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Automated identification of rivers and shorelines in aerial
imagery using image texture

Paul McKay,® Cheryl Aun Blain® and Robert Linzell?
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ABSTRACT

A method has been developed which automatically extracts river and river bank locations from arbitrarily sourced
high resolution (~1m) visual spectrum imagery without recourse to multi-spectral or even color information. This
method relies on quantifying the difference in image texture between the relatively smooth surface of the river
water and the rougher surface of the vegetated land or built environment bordering it and then segmenting
the image into high and low roughness regions. The edges of the low roughness regions then define the river
banks. The method can be coded in any language without recourse to proprietary tools and requires minimal
operator intervention. As this sort of iinagery is inereasingly being miade freely available through such services as
Google Earth or Worldwind this technique can be used to extract river features when more specialized imagery
or software is not available.

Keywords: rivers, banks, image analysis, edge finding, photography, satellite, texture, entropy

1. INTRODUCTION

Rivers have long served as important passages for shipping, as sources of fresh water for human and ecological
needs and as conduits by which the contaminants and heat generated by modern industry mayv be dispersed.
The need to accurately predict river stage and currents has led to the development of increasingly sophisticated
river models.

Historically many of these models have been constrained by a lack of readily available computational power
and, as such, have been either one-dimensional or else quasi two-dimensional,' requiring minimal information
about the exact river geometry. However with the recent great increase in cheaply available coinputer power, more
sophisticated two-dimensional. and even three-dimensional models are being developed based on finite element or
finite volume techniques. These models require, a much more accurate description of the river channel geometry
than have carlier models.

1.1 Motivation

A fundamental challenge in the rapid development of hydrodynamie river models is the lack of accurate infor-
mation describing the river bank geometry. Unlike for coastlines, there is no readily accessible database of river
bank locations and what inforination is available is often cutdated and of questionable accuracy and resolution.
With rivers of interest to the Navy often being located in denied access areas, it is generally not possible to
obtain this information using traditional surveying techniques. However as high resolution satellite and aerial
imagery is increasingly available for the entire globe, it is becoming more common to extract river bank locations
from this imagery, thus generating an accurate and high resolution bank geometry.

Much of the globe is covered by various sorts of multi- or hyperspectral imagery and numerous techniques
have been developed to use the wealth of information contained in these images to identify and extract river
features. Ilowever these techniques are often closely tied to particular image sourees and sensors or else require
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proprietary software packages and trained operator input. These tools and image sources may not always be
readily available, particularly in civilian applications, so alternate techniques must be developed.

We have developed a method which automatically extracts river and river bank locations from arbitrarily
sourced high resolution ("1m ground sample distance) visual spectrum imagery without recourse to multi-spectral
or even color information. This method relies on quantifying the difference in image texture between the relatively
smooth surface of the river water and the rougher surface of the vegetated land or built environment bordering
it and then segmenting the image into high and low ronghness regions. The interface between the low and high
roughness areas defines the river banks.

This method can be coded in any langnage without recourse to proprietary tools and requires minimal
operator intervention. As this sort of imagery is increasingly being made freely available through such services as
Google Earth or Worldwind this technique can be used to extract river features when more specialized imagery
or software is not available.

1.2 Background

The automated detection and extraction of features in remotely sensed imagery, including water and shorelines,
is a major topic of ongoing research and development. Many methods have been proposed through the years, all
of which perform well in certain circumstances and have certain limitations. One of the most common approaches
is to use information encoded in multispectral imagery to, for instance, separate the differences in reflectivity
between different surfaces, such as water and land.?

When such data is not available, as in cases where only visual spectrum imagery is available, other methods
have been developed. The most common of these rely on segmenting the image based on differences in color,
hue, saturation or intensity between the features of interest.>® These methods are generally considered to
be supervised classification techniques in that they require the active input of a trained analyst to define the
characteristics of the regions of interest.

Often, however, only one image band is available, as in the case of grayscale imagery. or the features of
interest are such that even a trained analyst has difficulty in defining the criteria for segmenting the image. For
these cases certain automated, unsupervised (or minimally supervised), image classification schemes have been
developed using the high resolution information encoded in a single channel image to segment it imto finer blocks
than a hnrman can segment it.

Segmentation by image clustering, the location and definition of regions of similar characteristics, is quite
conmmon, especially using the K-Mean or ISODATA techniques. But these techniques suffer limitations in
requiring significant operator input in the setup phase, requiring significant computation time and in having
difficutty in identifying geometrically straight features.® While these techniques have been used successfully to
segment water and land and determine the shoreline,” their nse has been limited by speed aud by the need for a
trained operator. Certain more automated techniques, for example the Syneract method,” have heen developed
to reduce the need for operator inpnt but they are still slow and have generally been used in segmenting land
use and vegetation rather than in developing a shoreline.

The machine vision community has developed a number of powerful techniques based on the held of texture
analysis? that have seen some adoption by the remote sensing community. Images may be segmented by breaking
them down into fundamental units, or tokens,'® or by comparing statistics of itnage roughness based on frequency
domain transformation,!’ moment-based segmentation'? or both Shannon and noun-Shannon entropy!'? 14
combination of techniques.!®

or a

Image entropy is a measure of the local variance in the image data that has many uses in image analysis.
Eutropy information is commonly used to aid in image enhancement.'® Methods have been developed using
image entropy, in combination with other inforination, in the semi-supervised analysis of remotely sensed images,
including in the location and extraction of water points.'”!® However, little success has been seeit in developing
entropy based techniques to quickly segment water and land with minimal supervision and without requiring
any information in addition that which is available in a single band image (i.e. a grayscale image).

Proc. of SPIE Vpl. 8030 80300G-2

Downtoaded fiom SPIE Digital Librany on 09 May 201110 128 160 112121 Terms of Use: hitipiismedt ot




2. METHOD

A technique has been developed, as will be described below, which uses the concept of Shannon entropy'® to
automatically segment water from land in images of rivers or coastal regions and to locate the interface between
the two, the river baunk or coastline. This technique differs from prior art in being fully automated and requiring
only minimal operator setup. Most importantly, it requires no information other than that contained in a single
channel (i.e. grayscale) image. It is designed to work with high resolution imagery from any source, including
such publicly available sources as Google Earth, Worldwind or Terraserver with no a priort requiremeuts as to
image format, size, color space or sensor used.

The technique exploits the fact that in imagery of many rivers of interest, generally coastal plain rivers
winding through a vegetated or built environment, there is a clear difference in the roughness of the surface of
the water and the roughness of the vegetated or built environment surrounding it. This dilference is intuitively
obvious to a human observer, allowing a hnman to perceive the river regardless of whether the imagery is in true
color, false color, IR, grayscale or any other colorspace. The technique does have a limitation in that it cannot
be applied when the surface roughness of the river is not distinguishable from that of the land. Examples of this
would include whitewater rivers or rivers in morphologically smooth landscapes (i.e. featureless deserts, mud
flats or ice sheets). These, however, represent a very small subset of rivers of interest.

Roughness in an image is represented by the local variance in the image color or gray level and can be
expressed in several forins. Shannon entropy is a metric commonly used in information theorv and textnre
analysis that lends itself well to classifying this sort of image.

Imagery must first be obtained fromn some source. This imagery must be of high enough resolntion that the
rougl surface of the land can be readily observed. This required resolution will vary depending on the location
of the area of interest but it will generally be in the range of 1-3 meters per pixel. There must be sufficiently
defined features such that the location of two points, both in image coordinates and in geographic coordinates
(i.e. UTC or lat/lon). is known precisely. This is necessary to map the extracted data back to Earth coordinates.
Figure 1 shows an example of imagery obtained from Google Earth which meets these criteria.

The image is converted to grayscale, if needed, by converting gamma values to intensity.* It is then padded
by adding an extra set of mirrered pixels surrounding the image (see Figure 2). This allows centered statistics
to be calculated along the edges of the original image with no data loss.

Next for every pixel in the original image the local Shannon entropy is calculated for the nine pixel box
surrounding, and including, the pixel of interest. Shannon entropy is defined as

N
H =73 p(Xi)logap(X) (1)
=il

where H is the entropy of the gray level X, in the region of interest, with discreet values X') — X'y where N
is the number of possible gray levels, and p is the probability mass function of X.' The padeded pixels are then
discarded and the Shannon entropy is plotted for the original image (see Figure 3).

The image is then binarized by thresholding such that all pixels with gray levels greater than one half of the
maximum gray level in the entire image are set to one and all others are set to zero. This is shown in IFigure 4.

The image is next processed using two of the basic operations of mathematical morphology: dilation and
erosion.?' These are operations whereby a binary image is acted upon by a structuring element, in this case
a circnlar element. In erosion, pixels are removed from a binary structure equivalent to those masked by the
structuring element with the element center moving along the edges of the original structure. Dilation is the
opposite operation. These form the basis of the operator pairs of closing and opening. Closing involves dilating
and then croding an image while opening involves eroding and then dilating an image. Closing serves to remove,
or close, any small holes in the image while opening serves to despeckle, or remove noise from the image. Figures
5 and 6 illustrate these two operations.

In Figure 5 the element (a) represents a river segment (dark blue) spanning from the hottom to the top ol
the image frame. A small hole. either a small island or an image artifact. is seen in the white circle. In (b) we
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IYigure 1. lmagery of the Pearl River, LA obtained from Google Earth.
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Figure 2. An example of image padding. The original immage is shown by the intensity levels depicted in the gray cells.
The clear cells represent mirrored image padding added around the edges of the original image.
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Figure 3. The distribution of Shannon entropy calculated from Figure 1 using equation 1. Dark colors represent low
entropy vahies (smooth regions) while light colors represent high entropy valnes (rough regions).
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Figure 4. Thresholded and binarized version of Figure 3
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b) c)

Figure 5. The morphological closing of an image with a small hole.

see the result of dilating the image by moving a circular strncturing element, shown by the black circle, around
all edges in the image. This expands the element by the amount shown as light blue. In (¢) we see the results
of eroding the image (b) by the sane structuring element, this time removing area around the element edge.
As there is no longer an edge where the hole was, this returns the element (a) with the small hole removed, or
closed.

In Figure 6 the element (a) represents a river segment (dark blue) spanning from the bottom to the top of
the image frame. A small region, either an isolated smooth arca such as a pond or mowed field or an image
artifact such as a speckle, is seen in the adjaeent dark blue circle. In (b) we see the result of eroding the image
by moving a cireular structuring element, shown by the black circle, around all edges in the image. This shrinks
the elements by the amount shown as light blue. In (e} we see the results of dilating the image (b) by the same
structuring element, this time adding area around the element edge. As there is no longer an edge where the
small eleient was, this returns the element (a) with the small element removed. The image has been opened.

Figure 7 then shows the results of applying these two morphological operations to the image in Figure 4.
The loeations of the blaek (low entropy) pixels then ean be returned as the location of the water. The river
edges are then located by finding the interface between the low entropy (water) and high entropy (land) pixels
by examining the local gradient. These edges are plotted in red on Figure 8. As can be scen the plotted edges
show very good agreement with the edges as determined from visual inspection.

By referencing two distinct points in the image where both image coordinates (row and colnmm) and geo-
graphic coordinates (UTC or latitude and longitude) are known, the edge and water locations can be converted
into georeferenced coordimates for use in a numerical model.
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3. VALIDATION

In addition to the presented test and development case using the Pearl River in MS and LA, this technique has
been evaluated on a number of other rivers. An inland reach of the Snohomish River in Washington state is
presented liere to furthier validate the technique.

Figure 9 shows imagery of a 3.5 km reach of the Snohomish River south of Snohomish., WA. The gronnd
smnple distance is approximately 1 m at full resolution. Processing the entire image using the method described,
the location of the water and the water’s edges can be extracted. A detail of this is shown 1 Figure 10.

In this fignre the water points are colored black while the edges, the river banks, are indicated with a thin
red line. Due both to the nature of the image compression used and to the nature of the river bauks. the actual
banks are indicated by a several pixel wide gradient between land and water and so the precise bank location
must be estimated by eye. At no point in this image is the calculated bank location more than 1 pixel off the
authors’ best visual estimate as to the bank locatiou. This implies a maximum error in bank location of 1 1
and a mean error much less than 1 m. Several small and isolated "edge” regions can be seen m the image,
particularly on the north bank of the river. These represent small ponds or otherwise morphologically smooth
featnres which present as water. These will easily be removed dnriug the post-processing required to order the
edge points and use them to geierate a mesh.
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Figure 6. The morphological opening of an image with a small speckle.
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Figure 7. Figure 4 after the basic mathematical morphology operations of closing and openin
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Figure 8. Edge pixels, shown in red, superimposed on the original image from Figure 1
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Figure 9. A 3.5 km reach of the Snohomish River south of Snohamish, WA. Ground sample distance is 1 m.
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Figure 10. Detail of the processed Snohomish River imagery. Maximum error in edge location is approximately | pixel,
orlm.
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4. CONCLUSION

A method has been presented for the automated seginentation of an arbitrary high resolution aerial or satellite
nnage into regions of land and regions of water and for locating the interface between them. 'This enables the
rapid extraction of the information needed to develop a high resolntion hydrodynamic mesh of the river without
reliance on specialized sensor packages or platforms.

This method has been coded in Matlab® in versions both tied to and independent of the routines in the
Matlab Imaging Toolkit®. 1t can readily be ported to any programming language using standard library
functions.

The method shows great promise and accurately determines the location of river banks and water in high
resolution aerial imagery sourced from such publicly available sources as Google Earth. In tests on the Pearl
River in MS and LA and the Snohomish River in WA, the method correctly located the river banks to an
apparent maximum error of approximately 1 m.

The method does suffer from one basic limitation in that it can not distinguish between morphologically
smooth river water and areas of mowed fields, standing water or built environments which have similar textural
characteristics. This can be dealt with in the post-processing needed to prepare the ontput lor meshgeneration.
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