AUTONOMOUS MOBILITY APPLIQUÉ SYSTEM (AMAS)
Robotics cooperation workshop
(May 24-26, 2011)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 MAY 2011</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomous Mobility Applique System (AMAS)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>21984</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 48397-5000, USA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACOM/TARDEC/RDECOM</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21984</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
<td>c. THIS PAGE</td>
<td>SAR</td>
</tr>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAR</td>
<td>45</td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z96-18
Mission: Robotics Conversion Kits

- Provide scalable autonomy in a single material solution agnostic of platform.
 - Autonomy (A) Kit
 » Autonomous Hardware and Sensors
 - By-wire (B) Kit
 » Vehicle Specific Devices to Retrofit Current Tactical Vehicles
 - Common Interfaces
 - Common Framework

- Scalable and flexible to address multiple task such as convoys, security, reconnaissance, sustainment, maneuver, maneuver support.

- Utilize Existing Manned Fleet of Vehicles
 - Mobility
 » Years of Automotive Experience
 - Leverage Mature and Developed Logistic Support
 » Training
 » Maintenance
 » Spare Support
 » ARFORGEN Cycle
High Level Objectives

- Shorten robotic platform/ function development time
- Enable scalable autonomous feature/function capabilities
- Reduce module cost and investment at an enterprise level
 - Develop a set of common electrical hardware and software interface requirements for most combat and tactical vehicle platforms
 - Consistent HW/SW interfaces and serial data implementations
 - Develop/acquire common Autonomy and Sensing Kit designs to reduce engineering, verification/ validation, and sustainment resources required.
 - At a minimum, common functionality and interfaces are required. What’s “inside the Black Box” can be vendor specific.
Environmental Sensing and Communications – “A” Kit
- Vision System
- Radar/Lidar System
- Nav/GPS System
- Radio Communications

Autonomy Computer /Tele-op Controller: “A” – Kit
- Route Planning
 - Target selection/ ODOA
- Intelligent Behaviors
- Safety/ Diagnostics & Prognostics

Remote/Tele-op Controller
- Wheel Speed
- Lateral Accel
- Yaw Rate
- Steer Angle
- E-Stop
- Throttle Position

X-By-Wire Platform Specific “B” Kit
- Warnings / Displays
- Brake Control
- Steering Control
- Throttle Control

Power upgrades:
- Generator,
- Battery,
- etc. – platform specific

Vehicle State Sensors – platform specific “B” Kit
- Long. Accel
- Throttle Position
- Brake Sensor

Potential “C” Kit?
- Payload Devices (manipulators, Weapons?, etc.)
Example of Notional “Kit”-based System

A-Kit

- Sensor N
- Sensor 5
- Sensor 4
- Sensor 3
- Sensor 2
- Sensor 1
- Sensor 0

A-Kit Level N
- Other Intelligence Processing
- Comms Backplane

A-Kit Level 3
- Autonomous Navigation
- Comms Backplane

A-Kit Level 2
- Leader/Follower Processing
- Comms Backplane

A-Kit Level 1
- Tele-Operation Processing
- Comms Backplane

B-Kit

- Operator Interface (Warnings, Displays, Inputs)
 - CAN
 - Safety Enable
 - Other Actuation
 - CAN
 - Safety Enable
 - Auxiliary Vehicle Functions
 - CAN
 - Safety Enable
 - Transmission Actuation
 - CAN
 - Safety Enable
 - Steering Actuation
 - CAN
 - Safety Enable
 - Brake Actuation
 - CAN
 - Safety Enable
 - Throttle Actuation
 - CAN
 - Safety System

C-Kit

- IED Detection
- Weapons
- Manipulators

Vehicle Control Unit

- Pose Estimation
 - Inertial Sensors
 - GPS
 - Wheel Speed
<table>
<thead>
<tr>
<th>Bundle</th>
<th>A-Kit</th>
<th>B-Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Warning Package</td>
<td>Safety Sensor Kit (Radar + Camera)</td>
<td>none</td>
</tr>
<tr>
<td>Active Safety Package</td>
<td>Safety Sensor Kit</td>
<td>Driving Actuation Kit</td>
</tr>
<tr>
<td>Tele-op Package</td>
<td>Tele-op Kit (Radio + Camera)</td>
<td>Driving Actuation Kit</td>
</tr>
<tr>
<td>Semi-Auto Package (CAST type)</td>
<td>Safety Sensor Kit + Tele-op Kit</td>
<td>Driving Actuation Kit</td>
</tr>
<tr>
<td>Autonomous Package</td>
<td>Safety Sensor Kit + Tele-op Kit + Autonomous Kit (ANS Lidar)</td>
<td>Driving Actuation Kit</td>
</tr>
</tbody>
</table>
Why AMAS Kit approach?

• Meets Congressional & Defense Goal for Robotic Vehicles
• Increases Warfighter Capabilities
 – Enables more capable and less costly systems
• Increases Soldier and Civilian Safety
 – Provides state-of-the-art active safety functions to legacy platforms
• Shorten robotic platform/ function development time
 – Quickens deployment of new, high value systems
 – RAMP, SOURCE, CAST, and other vehicle-based robotic systems.
AMAS Near Term Activities

- Determine Robotic Feature Levels & Kit Partitioning*
 - How many levels of A-Kit required? 3-4-5?
 - How many B-Kits needed? One per unique platform?
 - C-Kits have the most variation, but must maintain interface consistency.

- Determine potential XBW conversion alternatives
 - Deep dive existing Platforms: LTV, Stryker, MTVR, 915, etc.

- Determine Sensing and Computing alternatives
 - Perform SWAP-C & Performance analysis for system/subsystems/components

- Develop prioritized, achievable rollout plan
 - Develop program plans to implement kit development

Market Survey (RFI) for A&B Kits will be sent out to traditional DoD OEMs as well as to Automotive Suppliers – push for increased COTS at lower costs.

* Study intended to be presented in August 2011 at GVSETS Conference
Benefits of Common Kits

- “Massive” Kit level reuse
 - A-Kit economies of scale reduce cost and investment at the enterprise level
 - B-Kit systems remain somewhat platform dependent, but there may be common components across applications

- Deeper engagement by concentrating resources currently scattered across multiple approaches

- Shared lessons learned and best practices
 - Beginnings of a subsystem focus & SME growth
 - Document learning into functional requirements

- Commonization of similar features & functions across multiple applications
 - Basic functions used as building blocks for new capabilities
 - Faster, more reliable, & less expensive capability development and deployment
Congressional language was a goal not a mandate

“SEC. 220. UNMANNED ADVANCED CAPABILITY COMBAT AIRCRAFT AND GROUND COMBAT VEHICLES.

(a) Goal.--It shall be a goal of the Armed Forces to achieve the fielding of unmanned, remotely controlled technology such that

(1) by 2010, one-third of the aircraft in the operational deep strike force aircraft fleet are unmanned; and

(2) by 2015, one-third of the operational ground combat vehicles are unmanned.”
• **Depots**
 - Many current / legacy vehicles under-utilized
 - Multi-service PMs

• **LSI’s**
 - Building Systems to Specific Platforms
 - Repeating Work Across Platforms
 - Working Outside Expertise
 - Sensor + software + actuation
 - Sub-contracting (cost increase)

• **Tier II Venders**
 - Do not have specific metrics to build COTS products to
• Employ appliqué based systems, broken down into functional, inter-operable kits:
 • A – Kit: Sensor, Autonomy Software, and Communications Package
 • B – Kit: Platform Actuation Package

• Allows one-time development of a platform-specific B-Kit
 • A-Kit developers build outputs to this interface
 • Allows easier ORD modification with PM offices

• Allows vendors to focus on their specific expertise

• Allows platform-agnostic A-Kits and

• Would promote vendor competition and drive down costs
Source select multiple LSI’s (2 minimum)
Each LSI responsible for building a complete system (A, B & C kits)
Kit inter-operability demonstrated by forcing a mixture of vendor kits on various platforms
Integration and interoperability with existing systems
- AMAS Technology design is kit-based / emphasis on COTS hardware
- Minimize impact to legacy interfaces
 - Redundant communications for functionality in jamming environments
 - Dual kit interface path: Simple Hardware Unit / Graphical user Interface

Functionality within operational architecture
- Enhancement to current CONOPS
- New functionality for legacy operation
- Maintenance procedure development / System Training Plan (STRAP)

Seek compliance with COCOM / XM / Sponsor guidance
- Interoperability validation
- Operational approval
<table>
<thead>
<tr>
<th>Capability</th>
<th>Tasks</th>
<th>Metric</th>
<th>Baseline</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOC 09-08 Soldier Support</td>
<td>Operator Interventions</td>
<td>hours</td>
<td>1 per 50 hours</td>
<td>1 per 100 hours</td>
</tr>
<tr>
<td>Joint Land Ops</td>
<td>System Operation Range</td>
<td>Distance in meters</td>
<td>60 meters</td>
<td>100 meters</td>
</tr>
<tr>
<td>FOC 09-04 Operational Tempo</td>
<td>Speed</td>
<td>Kph</td>
<td>40kph</td>
<td>80kph</td>
</tr>
<tr>
<td>Joint Land Ops</td>
<td>Lateral Accuracy</td>
<td>centimeters from lead path</td>
<td>120cm</td>
<td>80cm</td>
</tr>
<tr>
<td>Battle space Awareness</td>
<td>Obstacle Avoidance</td>
<td>Size in cm^3</td>
<td>1000cm^3</td>
<td>500cm^3</td>
</tr>
<tr>
<td>FOC 07-01 Protect personnel</td>
<td>Situational Awareness</td>
<td>Sighting increase %</td>
<td>Target sighting increase 10%</td>
<td>Target sighting increase 20%</td>
</tr>
<tr>
<td>FOC 07-01 Protect personnel</td>
<td>Emergency breaking</td>
<td>Interventions per hour</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Emergency breaking</td>
<td>Collisions</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tactical behaviors</td>
<td>Multi-vehicle capability</td>
<td>Vehicles</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Collaborative Operations</td>
<td>Leader / follower swap</td>
<td>Transition time in seconds</td>
<td>Less than 30 seconds</td>
<td>Less than 10 seconds</td>
</tr>
<tr>
<td>FOC 09-04 Commonality</td>
<td>Platform independent hardware</td>
<td>% of total hardware cost</td>
<td>70%</td>
<td>85%</td>
</tr>
<tr>
<td>FOC 09-01 sustainability</td>
<td>Kit cost</td>
<td>% vehicle cost</td>
<td>25%</td>
<td>15%</td>
</tr>
</tbody>
</table>
- FY11: Planning and Coordination for
 - Technical Assessments
 - Interface
 - Compatibility
 - Operational Assessments
 - Exercises/Deployments
 - Sustainment

- FY12:
 - 2nd TD and OUA #1
 - 1st OUA Report

- FY13:
 - OUA #2
 - Final Report / JCTD Completion
 - Begin CPD
 - Submit POM funding

Expected Interim Capability
- Achieved and supports EU
- Supports transition (PoR TBD)
- Fitted to vehicle
 - Stay Behind, or
 - Return to Tech Base
Draft Transition Strategy

- FY11-12
 - FY11: draft CDD, JCTD socialization
 - FY12: tech demo, 1st OUA / Finalize CDD approval
- FY13
 - 2nd OUA
 - JCTD can transition to RS-JPO
- FY14-16
 - POM Line Establishment against AMAS CDD
 - Confirmation of platform customers (cut-in dates and quantities)

- AMAS JCTD would act as near-term CDD risk reduction
 - Could help solidify CDD resourcing
 - Acts as pilot Inter-operability program

- AMAS focuses on inter-operability and thus is platform agnostic
 - A JCTD of this type should not interfere with existing platform-specific programs
 - I.E. MM-UGV / ARV-L
INTEROPERABILITY
Interoperability Defined

The ability of software or hardware systems or components to operate together successfully with minimal effort by end user. Further attributed with functional, behavioral, lifecycle, and architectural scopes, and, therefore, can be delineated in terms of control and can be categorized into levels, types, or degrees in application programs. Facilitated by common or standard interfaces.
Why Interoperability?

• To provide sustainable and repeatable processes and capabilities to support the current and future Warfighter
• Leverage technologies and capabilities across all UGS partner organizations
• Increased Modular payloads across multiple platforms
• Enables agile, responsive mission realignment
• Enables Air/Ground coordination/collaboration
• Broadens payload/mission equipment package vendor base
• Specifies logical architecture, standards, requirements, and conformance approach
• Offers increased capabilities at lower life cycle costs
• Facilitates common control of multiple robotic systems
• Employed by robotic Program Managers
 – Acquisition of future ground robotics system programs of record
 – Upgrade of currently fielded systems

“Interoperability is the countermeasure to obsolescence” – LTC Hatfield, ARCIC
• If common messages are used by both the sender and receiver of information, then interoperability can be achieved.
• Each element of a system knows what messages to expect.
• Each element of a system knows what messages to send.
• We need to specify what the messages are.
• Messages themselves become the interfaces.
• System / subsystem developers know which messages to expect coming in.
• System / subsystem developers know which messages need to be sent by their elements.
• Processes & algorithms within the “black boxes” use the messages & remain proprietary and invisible to others.
Additional things need to be defined to 1) facilitate proper delivery of messages and 2) enable modularity:

- Physical interfaces (enabling modularity, as well as adequate throughput of messages & power for messages to flow)
- Information handling techniques & protocols (enabling reliability of message delivery, flow control, message routing, etc.)
- Human understandable messages for interaction between the operator and the OCU
Interoperability Overview – Scope & Objectives

- Define interoperability standards for integration across UGVs leveraging other standards work to the greatest extent possible
 - Open Architecture & Interfaces
 - Common Control Standards
 - Communications Data Links
 - Modular Payload Interfaces
 - Conformance & Validation Criteria
- Interoperability Profile Version 0 (IOP V0) will define baseline capabilities
 - Fundamental system capabilities and functionality of fielded systems
 - Standard message sets for common control across platforms lag OEM unique software coding

Tech Base and User Communities of Interest are Embedded
Industry/Gov’t Participation

- Industry Forum – 15 June 2010
 - Industry: 33 Companies (52)
 - Gov’t: 13 Gov’t Agencies (36)
 - Total Participants: 88

- Working IPT Structure
 - 5 WIPTs
 - Led by RSJPO and TARDEC
 - Aligned with IOP Framework
 - Industry and Gov’t Participation
 - 15+ Companies/11 Gov’t
 - Rules and process
 - Collaborative Meetings

- IPT Meetings (Higher Level Body)
 - Cross Leveling of Information
 - Baseline and Change Control
 - WIPT Presentations and Concurrence
 - Open Dialogue

Voluntary Participation by Industry

- SAE AS-4 implementation of IOP
 - Priority/Sequences
 - Private Messages
 - Transport
 - AS-4 Committee
 - Interfaces

- Payload WIPT

- Comms WIPT

- Control WIPT

- WIPTRS JPO

- Interoperability IPT

- SAFe AS-4 implementation of IOP
 - Priority/Sequences
 - Private Messages
 - Transport
 - AS-4 Committee
 - Interfaces

- Senior Level
 - Governance
 - Baseline
 - Change Control Board

- System Functions
 - Mission threads
 - Implementation
 - Performance
 - Latency
 - Network
 - Validation

- Logical Arch.
 - Interface Req’ts
 - Data link
 - Software
 - C2
 - WMI
 - Performance
 - Training

- Sensors
 - Video
 - Payload Architecture
 - Emitters, Audio & Acoustic
 - Message Protocol
 - Performance
 - Actuators

- Seniors Level
 - Governance
 - Baseline
 - Change Control Board

- Logical Arch.
 - Interface Req’ts
 - Data link
 - Software
 - C2
 - WMI
 - Performance
 - Training

- Sensors
 - Video
 - Payload Architecture
 - Emitters, Audio & Acoustic
 - Message Protocol
 - Performance
 - Actuators

- Sensing
 - Video
 - Payload Architecture
 - Emitters, Audio & Acoustic
 - Message Protocol
 - Performance
 - Actuators

- Senior Level
 - Governance
 - Baseline
 - Change Control Board

- Logical Arch.
 - Interface Req’ts
 - Data link
 - Software
 - C2
 - WMI
 - Performance
 - Training

- Sensors
 - Video
 - Payload Architecture
 - Emitters, Audio & Acoustic
 - Message Protocol
 - Performance
 - Actuators
Interoperability IOP Framework

Overarching IOP
- Mission Analysis
- SAE JAUS Profiling Rules
- Private Transport Messages

Payload IOP
Control IOP
Comms IOP

Legend
- Profile
- Separately Published Attachment
Modularity

Common Within
- Mission Specific Payload
- Power Supply
- Actuator
- Navigational Sensors
- Mobility Platform

Common Across
- Common Integrating Software
- Common Controller
- Communications
- Operating Software
- Artificial Intelligence

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.
IOP Adoption in Acquisition Process

<table>
<thead>
<tr>
<th>Activity</th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin IOP V0</td>
<td></td>
<td>V0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V0 M&S Validation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Fleet Capabilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interoperability Integration into Fielded Fleet as Opportunities Allow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Begin IOP V1</td>
<td>V1</td>
<td>V1</td>
<td>V2</td>
<td>V3</td>
<td></td>
</tr>
<tr>
<td>V1 M&S Validation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Acquisition Activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Acquisition Activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Acquisition Activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Acquisition Activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future Program X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KEY: ▲ IOP Version 0 ▶ IOP Version 1 ◀ IOP Version 2 △ Test activities

Program Schedules are Examples

Program A

Program B

Future Program X
Recent Activities

- 16-17 Nov 2010 – Government / Industry WIPT Kick-Off
- Jan-Feb 2011 – Development of draft IOP V0 Capability Plan
- Feb 2011 – Establishment of WIPT Working Groups
- 09 Feb 2011 – Interoperability Synch with Navy/AEODRS
- 15 Feb 2011 – JAUS Profiling WIPT Meeting
- 03 Mar 2011 – Communications WIPT Meeting
- 10 Mar 2011 – Payloads WIPT Meeting
- 30 Mar 2011 – Overarching WIPT Meeting
- 07 April 2011 – Control WIPT Meeting
Established Working Groups in WIPTs

<table>
<thead>
<tr>
<th>WIPT</th>
<th>Working Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overarching</td>
<td>• Test & Validation
• Sys Eng & Architecture (TBD)
• Latency (TBD)</td>
</tr>
<tr>
<td>Communications</td>
<td>• Radio Link
• Physical/Power Interface
• Logical Interface
• RFI Mitigation
• Security</td>
</tr>
<tr>
<td>JAUS Profiling</td>
<td>• Platform Manager
• Capability Plan Compliance
• ID Assignment
• Autonomy/Behaviors
• Access Control
• Digital Video Stream
• Sensors Message Implementation
• Radio Status Messages</td>
</tr>
<tr>
<td>Payloads</td>
<td>• Existing Standards
• Logical Interface / Metadata
• Physical Interface
• Configuration / Taxonomy</td>
</tr>
<tr>
<td>Control</td>
<td>• Discovery
• OCU
• Human / Machine Interface
• Existing Standards</td>
</tr>
</tbody>
</table>
• V0 Capability Plan has been drafted
• Scopes & bounds what IOP V0 will define
• Focused on foundational capabilities inherent in currently fielded systems
3.1 Platform/Vehicle
- Electrical, Mechanical, & Power
- Basic Platform
 - Battery Status, Usage & Engine Data
 - Platform Mode
 - Position / Attitude
 - Sub-System Configuration & Health
 - Pose / Articulation
 - E-Stop & Heartbeat (Liveness)
3.1 Platform/Vehicle
 - Mobility (Basic)
 - Drive Mode
 - Gear
 - Speed / Acceleration
 - Speed / Acceleration Limits
 - Steering
 - Brake
• 3.1 Platform/Vehicle
 - Mobility (Advanced)
 • Drive Sensor Registration & Selection
 • Drive Timeout
 • Create/Insert/Delete Waypoint / Waypoint List
 • Load & Execute Waypoint Plan
 • Waypoint Following Status
 • Suspend/Resume Waypoint Following
 • Leader/Follower Mode & Attributes
 • Execute Leader/Follower Operation
 • Following Status
 • Suspend/Resume Waypoint Leader/Follower
3.2 Payload
 - Sensor
 - Drive Vision
 - Motion Imagery
 - Still Imagery
 - CBRN
 - Chemical Explosive Detection
 - Microphone
 - Range Finder
 - Thermal
3.2 Payload
 - Emitter
 • Lights
 • Speaker
 - Actuator
 • General Actuators
 • Basic Arm
 • Telescoping (Mast)
 • Pan/Tilt
 • End Affectors
3.3 Communications

- Radio Link
- Radio Subsystem Interface
- Radio Frequency Interference (RFI) Mitigation
- Radio Status Health
- Wireless Security
3.4 Control

- Human Controller Interface (HCI)
 - Battery Status Display Interface
 - Radio Setup and Comms Link Monitoring
 - Robotic Asset Selection, Login & Controls
 - Common Icons & Graphics
 - Basic Status Display
 - Warnings, Cautions & Alerts
 - State and Mode Selection
 - Input Device Mapping
 - Video Window
 - Image/Video Archive & Browsing

- Mission Planning
 - Mission Plan Metadata and Graphics
• Slides develop as a communication tool for what needs to be defined for IOP V0
• Includes concepts & ideas for specific “instantiations” of what V0 capabilities require in terms of messages & interfaces
Battery Status:
- **Description:** Percentage of battery power or hours of battery operation remaining
- **Action:** Display a message on the OCU that provides the battery state of charge. May be a graphical display, a percentage, or a summary of expected remaining minutes of operation.
- **V0 Deliverable:**
 - Message structure & format
 - Query Battery Status
 - Report Battery Status

Open Questions:
- Format as percentage?
- Format as remaining minutes?
- Define timing requirements?

Conceptual Example
Implementation Concept Example: Drive Sensor Registration / Selection

• **Steering:**
 - **Description:** Specifies sensor used to drive the platform (if multiple – e.g., forward, reverse)
 - **Action:** Report the available drive sensors. Report current drive sensor. Set drive sensors.
 - **V0 Deliverable:**
 - **Message structure & format**
 - Query Current Drive Sensor
 - Report Current Drive Sensor
 - Set Drive Sensor
 - Query Available Drive Sensors
 - Report Available Drive Sensors

Open Questions:
- Correlate this message to Drive Mode or other messages?
- Define logical description of drive sensors in messages?
- Define timing requirements?
Wireless Security:
- **Description:**
 - Establish a secure wireless communications link
- **Action:**
 - Determine available encryption schema and turn on/off encryption
- **V0 Deliverable:**
 - Message structure & format
 - Query/Report Available Encryption Schema
 - Set Encryption (Type X, Type Y, off, etc.)

Open Questions:
- Identify minimum encryption for secure communications?
- Focus only on encryption happening within radio?
- Define timing requirements?

What kind of wireless encryption can you do?
Encryption types X & Y are available.
Assume encryption type X.

Conceptual Example
Path Forward Toward IOP V0 Completion

- Continue regular WIPT telecons & execution of WIPT deliverables
- Develop matrix mapping V0 capabilities with existing standards messages, interfaces & protocols
 - Identify gaps in existing standards
 - Compare trades of different standards/messages that achieve similar capabilities
- Select / develop IOP V0 standards/messages with WIPTs
- Document proposed IOPs
- Staff proposed IOPs through WIPTs & JPO chain for approval
- Target September 2011 for V0 Publish
Path Forward Toward IOP V0 Completion

- Continue regular WIPT telecons & execution of WIPT deliverables
- Develop matrix mapping V0 capabilities with existing standards messages, interfaces & protocols
 - Identify gaps in existing standards
 - Compare trades of different standards/messages that achieve similar capabilities
- Select / develop IOP V0 standards/messages with WIPTs
- Document proposed IOPs
- Staff proposed IOPs through WIPTs & JPO chain for approval
- Target September 2011 for V0 Publish
Challenge: Begin to address the Multi-National requirement in the Unmanned Systems Initial Capabilities Document.

Objective: Use the Robotic Systems Joint Project Office (RS JPO) interoperability Profile (IOP) in a operationally relevant Coalition experiment/assessment.

Deliverables: 1. Software subsystems and modifications will be provided to TRADOC and/or RS JPO upon request.
2. Subject Matter Experts who worked on this program will be available for TRADOC/RS JPO if needed for further assistance.
3. Reports on the performance of OCU(s), platforms, radios and payloads to perform relevant tasks.
4. Improvements rolled into the RS JPO IOP Version 1 and 2.
5. Joint CONOPS and TTPs will be leveraged by TRADOC.

Technology Maturity: TRL level 7 projected at completion of CWP

Capabilities Shortfalls Addressed: Interoperability Profile for one Coalition partner can be used by another partner allowing for flexibility in Coalition level missions

Challenge: Begin to address the Multi-National requirement in the Unmanned Systems Initial Capabilities Document.

Objective: Use the Robotic Systems Joint Project Office (RS JPO) interoperability Profile (IOP) in a operationally relevant Coalition experiment/assessment.

Deliverables: 1. Software subsystems and modifications will be provided to TRADOC and/or RS JPO upon request.
2. Subject Matter Experts who worked on this program will be available for TRADOC/RS JPO if needed for further assistance.
3. Reports on the performance of OCU(s), platforms, radios and payloads to perform relevant tasks.
4. Improvements rolled into the RS JPO IOP Version 1 and 2.
5. Joint CONOPS and TTPs will be leveraged by TRADOC.

Technology Maturity: TRL level 7 projected at completion of CWP

Capabilities Shortfalls Addressed: Interoperability Profile for one Coalition partner can be used by another partner allowing for flexibility in Coalition level missions

Financial Information

<table>
<thead>
<tr>
<th></th>
<th>($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWP Year One (FY12):</td>
<td>$</td>
</tr>
<tr>
<td>CWP Year Two (FY13):</td>
<td>$</td>
</tr>
<tr>
<td>Other US Financial Contributions:</td>
<td>$</td>
</tr>
<tr>
<td>US Non-Financial Contributions:</td>
<td>$</td>
</tr>
<tr>
<td>Foreign Financial Contributions:</td>
<td>$</td>
</tr>
<tr>
<td>Foreign Non-Financial Contributions:</td>
<td>$</td>
</tr>
<tr>
<td>Total Project:</td>
<td>$</td>
</tr>
</tbody>
</table>

MILESTONE (FY)

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrate OCU on Hardware Platform</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop software on TARDEC Robot using IOP v0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop software on Canadian robot using IOP v0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integration and Test Both UGV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relevant Demonstration (Robotics Rodeo/AEWE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Report</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

POC: Paul Bounker, TARDEC
586 282-5297, paul.bounker@us.army.mil

CWP Nomination for FY12-13
Annex C