<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>MAY 2010</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. TITLE AND SUBTITLE</td>
<td>US Army Non-Human Factor Helicopter Mishap Findings and Recommendations</td>
<td>5a. CONTRACT NUMBER</td>
<td>5b. GRANT NUMBER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5c. PROGRAM ELEMENT NUMBER</td>
<td>5d. PROJECT NUMBER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5e. TASK NUMBER</td>
<td>5f. WORK UNIT NUMBER</td>
</tr>
<tr>
<td>6. AUTHOR(S)</td>
<td></td>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>8. PERFORMING ORGANIZATION REPORT NUMBER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Air Force Research Laboratory, Human Effectiveness Directorate, Wright Patterson AFB, OH, 45433</td>
<td></td>
</tr>
<tr>
<td>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</td>
<td></td>
<td>10. SPONSOR/MONITOR’S ACRONYM(S)</td>
<td>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</td>
</tr>
<tr>
<td>12. DISTRIBUTION/AVAILABILITY STATEMENT</td>
<td>Approved for public release; distribution unlimited.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. SUPPLEMENTARY NOTES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. ABSTRACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. SUBJECT TERMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. SECURITY CLASSIFICATION OF:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. REPORT</td>
<td>unclassified</td>
<td></td>
<td>17. LIMITATION OF ABSTRACT</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
<td></td>
<td>18. NUMBER OF PAGES</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approved for public release; distribution unlimited.
Statement of Accountability

This brief represents the position of the researcher. It does not represent the position of any other organization including the United States Air Force or the Department of Defense.

Cleared for public release by ASC Public Affairs.
Disposition Date: 3 May 2007
Document Number: AFRL-WS 07-1099
This study describes all 207 U.S. Army Class A-B Rotary Wing Mishaps ascribed to ‘Non - Human Factors’ (NHF) from FY 85 to 05.

This data is based on a study of data archived in the mishap files of the USA Combat Readiness Center at Fort Rucker, Alabama.

This data is the third part of a study that will include all rotary wing aircraft in the DoD.

- The first part ‘USAF Helicopter Mishap Data’ was publicly released on 18 Sep 2006.
- The second part ‘USA Human Factor Helicopter Mishap Data’ was publicly released on 29 Mar 2007.
Method

• Obtained all U.S. Army Rotary Wing Aircraft Class A & B Mishaps ascribed to ‘Non-Human Factors’ from FY 85 to FY 05 inclusive from the U.S. Army Combat Readiness Center

• Reviewed all 207 mishap reports

• Created a data base for initial analysis

• Major injuries resulted in approximately four weeks or more of lost duty time or permanent disability

• Minor injuries resulted in approximately less than four weeks of lost duty time
Definitions

Aircraft were placed in 7 groups for the analysis:

<table>
<thead>
<tr>
<th>AH-1</th>
<th>AH-1E/F/G/S</th>
<th>H-47</th>
<th>CH-47C/D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FAH-1S, JPAH-1S</td>
<td></td>
<td>MH-47D/E</td>
</tr>
<tr>
<td>UH-1</td>
<td>UH-1H/V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>JUH-1H</td>
<td>OH-58</td>
<td>OH-58A/C/D/DR</td>
</tr>
<tr>
<td>H-6</td>
<td>AH-6C/G/J</td>
<td>H-60</td>
<td>EH-60A</td>
</tr>
<tr>
<td></td>
<td>MH-6B/E/H/J</td>
<td></td>
<td>MH-60A/K/L</td>
</tr>
<tr>
<td></td>
<td>OH-6A</td>
<td></td>
<td>UH-60A/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AH-64</td>
<td>AH-64A/D</td>
</tr>
</tbody>
</table>
Overview

• Definitions
• Mishap Characterization
• Phase of Flight Data
• Fatality & Injury Data
• Summary & Recommendations
Definitions

Non-Human Factor Definition:

• Any mishap where the proximal cause was not due to a human factor in accordance with the Department of Defense Human Factors Analysis and Classification System

• Generally speaking: mechanical failures and weather

• Weather cases are those where severe weather was encountered but was not forecast
Non-Human Factor Mishap Character
9% of Inventory, FY 85 – 05, Involved in Class A or B NHF Mishaps

- UH-1 (34)
- AH-1 (19)
- H-6 (14)
- H-47 (20)
- OH-58 (49)
- H-60 (33)
- AH-64 (38)

N = 207
NHF Mishaps by MDS

- AH-64 (38)
- UH-1 (34)
- AH-1 (19)
- H-60 (33)
- H-6 (14)
- OH-58 (49)
- H-47 (20)

N = 207
NHF Mishap Rates/100KHrs by MDS

- UH-1 (34)
- AH-1 (19)
- H-6 (14)
- CH-47 (20)
- OH-58 (49)
- H-60 (33)
- AH-64 (38)
Non-Human Factor Mishap Character
Phase of Flight
NHF Mishap by Phase of Flight
FY 85-05

- T/O
- Cruise
- Hover/Taxi
- Landing
- Ground

N = 207

61%
NHF Fatalities & Injuries by Phase of Flight - Overview

- Cruise: 300 (Major: 100, Fatal: 200)
- Landing: Minor
- Hover & Taxi: Minor
- Take-off: Minor
- Ground: Minor
All NHF Mishaps Malfunction Categories

- Engine Failure: 78
- WX: 15
- Fuel System: 17
- Tail Rotor: 18
- Airframe: 15
- Flight Controls: 29
- Fire: 15
- Electrical: 17
- Main Rotor: 18
- Transmission: 29
- Weapons: 15
- FOD: 17
- Hydraulics: 82%

N = 207
NHF Cruise Mishaps Malfunction Categories

- Engine Failure: 54
- WX: 20
- Tail Rotor: 11
- Fuel Systems: 9
- Flight Controls: 6
- Electrical: 6
- Main Rotor: 11
- Hydraulics: 6
- Weapons: 9
- Fire: 6
- FOD: 6

N = 126
NHF Cruise Fatalities & Injuries by Malfunction Category

Engine Failure
WX
Electrical
Flight Controls
Tail Rotor
Main Rotor
Fuel Systems
Airframe
Fire
Weapons
Hydraulics
Transmission

Minor
Major
Fatal

N = 437

19
NHF Landing Mishaps Malfunction Categories

- Engine Failure: 7
- WX: 6
- Tail Rotor: 4
- Fuel Systems / Starvation: 3
- Main Rotor: 2
- Flight Controls: 6
- FOD: 2

N = 24
NHF Landing Mishaps
Fatalities & Injuries

N = 99

- Uninjured: 35
- Minor: 35
- Major: 8
- Fatal: 21
NHF Landing Fatalities & Injuries by Malfunction Category

Fuel System
- Minor
- Major
- Fatal

Tail Rotor
- Minor
- Major
- Fatal

WX
- Minor
- Major
- Fatal

Main Rotor
- Minor
- Major
- Fatal

Engine Failure
- Minor
- Major
- Fatal

FOD
- Minor
- Major
- Fatal

N = 64
NHF Hover/Taxi Mishaps Malfunction Categories

- Engine: 8
- Airframe: 6
- Tail Rotor: 4
- Electrical: 2
- Flight Controls: 2
- Fuel: 2
- Hydraulics: 2
- Transmission: 2
- Weapons: 2
- WX: 2

N = 30
NHF Hover/Taxi Mishaps
Fatalities & Injuries

- Uninjured: 67
- Minor: 16
- Major: 5
- Fatal: 5

N = 93
NHF Hover/Taxi Fatalities & Injuries by Malfunction Category

N = 26
NHF Take-Off Mishaps
Malfunction Categories

- Engine
- Flight Controls
- Fuel Systems
- WX

N = 13
NHF Take-Off Mishaps
Injuries

No Fatalities

- Uninjured: 32
- Minor: 17
- Major: 2

N = 51
NHF Take-Off Fatalities & Injuries by Malfunction Category

- Engine Failure
 - Minor
 - Major
 \(N = 19 \)

- Fuel Systems
 - Minor

- Flight Controls
 - Minor
NHF Ground Mishaps
Malfunction Categories

- Airframe
- Flight Controls
- Fire
- Engine Failure
- FOD
- Main Rotor
- Transmission
- WX

N = 14
NHF Ground Mishap Fatalities & Injuries

- Uninjured: 41
- Minor: 3
- Fatal: 1

N = 45
Non-Human Factor Deaths & Injuries
NHF Fatality Rates/100K Hours
Adjusted for average personnel on board
NHF Injury Rates/100K Hours by MDS

- UH-1
- AH-1
- H-6
- H-47
- OH-58
- H-60
- AH-64

Categories: Minor - Major
NHF Injury Rates/100K Hours
Adjusted for average personnel on board

[Diagram showing NHF injury rates for different helicopters, with bars for minor and major injuries.]
NHF Fatalities & Major Injuries by MDS

Fatal

Major
NHF Fatality & Injury Rates by MDS/100K Hours

Fatal

Major
NHF Fatality & Injury Rates by MDS/100K Hours - Adjusted

- Fatal
- Major
Percent Survivable Mishaps

- AH-1
- UH-1
- H-6
- H-47
- OH-58
- H-60
- AH-64

Legend:
- Uncategorized
- Non-Survivable
- Partially Survivable
- Survivable
Percent Injuries in Survivable Mishaps
Army Rotary Wing Non-Human Factor Mishap Fatalities & Injuries

- Major (n=44)
- Fatal (n=164)

- Head
- Chest
- Spine
- Lower Ext
- Abdomen
- Pelvis
- Upper Ext
- Burns
- Drown

- Drown: 0
- Burns: 40
- Upper Ext: 50
- Pelvis: 70
- Abdomen: 100
- Lower Ext: 120
- Spine: 130
- Chest: 140
- Head: 150

0 50 100 150
Pilot injuries were most often to the head, lower extremity, and spine in NHF mishaps.
Pilot Fatality and Injury Location

<table>
<thead>
<tr>
<th>PILOTS (N = 409)</th>
<th>Fatal (N=69)</th>
<th>Non-Fatal (N=340)</th>
<th>Percent Fatal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>60 (87.0%)</td>
<td>53</td>
<td>53.1%</td>
</tr>
<tr>
<td>Chest</td>
<td>60 (87.0%)</td>
<td>18</td>
<td>76.9%</td>
</tr>
<tr>
<td>Abdomen</td>
<td>43 (62.3%)</td>
<td>5</td>
<td>89.6%</td>
</tr>
<tr>
<td>Pelvis</td>
<td>36 (52.2%)</td>
<td>6</td>
<td>85.7%</td>
</tr>
<tr>
<td>Upper Ext.</td>
<td>35 (50.7%)</td>
<td>31</td>
<td>53.0%</td>
</tr>
<tr>
<td>Lower Ext.</td>
<td>41 (59.4%)</td>
<td>61</td>
<td>40.2%</td>
</tr>
<tr>
<td>Spine</td>
<td>45 (65.2%)</td>
<td>52</td>
<td>46.4%</td>
</tr>
</tbody>
</table>

Percent of pilots with a given injury location who died
Non-Pilot injuries were most often to the head, lower extremity, chest, and spine in NHF mishaps.

<table>
<thead>
<tr>
<th>Non-PILOT Injuries n=315</th>
<th>Fatal</th>
<th>Major</th>
<th>Minor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>63</td>
<td>11</td>
<td>17</td>
<td>91 (28.9%)</td>
</tr>
<tr>
<td>Chest</td>
<td>62</td>
<td>8</td>
<td>5</td>
<td>75 (23.8%)</td>
</tr>
<tr>
<td>Abdomen</td>
<td>43</td>
<td>2</td>
<td>0</td>
<td>45 (14.3%)</td>
</tr>
<tr>
<td>Pelvis</td>
<td>45</td>
<td>5</td>
<td>5</td>
<td>55 (17.5%)</td>
</tr>
<tr>
<td>Upper Ext</td>
<td>37</td>
<td>4</td>
<td>13</td>
<td>54 (17.1%)</td>
</tr>
<tr>
<td>Lower Ext</td>
<td>46</td>
<td>10</td>
<td>20</td>
<td>76 (24.1%)</td>
</tr>
<tr>
<td>Spine</td>
<td>50</td>
<td>4</td>
<td>19</td>
<td>73 (23.2%)</td>
</tr>
</tbody>
</table>
Non-pilot Fatality and Injury Patterns, by Location

<table>
<thead>
<tr>
<th>Crew & PAX</th>
<th>Fatal (N=95)</th>
<th>Non-Fatal (N=220)</th>
<th>Percent Fatal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>63 (66.3%)</td>
<td>28</td>
<td>69.2%</td>
</tr>
<tr>
<td>Chest</td>
<td>62 (65.3%)</td>
<td>13</td>
<td>82.7%</td>
</tr>
<tr>
<td>Abdomen</td>
<td>43 (45.3%)</td>
<td>2</td>
<td>95.6%</td>
</tr>
<tr>
<td>Pelvis</td>
<td>45 (47.4%)</td>
<td>10</td>
<td>81.8%</td>
</tr>
<tr>
<td>Upper Ext.</td>
<td>37 (38.9%)</td>
<td>17</td>
<td>68.5%</td>
</tr>
<tr>
<td>Lower Ext.</td>
<td>46 (48.4%)</td>
<td>30</td>
<td>60.5%</td>
</tr>
<tr>
<td>Spine</td>
<td>50 (52.6%)</td>
<td>23</td>
<td>68.5%</td>
</tr>
<tr>
<td>MISHAPS N = 207</td>
<td>PILOTS N = 409</td>
<td>PAX & CREW N = 315</td>
<td>Δ%</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
</tr>
<tr>
<td>NOT INJURED</td>
<td>218</td>
<td>53.3</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>409</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINOR INJURY</td>
<td>99</td>
<td>24.2</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>409</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAJOR INJURY</td>
<td>23</td>
<td>5.6</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>409</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FATAL</td>
<td>69</td>
<td>16.9</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>409</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Emergency Locator Transmitters
U.S. Army Rotary Wing Non-Human Factor Mishaps

<table>
<thead>
<tr>
<th>MISHAPS N = 207</th>
<th>Fatal Mishap N = 49</th>
<th>Non-Fatal Mishap N = 158</th>
</tr>
</thead>
<tbody>
<tr>
<td>No ELT Installed or ELT not armed</td>
<td>#</td>
<td>%</td>
</tr>
<tr>
<td>8</td>
<td>25.6</td>
<td>4</td>
</tr>
<tr>
<td>ELT Installed</td>
<td>41</td>
<td>74.4</td>
</tr>
</tbody>
</table>
Summary & Recommendations
• NHF mishaps affect all MDS approximately equally
• Most NHF mishaps, injuries, and fatalities occur during cruise flight (High V^2)
• Most NHF cruise mishaps are due to engine failure or weather
• Engine failure is common to all phases of flight but is uniquely NOT the greatest problem with regards to injury during landing
• Head injury is associated with the greatest risk of fatality
• Non-pilot crew members and passengers have greater frequencies of more severe injuries than pilots
• Lack of an installed and armed ELT is highly associated with fatal mishaps
Safety Technology Recommendations

• Require all personnel aboard helicopters to wear helmets at all times
• Provide real time, satellite datalink weather to all helicopter pilots
• Improve crashworthiness, flail and Gz protection of non-pilot seating to mitigate disproportionately high injury and death rates compared to pilots
• Improve the ability of rear compartment crew to remain in crashworthy seating below ETL
• Eliminate the need to use harnesses in place of crashworthy seating
• Emergency Locator Transmitters should be installed and armed on all aircraft
• Design emergency procedures to minimize V²