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Abstract 
 
In this project, methods of model reduction that integrate feedback active flow control with 
applications to nonlinear convection and turbulent flows governed by Navier-Stokes equations 
are developed. A new methodology which extracts boundary conditions in reduced order proper 
orthogonal decomposition (POD) and finite difference models is developed. A new model 
reduction method based on empirical data and balanced truncation was developed and applied to 
nonlinear Galerkin models. Based on this method a new empirical Hankel norm model reduction 
algorithm is proposed.  These methods are applied to a prototype nonlinear convective problem 
governed by the two-dimensional (2D) Burgers’ equation. The reduced models are used in the 
design of robust boundary controllers that achieve tracking, and implemented on the full order 
Computational Fluid Dynamics (CFD) models.  
 
POD and balanced truncation are shown to be optimal in the sense of distance minimizations in 
spaces of Hilbert-Schmidt (HS) operators. POD has been shown to be optimal in a broader sense 
than is reported in the literature. The optimality is in the sense of distance minimization in a 
space of integral operators under the Hilbert-Schmidt norm. A connection with balanced 
truncation is found. In particular, balanced truncation is shown to be optimal in the sense of 
distance minimization albeit in a different space of integral operators under the Hilbert-Schmidt 
norm when the so-called 'Curtain-Glover' balanced realization is used. This is a novel discovery 
as balanced truncation is usually known to be not optimal in any sense.   
 
An algorithm that combines the extended Kalman filter and expectation maximization to 
estimate the model coefficients from particle image velocimetry (PIV) measurements for 
turbulent 2D flows is developed.  The algorithm is recursive and convenient for on-line 
implementation. The method is applied to a 2D flow control problem over the NACA 4412 
airfoil using experimental data obtained from Prof. Glauser’s flow control group at the 
University of Syracuse. The motivation for this problem is minimization of aero-optic distortion 
in a bluff-body flow.  
 
POD and balanced truncation are shown to minimize different n-widths of partial differential 
equation solutions including the Kolmogorov, Gelfand, linear and Bernstein n-widths. The n-
widths are notions from metric complexity theory. They quantify inherent and representation 
errors due to lack of data and loss of information. 
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Most model reduction algorithms assume linear models and fail when applied to nonlinear high 
dimensional systems, in particular, fluid flow problems with elevated Reynolds numbers. For 
example, POD fails to capture the nonlinear degrees of freedom in these systems, since it 
assumes that data belong to a linear space and therefore relies on the Euclidean distance as the 
metric to minimize. However, snapshots generated by nonlinear PDEs belong to manifolds for 
which the geodesics, when they exist, do not correspond in general to the Euclidean distance. A 
geodesic is a curve that is locally the shortest path between two points. We propose a model 
reduction method which generalizes POD to nonlinear fluid flows corresponding to manifolds 
which have a differentiable structure at each of their points. The algorithm is applied to a 
prototype nonlinear turbulent flow on the Wortmann FX 60-100 airfoil governed by the Navier-
Stokes equation. 
  

I. Introduction 
 

Recent advances in actuators, sensors, simulation, and experimental diagnostics bring 
applications such as suppression of acoustic tones in cavities, separation control for high lift, and 
trajectory control without moving hinged surfaces within reach. However, these applications 
require the integration of feedback control because of the need for robustness to flight condition 
and vehicle attitude, precision tracking, overcoming low-fidelity models, or moving a system 
away from a stable solution or limit cycle as efficiently as possible. Feedback control strategies 
in which the bandwidth of the controller is commensurate with the time scales of fluid flows 
are attractive because they offer the possibility of improved performance and reduced control 
power required through control of unstable structures in the flow field. Unfortunately, models 
that capture the relevant dynamics of the input-output system and are amenable to control design 
are difficult to develop [1]. 
 
There has been significant interest in model reduction for the purpose of control design 
[2][3][4][5][6][7][8][9][10]. One such application of reduced order modeling is control design in 
the context of aerodynamic flow. Aerodynamic flow control is a research area of great interest to 
the Air Force and the fluid mechanics community. Presently considerable research efforts are 
working with feedback control law design for systems described by PDEs that need a very large 
number of states to accurately simulate their characteristics.  However, recent advances in the 
design of actuators and sensors can be leveraged for better system control only if the control 
design methods provide a reliable low order controller [11]. Additionally, simulation, and 
experimental diagnostics are making applications such as the suppression of acoustic tones in 
cavities, separation control for high lift, and trajectory control without the need to move hinged 
surfaces a possibility [12]. However, these applications require the integration of feedback 
control because of the need for robustness to flight condition and vehicle attitude, precision 
tracking overcoming low-fidelity models, or moving a system away from a stable solution or 
limit cycle as efficiently as possible [12]. 
 
Unfortunately, it is very difficult to create models that capture the relevant dynamics of the 
input-output system. For example, computational fluid dynamics simulations can provide good 
solutions to a discretized version of the Navier-Stokes equation [2], [13]. However, accurate 
simulations for simple shapes such as two-dimensional airfoils, or complex shapes, such as a full 
vehicle, require several thousands to millions of states. Therefore, the simulation results are not 
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directly useful for control design [12]. Complexity in the model is a legitimate need. The large 
number of states is necessary to capture important flow features that occur at extremely small 
spatial scales.  Although these small flow features might seem insignificant, if they are not 
captured, it is not possible to analyze if they are necessary in securing the closed loop system’s 
overall stability [11].  
 
POD has been extensively investigated in distributed parameters systems due to its order 
reduction capability [8][9][10][14][15], and balanced truncation, which is a simple yet efficient 
model reduction technique widely used in reducing model orders of high order linear systems 
[16][18][19]. POD models of only a few dozen states can often accurately capture the input-
output behavior of systems that have full order system models of thousands of states [12]. In 
addition to using the POD method in conjunction with model reduction techniques, the idea of 
using empirical gramians is growing in popularity for use in an approximate balanced truncation 
[20][5] [21][17]. Further, some work has been done on finding nonlinear empirical gramians for 
balanced truncation [22][23].  
 
In fluid flow configurations it is not uncommon for discretized flow models to describe 
thousands to millions of state variables, for example if one uses a linear quadratic regulator 

(LQR) control formulation, roughly 
1210  Riccati unknowns need to be calculated for a discretized 

flow model describing 
610 states. Existing computing power and computational algorithms are 

not capable of solving an LQR problem of such large dimension. For dynamical models that are 
very large scale, such as those describing fluid flow configurations, it is apparent that the order 
of the system must be reduced prior to control law design [24]. This prevents us from using 
closed loop model reduction strategy wherein the system is part of a closed loop system with a 
controller [25]. 
 
In the area of fluid mechanics controls must often be fixed to the boundary of the problem 
geometry. For example, control of flow separation over an airfoil requires that actuation and 
sensing be done on the airfoil surface [12]. The problem geometry used for this project is one 
example of a case where control is restricted to the boundaries by physical necessity.  
 
The rest of the report is organized as follows. In section II, POD is shown to be optimal in a   
more general sense to what is reported in the literature. In particular, POD is shown to be optimal 
in the sense of distance minimizations in space of Hilbert- Schmidt or trace-class 2 integral 
operators. In section III, balanced truncation is shown to be optimal in terms of approximation by 
finite rank operators in the Hilbert-Schmidt norm when the Curtain-lover balanced realization is 
used.    In section IV, a prototype nonlinear convection problem is introduced. A new empirical 
balanced truncation is developed in sections V and VI. The method is applied to nonlinear 
convection in section VII. A new empirical Hankel norm model reduction is developed and 
applied to the nonlinear convection prototype problem in sections VIII and IX, respectively. In 
section X a H   flow controller that achieve tracking for the nonlinear convective flow is 
designed based on the reduce order models and applied to the full order system. In section XI, 
model estimation and identification algorithms that combine the Kalman filter and expectation 
maximization for POD modes of a turbulent flow over the NACA 4412 airfoil are presented. In 
section XII, POD and balanced truncation are related to metric complexity theory with the notion 
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of n-with approximation. In section XIII, a generalization of POD to nonlinear PDEs using the 
notion of auto-associative models is proposed. Section XIV contains concluding remarks. 
  

II. Optimality of the Proper Orthogonal Decomposition (POD) 
 
POD has been used extensively to determine efficient bases for dynamical systems, random 
processes and large data set in general. It was introduced in the context of turbulence by Lumley 
[26]. It is also known as the Karhunen-Loeve decomposition, principal component analysis, 
singular systems analysis, and singular value decomposition [27][28]. The fundamental idea 

behind POD is as follows: Given a set of simulation/experimental data or snapshots   1

N

i i
S


 of a 

function ( , x )   w t , in the standard Hilbert space  2 [0, )L T , where x  for some set  

(spatial domain)   of  p  and T represents a finite or infinite time interval. The n-th POD 

vector ( )n x  is chosen recursively so as to minimize the cost function [26][29] 

2

1[0, )

( ) : | ( , x) (x) | x
n

n i i i
jT

J S t d dt  


                                                 (1) 

subject to the constraints 
( ) ( , ) ( ) 



  x x xj i jt S t d                                                                     (2) 

( ) ( )  

 x x x =i j ijd ,  for  , 1, 2, ,i j n                                                    (3) 

The optimal POD basis is given by the eigenfunctions  (x)i  of the averaged autocorrelation 

function, denoted ( x , x )R  , of the snapshots, that is, [26][27] 

[0, )

( , ) ( , ) ( , )i i

T

R S t S t dt  x x x x                                                  (4) 

which solves the eigenvalue problem 

[0, )

( , ) ( , ) ( ) ( )i i

T

S t S t dtd 


   x x x x = x                                            (5) 

The Hilbert space  2 [0, )L T  is endowed with the norm 
1

2
2

2
[0, )

( , ) : ( , )
t

w t w t d dt


 
  
 
 x x x                                                   (6) 

Define the shortest distance minimization in the 
2

 -norm from the function ( ,w t x) to the 

subspace S, by 

2
: inf ( , ( , )

s S
w t s t


 x) x                                                (7) 

where the subspace S is defined as 

2 2

1

: ( ) (x), ( ) ([0, )), (x) ( ), integer
n

k k k k
k

S t t L T L n   


 
    
 
            (8) 

Note that this distance problem is posed in an infinite dimensional space. For finite dimensional 
spaces, in particular for distances to lower rank matrices see [30], where SVD techniques are 
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used. To compute the distance we view ( ,w t x) as a Hilbert- Schmidt kernel for an integral 

operator T mapping 2 ( )L   into 2 ([0, ))L T  both endowed with the standard 
2

 -norm, and 

defined by 

  ( ) : ( , ) ( )T t w t d 


  x x x                                                   (9) 

It is known that such an operator is compact [31], that is, an operator which maps bounded sets 
into pre-compact sets. The operator T is said to be a Hilbert-Schmidt or a trace-class 2 operator 
[32]. Let us denote the class of Hilbert-Schmidt operators acting from 2 ([0, ))L T into 2 ( )L  , by 

2C , and the Hilbert-Schmidt norm 
HS

 . 

 
Define the adjoint of T by T as the operator acting from 2 ([0, ))L T  into 2 ( )L   by  

2

[0, )

[0, )

, : ( , ) ( ) ( )

( ) ( , ) ( )

T

T

Tf g w t f d g t dt

f w t g t dtd





  



 

 

x x x

x x x   
                                (10) 

*
1: ,  f T g                                                         (11) 

 
showing that *

[0, )

( )( ) ( , ) ( )
T

T g t w t g t dt  x . 
 

Using the polar representation of compact operators [32], 
1* 2( )T U T T , where U is a partial 

isometry and 
1* 2( )T T  the square root of  T, which is also a Hilbert-Schmidt operator, and admits 

a spectral factorization of the form [32]  

    
1* 2( ) i i i

i

T T v v                                             (12) 

where 0, 0i i    as i , are the eigenvalues of 
1* 2( )T T , and iv  form the corresponding 

orthonormal sequence of eigenvectors, i.e., 
1* 2( ) , 1, 2, .i i iT T v v i   Putting :i iUv  , we can 

write 

i i i
i

T v                                                (13) 

 
Both  iv and  i  are orthonormal sequences in 2 ([0, ))L T and 2( )L  , respectively. The sum 

(13) has either a finite or countably infinite number of terms. The above representation is unique. 
 

Noting that the polar decomposition of 
1* * * 2( )T U TT , a similar argument yields  

1
* 2( ) i i i

i

TT                                                   (14) 

*
i i i

i

T v                                                 (15) 
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which shows that i  form an orthonormal sequence of eigenvectors of 
1* 2( )TT  corresponding to 

the eigenvalues i . From (12) and (15) it follows that 

  
1* 2( )i i i iT U T T v                                                       (16) 

   
1

* 2( )i i i iTv U TT v                                                    (17)  

 
We say that i  and iv  constitute a Schmidt pair [31]. In terms of integral operators expressions, 

identities (16) and (17) can be written, respectively, as 
  

( ) ( , ) ( )i iv t w t d


  x x x                                          (18) 

  
0

( ) ( , ) ( )
T

i it w t v t dt   x                                           (19) 

In terms of the eigenvalues i 's of T, its Hilbert-Schmidt norm .
HS

is given by [32] 

                

11
22 22

0

( , )
T

iHS
i

T w t d dt


      
   
   x x                                    (20) 

Note that since the operator T is Hilbert-Schmidt the sum in (20) is finite. The Hilbert-Schmidt 
norm is also induced by the operator inner product defined by (23). 
 
By interpreting each elements of the subspace S defined in (8) as a Hilbert-Schmidt operator as 
we did for ( , )w t x we see that S is the subspace of Hilbert-Schmidt operators of rank n, i.e.,  

2 2

1
{ ( ) ( ) : ( ) ( ), ( ) ( ), }

n

j j j j j ij
S s f t f t L T L   


       x x          (21)                         

In addition, the distance minimization (7) is then the minimal distance from T to Hilbert-Schmidt 
operators of rank n. In other terms, we have 

min
HSs S

T s


                                                         (22) 

The space of Hilbert-Schmidt operators is in fact a Hilbert space with the inner product [32], 
denoted ( , ),   if A and B are two Hilbert-Schmidt operators defined on 2( )L  ,  

*( , ) : ( )A B tr B A                                                          (23) 
where tr denotes the trace, which in this case is given by the sum of the eigenvalues of the 
operator *B A which is necessarily finite [32]. Note that the inner product (23) induces the 

Hilbert-Schmidt norm   
1

2* .
HS

A tr A A  

 
In the case where A and B are integral operators with kernels ( , )A t x  and ( , )B t x , respectively, 
the inner product can be realized concretely by 

         
0

( , ) ( , ) ( , )
T

A B A t B t d dt


   x x x                                                    (24)  
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The solution to the distance minimization (22) is simply given by the orthogonal projection of  T 

onto S. To compute the latter, note that the eigenvectors of  
1

* 2TT  and  
1

* 2T T  form 

orthonormal bases (by completing them if necessary) for 2 ([0, ))L T  and 2( )L  , respectively. In 

terms of the eigenvectors jv  and j  the subspace S can be written as 

            { , 1,2, , }j jS Span v j n                                                  (25)   

Since the shortest distance minimization (22) is posed in a Hilbert space, by the principle of 
orthogonality it is solved by the orthogonal projection SP  acting from 2C  onto S. The latter can 

be computed by first determining the orthogonal projection vP  onto { , 1,2, , },jSpan v j n   and 

the orthogonal projection P   onto { , 1,2, , }.jSpan j n   These projections have finite rank 

and since the jv  and j 's are orthogonal vectors in 2 ([0, ))L T  and 2( )L  , respectively, it can be 

easily verified that vP  and P  
are given by 

 

 

1
1 1 0

2
1 1

( ) , ( ) ( ) ( ) ( )

( ) , ( ) ( ) ( )

Tn n

v j j j j
j j

n n

j j j j
j j

P f t f v v t f t v t dt v t

P G G G d    

 

  

 
   

 
 

   
 

  

  x x x x x

                               (26) 

The overall orthogonal projection SP  can be computed as 

 S vP P P                                                       (27) 

That is, if  2W C   has spectral decomposition i i ji
u v  , where 2 2( ), ( )i iu L T L    then 

 
1

1 1 0

1

( )

( ) ( ) ( ) ( )

,

S i S i i
i

Tn

i i j j i j j
i j

n

j j j j
j

P W P u

u t v t dt v d

v scalers

 

   

  



  



 

    
         

  



   



x x x            (28)                         

where the last finite sum is obtained thanks to orthogonality, i.e., only the iu 's and j ’s that live 

in the span of  j ’s  and  j 's, respectively, are retained. For the orthogonality property we only 

need verify that 
2 2( )( ) , ([0, )), ( ),vx y P P x y u v x L T y L u v S            

Computing the inner product, we get 

1 2, , 0vx P x u y P v        

Because vP  is the orthogonal projection of  2 ([0, ))L T  onto { , 1,2, , }jSpan v j n  , and P  the 

orthogonal projection of 2( )L   onto { , 1,2, , }jSpan j n   . The minimizing operator 0s S in 

(22) is then given by 

0
1

:
n

S i i i
i

s P T v 


                                                 (29) 
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and 
1

2
2

2
1

min ( , ) ( , ) S iHSs S
i n

w t s t T P T 



 

 
     

 
x x                                            (30) 

And as , 0.S HS
n T P T    Therefore, the minimizing function 0 ( , )s t x  in (7) corresponds to 

the kernel of 0s , which is given by  

0
1

( , ) ( ) ( )
n

i i i
i

s t v t 


x x                                                   (31) 

Now note that ( ) ( ), ( ) ( ),i i it v t    x x  we see that 0 ( , )s t x  solves the optimization problem 

(1) since it minimizes the cost function ( )nJ   and ( )i t , ( )i x satisfy constraints (2) and (3), 

respectively. Moreover, (18) and (19) imply that ( )i x  is related to ( )i t by 

0

1
( ) ( , ) ( )

T

i i
i

w t t dt 


 x x                                                 (32)  

In the next section, we show that balanced truncation is in some sense similar to POD, in that, it 
is also optimal in the sense of distance minimization in the Hilbert-Schmidt norm, albeit in 
different operator spaces. The techniques developed for POD will help us in the context of 
showing the optimality of balanced truncation as well. 
 

III. Optimality of Balanced Truncation 
 
Balanced truncation is a simple and popular model reduction technique, which can be described 
as follows [21][18]: Suppose we have a stable linear time invariant (LTI) system described by 
the following n-dimensional state space equation 

( ) ( ) ( )

( ) ( )

x t Ax t Bu t

y t Cx t

 



                                              (33) 

where ( )x t  is the 1n -state vector of the system, u(t) is an 1m  -input vector, and y(t) is an 
1p  -output or measurement vector. A, B, and C are constant matrices of appropriate 

dimensions. 
 
The underlying idea of balanced truncation is to take into account both the input and output 
signals of the system when deciding which states to truncate with appropriate scaling. The latter 
is performed by transforming the controllability and observability gramians, denoted  cW  and  

oW  respectively, so that they are equal and diagonal. 

 
The controllability and observability gramians satisfy the following Lypaunov equations [18] 

0T T
c cAW W A BB                                                            (34) 

0T T
o oA W W A C C                                                            (35) 

The controllability and observability gramians can be represented as 

0 0

,
T TAt T A t A t T At

c oW e BB e dt W e C Ce dt
 

  
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Computing a state balancing transformation M is achieved by first calculating the matrix [18,19], 
:co c oW W W , and determining its eigenmodes 1.coW M M    

( ) ( ) ( )

( ) ( )

z t Az t Bu t

y t Cz t

 



 
                                                          (36) 

1 1: , : , :A M AM B M B C CM                                                 (37) 
The transformation M is chosen such that the controllability and observability gramians for the 
transformed system satisfy [18] 

 1 1 :T T
c o c oW W M W M M W M                                                (38) 

where   is a diagonal matrix that satisfies 2  , and the diagonal elements of   , i ’s, are 

known as the Hankel singular vales of the system, i.e., 

1 2{ , , , }ndiag                                                      (39) 

where  i  are the Hankel singular values of the system G arranged in non-increasing order 

   1 2 0n                                                      (40) 

In balanced truncation only states corresponding to large Hankel singular values are retained. 
Small Hankel singular values correspond to states which are deemed weakly controllable and 
weakly observable, and therefore deleted from the state-space model. For instance, if the first rn

states are retained then the resulting transformation is given by 

r rM P M                                                     (41) 

where rP  is the orthogonal projection of rank r. 

The reduced order model is obtained by letting  r rx P Mx  as follows 

( ) ( ) ( )

( ) ( )
r r r r

r r r

x t A x t B u t

y t C x t

 



                                             (42) 

1 1: ; : , :r r r r r r rA P M AMP B P M B C CMP     
The error bound for the output is given by 

 2

2 2
1

( ) ( ) 2 ( ) ,
r

n

r i
n

y t y t u t u L


                                  (43) 

Balanced truncation is optimal in a precise sense when starting from the so-called Curtain-
Glover balanced realization. To see this define a causal bounded input-output operator G acting 
on the standard space 2( , )L    of absolutely square integrable functions defined on ( , )  ,  
into 2 ( , )L   described by the convolution [18] 

( )( )( ) : ( )
t

A tGu t Ce Bu d  



                                            (44) 

Now, define the Hankel operator 
2 2: ( ,0] [0, )G L L     

of G by 

2 ( ,0]
:G L

P G 
                                                     (45) 
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where 2 ( ,0]L
G

  
denotes the restriction of G to 2 ( ,0]L  , and P  is the orthogonal projection 

acting from 2( , ]L    into 2[0, )L  , i.e., P  is the truncation operator 

2( ) 0
( ) ( ) ( , )

0 0

f t if t
P f t f t L

if t


    

                              (46) 

Then, the Hankel operator G  can be written as 
0

( )( ) ( ) , 0A t
Gu t Ce Bu d for t  



                                       (47) 

The Hankel operator G  maps past inputs to future outputs. Expression (45) shows that the 

Hankel operator G  is an integral operator mapping 2 ( ,0)L   into 2[0, )L  , with kernel the 

impulse response ( , )k t   defined by 
( )( , ) : , 0, 0A tk t Ce B t                                           (48) 

Balanced truncation is commonly thought to be a model reduction technique that is not optimal 
in any sense [22]. We show that this is not the case, and in fact balanced truncation is indeed 
optimal in the sense of the Hilbert-Schmidt. The techniques we use are reminiscent of the 
previous section and guarantee for the optimum to be a Hankel operator. This contrasts, for 
example, with the minimization in various norms addressed in [33] [34]. To see this note that the 
Hankel operator G  has finite rank k n  [18], and therefore belongs to the Hilbert-Schmidt 

class of operators acting from 2 ( ,0]L   into 2[0, )L  . Let its spectral factorization be given by 

2 2

1

, ( ,0], [0, )
n

G i i i i i
i

L L    


                                          (49) 

where  i   are the Hankel singular values of the system G ordered in decreasing order, i.e., 

1 2 1n n                                                               (50) 

and  1{χ }n
i  and 1{ }n

i  are orthonormal sets in 2 ( ,0]L   and 2[0, )L  , respectively. Next, 

consider the optimal distance minimization 
: min || ||

r r
r

n G G HSn k



                                              (51) 

where 
rG  is an operator acting from 2 ( ,0]L   into 2[0, )L   of rank rn n . An application of 

identities (29) and (30) to the minimization (51) yields the unique optimum (since the distance 
minimization is posed in a Hilbert space) 

 
1

χ
r

r

n

G i i i
i

 


                                                   (52) 

and the shortest distance 
1

2 2

1 1 1 1

|| χ χ || || χ || ( )
r

r

r r

nn n n

n i i i i i i HS i i i HS i
i i i n i n

       
     

                          (53) 

The operator 
rG


 
is not necessarily a Hankel operator, however, we will show that starting from 

a specific balanced realization for the original system, the minimizing operator can be chosen to 

be a Hankel operator corresponding to the reduced order model. To do so let 
1

2( )   
G G G G

U  be 

a polar decomposition of  
G

 , applying (16) and (17) to 
G

  the vectors χ
i
 and 

i
  satisfy 
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1

2χ ( ) χ , 1, ,G i G G G i i iU i n                                                (54) 
1

* 2χ ( ) χ , 1, ,G i G G G i i iU i n                                                 (55) 

That is, χ
i
 and 

i
  form a Schmidt pair for 

G
 . In terms of the Schmidt pair (49) implies that the 

Hankel operator 
G

  can be expressed as 

0

1

( )( ) ( ) χ ( ) ( )
n

G i i i
i

u t t u d    




                                             (56) 

We propose the following realization due to Curtain and Glover [34] for the impulse response 
( , )k t   given in (48), for , 1, 2, , ,i j n                  

1~ 0 *2

~

1 1 2 2

~

1 1 2 2

( ) : ( ) ( ) ( )

: ( χ (0), χ (0), , χ (0))

: ( (0), (0), , (0))

j
ij i j

i

T
n n

n n

a d

B

C


    



  

     


  












                                    (57)            

The corresponding semi-group can be computed as 
~ 1

0A *2( ) ( ) ( )jt
i j

i

e t d


    
 

                                      (58) 

since 
0 0* *

0

1
lim ( ) ( ) ( ) ( )i j i j
t

t d d
t

         
 

  


                                  (59) 

Define the controllability and observability operators denoted C   and O , respectively by [18] 

~

~

2

~
A

0

2

~
A

0 0

: ( ,0]

: ( )

: [0, )

: , 0

n
C

C

n
O

t
O

L

u e B u d

L

x C e x t

  


 

 

 

 



 

                                                        (60) 

Note that [18] 
 G O C                                                                      (61) 

and using the realization (57), we have 
0 *

1

( )( ) χ ( ) ( ) ( )( )
n

O C i i i G
i

u t u d u t    




                                           (62) 

and the observability gramian is given by 
~ ~
*

~ ~
* A * A

0

t t
O O e C Ce dt


                                                     (63) 

                                                      

       

 

*

0
1 1

( ( ) ( ) )
n n

i j i j
i j

t t dt   


 

 
     

                                                       1 2( ) ( , , , )i ij ndiag                                 (64) 

where 
ij
  is the usual Kronecker delta. 
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Similarly the controllability gramian *
C C   , and the realization 

~ ~ ~

( , , )B C  is therefore 

balanced. By the same token as POD using a similar expression as (27), define the Hankel 
operator corresponding to the rn -th order model 

nr
G as 

0

1

( )( ) ( ) χ ( ) ( )
r

nr

n

G i i i
i

u t t u d    




                                              (65) 

 
~~ ~0 A( )t

r rC P e P B d 


                                                     (66) 

 
~~ ~0 A( )( )t

r r r rC P Pe P P B d 


                                          (67) 

The last equality follows by (57), (58) and the fact that 2
r rP P  (since rP  is a projection). Putting 

~ ~

:r rC C P , 
~ ~

:r rB P B  correspond to truncating 
~

C  and 
~

B , respectively, and (59) implies that 
~~
A ( )A( ) r rP P tt

r rP e P e    , and 
~ ~

: Ar r rP P    correspond to truncating the state space model 
~ ~ ~

( , , )B C  to rn  states, and the Hankel operator has rank rn . Moreover, 

 
1

2 2

1

|| || ( )
r nr

r

n

n G G HS i
i n

 
 

                                                   (68) 

By uniqueness of the minimizer in (51), expressions (65) and (68) imply that we must have

nr
r G    . 

 
In terms of kernel approximation, balanced truncation is a particular case of POD in the sense 
that the kernel we want to approximate is the impulse response of the system ( , )k t   defined in 

(51). The optimization index  
rn  

can then be written as in POD 

02 2 2 2

0
1

min{ | ( , ) ( ) ( ) | : [0, ); ( ,0]}
r

r

n

n i i i i
i

k t f t g d dt f L g L   





                   (69) 

~~ ~0 A ( ) 2

0
| ( , ) |r t

r rk t C e B d dt 
 


                                                                       (70) 

Expressions (54) and (70) show that balanced truncation is optimal in the sense of optimal 
approximation in the Hilbert-Schmidt norm of the Hankel operator G , and optimal in the sense 

of the 2|| || -norm of kernels corresponding to impulse responses of linear time-invariant systems 

defined over [0, ) ( ,0]   . The linear time-invariant system framework allows the exact 
computations of the optimal lower order model approximation. This contrasts with POD which 
uses simulation data and particular open-loop inputs to generate snapshots. 
 

IV.  Prototype Problem: Nonlinear Convection   
 
The specific problem geometry considered is shown in Figure 1. The idea and methods presented 
could be modified to apply to a different geometry or obstacle shape.   A realistic example of this 
geometry in an aerodynamic application is a payload hatch open during flight with actuator 
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control only on the boundary. Let gap be the region defined by [a1, a2] x [b1, b2]. Let full be the 

region defined by (a0, aend) x (b0, bend). Then the problem domain is given by /full gap    . In 

this problem setup, gap is an obstacle. The system dynamics that act within the problem domain 

are described by the two dimensional (2D) Burger’s equation 
2 2

2 2

1
( , , ) ( ) ( , , ) ( , , )w t x y F w w t x y w t x y

t r x y

   
      
                         (71)  

where the form of ( ) F w is   
2 2

1 2

( , , ) ( , , )
( )        

2 2

T
w t x y w t x y

F w c c
 

  
 

                                      (72) 

The value r is similar to the Reynolds number used in the Navier-Stokes Equation. This 
parameter controls how much nonlinearity is present in the problem. The 2D Burgers’ equation 
is chosen as a surrogate for the Navier-Stokes equations, since it has a similar convective 
nonlinearity but can be coded on a PC.  
 

input
out

bottom

top

a0 aenda1 a2



b0

b1

b2

bend

side

x

y

 

Figure 1. Problem Geometry 

 
The boundary conditions on the top and bottom are described by the following equations 

( , ) ( ) ( )bottom bottom bottomw t u t x                                                     (73) 

( , ) ( ) ( )top top topw t u t x                                                            (74) 

Here ( )topu t and ( )bottomu t  are the control inputs on the top and bottom boundaries respectively, 

the spatial functions ( )top x  and ( )bottom x  describe the spatial effect that the controls have on 

the top and bottom boundaries. The boundary condition on the airflow intake side is 
( , ) ( )inw t f y   and is parabolic in nature. The airflow outtake side has a Neumann boundary 

condition that has the form ( , ) 0outw t
x


 


. On all of the remaining boundaries of  , ( , , )w t x y

is set equal to 0 for all values of  t. Finally, the initial conditions for the interior are given by 
2

0(0, , ) ( , ) ( ).w x y w x y L    
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A numerical solution was found by simulation using a uniformly spaced grid. The resulting 
system model contains a little more than 2000 states. After this a method of optimal (with respect 
to average kinetic energy [27]) subspace detection was performed. POD is a method for model 
reduction that works on the idea that a set of basis vectors in an infinite dimensional space can be 
created that gives the best representation of typical system behavior for a fixed basis dimension 
size [27]. The method used for determining how many modes need to be retained is a design 
choice. A reasonable choice and the one used in this POD model construction were to look at the 
total energy captured. When a vector having significant system “energy” was found, it was 
forced to be perpendicular to all previously found 'k s . A condition that 99.9% of system 

energy must be captured was used for determining how many system modes were needed.  This 
condition was met by a 40 POD basis. Although this is a major reduction from the numeric 
solution, it will be shown that important system dynamics can be retained with even lower state 
number system models.  
 
Other names for this decomposition are the Karhunen-Loéve decomposition [36][37], and 
principal component analysis [37].  Some applications have been in fluid mechanics, random 
variables, image processing, and data compression [10]. This decomposition method has been 
used extensively ([1] [4][8][7][11][12][13][14] [15][38][39][40][41]) to analyze experimental or 
simulation data and to extract the most dominant trends. The general approach of this method is 
to construct a series of solution “snapshots.” These snapshots are solved by numeric simulations 
of the governing system equation(s) with a variety of input equations. The method of finding 
these solution snapshots is described in detail in [42][43]. The greatest strength of this method is 
that it provides a relevant and optimal set of basis functions that allows a low-dimensional 
subspace to be identified. This subspace allows us to derive a model when the governing 
equations are projected onto the subspace [27]. The snapshots are needed to generate the 
correlation matrix that can be used to find the POD basis. It is important to choose relevant input 
signals for the numerically simulated system. Further, these inputs should be similar to the 
expected inputs of the real system. In this way, the POD model should accurately represent the 
system in the normal operating range. In this paper the inputs used for system identification are 
of the form [12] 
 

 2( ) sin(0.25 )       ( ) 0,bottom topu t t u t    (75) 

 2       ( ) 0            ( ) sin(0.25 ),   bottom topu t u t t    (76) 

 2 2         ( ) sin(0.25 )     ( ) sin(0.25 ) ,    bottom topu t t u t t     (77) 

 
where the values for   are –3, -2, and –1 and the range for t is 0 to 10 seconds with a sample 
every 50 milliseconds.  The squelch signal for all three values of   is shown in Figure 2. 
The numerical simulation was performed to create the ensemble of solution snapshots 

 
1

( , )
M

k k
S x y


 [12]. The snapshots refer to a collection of samples at specific points of individual 

solutions to the governing equation [27]. 
 
Each snapshot captures samples at specific points of the problem geometry while the control 
inputs are varied. The value for M (the number of snapshots) must be greater than the number of 
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modes that one will choose for the approximated system model. For a good representation M 
should be much larger than the desired size for the POD basis [12].  
 

 
Figure 2. Test Inputs Used to Generate for Snapshots   

 
The solution to the PDE is assumed to be finite energy, i.e., belongs to the Hilbert space 

 2 [0, )L T  .  The solution is approximated as                   

1

( , , ) ( ) ( , )
n

k k
k

w t x y t x y 


  where 2 2([0, )), ( , ) ( )k kL T x y L                    (78)                        

where 2( ) ([0, ))k t L T   are time varying coefficients that multiply the spatial functions 
2( , ) ( )k x y L   , where 2([0, ))L T  and 2( )L   are the standard Hilbert spaces of absolutely 

square integrable functions defined, respectively, on the time interval [0, )T  and spatial domain 
 . The approximation (78) can be as accurate as desired since the tensor space  

2 2 2 2

1

([0, )) ( ) : ( ) ( , ), ( ) ([0, )), ( , ) ( ), integer   


 
       

 


n

k k k k
k

L T L t x y t L T x y L n    (79)        

is dense in  2 [0, )L T . Any basis for 2( )L  can be used to construct the approximation of 

the solution ( , , )w t x y . Here we use the POD basis { }k  since it was shown to be optimal in the 

following sense 

2

2
([0, )), 1 2( , ) ( )

: inf ( , , ) ( ) ( , ) and 0
k

k

n

n k k n nL T k
x y L

w t x y t x y



     
 

                       (80)                        

where 
2

  is the norm of  2 [0, )L T . In section II it was shown that (80) corresponds to 

optimal approximation of an integral operator with kernel ( , , )w t x y  in the HS norm by finite 
rank HS operators.  A numerical solution was found by simulation using a uniformly spaced 
grid. The resulting system model contains a little more than 2000 states. The POD model 
construction is based on the total energy captured.  A condition that 99.9% of system energy 

0 1 2 3 4 5 6 7 8 9 10
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must be captured was used for determining how many system modes were retained.   Although 
this is a good reduction from the numerical solution, it is shown that important system dynamics 
can be retained with even lower order models. The general approach of POD is to construct a 
series of solution “snapshots.” These snapshots were generated by numerical simulations of the 
2D Burgers’ equation with a variety of chirp input signals.   Construction of a POD basis capable 
of spanning the baseline solution, as well as dynamics introduced by boundary actuation has 
been addressed using split POD.   A Galerkin type projection using Divergence/Green's theorem 
results in a nonlinear Galerkin model. The Galerkin projection provides only a weak solution. 
However, this weak solution with finite difference approximations of the boundary conditions 
eventually leads to a nonlinear temporal model for the temporal or POD coefficients. This 
solution does not explicitly include the control inputs or boundary condition information into the 
governing equation. In order to do so an approximation of the partial derivatives is carried out 
including the control inputs and the boundary data.   After substitutions ( , , )w t x y can be 

approximated as a linear combination of POD modes when the ( ) 'k t s  are solved in the 

nonlinear Galerkin model.   
 
The ultimate goal for finding a solution to the governing equations is then to find the 

's and ' k k s . The correlation matrix  L, of size M x M, is composed of the inner products of the 

snapshots. Then in  2 L   

 , ,k j k jL S S   (81) 

 *,  


 k j k jS S S S dx dy   (82) 

 
where   denotes complex conjugate transpose. 
 
The term ‘ensemble member’ is used to describe one element of the collection of solution 
snapshots [12]. 
  
The function i  is chosen to maximize the average projection of the member iu  onto i . This 

idea is expressed in the following manner [27][28] 

 
2

2

2
( )

2

,
max i i

L
i

u





 
.  (83) 

A choice must be made on how many modes will be kept in the POD constructed subspace. This 
number can be chosen to be sufficiently large such that the majority of the system’s total energy 
is captured. Additionally this number of modes to keep could be based upon the hardware 
abilities of the device doing the computations. The chosen number of modes to keep is denoted 
as n. A singular value decomposition of the matrix L is performed. The n largest eigenvalues 
 1 2, ,..., n   of the matrix L are found and placed in descending order. Then the set of 

eigenvectors are identified to be  1 2, ,... nv v v .  
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The resulting orthonormal POD basis of dimension n can be constructed using the information 
found from the correlation matrix  L. First, the eigenvectors of L are weighted by their 
corresponding eigenvalues and normalized according to [12] 
 

 
2

1k kv  , for k = 1, 2,..., n .  (84) 

 
Then, the POD basis set is formed according to  
 

 ,
1

( , ) ( , ),
M

k k j j
j

x y v S x y


   (85) 

 
with ,k jv being the jth component of the eigenvector kv . Solving equation (85) gives the n 'k s

which constitute the POD basis of dimension n.   
 
The governing equation is projected onto the POD basis. The projection is accomplished via a 
Galerkin type projection.  The Galerkin projection results in only a weak solution to the PDE. 
However, this weak solution with finite difference approximations of the boundary conditions 
eventually leads to a nonlinear temporal model for the temporal or POD coefficients { }k [4]. 

Projecting (1) onto the POD basis yields [4] 
 

1
( , , ) ( , ) ( ( ( , , ) ) ( , ) ( ) ( , , ) ( , ) )

Re

( ( ( ) ) ( , ) ( ) ( , ) )

k k k

k k

w t x y x y dx w t x y n x y dA x w t x y x y dx
t

F w n x y dA x F x y dx

  

 
  





     



 

  

 

 

 
 

where the first term on the right hand side is 
2

2

1
1

0

1 1 2 2

0 0

( ( , , ) ) ( , ) ( ) ( , , ) ( , ) ( , , ) ( , ))  

( , , ) ( , )   
end

a
a

k k ka
a

b

kb

w t x y n x y dA x w t x b x b dx w t x b x b dx
y y

w t a y a y dy
x

  





 
   

 




  




 

The Neumann boundary condition forces the portion of the boundary integral over b0 to bend 
along aend to be 0, i.e., 

0

( , , ) ( , ) 0
endb

end k endb
w t a y a y dy

x



 . 

The second boundary integral is decomposed as follows  

 
0

2 2
0

1
( ( ) ) ( , ) ( ) ( ( , , ) ( , ) ( ) ( , ))

2

endb

k end k end kb
F w n x y dA x w t a y a y f y a y dy  


     

This solution does not explicitly include the control inputs or boundary condition information 
into the governing equation. In order to do so an approximation of the partial derivatives is 
carried out including the control inputs and the boundary data. If h denotes the step size between 
the points on the uniform Cartesian grid used for the finite-difference solution, then we have [12] 
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1
1

( ) ( ) ( , , )
( , , ) ,bottom bottomu t x w t x b h

w t x b
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  



 

2
2

( , , ) ( ) ( )
( , , ) top topw t x b h u t x

w t x b
y h

  



 

0
0

( , , ) ( )
( , , )

w t a h y f h
w t a y

x h

 



 

 
After substitutions  ( , , )w t x y  can be approximated as a linear combination of POD modes when 

the 'k s  are solved in the following system model. Then, the temporal model for the system is 

given by [12] 

( ) , (0) oA Bu N F    


                                         (86) 

where  n   and the matrices A is n x n, B is n x 2, N and F are both vectors n x 1. 

The output equation will be simply chosen to be  

( ) ( )y t t  

In this model the dimension of the state vector   is 40 which correspond to 40 POD modes. The 
first 8 POD modes corresponding to the first 8 temporal coefficients are shown in Figure 3. The 
first model corresponds to the baseline mode, and the remaining modes to actuated modes. 
 
In Figure 4, dashed lines denote the linear combination of POD modes restricted to the boundary. 
Solid lines denote the boundary test inputs defined by  

1 2

3 3
( ) sin ( ) sin

4 2

        
   

t t
u t u t  

As can be seen in Figure 4, there is very good agreement between the boundary conditions 
specified for the full order system and the linear combination of POD modes restricted to the 
boundary. 
The goal of model reduction is to construct another nonlinear system [11][5] 

( )r r r r r r rA B u N F  


                                           (87) 
 
where   r

r
  and r n , such that the behavior of the two systems is similar for states in 

some region of the state space.  The reduced model is derived via the construction of an 
immersion/projection pair  
 

      
r r rT T TT I                            (88) 

 
where  rI  is the r r  identity matrix, resulting in the following reduced model 
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( )

( ) ( )

  





   



 


r r r

r

TAT TB u TN T TF

y t CT t
                                      (89) 

 
This is carried out by developing an empirical balanced truncation algorithm which is based on 
experimental/simulation input-output measurements of the nonlinear Galerkin model.  This is 
introduced in the next section.  
 

V.  A New Empirical Balanced Truncation 
 
Balanced model reduction requires the knowledge of the controllability and observability 
gramians. The latter are obtained by solving Lyapunov equations, which is prohibitive for large 
scale systems. For a system with n states, the controllability and observability matrices are    
symmetric matrices and therefore solving each one of them involve finding n(n+1)/2 unknowns. 
An alternative is to develop a balanced truncation algorithm based on empirical gramians, which 
are constructed solely from a single simulation using a sufficiently rich input.  The proposed 
empirical balanced truncation uses the Galerkin model with chirp signals as inputs to produce the 
outputs in the so-called Eigensystem Realization Algorithm (ERA). The latter estimates the 
system’s Markov parameters that accurately reproduce the outputs. Balanced truncation is used 
to show that model reduction is still effective on ERA produced approximate systems. A new 
method of finding empirical controllability and observability gramians for the approximated 
system is introduced. After the empirical gramians are approximately balanced, the necessary 
transformation maps are applied back to the original system. The empirically balanced 
realization is then truncated to further reduce the system model size while retaining the most 
important system dynamics. The linear empirical balanced truncation algorithm is applied to the 
Galerkin model which is nonlinear. The rationale for doing so is that linear subspace 
approximations to exact submanifolds associated with nonlinear controllability and observability 
require only standard matrix manipulations utilizing simulation/experimental data.   
 
The computation cost to solve large Lyapunov equations for the controllability and obervability 
gramians prompt us to propose a balanced truncation algorithm based on empirical gramians 
constructed from input-output data measurements. To this end, let us first introduce the l-step 
observability and q-step controllability matrices [47] 

2

1

   

 

:  

  
l

l

C

CA

O CA

CA 

 
 
 
 
 
 
 
 


,   2 -1:               q

qR B AB A B A B                               (90) 

 
which give rise to the l-step observability and q-step controllability gramians 
 

: , :ol l l cq q qW O O W R R                                            (91) 

 
As the numbers q and l approach infinity, these empirical gramians approach the true gramians 
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lim , lim
 

 ol o cq cl q
W W W W                                     (92) 

 
The goal is to find a balancing transformation matrix M that will approximately balance the 
empirical gramians, i.e.,  
 

* * 1 1ˆ ˆ: ( ) :     cq cq ol olW MW M M W M W                             (93) 

 
The matrix M can then be applied back to the original system model to produce an approximately 
balanced realization.  
 
The product of the l-step controllability and the q-step observability matrices gives a Hankel1 

matrix, denoted lqH , containing the Markov parameters , 0,1, kCA B k , of the system in the 

following way 
 

 

1

2

1 2

:



  

 
 
  
 
 
 




   


q

q

lq l q

l l l q

CB CAB CA B

CAB CA B CA B
H O R

CA B CA B CA B

  (94) 

 
for integers l and q chosen such that [47] 
 

( 1)( )( ) ( ) , 1lq l q jrank H rank H n j                                    (95) 

 
In terms of the SVD decomposition of lqH  

1 1
1 2

2

0
[ ]

0 0






   
     

   
lq

V
H U V U U

V
                                   (96) 

The balancing transformation M is constructed as  
1

2
1 1qM R V

                                                            (97) 

A straightforward computation shows  
1 1 *

1
ˆ ˆ: :     cq cq ol olW M W M M W M W                                (98) 

Balanced truncation can be realized the usual way, if r 1r    for some r  then we can partition 

1  as  

1
1

0

0 

 
    

r

r

                                                        (99) 

where   

                                                 
1 A Hankel matrix is simply a matrix that has the ith column identical to the ith row. 
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1 2 1 1 2( , , , ), ( , , , )           r r r r r ndiag diag                   (100) 

A columwise conformal partition of 1U  and 1V  

1 1[ ], [ ]  r n r r n rU U U V V V                                    (101) 

yields the immersion/projection pair  
1 1

2 2, ,
      

r q r r r r r l r r rT R V T U O T T I                      (102) 

and from which a reduced order r-dimensional model with state matrices is deduced 
   

r r r r r r rA T AT B T B C CT                     (103) 

The above construction only requires estimates of the Markov parameters 
, 0,1, , 1  kCA B k l q                                               (104) 

A basic relationship between the Markov parameters and the input and output relationship in 
discrete-time is 

0

( ) ( ) ( )




 


 y k Y u k                                                           (105) 

1(0) ,  (1) ,  (2) ,  ,  ( )     kY D Y CB Y CAB Y k CA B                           (106) 
 

The Markov parameters can be computed from a single simulation/experiment in which a 
sufficiently rich input signal is applied and the output responses are collected. In the next section, 
the Discrete Fourier Transform (DFT) is used to map time domain data into spectral densities 
from which frequency response estimates are calculated using the Eigensystem Realization 
Algorithm (ERA) [44]. 
 

VI. Eigensystem Realization Algorithm (ERA) 
 
Several frequency domain identification techniques are used in practice to identify the model 
parameters. One such method that is a well-defined frequency domain system identification is 
the Eigensystem Realization Algorithm (ERA) technique [44]. The ERA based system 
realization model is created directly from empirical data and frequency domain characteristics of 
transfer functions. This method is applied to discrete time versions of system models.  
 
The ERA and the empirical balancing method have been in many cases [48][49][50][5] to 
identify the system based upon experimental or simulated results. The workhorse of the method 
involves finding the system Markov parameters to populate a matrix that gives the impulse 
response from each input to each output at various time steps.   
 
The ERA process starts by forming the pulse response matrices Y(k). Theoretically, pulse inputs 
are sufficient to excite the system to find the approximate frequency domain transfer function. 
The impulses must be timed so that they do not all occur at the same time so the individual 
impulses can overlap and are distinct for each input channel. However, practically a single 
impulse does not have enough energy to fully excite every state [50]. Each additional pulse 
response matrix is calculated such that , ( )i jY k is the ith output at sample k resulting from a pulse 

input on the jth input channel. The dimension of each of the Markov parameter matrices is p x m 
where p is the number of system inputs and m is the number of system outputs. As k increases, 
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the size of the Hankel matrix composed of the Markov parameters increases. This matrix does 
not have to be square.   In practice, a broadband random input or a chirp is applied and estimates 
of the input autocorrelation and input/output cross-correlation are used to identify the system 
Markov parameters [44].   
 
An alternative form to (105) can be created not using the actual outputs and inputs but replacing 
the output term by the cross-correlation between the inputs and the corresponding outputs [44] 

 
0

( ) ( ) ( )




 


 yu uuR k Y R k   (107) 

where the length of the data sequence is m,  
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 
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T T
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.  (108) 

The basic process for finding the Markov parameters starts using the ratio of the power spectral 
density of the cross-correlation between the inputs and outputs and the power spectral density of 
the autocorrelation between the input signals.  
 
These power spectral densities are given by the following 
 

 
2 21 1

0 0

1 1
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  (109) 

 
The ratio of the two power spectral densities is the frequency response function and is given by 
[44] 

 
( )

( )
( )

 yu
k

uu

P k
G z

P k
.    (110) 

Then, the final step is to take the inverse Fourier transform to find the pulse response (Markov 
parameter) matrices [44] 
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  
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
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k kY Y k G z e .   (111) 

 
This system identification method can give good results even in the case where very noisy data is 
acquired. This ability lies in taking many more Markov parameters than the true system order. 
The computed Markov parameters that do not agree with the other data can effectively be filtered 
out of the frequency response function. The Hankel matrix containing the Markov parameters is 
of the following form [67]   
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   (112) 

The individual Yk’s correspond to the following sequence: 
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 1
0 1 2,  ,  ,  ,     k

kY D Y CB Y CAB Y CA B   (113) 

 
In some cases the input data for the ERA method might be provided by an experiment on a real 
system. However, in this project a unique approach of using the Galerkin model in the place of 
the real system was used to generate the empirical data. The full order system model was created 
using finite-difference methods. Recall that the control inputs were explicitly placed in the 
boundary conditions because the control inputs do not show up explicitly in the two-dimensional 
burger’s equation. However, the weak Galerkin model results in a nonlinear state space model 
that simplifies the relationship between the input and outputs.  
  
The chirp signals used for the excitation of the Galerkin model are of the following form and are 
shown in Figure 5. 

 2
1( ) sin(0.55 ) u t t  (114) 

 2
2 ( ) sin(0.60 ) u t t   (115) 

  

 
Figure 5.  Excitation Inputs for ERA Method 

  
  

VII.  Application to the Galerkin Model 
 
The empirical balanced truncation based on linear systems is applied to the Galerkin model 

( ) , (0)    


     oA Bu N F                                  (116) 

which has an equilibrium in steady state, denoted by ss . The rationale for doing so is that linear 

subspace approximations to exact submanifolds associated with nonlinear controllability and 
observability require only standard matrix manipulations utilizing simulation/experimental data 
as explained in [49]. The computational advantages of the scheme presented here carry over 
directly to the nonlinear setting. 
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The reduced order model is derived as discussed through the construction of the 
immersion/projection nonlinear system pair 
 

,    
r rT T                                                  (117) 

 
This results in the following reduced-order model 
 

( ) , (0)    


    
r r r r r r r r oA B u N T F T                              (118)       

 
where  
 

: , : , : , :   
r r r r rA TA T B TB N TN F TF  

 
If (116) has a linearization around the steady state equilibrium ss     

, (0)   


    oA B u                                   (119) 

where   
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A                          (120) 

 
( ( ) ( ) )    




u

A Bu t N F
B

u
                              (121) 

and the reduced system linearization around the steady state equilibrium ss     

, (0)   


   r r r r r oA B u T                                   (122) 

where   
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A B u t N T F
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( ( ) ( ) )    





r r r r r r

r

u

A B u t N T F
B

u
 (124) 

The linearization of both models about equilibrium ss  are related by 

,    


r rA TA T B TB  

Empirical balanced truncation applied to the 40 order Galerkin model resulted in a 14th   order 
reduced model. The first 8 temporal coefficients of the 14 order reduced model and 2000 full 
order model are plotted in Figure 6. Figure 6 shows good agreement between the temporal 
coefficients. 
 
In Figure 7, we compare the Hankel singular values of the 2000 full order linearized and reduced 
14th  order empirical model. As expected the Hankel singular values corresponding to the 
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reduced order model are smaller than the full order model, nevertheless the Figure shows that 
they are close.  In Figure 8 we compare the full order solution ( , , )w t x y  of the Burgers’ equation 

with the solution based on the 14th  order ERA model ( , , )rw t x y . The Figure shows that they 
behave similarly especially at the boundary where control is applied. 
 

 
Figure 6.  Projected and POD Model Coefficients. 

 
 
 

 
Figure 7. Comparison of Hankel Singular Values. 
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Figure 8. Full and Reduced Order Models’ Responses. 

 
VIII. A New Empirical Hankel Norm Model Reduction 

 
In this section, we develop and apply an empirical Hankel norm model reduction technique to a 
Galerkin model. The latter is obtained by projecting the governing equations of a nonlinear 
convective flow on its proper orthogonal decomposition basis.   The nonlinear convective flow is 
chosen as a prototype problem.  
 
The proposed empirical Hankel norm model reduction uses the Galerkin model with a chirp 
signal as input to produce an approximate linear model and estimates its Markov parameters that 
accurately reproduce the output. A method of finding empirical controllability and observability 
gramians for the approximated system is discussed. After the empirical gramians are 
approximately balanced, the necessary balancing transformation matrix can be applied back to 
the original system to get an approximate balanced realization. Further, Hankel optimal norm 
reduction is applied to the latter model. Hankel model reduction uses the system operator 
induced norm instead of the average system energies used in POD and balanced model reduction 
techniques. The operator norm is a more precise and appropriate measure of system modeling 
errors. Application to the nonlinear convective flow as a prototype problem shows the 
effectiveness of the proposed empirical Hankel norm model reduction, and promise for 
application to the Navier-Stokes equations since the former has a similar nonlinearity.  
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Hankel norm approximation is an optimal model reduction in the sense of the operator norm of 
the Hankel operator associated to the system [51][18][19][52][53].  This makes it particularly 
useful for model reduction since it is desirable for the error induced norm between the original 
and reduced model be small. The idea is to approximate the Hankel operator associated to the 
system by another Hankel operator with lower rank in an optimal way. The error induced norm is 
the worst case error due to the input and making it small guarantees that the input-output 
behaviors of both the original and reduced models are close for any input. In practice the 
algorithm uses a balanced state space representation [18].     
 
Hankel norm approximation provides a better error bound than balanced truncation and works 
well even when there is no Hankel singular value. However, there is no viable Hankel norm 
model reduction for nonlinear systems and we resort to constructing an approximate linear model 
from empirical data using the nonlinear Galerkin model.  
     
Recall 

( )( )( ) : ( ) ( )  
 


  A tGu t Ce Bu d y t

                                      
(125)

 
 
The Hankel operator G  can be written as 

 
0 ( )( ) ( ) , 0  


   A t

Gu t C e B u d t                               (126)                     

The Hankel operator G  maps past inputs to future outputs, and has finite rank n, that is, its 

range has finite dimension n if the state space has dimension  n [18]. The Hankel singular values 
are the singular values of G .  

The induced norm of G  is defined by 

2

2

2
( ,0]
1

: supG G
u L
u

u
 



                                                 (127) 

Hankel model reduction is concerned with finding a reduced model rG  such that its associated 

Hankel operator 
rG has rank, say r n , in other words 
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                                 (128) 

                        
We need the balanced realization for (73).   Partition the state matrices as [54] 




 11 12 1

1 2
21 22 2

ˆ ˆˆ, ,



  

 
  

    
  

 

r r

n r n r

A A B
A B C C C

A A B
                     

(129) 

and the balanced empirical gramians as 
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



11
1

12

0

0



  

 
 

    
 

r r

n r n r

                                                (130) 

The Hankel reduced order model has then state space realization [54][18] 
 

( ) ( ) ( )

( ) ( ) ( )

 
 

 
 

r r

r r

x t A x t B u t

y t C x t D u t
                                            (131) 

where  

 
1 2 * * *

1 11 12 11 1 1 1 1( ) 
     r r rA A A C UB                              (132) 

1 *
12 1 1 1( )r rB B C U

                                                         (133) 
*

1 11 1 1   r rC C UB                                                               (134) 

1  r rD U                                                                           (135) 

And 1 r  is the 1r th Hankel singular value and U is a unitary matrix such that [18] 
*

2 2 B C U                                                        (136) 
2 2

11 1     r I                                                (137) 

The upper bound in terms of the induced norm is given by 
 

 

 

2

2

2
( , )
1

1 2

: supr r
u L
u

r r n

G G Gu G u

  

  


 

  

   
                                (138) 

In the next section, this procedure is applied to the nonlinear convective flow. 
 

IX.  Application to the Prototype Nonlinear Convective Flow 
  
The empirical balanced truncation based on linear systems is applied to the Galerkin model 

( ) , (0)    


     oA Bu N F                                          (139) 

which has an equilibrium in steady state, denoted by ss . 

  
The results obtained for the first eight temporal coefficients for the full order and the 8 order 
Hankel reduced model are shown in Figure 9. The Figure shows excellent agreement between 
them.  In Figure 10, we compare the Hankel singular values of the full order linearized and 
Hankel reduced 8th order model. In Figure 11, the error between singular values of linearized 
full order and Hankel reduced models are plotted. 
  
Note that from Figure 9 the reduced order Hankel model captures the largest singular values 
which matter most for the input-output behavior and control more accurately. The larger the 
order of the Hankel reduced model the smaller the error. 
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Figure 11. Error Between Singular values. 

 

 
Figure 12. Full and Hankel Reduced Order Models Flow Responses 
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From Figure 14, for tracking purposes the controlled output is chosen to be the error signal e 
which is defined to be the difference between the reference ref  and the actual output y(t), i.e., 

 
( ): ( )   refe t t                                                            (140) 

 
The dynamics of the reduced model for tracking control represented in Figure 16 are then given 
by the state space equation 
 

1 2

11 12

21 22

( )   ( )    ( )

( )  ( )    ( )

( )  - ( )    ( )







  

  

  

   



r ref

r ref

r ref

x t A x t B B u t

y t C x t D D u t

e t C x t D f D u t

                                (141) 

 
The objective of the H  controller C is to stabilize the closed-loop system and minimize the 
effect of ref  on the error e by viewing ref  as an unknown disturbance in 2L  of unit 

2
 -

norm. From Figure 14, in terms of transfer function matrices of  P and C, the transfer matrix 
from ref  to e is given by the sensitivity function 

refeT   defined by 
1: ( )  

refe refT I PC                                                  (142) 

We compute the worst-case disturbance transmission error due to ref , i.e., 

 

2

2
1

sup
 ref

e                                                            (143) 

 
which is given by 
 

 
2

2
01

sup sup ( ) : 


 
 

 
ref ref

ref

e ee ess T j T                               (144) 

 
where ess sup denotes the essential supremum, and ( )   the maximum singular value of its 
argument. 
 
The H  control design reduces to the following optimization: Find C such that the closed-loop 
system is robustly stable and 
 

: min 



refeC

T                                            (145) 

 
The solution of (145) is textbook material. There are Riccati-based and linear matrix inequalities 
(LMIs) based techniques to solve (113) [18]. In this work, we use the LMI approach proposed in 
Matlab LMI toolbox because of its numerical robustness and stability.  
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 The  Flow speed: U∞ = 10 m.s-1 
 Airfoil chord:  20 cm  
 Reynolds number: Re ~ 135,000  
 Natural stall angle: α = 15° 

 
We describe the procedure employed to estimate the POD model parameters and states 
associated with the model using the EM algorithm [58] together with Kalman filtering [59]. We 
use the state space model 
 

1  
 

t t t t t

t t t t t

x A x B w

y C x D v
                                                                (146) 

 
 
where n

tx R  is a state vector,  d
ty R  is a measurement vector,  m

tw R  is a state noise, and 

 d
tv R  is a measurement noise. The noise processes tw  and tv  are assumed to be independent 

zero mean and unit variance Gaussian processes. Further, the noises are independent of the initial 
state 0x , which is assumed to be Gaussian distributed.  

 
The unknown system parameters  , , , t t t t tA B C D  as well as the system states tx  are estimated 

through the measurement data,  1 2, ,...,N NY y y y  obtained from surface pressure sensors. The 

methodology employed is recursive and based on the EM algorithm together with the Kalman 
filter. This is particularly useful for on-line implementation with the objective of real time 
control. The Kalman filter is discussed next. 
 

A. Model State Estimation: The Kalman Filter 
 
 The Kalman filter estimates the channel states tx  for given system parameter  , , ,  A B C D  

and measurements NY . It is described by the following equations [59]  

 

 2
| 1| 1 | 1| 1

| 1 1| 1

0|0 0

ˆ ˆ ˆ

ˆ ˆ

ˆ


   

  

  





T
t t t t t t t t t

t t t t

x Ax P C D y CAx

x Ax

x m

                      (147) 

 
where 0,1,2, , t N , and |t tP  is given by: 

 
1 1 2

| 1| 1

1 2 2 2 2
| |

2
| 1 1| 1

  
 

    

  

 

  
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T
t t t t

T T
t t t t

T
t t t t

P P A B A

P C D C B B P A B

P AP A B

                                  (148) 
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The channel parameters  , , ,  A B C D  are estimated using the EM algorithm which is 

introduced next. 
 

B. Model Parameter Estimation: The EM Algorithm 
 

The EM algorithm uses a bank of Kalman filters to yield a maximum likelihood (ML) parameter 
estimate of the Gaussian state space model.  
 
 Let 0P  denote a fixed probability measure; and  ;  P  denotes a family of probability 

measures induced by the system parameters  . If the original model is a white noise sequence, 
then  ;  P  is absolutely continuous with respect to 0P  [60]. Moreover, it can be shown 

that under 0P  we have: 

 

1
0 :  

 
t t

t t

x w
P

y v
                                              (149) 

 
The EM algorithm is an iterative scheme for computing the ML estimate of the system 
parameters  , given the data NY . Specifically, each iteration of the EM algorithm consists of two 

steps: The expectation step and the maximization step. 
 
The expectation step evaluates the conditional expectation of the log-likelihood function given 
the complete data, and is described by 
 

( , ) log |




 
     
  

l

l

l N

dP
E Y

dP
                                        (150) 

 
where l  denotes the estimated system parameters at the lth iteration. The maximization step 

finds: 

 1 arg max ,


  


 l l                                           (151) 

            
The expectation and maximization steps are repeated until the sequence of model parameters 
converge by testing 1  l l  to be less than the required accuracy. 

 
The EM algorithm is described by the following equations [58] 
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where 2 TB BB , 2  TD DD , ( )E  denotes the expectation operator. These system parameters 

 2 2ˆ ˆˆ ˆ, , ,A B C D  can be computed from the following conditional expectations [58] 

(1)
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                                 (153) 

 
where Q, R and S are given by: 

; , 1, 2,...
2

; , 1, 2,...
2

; 1, 2,... ; 1, 2,..
2

    
  
    
  
 
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 

T T
i j j i

T
i j

T
i n

e e e e
Q i j n

e e
R i j n

e e
S i m n d

                                      (154) 

 
in which ie  is the unit vector in the Euclidean space; that is 1ie  in the ith position, and 0 

elsewhere. For instance, consider the case n = m = 2, then 1
1

|


 
 
 


N
T

t t N
t

E x x Y  can be computed as: 
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(3) (3)
11 12

1 (3) (3)
1 21 22
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                           (155) 

 

where ; , 1,2
2

    
  

T
i j

ij

e e
R i j . The other terms in (155) can be computed similarly. 

The conditional expectations  (1) (2) (3) (4), , ,N N N NL L L L  can be estimated from measurements NY  as 

follows: 
 
1) Filter estimate of (1)

NL : 
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                      (156) 

 
where ( )Tr  denotes the matrix trace. In (115), (1)

tr  and (1)
tN  satisfy the following recursions: 
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2) Filter estimate of (2)
NL : 
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                           (158) 

 
Therefore, (2)

NL can be obtained from (1)
NL . 
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3) Filter estimate of (3)
NL : 
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                                 (159) 

 
In this case, (3)

tr  and (3)
tN  satisfy the following recursions: 
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4) Filter estimate of (4)

NL : 
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where (4)

tr  satisfy the following recursions: 
(4) 2 (4)

| 1 |

(4) (4)
| 1
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                            (162) 

Using the filters for ( ) ( 1, 2,3, 4)i
NL i  and the Kalman filter described earlier, the system 

parameters  , , , t t t t tA B C D  are estimated through the EM algorithm described in (155). 

Numerical results that show the applicability of the above algorithm in estimating the POD 
coefficients model parameters as well as the model states are showed below.   
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The proposed estimation algorithm was used in conjunction with 1200 samples of raw data (non-
filtered) which are used to estimate recursively the model. Figure 19 and Figure 20 show the two 
first POD coefficients. It can be seen that there is excellent agreement with the outputs of the 
proposed model and raw data. That is, once the model is in place; the raw measurement data can 
be generated using the proposed model. In Figure 21 we zoom in on the 2nd  mode.  
 

 
Figure 19. First Mode Coefficient 

 
 

Figure 20. Second Mode Coefficient 
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Figure 21. Zoom in on Second Mode Coefficient 

 
 
  

XII. Geometric Interpretation: N-Width Approximation 
 
Geometric interpretation of POD and balanced truncation in terms of optimizing the 
Kolmogorov, Gel’fand and linear n- widths of the corresponding compact operators is discussed. 
These n-widths quantify the inherent error generated in the information collecting stage of 
simulation or identification, due to lack of data and inaccurate measurements, and the 
representation error due to the loss of information in the information processing stage. 

The eigenvalues ¸i ’s of  
1* 2( )T T  (or singular values of T) defined in (13), and the Hankel 

singular values  i ’s of  
G

  have a geometric interpretation in terms of the computation of the n-

widths of compact operators T and 
G

  that are defined on Hilbert spaces 2 ([0, ))L T  and 
2 ( , 0]L  , respectively. In this section, we discuss the role of POD and balanced truncation in 

optimizing different n-widths defined in [61] (and references therein.)  
 
In model reduction we are interested in approximation by finite dimensional models, and in 
particular, n-parameter affine models such as in POD and balanced truncation. This is related to 
the Kolmogorov n-width of 2( ( ))T L   into 2 ([0, ))L T  as the optimization which characterizes the 
representation [61] 
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where nX  is an n-dimensional subspace of  2 ([0, ))L T .  

The Kolmogorov n-width measures the extent to which the space 2 ([0, ))L T  can be approximated 

by n-dimensional subspaces of 2( ( ))T L , it is a measure of the “massivity” of 2( ( ))T L  . It 

represents the minimum representation error of 2( ( ))T L  by the n-dimensional subspace nX  of 
2 ([0, ))L T . In other words, the Kolmogorov n-width quantifies the representation error due to 

inaccurate representation of the set 2( ( ))T L : It represents the loss of information in the 
information processing stage. The inverse function of  ( )

n
d   was called the metric dimension 

function by Zames in  1976, and viewed as an appropriate measure of the metric complexity of 
uncertain systems. In our case it is the dimension of the smallest subspace whose elements can 
approximate arbitrary vectors of 2( ( ))T L  to a specified tolerance. 
 
The n-width in the sense of Gel’fand, is defined as 

2

2 2
2

|| || 1,

( ( ( )); ([0, ))) inf sup || ||
n n

n

L f f L

d T L L T Tf
 

                                        (164) 

where the infimum is taken over all subspaces nL  of 2( ( ))T L of codimension at most n. If 
2 2 2

2( ( ( )); ([0, )) sup{|| || : ( ( )) }n nd T L L T f f T L L      
where nL  is a subspace of codimension at most n, then nL  is an optimal subspace for 

2 2( ( ( )); ([0, ))nd T L L T  
A subspace nL  is of codimension n if there exist n continuous linear functionals 1{ } 

n
i if  on 

2 ([0, ))L T for which 
2{ : ( ), ( ) 0, 1,2, , }    n

iL g g L h f g i n                                  (165) 

The Gel’fand n-width characterizes the experimental complexity of the information collecting 
stage using simulation or identification. It is related to the inherent error due to lack of data and 
inaccurate measurements. The inverse of the Gel’fand n-width gives the least number of 
measurements needed to reduce the modeling uncertainty to a predetermined value. 
 
The linear n-width is defined is defined by 

2
2

2 2
2

|| || 1, ( )

( ( ( )); (( ,0]) : inf sup || ||
 

  
  

   
n

n nP L

T L L T P
 

where nP  is any continuous linear operator from 2( )L  into 2([0, ))L T  of rank at most n. 

 
Remark: Note similar definitions hold for the Hankel operator range 2( [ , 0)) G L . 

The basic results of this section are the following theorems which tell us that the different n 
widths can be computed, and provide us with explicit optimal subspaces and operators. 
 
Theorem: Let the operator T be defined as above, and let { }i , { }i , { } i  be defined as above. 

Then 
2 2 2 2 2 2

1( ( ( )); (( ,0])) ( ( ( )); (( ,0])) ( ( ( )); (( ,0]))

0, 1, 2,

          
 

n
n n nd T L L d T L L T L L

n  
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Furthermore, the temporal coefficients { } i  and POD basis { } i  are optimal for the n-widths in 

the following sense: 
i) The subspace spanned by the coefficients { } i , is optimal for 1Span{ , , }  n nX , 

is optimal for 2 2( ( ( )); (( ,0])) nd T L L  . 

ii) The subspace 2
1{ ( ), , 0, 1, 2, , }         n

iL L i n  is optimal for 
2 2( ( ( )); (( , 0])) nd T L L .  

iii) The linear operator 11
,   


  n

n i ii
P

 
is optimal for 2 2( ( ( )); (( , 0]))  n T L L . 

 
A similar Theorem holds for the Hankel operator G  and is stated next 

 
Theorem: Let the operator G  be defined as above, and let { } i ,{χ }i ,{ } i  be defined as above. 

Then 
2 2 2 2

2 2

1

( ( (( ,0])); ((0, ])) ( ( (( ,0])); ((0, ]))

( ( (( ,0])); ((0, ]))
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n

d L L d L L

L L
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Furthermore, the temporal coefficients {χ }i  and POD basis { } i  are optimal for the n-widths in 

the following sense: 
 

i) The subspace spanned by the coefficients { } i , 1Span{ , , }  n nX ,  is optimal for  

               
 for 

2 2( ( (( ,0])); ((0, ]))  n Gd L L
 . 

ii) The subspace 
02

-
{χ ( ,0], χ( )χ ( ) 0, 1,2, , } 


     n

iL L i n  is optimal for 

2 2( ( (( ,0])); ((0, ]))  n
Gd L L .  

iii) The linear operator 
0

1

( )χ ( )    





n

n i i
i

Q d
 

is optimal for 

2 2( ( ( ,0]); [0, ))   n G L L . 

 
POD may fail to capture the nonlinear degrees of freedom in nonlinear PDEs, in particular for 
navier-Stokes equations with Reynolds numbers in the thousands, since it assumes that data 
belong to a linear space and therefore relies on the Euclidean distance as the metric to minimize. 
However, snapshots generated by nonlinear PDEs belong to manifolds for which the geodesics, 
when they exist, do not correspond in general to the Euclidean distance. A geodesic is a curve 
that is locally the shortest path between two points. In this next section, we propose a model 
reduction method which generalizes POD to nonlinear fluid flows corresponding to manifolds 
which have a differentiable structure at each of their points. The algorithm is applied to a 
prototype nonlinear turbulent flow governed by the Navier-Stokes equation. 
 

XIII. Nonlinear Proper Orthogonal Decomposition (POD): Auto-Associative Models  
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Nonlinear POD is inspired from auto-associative models that have been introduced as a new tool 
that deals with nonlinear data. Such models rely on successive approximations of a dataset by 
manifolds of increasing dimensions. In this paper, auto-associative models are proposed as 
candidates to generalize POD to nonlinear systems. These models are dedicated to the 
approximation of datasets by manifolds [62]. Let us introduce definitions 

 
A function :d p pF   is a d-dimensional auto-associative function if there exist d unit 
orthogonal vectors ka , called proper directions, and d continuously differentiable functions 

:k ps   , called regression functions, such that [62] 
                                            ,j

k
j ka

P s Id   for all 1 j k d                              (166)                
where ,j k is the Kronecker symbol and for each unit vector pa , we denote by ( ) ,aP a 
the linear projection from p to  . Also, for all sets E , the identity function E E  is denoted 
by EId [62]. Define 

1

1

1

( ) ( )

( )

p d p

p k

d d

a a

k

a
k d

F Id s P Id s P

Id s P


  

 

 



  


                            

(167)

 

 

 
 

The equation ( ) 0,d pF x x   defines a differentiable d-dimensional manifold of p [63]. 

Thus, the equation ( ) 0dF x   defines a space in which every point has a neighborhood which 

resembles the Euclidean space d , but in which the global structure may be more complicated. 
As an example, on a 1-dimensional manifold, every point has a neighborhood that resembles a 
line. In a 2-manifold, every point has a neighborhood that looks like a plane. 

 
Let X  be a square integrable vector function of p . X represents snapshots. For an auto-

associative function dF , consider ( )dF X   where in this context, 
2

2
  is called the residual 

error. PDE Snapshots X  are approximated by the manifold ( ) 0,d pF x x   and 
2

2
  

represents the (squared) norm of X outside the manifold. 
 
Note that such vector X  always satisfies a 0-dimensional auto-associative model with 0

pF Id


and 
2 2

2 2
X  . Similarly, X always satisfies a p-dimensional auto-associative model with 

0pF   and 
2

2
0  . In practice, it is important to find a balance between these two extreme 

cases by constructing a d-dimensional model with d p  and 
2 2

2 2
X  . 

 
For instance, in the case where the autocorrelation   of X  is of rank d, then X is located on a 

d-dimensional linear subspace defined by the equation ( ) 0d
PODF x  with 

1

( ) ( )k

d
d k

POD a
k

F x x P x a


                                                              (168) 
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where , 1, ,ka k d    are the eigenvectors of  associated to the positive eigenvalues. Equation 

(168) can be rewritten as ( ) 0dF x  , where dF is a d-dimensional auto-associative function with 

linear regression functions ( ), 1, ,ka t k d  . Moreover, we have 
2

2
0  . 

 
Since (168) is the model produced by a POD, it straightforwardly follows that POD is a special 
(linear) case of auto-associative models. In the next section, we show an algorithm to build auto-
associative models with non-necessarily linear regression functions, small dimension and small 
residual error. 
 

A. Projection Algorithm 
 
Given a unit vector pa , an index :I   is a functional measure the interest of the 
projection ( )aP X  with a non negative real number. This depends on the considered data analysis 

problem. For instance, a possible choice of I is the projected squared 2L norm 
2

( ) ( )a aI P P   . 

So, the maximization of ( )aI P X with respect to a  yields the most interesting direction for this 

given criteria [64]. 
 
Let  0, ,d p  , the projection algorithm applies the following iteratively: computation of the 

axes, projection, regression and update [64][65]. 
 
Algorithm: Define 0R X  
For 1, , :k d   

1) Determine 1arg max ( )
p

k k
x

x
a I P R 





  such that 

2
1, ( ) 0,1ja

x P x j k     

2) Compute 1( )k

k k

a
Y P R   

3) Estimate 1( ) k

k k

Y t
s t R 


  

4) Compute 1 ( )k k k kR R s Y   
 
Step 1 computes an axis orthogonal to the previous ones and maximizes a given index I . Step 2 
projects the residuals on this axis to determine the proper variables kY , and step 3 estimates of 
the regression function of kY best approximating the residuals. Finally Step 4 updates the 
residuals.  
 
In the next section, the algorithm is applied to a prototype nonlinear turbulent flow governed by 
the Navier-Stokes equation. 
 

B. Full Order System 
 
To test the algorithm, our data is a numerical finite element solution of Navier Stokes equations 
that describes the dynamics of an incompressible turbulent flow.  General Navier -Stokes 
equations are of the following form [66] 
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                                                0,t pv                                                     (169) 

1
( )

3t totv v v v vI p f                 
          (170) 

 ( )t p pc T c v T T h                                         (171) 

 
where v is the velocity,  the density, totp  the total pressure, and T the temperature of the fluid 

occupying a two- or three-dimensional region . The parameters 0   (dynamic viscosity), 

0pc   (heat capacity) and 0  (heat conductivity) characterize the properties of the fluid. The 

volume force f and the heat source h  are explicitly given. 
 
In temperature-driven flows, h  may implicitly depend on the temperature and further quantities 
describing heat release, as for example by chemical reactions. For simplicity, we assume an 
incompressible flow (i.e.   is constant), then we have: 

0v   
In this model, we consider as the primal unknowns the velocity v , the pressure totp p , and the 

temperature  T . For most parts of the discussion, the flow is assumed to be isothermal, so that 
the energy equation decouples from the momentum and continuity equations, and the 
temperature only enters through the viscosity parameter. The system is closed by imposing 
appropriate initial and boundary conditions for the flow variables  
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and corresponding ones for the temperature, where ,rigid in and out   are the rigid part, the 

inflow part and the outflow part of the boundary  , respectively. 
Assuming the isothermal case, i.e. 0 1  , the Navier Stokes system can be written as [66]: 

, 0tv v v k v p f v                                         (171) 

with the kinematic viscosity parameter 
0

k



 . In this formulation the domain   may be taken 

two or three dimensional according to the particular requirements of the simulation. 
 

C. Weak Formulation 
 

Taking the inner product of both sides of (171) with the i-th nonlinear POD mode iY  and 
utilizing Green's identities results in the weak formulation in a similar fashion as in [12] to get: 
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methodology which extracts boundary conditions in reduced order POD and finite difference 
models. For the most part, this method utilizes POD and finite difference bases in combination 
with a weak formulation of the Galerkin projection to construct models where boundary control 
input appears explicitly.    Special care is taken when POD is used for the development of 
feedback control laws. In particular, construction of a POD basis capable of spanning the 
baseline solution, as well as dynamics introduced by boundary actuation has been addressed 
using a method called split POD.   
 
Tools borrowed from the theory of operators were used to show that POD and balanced 
truncation are optimal in a precise sense. Optimality is quantified in terms of optimal 
approximations by lower rank Hilbert-Schmidt (integral) operators in Hilbert-Schmidt norms. 
The difference in the two model reduction techniques lies in the fact, that the optimizations occur 
in different integral operators defined on different 2L  spaces. However, both optimal 
approximations are posed in Hilbert operator spaces allowing for the optimal approximations to 
be computed explicitly. 
 
Model estimation and identification of the POD modes for a turbulent flow over the NACA 4412 
airfoil is developed. The model is constructed from PIV experimental measurements obtained 
from the flow control group at Syracuse University. The dynamics of the flow are captured using 
a linear stochastic state-space model. Estimation and identification algorithms solely from wing 
surface pressure measurement data are developed. These algorithms are based on combining the 
KF with the EM algorithm that estimate and identify recursively the state of the flow and its 
parameters, respectively. Numerical results are provided to evaluate the accuracy of the proposed 
algorithms.  
 
Empirical balanced truncation and Hankel norm model reduction have been considered in 
conjunction with POD as an approach for deriving reduced-order models. Like POD, both are 
based on simulation/experimental data and can be implemented via standard matrix 
computations.   Improvements to the scheme originally proposed in [5][23] have been presented 
that lead to reduced data requirements that may become significant for applications such as 
aerodynamic flow control.  Essentially, the balancing transformation is constructed via Markov 
parameters that can be identified from measurements collected in a single experiment/ 
simulation.  The approach has been applied with favorable results to nonlinear convection 
governed by the 2D Burgers’ equation, a partial differential equation in two spatial dimensions 
that possesses features comparable to the Navier-Stokes equations governing fluid flow. A H   
feedback flow controller was designed based on the empirical reduced model to achieve flow 
tracking. The closed-loop on the full order model shows good flow tracking performance. 
 
Geometric interpretation of POD and balanced truncation in terms of optimizing the 
Kolmogorov, Gel’fand and linear n-widths is discussed. These n-widths quantify the inherent 
and representation errors generated in the information collecting and processing stages in 
simulation or identification. To the best of our knowledge this is the first time that model 
reduction and metric complexity theory with the notion of n-width are related to each other in an 
explicit way. 
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A novel model reduction method which generalizes POD to nonlinear PDEs with solutions 
belonging to manifolds which have (approximately) a differentiable structure at each of their 
points. Conventional POD is widely used to reduce the order of high order models of nonlinear 
system but it fails with systems of high nonlinearity because the projection is done to a linear 
Euclidean space. Non-linear POD proposed here solves this limitation using a projection on the 
manifold constructed from the input data. In future work we plan to improve and test our 
algorithm on systems with higher nonlinearities by increasing the Reynolds numbers of turbulent 
flows.    
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