SOFTWARE RELIABILITY PREDICTION FOR ARMY VEHICLE
Masam S. Dattathreya
US Army RDECOM-TARDEC, Warren, MI
Harpreet Singh
Wayne State University, Detroit, MI
11 August 2011

UNCLASSIFIED: Dist A. Approved for public release

AGENDA

• Objective
• Approach
• AVS reliability metrics
• Prediction algorithm
• Summary

OBJECTIVE

• Formulate Army vehicle software (AVS) reliability metrics
• Develop AVS reliability prediction technique

UNCLASSIFIED: Dist A. Approved for public release

APPROACH

• Formulate AVS reliability metrics
 – Investigate IT architecture documents
 – Capture details.
 • Data characteristics (e.g., format, size, storage, and encryption)
 • Inputs and outputs
 • Test cases
 • Configuration and Fault handling
 – Formulate metrics
 – Quantify
• Develop AVS reliability prediction technique
 – Fuzzy logic
 – Fuzzy sets

UNCLASSIFIED: Dist A. Approved for public release

IT ARCHITECTURE DOCUMENTS

• Transform user requirements into implementation
• Pure text or Unified Modeling Language (UML)
• No implementation details
• Guide for designers and developers

UNCLASSIFIED: Dist A. Approved for public release

FUZZY LOGIC

• Approximation technique for imprecise situations
 – Handle vagueness using heuristic technique (expert knowledge)
 – Fuzzy set theory based (Lotfi Zadeh)
 – Linguistic terms usage
 • Hot, cold, very tall, high reliability
 – Expert knowledge rules in linguistic terms
 • If more defects reliability is low
 – Linguistic terms = more and low
• Fuzzy sets
 – Elements with different membership grades between 0 and 1
 – If X is a set denoted by Y, then a fuzzy set S in X is a set of ordered pairs
 • $S = \{x | \mu_S(x) \in [0, 1] \times x \}$ where μ is a membership function
 • Example: $S = \{7'0.6, 7'5', 1, 6'0', 0.8, 6', 0.7, 5', 0.3\}$
Title: Software Reliability Prediction for Army Vehicle

Authors: Macam S. Dattathreya; Harpreet Singh

Performing Organization:
US Army RDECOM-TARDEC
6501 E 11 Mile Rd
Warren, MI 48397-5000, USA

Sponsoring Agency:
US Army RDECOM-TARDEC
6501 E 11 Mile Rd
Warren, MI 48397-5000, USA

Abstract:
AVS RELIABILITY METRICS

- Data handling (D)
 - Data and its characteristics
 - Test cases
- Interoperability (I)
 - Exchange data within predefined access restrictions
 - Inputs & outputs
 - Test cases
- Configurability (C)
 - Multiple operating environments
 - Test cases
- Fault handling (F)
 - Fault handling mechanisms
 - Test cases

INTEROPERABILITY (I)

- \(I_i = \# \) of required distinct inputs
- \(O_i = \# \) of required distinct outputs
- \(T_1 \) = total test cases for all the input details
- \(T_2 \) = \# of test cases that are planned for testing all inputs and outputs
- \(T_3 \) = \# of test cases that are planned for testing all output details
- \(N_i = \# \) of input details
- \(N_o = \# \) of output details

\[
T_1 = \sum \frac{T_{1i}}{N_i}
\]

\[
D = 3 - \left(\frac{D_2 + D_3}{D_1} + \frac{T_3}{D_1} \right)
\]

CONFIGURABILITY (C)

- \(C_i \) and \(C_o \) = the number of distinct inputs and outputs, respectively
- \(T_4 \) = \# of test cases planned for configurable event logging
- \(T_5 \) = \# of test cases planned for configurable fault handling
- \(T_6 \) = \# of test cases that are planned for testing all data characteristics per data element
- \(N_i \) = total \# of data characteristics

\[
C = 8 \left(\frac{C_i + C_o}{I_i} \right) + \left(\frac{T_4 + T_5}{O_i} \right)
\]

FAULT HANDLING (F)

- \(E_i \) = \# of required distinct inputs
- \(E_o \) = \# of required distinct outputs
- \(F_i \) = \# of required distinct inputs planned for fault handling
- \(F_o \) = \# of required distinct outputs planned for fault handling
- \(T_{11} \) = total test cases for all the input details
- \(T_{12} \) = \# of test cases that are planned for testing all input details
- \(T_{13} \) = \# of test cases that are planned for testing all output details
- \(T_{14} \) = \# of test cases planned for testing its fault handling
- \(I_i \) = \# of required inputs
- \(O_o \) = \# of required outputs

\[
F = 6 \left(\frac{E_i + F_i}{I_i} + \frac{E_o + F_o}{O_o} \right)
\]

PREDICTION ALGORITHM
ALGORITHM: Main Steps

- Fuzzify (fuzzification) inputs
- Apply expert knowledge based rules
- Defuzzify (defuzzification)
- Predict AVS reliability

FUZZIFICATION

- Map crisp inputs to membership grades
- Input membership functions

FUZZIFICATION: Continued

- 'D' = 0.225
- \[\max (\mu_{LM}, \mu_{L}) = \max(0.3, 0.11) = 0.3 \]

APPLY RULES

- Fuzzy reasoning - aggregation of results
- Maximum of mean value
- 'and' operator \(D \land I \land F \land C = \min (\mu_D, \mu_I, \mu_F, \mu_C) \)
- 'or' operator \(D \lor I \lor F \lor C = \max (\mu_D, \mu_I, \mu_F, \mu_C) \)

FUZZY RULES AND DEFUZZIFICATION

SUMMARY

- Concept introduction
 - AVS reliability metrics
 - IT Architecture documents
 - AVS reliability prediction algorithm
 - Approximation
 - Fuzzy logic
- Simple data collection
- Ordinary computer skill