Strengthening the STEM Education & Workforce Pipeline: Insights from the BHEF U.S. STEM Education Model Led to the STEM Higher Education and Workforce Project

Naval STEM Forum
June 15, 2011
Strengthening The STEM Education & Workforce Pipeline: Insights From The BHEF U.S. STEM Education Model Led To The STEM Higher Education And Workforce Project

Presented at 2011 Naval Stem Forum, June 15, 2011, Arlington Virginia, Government or Federal Purpose Rights License
BHEF’s STEM Initiative

Seeks to answer these questions:

• Could we double the number of college graduates in the STEM disciplines in 10 years?

• What would be the highest leverage strategies to achieve this goal?
The BHEF U.S. STEM Education Model

• Developed by Raytheon and donated to BHEF in 2009
 – Now managed by BHEF-Ohio State-Raytheon partnership
• Available through www.bhef.com Web version at:
 http://forio.com/simulate/bhef/u-s-stem-education-model/overview/
Doubling the Number: Insights from the Model

• Neither K-12 strategies nor higher education strategies alone are likely to achieve this aim

• **STEM-capable K-12 teachers are vital** to increasing the pool of likely STEM majors

• **Interest in STEM and proficiency in math are key and independent determinants** of choosing STEM major/career

• **Strengthening undergraduate education** yields an early and significant return on investment

• **Strategies and programs** have been proven to increase STEM persistence and deepen STEM learning
New ACT Longitudinal Data Sets

• National Data set tracks STEM interest and proficiency from 8th grade to into college majors by race, ethnicity, income and other characteristics
• Permits data analysis and modeling of subgroups
• Permits modeling of numerous policy alternatives
• BHEF has dozens of state data sets for modeling state policy
Low Levels of Interest in STEM and Proficiency in Math Among College-bound 12th Graders Results in Relatively Few Students Likely to Major in STEM or take STEM Courses

SOURCE: ACT. (2008). BHEF analysis of the EPAS Data provided by ACT.
STEM Degrees for Community College Students

2001 Degree Attainment and Persistence Among Students First Enrolled at Public 2-Year Institutions for STEM Entrants 1995-96

- **22%** Attained a bachelor's degree in a STEM field
- **7%** Attained a degree or certificate in STEM
- **14%** No STEM degree or certificate but were still enrolled in a STEM field
- **20%** No STEM degree or certificate and changed to a non-STEM field
- **37%** Left post-secondary education without a degree or certificate

Challenges to Strengthening STEM Undergraduate and Graduate Education

• Fewer than half of students who begin in STEM disciplines stay the course; most who change transfer to another major after first year; out migration most severe for women and minorities

• Minority degree numbers dropping or failing to keep pace, even among Asian-American students

• Freshmen intending to major in S&E and engineering is flat, but decreasing among Blacks & Hispanics (2004-2008)**

• Broken pathway from community colleges to 4-year colleges in STEM—less than 10% of transfers are STEM majors in some systems; 7.3% graduate

• Some bright spots, however – aerospace and mechanical engineering degrees increased and Professional Science/Engineering Masters being adopted by corporations, e.g. UMBC Cyber Security Masters

Source: NSB Science & Engineering Indicators, 2010 Table 2-13. U.S & Permanent Residents
** Source: NSB Table 2-6/HERI Survey of American Freshman 2009
Undergraduate STEM Attrition by Major

*includes Chemistry, Physics, Earth and Planetary Sciences

And only about half of STEM college graduates choose to work in STEM careers upon graduation.

- 100: All students who enter college and obtain a Bachelor’s degree.
- 19: Students who graduate with a Bachelor’s degree in a STEM major.
- 10: STEM Bachelor’s degree-holders working in STEM (immediately after college).
- 8: STEM Bachelor’s degree-holders working in STEM (after 10 years).

STEM Higher Education and Workforce Project: Focus on Persistence and Deepening Learning

- Led by Walt Havenstein (CEO, SAIC) and Mark Wrighton (Chancellor, Wash U)
- Data analysis and modeling;
- Research on institutional co-curricular programs, course improvement, student persistence and learning;
- Examination of external programs e.g., early internships and research that introduce freshmen and sophomores to STEM careers; and,
- An exploration of STEM skills that are essential to industry/gov.
- Pilot projects with BHEF members to improve STEM undergraduate and graduate education (MD, OH, WI)
UMD System Pilot Project to Boost STEM Grads by 40%

- Led by System Chancellor Brit Kirwan, UMD System will:
 - Conduct migration study for STEM disciplines
 - Address first-year attrition by adopting co-curricular program, e.g., freshman research program, cohort program
 - Restructure first-year STEM courses (based on Carl Wieman’s principles)
 - Collaborate with business, (Raytheon, Northrop, SAIC, Battelle), and Gov. (ONR, NSA, NIH, NIST, NASA) around skills and STEM careers
Questions & Discussion

www.bhef.com

http://forio.com/simulate/bhef/u-s-stem-education-model/overview/