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ABSTRACT 

Key words: Nonlinear ultrasonic technique, Second harmonic generation, nonlinear 

wane equation, static displacement, Mass Spring Lattice Model (MSLM). 

 

Nonlinear ultrasonic harmonic generation to an input  harmonic wave amplitude has 

been simulated first in 1D and then subsequently in 2D using an Mass Spring Lattice 

Model (MSLM). This is augment to the earlier developed Finite Difference Time 

Domain (FDTD) model in this project. The MSLM model is expected to have improved 

application for the modeling of the Non-Linear behavior of the ultrasonic wave propaga-

tion in isotropic and anisotropic materials systems. The 1-D MSLM model was 

developed and the NLU behavior has been simulated and verified using previously 

reported data. The 2-D MSLM model has also been developed and verified for Linear 

ultrasonic wave propagation using commercial FEM package. The incorporation of the 

non-linear parameters in the 2-D model is currently underway. 
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1.1 INTRODUCTION  

 

This report deals with the simulation of the finite amplitude ultrasonic wave 

propagation in materials with accumulated no nonlinearity. The wave propagation is 

simulated by solving the wave equation with the constitutive behavior of the nonlinear 

medium. It is proved that an asymmetric stress strain relationship of the material result-

ing from asymmetric motion of the dislocations is required for the generation of the 

second harmonic and the static displacement component while the third harmonic is 

generated even if the stress strain relation is symmetric.  The dependencies of the 

generated static displacement and the second harmonic on various input parameters are 

evaluated and are compared with the existing literature. The simulation is carried out 

using a mass spring lattice model based finite difference time domain approach. 

 

1.2 MASS SPRING LATTICE MODEL – 1 D 

The Mass Spring Lattice model is an invaluable tool for simulating wave propa-

gation and has been successfully used for visualizing waves propagating through 

complex media. The MSLM model for simulating a finite amplitude ultrasonic wave 

propagation through a material is based on the following assumptions. (Holland 2002) 

 

(a) The specimen is a collection of n mass points each of mass m  

(b) The mass points are connected by classical nonlinear springs  

(c) The force displacement relation of the classical nonlinear spring till the third or-

der is given by 
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where Fi is the force and xi is the elongation/compression in the spring. 

The following are the terms used in the derivation 

 

m = mass of each mass particle 

  
  = displacement of the particle at the i-th node at time t. 

Δt = time step 

Δx= distance between two consecutive mass points 

ρ   = density of the material 

E   = Modulus of elasticity of the material (Second order elastic constant) 

β  = Second order nonlinearity parameter of the material. 

A = area of cross section (assumed uniform) 

γ   = Third order nonlinearity parameter of the material. 

 

 Applying Newton’s Second Law of motion for the i-th mass we would have 
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i.e. 
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The above equation (3) has only one term  
tt

iu 

 referring to the future time and hence 

can be iterated in time to yield the displacement matrix  u(i,t) Re-arranging the above 

equation we have 
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The above equation (4) can be used to evaluate the displacements at all the nodes given 

the initial and boundary conditions Making dx and dt tend to zero in the (3.3) and 

comparing it with the wave equation in continuous form i.e. 
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and using m=ρAΔx, provides the following, 

33221

3
,

2
,

x

AE
k

x

AE
k

x

EA
k











                                                                                                         

                                                                                                                                                                

The values of Δx and Δt are chosen to avoid dispersion (as suggested by Holland,2002). 

A Hanning windowed sinusoidal pulse was used as input to the simulations conducted 

using the above formulation.  A Matlab® code was utilized to simulate the wave propa-

gation using the FDTD equations discussed in the previous section.  
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The simulations are validated against Cantrell’s (1984, 1987).theory for generation of 

static displacement component 

  

1.2.1 Comparison with Cantrell’s theory:  

 

Yost and Cantrell
 
(1987) developed an expression for the static strain generated when a 

wave propagates through a material with accumulated nonlinearities 

 

The equation reads as 
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Where x is along the direction of propagation of wave u(x,t) denotes the displacement at 

the coordinate x at time t. The static strain component is given by the time average of  
  

  
 

 

Taking time average on both the sides of equation (6) we get 
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The right hand side of the above equation (7) is estimated by taking the averages of 

(
  

  
)
 

 and  
  

  
  from the simulated u(x,t) profiles and then evaluating the integral in 

the above equation (7). The obtained values are compared with the static displacement 

obtained from the simulated displacement wave’s Fast Fourier Transform. This was 

performed for different values of frequency, input amplitude, nonlinearity parameter of 
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the material and propagation distance. One such comparison is shown in Table 1. The 

results show excellent agreement between the published data and the simulated data 

using the FDTD MSLM model reported here. The maximum difference between the two 

results observed only in the second decimal and can be attributed to the numerical errors 

during the computation. 

 

The simulations are further verified by comparing variation of the generated harmonic 

with the distance of propagation, input amplitude and the frequency of the input wave. It 

has been found to comply with the well-known relation 

                                                xkAA 22

12                                                       (8) 
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Fig 1 shows the variation of the second harmonic with the various input parameters- the 

nonlinearity parameter, input amplitude, frequency of the wave and the distance of 

propagation. 

 

1.3 ASYMMETRY AND THE STATIC DISPLACEMENT 

COMPONENT GENERATION 

 

To explore the dependence of the static displacement component and the second har-

monic on the stress strain relation of the material, the above simulations are carried out 

for the following two cases 

 

I. β = 0,γ ≠ 0(symmetric stress strain relationship) 



 

     8 

II. β ≠ 0,γ=  0 (asymmetric stress relationship) 

 

Case I:   

 

In this case the stress-strain relationship of the material is taken in the following form 

 

)( 3  E                                                    (3.9) 

 

Where γ is the third order nonlinearity of the material.  

Fig 2 shows a plot of the simulated time domain signal of the wave obtained after a 

distance of propagation of 25 mm. If the signal is compared with the input wave it is 

observed that the symmetry of the wave is restored. In other words, the positive half 

cycle and the negative half cycle distort in a similar way. The stress strain plot for this 

case is as shown in Fig 3. It may be seen that the stress strain curve has point symmetry 

about the origin. Thus it can be concluded that such a symmetric stress strain relation-

ship of the damaged material implies that the distorted signal restores it symmetry after 

propagation. 
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Fig 2. Wave after a propagation of 25 mm for Case I. 

 

To obtain the frequency spectrum, the FFT routines in Matlab were employed on the 

time domain signals, for different distances of wave propagation. Fig 4 shows the FFTs 

of the wave after different distances of propagation. It can be seen that no static dis-

placement component is generated in this case, and only the odd harmonics are 

generated. 
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Fig 3 A symmetric stress strain curve 

 

Case II:   

 

In this case the stress-strain relationship of the material is taken in the following form 

)( 2  E                                                    (10) 

Where β is the second order nonlinearity of the material.  
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Fig 4 . FFT of the propagated wave for Case I after different distances of propagation 

showing no generated static displacement component. 

 

Fig 5 shows a plot of the simulated time domain signal of the wave obtained after a 

distance of propagation of 25 mm. If the transmitted signal is compared with the input 

signal, an asymmetry induced into the wave could be observed in the time domain, i.e. 

the positive half cycle and the negative half cycle don’t distort the same way.  The 

stress-strain plot for this case is as shown in Fig  6. It may be seen that the corresponding 

stress-strain curve is also asymmetric for this case.  
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Fig 7 shows the FFTs of the wave after different distances of propagation for Case II 

material. It can be seen that a static displacement component increases with the distance 

of propagation. Also both even and odd harmonics were generated, as expected. 

 

 

Fig 5. Wave after a propagation of 25 mm for Case II. 

 

Oruganti et al (2007) have shown that an asymmetry in the stress-strain curve of the 

material which arises due to the asymmetric dislocation motion is required to generate a 

second harmonic. Similarly, it may be concluded here that such an asymmetry is also 

required to generate a static displacement component. It may be further noted that a 

symmetric dislocation motion would exist only when there are isolated dislocations with 

are initially pinned by point defects and are initially not bowed. Such a condition would 

exist for example in an annealed material which has very low dislocation density. For 
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materials such as those deformed by fatigue, plastic deformation or super plastic defor-

mation dislocation motion and hence an asymmetric dislocation motion would always 

exist and would contribute to the generation of the second harmonic. Further some of the 

materials processed using new processes would have ultra-refined grains and hence there 

would be an additional stress caused by the dislocations in the cell walls which form 

grain sub-boundaries. These would generate additional image stresses on the dislocation 

in additional to the dislocations accumulated within the cell. These image stresses would 

further increase the asymmetry in dislocation motion. 

 

Fig 6. A typical asymmetric stress-strain curve 
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1.3.1 Dependence of the static displacement component on various input 

parameters 

 

The dependence of the static displacement component on the following input parameters 

was explored 

 

 (a) The nonlinearity parameter of the material 

Fig 8 shows the variation of the static displacement component with the nonlinearity 

parameter β (usually measured using the amplitude of the 2
nd

 harmonic that is generated 

when the ultrasonic wave passes through a non-linear material) of the material for 

different distances of propagation for ω=5MHz and A1=10nm. It was again observed that 

the static displacement component varies linearly with the nonlinearity parameter β of 

the material for all the distances of propagation. 
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Fig 7. FFT of the propagated wave for Case II after different distances of propagation 

showing a generated static displacement component. 

 

(b) The frequency of the input wave 

Fig 9 shows the variation of the static displacement component with the frequency of the 

input wave for different distances of propagation for β=16 and A1=10nm.  

From the least square fit it can be seen that the static displacement component varies as 

the square of the frequency of the input wave for all the distances of propagation. 
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Fig 8. Variation of the static displacement component with the nonlinearity paramter for 

different distances of propagation for nmAMHz 10,5 1  . 

 

(c) The amplitude of the input wave 

Fig 10 shows the variation of the static displacement component with the amplitude of 

the input wave for different distances of propagation for ω=5MHz and β=16 . From least 

square fit it can be seen that the static displacement component varies as the square of 

the amplitude of the input wave for all the distances of propagation. 

 

(d) The distance of propagation 

Fig 11 shows the variation of the static displacement component with the distance of 

propagation for various input amplitudes for ω=5MHz and β=16. It was observed that 

the static displacement component varies linearly with the distance of propagation. 
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Fig 9. Variation of the static displacement component with frequency for different 

distances of propagation for nmA 10,16 1  . 
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Fig 10.  Variation of the static displacement component with the amplitude of the input 

wave for different distances of propagation for an input wave of frequency 

16,5   MHz . 

 

Fig 11.  Variation of the static displacement component with the distance of propagation 

for different input amplitudes for an input wave of frequency 16,5   MHz  

 

1.4 2D ULTRASONIC WAVE PROPAGATION MODEL FOR 

MSLM 

 

Mass Spring lattice Model is one among the numerical simulation technique for model-

ing, simulating and visualizing elastic wave phenomena by discretizing the material into 

a collection of masses interconnected by springs. In the model two types of springs, 

linear and torsional are present. This is well illustrated in Fig. 12.  
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Fig 12.  Schematic of a 2D MSLM Model. 

 

1.5 THE 2D MSLM MODEL   

The equation of motion for the centre of  mass  in the x and y direction can be written as 
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where 
k

jiu , and 
k

jiv , denote the x and y displacements on the mass particle at the position 

(i,j) and at the time tkt  ,where t is the time step;k1, k2, k3,and  are the stiffnesses. 

 can be expressed as )2/( 2h  . 
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The wave equations in plain strain transverse isotropic elastic medium is 
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where u and v are  the displacement in the x and y direction respectively,  

 is the mass density of the medium, ijC are the elements of stiffness matrix. For iso-

tropic materials ijC are expressed in terms of the Lame’s constant   and as 

  2211 CC
  ,

33C  and 12C . 

 

After  discretizing the above equation using  center difference method and as the LHS of 

two equations are equal, RHS can be equated, then we get 
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From the first set of equations the displacement for the (k+1) 
th

 time step can be deter-

mined from the displacement values of k 
th 

and ( k-1) 
th 

time step as follows. 
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where h is the space step (grid size ) and Δt is the ime step. 

Element size and time step determination 

 

To accurately model the wave, there should be at least 8 elements within the minimum 

wavelength. Minimum wavelength is for shear wave and hence for the present case the 

grid size is taken as 

 

16

min
h  and 

f

Csmin  , 

 

where   is the wave length sC is the shear velocity in solid and f is the frequency. The 

shear wave velocity can be obtained from the material parameters E and Poisson’s ratio 

as 

 

)1(2  


E
Cs . 

 

For a stable wave to propagate through the explicit numerical scheme the Courant 

number, 1


h

tC
, where C is the longitudinal wave velocity. Hence the time increment 

is taken as 
C

h
dt

2
  , 

 

where 
)21)(1(

)1(










E
C  
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As per Hyunjune and Younghoon (2000), after a critical value of 1.6937x10
-4

 for 
h

t

, 

the numerical scheme is not stable. For our particular case it is 1.3964x10
-4

. So stability 

condition is met with the present MSLM. 

 

 

Fig. 13. The selection of critical values using as per Hyunjune and Younghoon (2000) 

 

1.6 2D MSLM SIMULATION RESULTS USING MATLAB 

 

Material selected for the simulation is steel with density 7800 kg/m
2
 , Poisson’s ratio 0.3 

and Young’s modulus 200 MPa. The material is considered as a collection of masses and 

spring and a MATLAB code was written for finding the displacement in the x and y 

direction for the equation of motion. 

 

Figure .14a, shows the wave propagation when a single cycle sine pulse was given at the 

centre and imposing rigid boundary condition. Both longitudinal and shear waves can be 

seen. When the excitation was given at the surface Fig.14b, surface waves are absent 

with rigid boundary condition. 
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Fig.14a.Source at the centre     Fig.14b Source at the surface 

For the proper visualization of free surface condition, equations are written separately 

for the nodes along the boundary  and at the corners. Along the boundary masses and 

springs are halved and at the corners only ¼ th mass is taken. After incorporating the 

above condition surface wave could also be seen in addition to longitudinal and shear 

waves as shown in Fig 15. 

 

Fig. 15. The visualization of both L and S waves using MSLM 2D model. 

 

Later code was modified by,  giving frequency, number of cycles and dimensions of the 

specimen as input. The results for a 3 cycle 100 kHz hanning windowed pulse is shown 

below for different time intervals after the initial pulse was applied on the surface.. 
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Fig. 16. The 2D visualization of wave propagation in a 2D isotropic media at different 

time intervals using the MSLM model. 

 

 ‘A’ scans at different points were also plotted as shown in Fig. 17 at discrete points in 

the 2D media.  
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Fig.17 A scans at different points.(a).At the source point(1,128) (b) At (50,128) (c)At 

(80,128) and (d)At (128,128) 

 

1.7 COMPARISON WITH COMMERCIAL FEM SOFTWARE 

(ABAQUS). 

Results obtained with MSLM are compared with the results obtained from Abaqus in 

which the same source was given as the input. The wave propagation simiulation plots 

are provide in the form of color images at different time intervals in Fig.18  The plots 

with GREY background are resutls obtained using ABAQUS while the plots with 

WHITE background represent the MSLM model results in Fig. 19. 
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. 

 

(a) ABAQUS FEM MODEL    (b) MSLM MODEL 

 

Fig. 18. The simulation of the wave propagation using ABAQUS FEM model for a 

points source in a 2D domain at 2 different time intervals, using (a) ABAQUS and (b) 

MSLM Model developed in MATLAB.  
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(a) At  the source point 

(b) At the right corner 

(c)At the right edge middle point 

Fig. 19. The A-scan signals at different points as obtained from ABAQUS and MSLM 

models.  
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It is concluded from these results that the 2D MSLM model developed using 

MATLAB, developed in this project compares well with the 2D ABAQUS FEM model 

that is commercially available. Hence, the validity of the MSLM model for linear 

ultrasonic wave propagation is validated herewith.  The advantage of the MSLM model, 

over commercially available FEM models includes (a) The ability to model the mechan-

ics of the wave propagation at micron scales, and (b) The ability to introduce non-linear 

behavior of the springs, which can be used to simulate NLU parameters for the current 

studies.  

 

1.8 FUTURE WORK IN 2D MSLM MODELLING 

 

It is planned to introduce non-linear behavior of the individual components of the 

MSLM model in order to simulate NLU behavior, as was earlier demonstrated in the 1D 

case.  Once this is developed, the 3D version will be developed for the improved under-

standing of the NLU behavior in materials. 
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