
to natural laws 

Nature is lawful Natural laws are 
constant 

       Natural Biological 

 

Human life has 
survived 

Human survival is 
lawful 

Human life will 
survive 

        Moral Social 

 

Humans and 
computers act 
'decent' 

Humans and 
computers are 
'good' and 'decent' 
by nature 

Humans and 
computers will 
continue to be 
'good' and 'decent' 
in the future 

Technical Competence 

 

j's behavior is 
predictable 

j has a 
dependable nature 

j will continue to be 
dependable in the 
future 

Fiduciary Responsibility 

  

j's behavior is 
consistently 
responsible 

j has a responsible 
nature 

j will continue to be 
responsible in the 
future 
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One of the earliest studies of trust in a human-machine system was 

performed by Lee and Moray (1992), as an extension of a study performed by 

Muir (1989).  The purpose of the experiment was to develop a better 

understanding of human machine-trust. In this experiment, participants were 

asked to balance safety and performance while in control of a simulated 

pasteurization plant. The operators could vary control of the system from manual 

control, automatic control or mixed control throughout the experiment. A total of 

60 trials were performed by each participant and they completed a trust 

questionnaire after each trial. The questions established the operator’s subjective 

feelings about predictability, dependability, and faith in the automation. The 

results of this experiment suggested that reliance on an automated aid is not 

simply dependent on the perceived trustworthiness of the aid, but also the 

operator’s self confidence.  

Research has demonstrated that human-automation teams may exhibit 

less than optimal performance (Parasuraman & Riley, 1997). Human-only teams 

also demonstrate suboptimal performance. In the sociology community this poor 

performance is referred to as process loss. Poor performance has been 

attributed to cognitive, motivational, and social factors (Mullen, Johnson, & Salas, 

1991). Dzindolet, Pierce, Beck, and Dawe (1999) applied the aspects of process 

loss to human-machine teams to develop a broad model of automation use. 

While Muir (1994) considered only cognitive factors, Dzindolet et al. (1999) 

incorporated cognitive, motivational, and social factors. The manner in which 

humans process information from an automated aid is the cognitive process. 

Mosier and Skitka (1996) have defined reliance on an automated aid in a 

heuristic manner as automation bias. The human is subject to motivational 

processes as part of a human-machine team. In a sociological context, 

responsibility for the end product is diffused amongst team members. This may 

lead to the human on a human-automation team feeling reduced responsibility for 

the task and inappropriate reliance on the automated aid. The concept of social 

process built on the work of Lee and Moray (1992, 1994) when they found the 
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decision to rely on automation is dependent on trust in the aid and operator self 

confidence. The comparison between perceived reliability of the aid and 

perceived reliability of manual control is known as perceived utility. The 

perceived utility of the automated aid along with automation bias directly 

contribute to the operator’s relative trust. The complete model for automation use 

is depicted in Figure 1.  

 

Figure 1.   Model for Automation Use (From Dzindolet et al., 1999) 

Dzindolet et al. (1999) performed numerous experiments to test the 

propositions of their new model. Over the course of several studies, participants 

were presented with photographs of Fort Sill, Oklahoma and asked to perform a 

visual detection task. Half of the images contained soldiers in camouflage and 

participants identified the soldier in images while using an “automated” contrast 

detection aid with varying levels of accuracy. Cognitive processes were 

controlled by presenting the automation’s decision after the operator’s decision 



 18

had been made. Motivational processes were controlled by setting the level of 

effort required to use the automation equal to the effort without automation. The 

authors measured participants’ decision to rely on automation. Over the course 

of four experiments, the authors supported the prediction that automation use is 

determined by perceived utility of the aid, which is a result of a comparison 

between operator and aid performance. 

Reliance on a system is not simply dependent on trust. Operators decide 

when to rely on an automated system through a comparison of their own 

perceived reliability and the perceived reliability of the automated aid. This 

comparison leads to the development of relative trust, which feeds into 

automation use. The process of developing relative trust in a system is referred 

to as trust calibration. 

D.  TRUST CALIBRATION 

The comparison between trust in self and trust in automation is closely 

related to calibration of trust. Muir (1987) describes calibration as the user setting 

his or her trust level in correspondence with the machine’s trustworthiness and 

using the machine accordingly. The properly calibrated operator knows when to 

rely on the automated system (e.g., appropriate trust) and when to rely on 

manual control (e.g., appropriate distrust) (Muir, 1994). The improperly calibrated 

operator exhibits false trust when relying on poor automation and false distrust 

when discounting good automation. In the context of Dzindolet, Pierce, Beck and 

Dawe’s (2001) framework to predict automation use, calibration falls between the 

cognitive and social processes; it is the perceived utility of the automated aid. 

Lee and Moray (1992) encountered evidence of trust calibration in the 

course of their simulation of a pasteurization factory. Participants in the 

experiment were tasked as operators of the factory to optimize system output by 

controlling several processes. Operators were allowed to adopt manual control, 

automated control, or mixed control strategies. As the experiment progressed, 

the simulation was programmed to produce errors resulting in reduced system 
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performance. For the majority of the experiment, operators demonstrated a 

tendency to rely more heavily on manual control. Unexpectedly, chronic faults led 

to increased reliance on the automated aid even though trust in the automated 

aid decreased. Operator’s confidence in their own abilities decreased as well. 

The authors concluded trust was a factor in automation reliance, but self 

confidence in manual control abilities also contributed.  

Calibration is critical to the appropriate reliance on automated systems. 

Inappropriate reliance on automated aids is synonymous with misuse or disuse 

of that aid (Parasuraman & Riley, 1997). Misuse of an automated aid occurs 

when the operator incorrectly relies on automated control over manual control. In 

this situation, perceived utility of the automated aid is too high. High perceived 

utility stems from inflated perception of automation reliability and/or deflated 

perception of operator reliability. Disuse occurs when perception of automation 

reliability is deflated and/or perception of operator reliability is inflated. As a 

result, the operator may incorrectly rely on manual control over automated 

control. 

Another study examined how operators estimate their own reliability and 

the reliability of decision aids (Dongen & Maanen, 2006). The authors 

hypothesized that underestimation of decision aid reliability is more prevalent 

than underestimation of self reliability. In the course of the experiment 

participants were asked to estimate reliability of a decision aid and self reliability 

on a prediction task involving a sequence of numbers. The results of the 

experiment support the hypothesis that underestimation of the decision aid was 

more prevalent than self underestimation. In addition, they found that under-trust 

in own performance decreased over time, while under-trust of the decision aid 

persisted. 

The perceived reliability of an automated aid is should be dependent on 

the aid’s actual reliability. One framework for automation utilization assumes that 

operators initially expect automated aids to perform at near perfect rates, referred 

to as automation bias. As a result, errors by automation are particularly salient to 
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operators; this leads them to underestimate system reliability (Dzindolet et al., 

2001). Wiegmann, Rich, & Zhang (2001) performed an experiment to examine 

the relationship between actual and perceived reliability. The participants were 

presented with automated diagnostic aids of varying reliability. The three 

conditions were 60% reliable increasing to 80% reliable, constant 80% reliability, 

and 100% reliable decreasing to 80% reliable. Participants were asked to 

estimate the reliability of the aid at the completion of the trials. Results suggested 

that operators of automated decision aids are sensitive to changing levels of aid 

reliability. In addition, this study supported the framework of cognitive and social 

processes affecting automation use developed by Dzindolet et al. (2001). 

Perceived utility of the automation was lower than automation reliance, 

suggesting the interference of social processes. 

One approach to measuring trust calibration is grounded in the principles 

of signal detection theory (Tanner & Swets, 1954). Generally, signal detection 

theory is a comparison between the true state and the perceived state. The 

operator’s response results in a hit, miss, false alarm, or correct rejection. When 

applying signal detection theory to trust calibration there are three components to 

consider:  the true state of the environment, the recommendation of the 

automation, and the response of the decision maker. In this scenario, the 

decision maker is unable to fully perceive the true state of the environment, or 

there is uncertainty in his perceptions. The automated system aids the operator 

by providing an interpretation of the state of the environment. Figure 2 depicts 

the relationship between ground truth, automation, and the decision maker. The 

human must make a choice by performing a comparison between the information 

provided by the automation and his own perceptions. 
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Figure 2.   Relationship between ground truth, automation, and decision maker 

Hits and correct rejections can occur when the operator appropriately 

agrees with or rejects the guidance of the automated aid. False alarms and 

misses are the result of misuse or disuse of the automated aid. An operator that 

is perfectly calibrated will know when to agree with the automated aid and when 

to disagree. Proper calibration is indicated by a high degree of hits and correct 

rejections. On the other hand, a high degree of misses and false alarms indicates 

poor calibration. The properly calibrated operator of an automated system should 

use the system as a tool to perceive the true state of the world, knowing when to 

accept or reject the system’s indications and achieve a high rate of hits and 

correct rejections.  

E. PRESENT STUDY 

Designers of unmanned systems grapple with questions about level of 

automation and accuracy today. From an HSI standpoint, knowledge about the 

human-automation relationship can influence human factors, training, and 

personnel. The present study examines the effects of changes to the level of 

automation and accuracy of automated systems. It is hypothesized that 
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increasing level of automation will decrease the operator’s ability to calibrate 

trust. In addition, decreasing accuracy of the automation will decrease the 

operator’s ability to calibrate trust. This section describes the manner in which 

these hypotheses were derived. 

A few researchers have explored the relationship between trust and levels 

of automation. Ruff, Narayanan, and Draper (2002) measured operator trust and 

correct detection of decision aid failure when controlling unmanned aircraft at 

varying levels of automation. The authors selected the Rouse and Rouse (1983) 

levels of automation: manual control, management by consent, and management 

by exception. In this experiment, operators were tasked to control one to four 

unmanned aircraft in a virtual environment as they searched for and engaged 

four ground targets. The automation provided decision aiding to the operator for 

changes in system state. At the completion of the experiment, participants were 

asked to rate their trust in the automated system, using subjective ratings based 

on the work of Masalonis and Parasuraman (1999). Results indicated that even a 

5% error rate led to a significant drop in trust at higher automation levels. In 

addition, correct rejections were significantly lower at the management-by-

exception level and this level consistently received the lowest trust ratings. The 

authors recommend that high levels of automation do not necessarily result in 

better performance. In some situations, optimal performance may be achieved 

with lower levels of automation. 

Levels of automation are an effective way to describe the division of 

responsibilities in a human-automation team. Researchers have proposed 

differing automation level classification systems. Ruff et al. (2002) selected 

Rouse and Rouse’s (1983) description of the levels of automation for their study. 

Similarities and differences among the classification systems were discussed 

earlier. The present study considers the similarities among classification systems 

and uses three levels of automation for examination: decision support, 

management by consent, and management by exception.  
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The study by Ruff et al. (2002) explored trust in levels of automation and 

the occurrence of correct detections of automation aid failure, but an area that 

has not been fully examined is the process of calibrating trust in automation. In 

the study by Ruff et al. (2002), correct detection of automation failures was 

recorded as a total for the entire trial. However, the process of calibration occurs 

over time, the operator must be provided feedback at regular intervals in order to 

refine his/her perception of the automation’s reliability. In the present study, 

calibration is measured using the framework of signal detection theory. If 

calibration improves over time, it will be indicated by an increased degree of hits 

and correct rejections. 

The accuracy of the automation impacts the operator’s perception of 

reliability. Ruff et al. (2002) used two levels of accuracy in their study, 100% and 

95%. They found that just that small change led to decreased trust in the 

automation. One thing they could not measure was how changing accuracy 

effected the operator’s ability to detect errors and calibrate trust. The present 

study varied automation accuracy to assess the impact on trust calibration. 
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III. METHOD 

A. METHOD OVERVIEW 

The experiment consisted of a series of target detection tasks at varying 

levels of automation and accuracy. In the scenario, participants acted as the 

observer of a video feed from an unmanned aircraft. Their task was to identify 

enemy and friendly personnel as the unmanned aircraft flew along a scripted 

flight path. Each participant completed three trial runs containing 50 enemy 

targets and 50 friendly targets. 

The study incorporated a mixed design. Participants were randomly 

assigned to one of three experimental groups (between subjects; decision 

support, management by consent, or management by exception). Each group 

experienced two levels of automation accuracy (within subjects; 75% and 90%). 

After completion of a manual control trial with no automated guidance, the 

participants were informed that they would be aided in subsequent trials by an 

automated identification system. The description of the automated system was 

consistent with a specific level of automation. In reality, the automated 

identification system did not exist. Instead, targets were identified by the 

experimenters as part of the scripted scenario. The same targets were identified 

as enemy and friendly at each automation level. Accuracy of the automation was 

either 75% or 90%, meaning 25% or 10% of the indications were misses and 

false alarms. 

B. PARTICIPANTS 

1. Selection 

The Naval Postgraduate School Institutional Review Board reviewed and 

approved the design of this study, in accordance with Department of the Navy 

and American Psychological Association standards. All participants provided 

informed consent by signing a form that notified them of their rights as 
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participants in the experiment. Participants were solicited through e-mail 

communication and personal contact. The study used a convenience sample 

taken from the Naval Postgraduate School population. 

2. Demographic Make-up 

Thirty participants (average age = 30.83, SD = 4.25 years) completed this 

study, 21 were male and nine were female. Participants were drawn from every 

United States military branch. In addition, several foreign military officers and 

civilians participated in the study. See Figure 3 to view the distribution of 

participants. 

 

Figure 3.   Distribution of Participants 

Participants who were members of the military provided their time in 

service.  Figure 4 depicts total years of military service, including enlisted 

time. 
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Figure 4.   Total Years of Military Service 

C. MATERIALS 

1. Virtual Battle Space 2 

Virtual Battlespace 2 is software that provides battlefield simulations. It 

was specifically designed by Bohemia Interactive for federal, state, and local 

government agencies. Primary uses of the software include training of doctrine, 

tactics, techniques, and procedures for squad and platoon operations.  

2. Equipment 

The experiment was run on a Dell Precision M6300 laptop computer with 

the following specifications:  

 Attached Monitor: 24 inch Dell Flat Panel LCD Display 

 Operating System: Microsoft Windows XP 

 Processor: Intel Core 2 Duo T9500 @ 2.60 GHz 

 777 MHz, 3.5 GB of RAM   
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D. VARIABLES 

1. Independent Variables 

a. Level of Automation 

Group A was informed that the automated identification system 

functioned at the level of automation corresponding to decision support. The 

automation identified potential friendly and enemy targets, and the operator used 

the information to make a decision. 

Group B was informed that the automated identification system 

functioned at the level of automation corresponding to management by consent. 

The automation identified friendly and enemy targets and was prepared to act 

with consent of the operator. 

Group C was informed that the automated identification system 

functioned at the level of automation corresponding to management by 

exception. The automation identified friendly and enemy targets and would act 

unless the operator vetoed. 

b. Accuracy 

The automated identification system operated at two levels of 

accuracy, Level 1 was set at 75% and Level 2 was set at 90%. Accuracy 

describes the number of friendly and enemy targets correctly identified. This was 

a within subjects variable, each participant completed a trial at 75% and 90% 

accuracy. Accuracy was counterbalanced so that half of the participants in each 

group experienced 75% accuracy first and half of the participants experienced 

90% accuracy first.  

2. Dependent Variables 

There were three dependent variables: calibration, perceived reliability, 

and perceived utility. The number of friendly and enemy targets correctly 

identified by the participant measured calibration. Perceived reliability was  
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measured by responses to post-trial questionnaire Item 1. Perceived utility was 

measure by responses to post-trial questionnaire Item 2. See Appendix A for a 

copy of the post trial questionnaire. 

E. PROCEDURE 

Participants signed up for an hour-long experimental session as their 

schedules allowed. A single participant was tested during each session. The 

researcher distributed participants among the groups (A1, A2, B1, B2, C1, & C2) 

in the order they volunteered. The first participant was placed in Group A1, the 

second in A2, the third in B1, and so on. Participants met the researcher in the 

Human Systems Integration Laboratory. Upon completion of the Informed 

Consent documentation participants answered a demographic questionnaire 

(Appendix B). 

Next, participants were provided with the initial scenario description. The 

description contained instructions for the participant, images of the targets, and 

the evaluation method. Participants were asked to summarize the directions to 

ensure accurate understanding of the task.  The instructions read: 

There has been a recent increase in terrorist activities along a road 
of strategic importance. Little is known about the position of enemy 
and friendly personnel along the roadway. In order to collect 
intelligence on the disposition of forces an unmanned aircraft has 
been directed to scout the roadway. You are the operator of the 
unmanned aircraft video feed. The aircraft will fly a programmed 
route over the roadway while you manipulate the camera. When 
you encounter an enemy along the route press the key labeled E to 
indicate an enemy, the target will be destroyed when the aircraft 
has passed. When you encounter friendlies along the route, press 
the key labeled “F” to keep them safe from engagement. 

The targets were placed along the flight path of the unmanned aircraft by 

the researchers. Three unique flight paths were programmed in Virtual 

Battlespace 2. An experimental trial was concluded when the aircraft flew a 

complete flight path. Participants completed three experimental trials without 

repeating flight paths. The Virtual Battlespace 2 mission editor provided a list of 
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targets from which the enemy and friendly personnel were chosen. The targets 

were selected to make accurate identification a challenge for the participants. 

Images of the targets are shown in Figure 5. 

   

Figure 5.   Enemy (left) and Friendly (right) targets. 

The scenario description also included an explanation of the evaluation 

method. Performance was assessed by the number of hits, misses, false alarms, 

and correct rejections. Participants were provided with the following definitions: 

 Hit—Identify an ENEMY target as an ENEMY 

 Miss—Identify an ENEMY target as a FRIENDLY 

 False Alarm—Identify a FRIENDLY target as an ENEMY 

 Correct Rejection—Identify a FRIENDLY target as a FRIENLDY 



 31

Participants completed a practice trial for task familiarization. The practice 

trial was divided into five blocks, each containing 10 targets to be identified. 

During the practice trials, participants were informed that the first two targets of 

each block were always friendly and the second two were always enemy. When 

a participant used the keyboard to identify a target, an identification marker was 

recorded on a two-dimensional video map. The target markers and target 

location were combined to determine hits, misses, false alarms and correct 

rejections. At the end of each block, the researcher assessed performance with 

the participant by reviewing the map.  

All participants began the experiment with the manual control trial. 

Participants were directed to identify targets, but they were not given the aid of 

an automated identification system. The trial contained 100 targets divided into 

five blocks of 20 targets. Each block contained an equal number of friendly and 

enemy targets. At the completion of a block the simulation was paused and the 

participant received feedback about the number of hits, correct rejections, false 

alarms, and misses. 

Upon completion of the manual control scenario participants were given a 

new set of instructions. The instructions informed the participants that the 

unmanned aircraft had been upgraded with an automated identification system. 

The description of the automated identification system was dependent on the 

participant’s experimental group. See Appendix C for the complete instructions 

given to the experimental groups. During the second and third trials, targets were 

identified by red arrows to indicate enemies and blue arrows to indicate 

friendlies. The participants completed one trial at 75% automation accuracy and 

a second trial at 90% automation accuracy. Each trial contained 100 targets, 

divided into five blocks of 20 targets. Each block contained an equal number of 

friendly and enemy targets. At the completion of a block the simulation was 

paused and the participant received feedback about the number of hits, correct 

rejections, false alarms, and misses.  
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At the completion of the second trial, participants were asked two 

questions. Responses to these questions were used to determine perceived 

reliability and perceived utility of the automated system. The questions were 

repeated at the end of the third trial as well. Perceived reliability was assessed by 

the following question:  

In the previous scenario, you were presented with 100 targets. 
Please estimate the percentage of times the automation was 
correct in its identification of individuals? 

Perceived utility was assessed by the second question, which was 

presented as follows: 

If you were asked to scout an additional roadway would you prefer 
to identify and report targeting information without the use of the 
automated system or would you prefer to allow the automated 
system to identify and report targeting information without human 
supervision? 
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IV. RESULTS 

A. CALIBRATION 

The present study collected target identification data from participants that 

performed an identification task. The number of hits, misses, false alarms, and 

correct rejections were determined by comparison between the true target type 

and identified target type. Analysis was performed to determine the effect of 

automation accuracy, type of target, and level of automation on ability to correctly 

identify targets. An alpha level of 0.05 was used for all statistical tests. 

1. Level of Automation 

The present study examined correct identification percentage at three 

levels of automation. Participants were placed into one of three groups and 

experienced only a single level of automation. The number of correctly identified 

targets divided by the total number of targets was referred to as correct 

identification percentage (CIP).  The mean CIP at LOA 1, decision support, was 

88.2% (SD=18.5). Participants in LOA 2, management by consent, achieved a 

mean CIP of 96.0% (SD=5.8). The mean CIP at LOA 3, management by 

exception, was 89.9% (SD=9.8). Figure 6 presents a chart of mean correct 

identification percentage by sector and level of automation.  
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Figure 6.   Mean Correct Identification Percentage 

A one-way ANOVA was performed between CIP and LOA. A significant 

difference was detected between groups, F(2, 297)=10.84, p<.0001. Analysis of 

residuals indicated subject number 2 may have been an outlier. A Kruskal Wallis 

test confirmed the results of the one-way ANOVA, x2(2)=27.48, p<.0001. The p-

value of the ANOVA and Kruskal Wallis were the same, so the one-way ANOVA 

results were retained. Post hoc analysis of the results indicated that CIP at LOA 

2 was greater than LOA 1 and LOA 3. 

The receiver operator characteristics (ROC) of participants was also 

analyzed. Participants’ hits, misses, false alarms, and correct rejections were 

grouped by LOA. Sensitivity (d') was calculated within each group and the results 

were placed on a scatter plot indicating the ratio of false alarms to hits. High 

sensitivity values indicate a high number of hits in relation to false alarms. Figure 

7 depicts the ROC for each level of automation. Within a level of automation, 

sensitivity was calculated at each identification block. Figure 8 depicts the 

sensitivity across identification blocks at each LOA.  
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Figure 7.   Receiver Operating Characteristic 

 

Figure 8.   Sensitivity 

A final chart was created by plotting CIP variance across zones at each 

level of automation. Variance at LOA 1, LOA 2, and LOA 3 (M=.041, .006, .016) 

did not appear to decrease across identification blocks. The plot of variance by 
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level of automation is depicted in Figure 9. Initially, the variance plots at each 

LOA did not overlap. However, two participants in LOA 1 performed far below the 

average. When their data were removed, the LOA 1 plot was very similar to the 

LOA 3 plot. The mean variance at LOA 1 dropped to 0.013. The adjusted plot of 

variance by level of automation is depicted in Figure 10. 

 

Figure 9.   Variance By Level of Automation 

 

Figure 10.   Adjusted Variance By Level of Automation 
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2. Automation Accuracy 

Participants were presented with two levels of automation accuracy. One 

trial was completed at 75% accuracy and a second trial was completed at 90% 

accuracy. In the 75% accuracy condition, the mean CIP was 90.5% (SD=14.8). In 

the 90% accuracy condition, the mean CIP was 92.1% (SD=14.9). Over the 

course of one trial, participants identified targets in five sectors completed 

sequentially. Mean CIP was calculated for each sector and the values were 

plotted on a line chart. A complete experimental trial was represented by five 

connected data points, one for each sector in the trial. Figure 11 presents a chart 

of mean CIP by sector and accuracy level. 

 

Figure 11.   Mean Correct Identification Percentage 

A repeated measures one-way ANOVA was performed between CIP and 

accuracy within participants. The ANOVA results were not significant, F(1, 

269)=2.60, p=.1081. Residual analysis indicated that participant number two was 

an outlier. A Wilcoxon ranked sum test was performed and a significant 

difference between accuracy levels was detected, x2(1)=4.67, p=.03. The results 

of the ANOVA were rejected in favor of the Wilcoxon test. 
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A final chart was created by plotting the variance of the CIP across 

identification blocks at each level of accuracy. There was a great deal of overlap 

between plot of variance at the 75% level (M=.016) and the plot of variance at the 

90% level (M=.017). The chart is depicted in Figure 12. 

  

Figure 12.   Variance By Accuracy of Automation 

B. PERCIEVED RELIABILITY AND UTILITY 

Participants were asked to estimate the reliability of the automated aid 

twice. One estimate was made at the conclusion of the 75% accuracy condition 

and the second estimate was made at the conclusion of the 90% accuracy 

condition. The mean estimated accuracy of the 75% condition was 81.4% 

(SD=8.7). The mean estimated accuracy of the 90% condition was 88.8% 

(SD=6.0). No correlation was found between the participant’s total correct 

identification rate and the estimated accuracy of the automation, r(58)=.05, 

p=.08. A paired t-test was performed and the difference between accuracy 

estimates was found to be significant (t(29)=6.11, p<.0001). 
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Participants were also asked to indicate their preference for human or 

automation use in a future task. The question was asked at the end of the 75% 

and 90% accuracy trials. Participants were directed to choose between two 

responses: perform the task with no automated aid or allow the automated aid to 

perform the task without human interaction. The majority of participants (80%) 

preferred to perform the task with no automated aid. At the end of each trial, only 

three participants indicated a preference to allow the automation to completely 

control the task. Three additional participants misinterpreted the question and 

responded that they would prefer to perform the task and have the help of the 

automated identification system. 
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V. DISCUSSION 

A. HYPOTHESIS ONE 

The hypothesis that increasing the level of automation would decrease the 

operator’s ability to calibrate trust was partially supported. Trust calibration was 

measured by the percentage of targets correctly identified over five identification 

sectors. A difference in correct identification percentage between levels of 

automation was expected as an indication of trust calibration. A greater 

difference in CIP would indicate a greater difference in trust calibration. In the 

first identification sector, CIP was expected to be nearly equal. In subsequent 

sectors, the difference in CIP was expected to grow. Eventually, the CIP at all 

three levels of automation would converge. The result would be a plot of three 

different curves, beginning at roughly the same level of performance and ending 

at the same level of performance. A depiction of the expected results is 

presented in Figure 13. The actual line plot of results is presented in Figure 14.  

 

Figure 13.   Expected Mean Correct Identification Percentage 
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Figure 14.   Actual Mean Correct Identification Percentage 

A comparison between the plots of expected and actual results yielded 

noticeable differences. Correct identification percentage was expected to 

increase over time as an indication that trust calibration had increased, but the 

actual CIP remained relatively constant. In addition, plots of LOA 1 and LOA 3 

overlapped on several occasions. Statistical analysis revealed that CIP at LOA 2 

was greater than CIP at LOAs 1 and 3 (p<.0001). Results of the one-way ANOVA 

and Kruskal Wallis test were equal. The difference that was detected between 

levels of automation did not fully support the hypothesis. Against expectations, 

CIP at LOA 1 was significantly less than CIP at LOA 2. This may indicate that 

differing levels of trust calibration have occurred, but not in the expected manner. 

A second indication of trust calibration was variance of the correct 

identification percentage. Smaller variance was expected to be an indication of 

better calibration with the automated system. We expected to see decreasing 

variance across sectors. In addition, as automation level increased, we expected 

to see higher variance and at each sector. A depiction of the expected results is 

presented in Figure 15. The actual variance plots is depicted in Figure 16. 
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Figure 15.   Expected Variance By Automation Level 

 

Figure 16.   Actual Variance by Level of Automation 

The expected results were not reflected in the actual variance plots. 

Though variance appeared to differ by LOA, there was no distinctive decrease in 

variance across identification sectors. The lack of change in variance across 

sectors indicates that trust calibration did not change over time. In addition, the 

similarity in variance by LOA indicates that calibration was the same at each level 

of automation. 
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The results can be viewed from three points of view. We will refer to 

Figure 17 to describe the possibilities. One explanation is that participants were 

able to calibrate their trust at LOA 2 more effectively. Correct identification 

percentage at LOA 2 was significantly higher than at the other LOAs. A higher 

correct identification percentage indicates better trust calibration. In other words, 

participants in LOA 2 had a better understanding of when to trust or distrust the 

automated system. Better calibration allowed them to recognize when the 

automated identification system accurately reflected ground truth.   

 

Figure 17.   Relationship between ground truth, automation, and decision maker 

Second, the lack of difference between LOA 1 and LOA 3. Sensitivity, the 

ratio of hits to false alarms, was very high. This suggests that participants may 

have been able to bypass the automated system and directly observe ground 

truth. Participants may have been able to make identifications based on ground 

truth with certainty.  

Third, the high level of sensitivity exhibited by participants may suggest 

the task was too easy. If the task truly was too easy, it supports the idea that 

participants bypassed the automated system and directly interpreted ground 

truth. Several factors indicated that the identification task lacked difficulty. During 

the pilot experimental design, enemy and friendly targets possessed several 

distinguishing features. Participants in the first pilot study committed nearly zero 
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false alarms and misses. In the final experimental design, different enemy and 

friendly targets were chosen in an attempt to make the task more difficult. Even 

though the differences in enemy and friendly targets were reduced, participants 

quickly learned to correctly identify targets. Participants discovered visual cues 

that aided identification. In many cases, multiple targets were visible to 

participants at the same time. This allowed them to make direct comparisons 

between targets rather than absolute judgments. The software also made enemy 

and friendly targets point their weapons at each other, which aided identification. 

Finally, the participants’ freedom to aim the video camera allowed them to dwell 

on many targets for extended lengths of time. The additional time enhanced 

identification of targets that may have been more difficult to distinguish. Any 

differences in correct identification percentage between levels of automation 

could be attributed to differences between the participant groups. Unfortunately, 

participants did not experience all three levels of automation, so this possibility 

could not be explored. 

One shortfall of this study was that participants only experience one level 

of automation. The software in use did not allow participants to see the 

automated system at work. Their only knowledge of the automated system was 

provided in pretrial instructions. The instructions described how the automated 

system would function after an identification had been made. However, those 

functions were never performed in view of the participants. As a result, it would 

have been difficult to present the participants with all three levels of automation in 

a distinguishable manner.  

Previous studies in human-automation interaction have attempted to 

measure trust in two ways. The first method was to directly question participants 

about their level of trust in the automation (Muir, 1989; Lee & Moray, 1992). 

These studies found that development of trust is a process that takes place over 

time. In addition, faults were shown to decrease trust in the system. In contrast 

with earlier work, the present study did not assess calibration of trust over time. 

Ruff, Narayanan, and Draper (2002) asked participants to report trust in systems 
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at three levels of automation. They found that participants exhibited the highest 

trust in the system when it operated at the management by consent level of 

automation.  As the number of vehicles being controlled increased, reported trust 

levels also increased. This trend was not uniform across all levels of automation. 

In the management by exception condition trust decreased as number of vehicles 

increased. Performance was also greatest in the management by consent 

condition. The management by consent condition also led to the highest 

performance in the present study. This confirms the findings of Ruff, Narayanan, 

and Draper (2002). A second method to measure trust is to examine the decision 

to rely on the automation. Dzindolet et al. (2002) reported that, when asked to 

choose, participants indicated a reluctance to allow tasks to be fully controlled by 

automated systems. Participants in the present study confirmed those results by 

electing to perform tasks manually when given the choice between full manual 

control and full automation control. 

The present study differed from previous research in that it attempted to 

measure the calibration of trust in a system over time. In previous studies, (van 

Dongen & van Maanen, 2006) calibration was indicated by a comparison 

between the estimated reliability in self and estimated reliability of automation. 

Under-trust in automated systems seemed to remain constant, but under-trust in 

self decreased from the first to second trial. Estimated trust was not collected in 

the present study, but participant performance did not change over time. This 

indicates that participant trust calibration did not change as trials progressed. 

B. HYPOTHESIS TWO 

The hypothesis that decreasing accuracy of the automation would 

decrease the operator’s ability to calibrate trust was not supported. Trust 

calibration was measured by the percentage of targets correctly identified over 

five identification blocks. We expected to see a difference in correct identification 

percentage between levels of accuracy. In the first identification block, CIP was 

expected to be nearly equal. In subsequent blocks, the difference in CIP was 
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expected to grow. The CIP at the high accuracy level would always exceed the 

CIP at low accuracy level. The result would be a plot of two curves, beginning at 

roughly the same level of performance and ending at separate levels of 

performance. A depiction of the expected results is presented in Figure 18. The 

actual line plot of results is presented in Figure 19. 

 

Figure 18.   Expected Mean Correct Identification Percentage 

 

Figure 19.   Actual Mean Correct Identification Percentage 
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The difference between CIP at 75% accuracy and 90% accuracy was 

found to be significant (p=.03). However, this finding does not support the 

hypothesis that trust calibration was greater at the higher level of accuracy. At 

the 75% accuracy level, participants were presented with 25 incorrectly identified 

targets. In the 75% condition, participants were able to identify 90.5% of targets 

correctly. However, 25% percent of the total targets were incorrectly identified by 

the automated system. This means that participants correctly recognized the 

error in the automated system 62% of the time. In the 90% accuracy condition, 

participants were able to identify 92.1% of the targets correctly. With 10% of the 

targets identified incorrectly by the automated system, the participants correctly 

recognized errors by the automated system 21% of the time. The difference in 

correct recognition of automated errors may indicate better trust calibration in the 

75% condition.  

A second indication of trust calibration was the variance of CIP across 

identification blocks. Smaller variance was an indication of increased calibration 

with the automated system. We expected to see decreasing variance across 

identification blocks. In addition, at the high accuracy level, we expected to see 

less variance at each identification sector. A depiction of the expected results is 

presented in Figure 20. The actual variance plot is depicted in Figure 21. 

 

Figure 20.   Expected Variance By Accuracy of Automation 
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Figure 21.   Actual Variance By Accuracy of Automation 

The expected results were not reflected in the actual variance plots. The 

high accuracy variance plot consistently overlapped the low accuracy variance 

plot. In addition, there was no pattern of decreasing variance over time. Neither 

of the expected characteristics of the chart (decreasing variance and differing 

variance by accuracy) were present. The comparison of variance over time does 

not support the hypothesis that trust calibration will decrease with automation 

accuracy. 

Participants were aware of differing accuracy levels. The matched pairs t-

test of estimated accuracy indicated participants could distinguish the accuracy 

levels (p<.0001). This implies that participants knew when the automated system 

was incorrect and consistently disregarded the system’s inputs. However, it does 

not support the hypothesis that trust calibration would be lower for less accurate 

systems. 

Previous studies have demonstrated that changes in automation accuracy 

lead to changes in operator performance. Ruff, Narayanan, and Draper (2002) 

demonstrated that a decrease from 100% accuracy to 95% accuracy reduced 

operator efficiency from 76% to 69%. The present study confirmed the 
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relationship between accuracy and performance. However, trust calibration did 

not decrease with accuracy. Not all research has supported the results of Ruff, 

Narayanan, and Draper. Sorkin and Woods (1985) found that optimizing the 

performance of an automated system did not always yield the best results for the 

human-automation team. 

Some have argued that levels of automation is not an effective way to 

describe human-automation interactions. The concept of “Levels of Automation” 

effectively explains the division of tasks between humans and automation, but it 

may not describe the way humans interact cognitively with automated systems. 

As Dekker and Woods (2002) point out, lists like Sheridan and Verplank’s (1978) 

Levels of Automation do not describe the cognitive processes that are involved in 

deciding how to use an automated system. It is possible that humans evaluate 

the trustworthiness of an automated system without considering its level of 

automation. In other words, after an error, trust in a system with high automation 

will change at the same rate as trust in a system with low automation. Humans 

may simply see an automated system that is making errors. 

The present study does not support the claims of Dekker and Woods 

(2002). Significant differences in correct identification percentage by level of 

automation and accuracy were detected. These differences imply that LOA and 

accuracy affect the ability to calibrate trust in automated systems. However, 

differences in performance remained constant over time. Relatively constant 

performance may be explained by very high performance levels. The participants 

may have found the task to be too easy. If the task truly was too easy then 

participants may have disregarded the automated system or failed to use it as 

intended. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

The employment of automated systems is expanding across the modern 

battlefield. The growth of automation has not eliminated the human from the 

system; it has transformed the human’s role. With the trend toward increasing 

level of automation, humans have changed from operators to supervisors. This 

change does not necessarily mean that human workload has been reduced. 

Instead, cognitive resources are applied to different tasks, such as anticipating 

the automation and understanding the actions of the automation. Nonetheless, 

highly automated systems will be critical for the supervision of multiple 

unmanned systems across the battlefield.  

The changing but continuous role that humans maintain with automated 

systems requires an understanding of the human-automation relationship. One 

aspect of this relationship that had not yet been fully explored was the process by 

which humans calibrate trust in automated systems. In the present study, 

participants were given the assistance of an automated system for the 

identification of enemy and friendly targets. Participants were placed in three 

groups and provided with information about the responsibilities of the automation. 

The descriptions corresponded to one of three levels of automation: decision 

support, management by consent, and management by exception. In addition, 

the participants experienced two levels of automation accuracy, 75% and 90%. 

Two hypotheses were proposed. The first hypothesis, that a high level of 

automation would decrease the ability to calibrate trust was partially supported. 

In addition, the second hypothesis, that low automation accuracy would decrease 

the ability to calibrate trust was not supported. 

The results of this study suggest that a system’s level of automation may 

influence an operator’s ability to calibrate trust. Participants who had been told 

they were using automation that employed management by consent 
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outperformed those using decision support and management by exception levels 

of automation. Better performance may indicate better trust calibration, but not in 

the direction hypothesized. The accuracy of the automated system also 

influenced the correct identification percentage. Performance was better at the 

90% accuracy level but a greater percentage of automation errors were identified 

at the 75% accuracy level. We hypothesized that trust calibration would decrease 

as accuracy decreased, but trust calibration appeared to increase as accuracy 

decreased. 

The difference in performance between levels of automation could also be 

explained by the experimental design. Subjects only experienced a single level of 

automation, so we don’t know if their performance would be equal across levels. 

An additional limitation of the experiment was the ease of distinguishing enemy 

and friendly personnel. Participants were better at identifying targets than the 

automated system. As a result, participants may not have used the automated 

system as expected. Several participants stated that the automation was helpful 

in finding the location of targets, but the friend or foe indications were ignored 

because the participant may have believed he or she was more accurate. 

B. RECOMMENDATIONS FOR FOLLOW-ON RESEARCH 

Research in the area of trust and levels of automation is relatively new. 

There are many opportunities to expand our understanding of the human-

automation relationship. Future research into levels of automation would certainly 

benefit from greater automation functionality. An automated system with more 

fidelity, that allows participants to see the outcome of their decisions may create 

a more noticeable difference in the levels of automation experienced. It would 

also allow a repeated measures design for more effective statistical analysis. 

Future experiments should be designed with a more difficult task for participants. 

Measurement of trust and trust calibration would be more effective if the 

participants actually needed to rely on the automated system. 
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In the course of the present study, some additional questions were 

developed. Previous studies found that humans often choose not to rely on 

automated systems (Dzindolet et al., 2002). One direction for future research 

would be to focus on the human’s decision to rely on automated systems. At 

what degree of difference between human and automation performance will 

humans prefer to rely on the automated system? Will that preference vary by 

level of automation? 

Another direction for research should look at alternate methods for 

measuring trust calibration. The present study equated percent of targets 

correctly identified to proper calibration. However, many participants reported 

using the automated system in a manner other than intended. These participants 

used the automated system to point to the location of targets, but ignored the 

target type indicated by the automated system. Since the participants knew to 

trust their own judgment, one might assume they were properly calibrated all 

along. This implies that a better indication of trust calibration may be the 

participant’s knowledge of when to trust and when to distrust the automated 

system. Many automated systems have reliabilities that change as the conditions 

and environment change. A human that knows when to trust and when to distrust 

the automated system is highly calibrated. Simply achieving a high number of 

correct answers may not indicate high calibration.  

An understanding of the cognitive processes in play on a human-

automation team is vital to the future integration of highly automated systems 

onto the battlefield. We must examine the manner in which humans build trust in 

automated systems and how trust relates to effective operation. The real goal of 

future research should not be to divide the tasks between humans and machines; 

the efforts need to focus on how humans and machines work together. 
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APPENDIX A. POST-TRIAL QUESTIONNAIRES 

Post-Trial 2 Questions 
 
In the previous scenario you were presented with 100 targets. Please estimate 
the percentage of times the automation was correct in its identification of 
individuals.  _________________ 
 
 
If you were to perform this task in the future would you prefer to execute the 
mission unaided or with the use of the automated identification system and why?   
 
 
 
 
Additional Comments: 
 
 
 
 
 
 
Post-Trial 3 Questions 
 
In the previous scenario you were presented with 100 targets. Please estimate 
the percentage of times the automation was correct in its identification of 
individuals.  _________________ 

 
 
If you were to perform this task in the future would you prefer to execute the 
mission unaided or with the use of the automated identification system and why? 
 
 
 
 
Additional Comments: 
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APPENDIX B.  DEMOGRAPHIC QUESTIONNAIRE 

This experiment is designed to explore what people think about automation. By 
automation, we mean devices and systems that make work or other tasks easier for you to 
do. Examples of automation are: Global Positioning System (GPS) receivers you might 
have in your car, handheld electronic organizers, or military applications such as 
integrated data displays or threat warning systems. 
 

1. Gender_____   2. Age_____       3. Branch of Service_____________  4. Time in 

Service_______ 

 

5.  Are you color blind?  Yes / No 

 

6.  Think about your last military job before arriving at NPS. In that job, how often did you 

use automated devices? 

 

___Daily          ___Weekly       ___Once a Month   

 

 ___Several Times a Year     ___About Once a Year      ___Less Than Once A 

Year 

 

7.  Now that you are an NPS student, how often do you use automated devices? 

 

___Daily          ___Weekly       ___Once a Month   

 

 ___Several Times a Year     ___About Once a Year      ___Less Than Once A 

Year 

 

8.  Please indicate how comfortable you are with the automation you have used: 

 

I prefer to never       I prefer to use automation 
use automation        whenever possible 

In you military job 
 
In your time at NPS 
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APPENDIX C. EXPERIMENTAL INSTRUCTIONS 

INITIAL INSRUCTIONS 
 
There has been a recent increase in terrorist activities along a road of strategic 
importance. Little is known about the position of enemy and friendly personnel 
along the roadway. In order to collect intelligence on the disposition of forces an 
unmanned aircraft has been directed to scout the roadway. You are the operator 
of the unmanned aircraft video feed. The aircraft will fly a programmed route over 
the roadway while you manipulate the camera. When you encounter an enemy 
along the route press the key labeled E to indicate an enemy, the target will be 
destroyed when the aircraft has passed. When you encounter friendlies along the 
route, press the key labeled “F” to keep them safe from engagement.  
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Decision Support—Trial 1 
 
Your unmanned aircraft has been tasked to scout another roadway for enemy 
and friendly personnel. Since your last mission the sensor package has been 
upgraded with an automated identification system. The system compiles visual 
indications and additional sensor data then indicates the possible presence of 
enemy or friendly units. As the operator, you must evaluate the video feed and 
the indications of the automated identification system to mark enemy and friendly 
personnel. Your own inputs, using the “E” (enemy) and “F” (friendly) keys will 
ultimately determine which units are to be engaged. 
 

   

 

Decision Support—Trial 2 

Your unmanned aircraft has been tasked to scout a third roadway for enemy and 
friendly personnel. As the operator, you must once again evaluate the video feed 
and the indications of the automated identification system to mark enemy and 
friendly personnel. Your own inputs, using the “E” (enemy) and “F” (friendly) keys 
will ultimately determine which units are to be engaged. 
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Management by Consent—Trial 1 

Your unmanned aircraft has been tasked to scout another roadway for enemy 
and friendly personnel. Since your last mission the sensor package has been 
upgraded with an automated identification system. The system compiles visual 
indications and additional sensor data, and then determines if a unit is enemy or 
friendly. Identified personnel will be indicated on the video feed. The system will 
autonomously direct the engagement of enemy targets and mark friendly units for 
safety.  As the operator, you must provide consent before the automated system 
will transmit target information. Evaluate the video feed and the indications of the 
automated identification system to make your determination and provide consent 
by using the “E” (enemy) and “F” (friendly) keys. When you disagree with the 
automation please mark the target in the appropriate manner. If you do not mark 
a target or provide consent, no enemy or friendly information will be passed. 
 
 

   
 

Management by Consent—Trial 2  
 
Your unmanned aircraft has been tasked to scout a third roadway for enemy and 
friendly personnel. The system will autonomously direct the engagement of 
enemy targets and mark friendly units for safety.  As the operator, you must 
provide consent before the automated system will transmit target information. 
Evaluate the video feed and the indications of the automated identification 
system to make your determination and provide consent by using the “E” 
(enemy) and “F” (friendly) keys. When you disagree with the automation please 
mark the target in the appropriate manner. If you do not mark a target or provide 
consent, no enemy or friendly information will be passed. 
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Management by Exception—Trial 1 
 
Your unmanned aircraft has been tasked to scout another roadway for enemy 
and friendly personnel. Since your last mission the sensor package has been 
upgraded with an automated identification system. The system compiles visual 
indications and additional sensor data, and then determines if a unit is enemy or 
friendly. Identified personnel will be indicated on the video feed. The system will 
autonomously direct the engagement of enemy targets and mark friendly units for 
safety.  As the operator, you have the ability to veto the automated system. 
Without a veto, the targeting information will be transmitted. Evaluate the video 
feed and the indications of the automated identification system to make your 
determination. You may veto the automation by pressing the “D” (disagree) key 
and agree with the automation by pressing the “A” (agree) key. 
 

   
 
Management by Exception—Trial 2 
 
Your unmanned aircraft has been tasked to scout a third roadway for enemy and 
friendly personnel. Since your last mission the sensor package has been 
upgraded with an automated identification system. The system compiles visual 
indications and additional sensor data, and then determines if a unit is enemy or 
friendly. Identified personnel will be indicated on the video feed. The system will 
autonomously direct the engagement of enemy targets and mark friendly units for 
safety.  As the operator, you have the ability to veto the automated system. 
Without a veto, the targeting information will be transmitted. Evaluate the video 
feed and the indications of the automated identification system to make your 
determination. You may veto the automation by pressing the “D” (disagree) key 
and agree with the automation by pressing the “A” (agree) key. 
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