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1 Objectives

We seek to produce fast, high-order solvers for geometrically complex configurations containing dielec-
tric/magnetic penetrable scatterers, open and/or closed surfaces as well as perfect and lossy conductors.
These are configurations of fundamental importance in diverse fields, with application to (a) Electro-
magnetic compatibility (EMC), (b) Electromagnetic interference on cavity-bound electronics (EMI), (c)
Evaluation of electromagnetic response of dielectric/magnetic coated conductors, and (d) Evaluation of
scattering by modern metallic/nonmetallic aircraft structures—amongst many others.

Figure 1: Electromagnetic scattering by a perfectly conducting cubic scatterer (edge-length = 2 under plane-wave,
k = 20 normal incidence. Left: z-component of the electric field. Center and Right: x- and z-components of the
surface current.

2 Accomplishments

Over the nine-month duration of this effort we developed a variety of electromagnetic scattering solvers
whose combined use enables solution of a wide range of problems in the field of electromagnetic compat-
ibility. In particular, we 1) Developed surface integral equations for homogeneous and isotropic dielectric
bodies whose bounding surfaces can contain corners and edges, and that incorporate regularizations which
give rise to favorable eigenvalue distributions and small numbers of GMRES iterations; 2) Implemented
a fast high-order solver for dielectric-body integral equations introduced per point 1 above, for dielectric



bodies containing edges and corners, allowing for use of overlapping and non-overlapping patches; 3) De-
veloped new EM scattering solvers for open metallic surfaces for scatterers containing edges and corners;
4) Initiated a study to determine the domains of applicability of impedance boundary conditions through
comparisons with full numerical solutions for thin volumetric conductors; and 5) Produced a new Green-
function/Integral-Equation methodology for solution of problems involving two dimensional periodicity
in three-dimensional space; see e.g. Figure 2 and Section 2.3. This is the first approach ever developed
that can successfully solve bi-periodic scattering problems in three-dimensional space at and around Wood
anomaly frequencies.

Finally, the qualities of all solvers developed were demonstrated via compelling applications to config-
urations relevant to the field of electromagnetic compatibility. We feel we have successfully addressed the
central objectives laid down on our Phase I proposal. We have recently received an invitation to submit a
Phase II proposal; we believe the results of our work over the Phase I effort, which are described in what
follows, clearly demonstrate the significant potential and feasibility of the proposed methodologies.

The subsequent Phase II work will proceed to 1) Enable application of the methodologies developed
during the Phase I to multi-scale geometries containing a span of length-scales, including configurations
such as full aircraft, attachments, associated electronics, etc.; and 2) Produce a user friendly Graphical User
Interface that facilitates application of the software infrastructure to relevant engineering configurations.

Figure 2: Scattering by an infinite bi-periodic array of plates with periods equal to ten point four wavelengths:
p1 = p2 = 10.4λ. Plane wave incidence, with incidence angle θ = 45◦. Left: 21× 21 section of the infinite array and
total field (incident plus scattered) on to two coordinate planes. Right: Close-up on the total field around a set of
three plates.

2.1 Well conditioned integral equation for problems of scattering by dielectric bodies
and thin metallic plates

The problem of scattering by dielectrics is governed by Maxwell’s equations

curl curl uj + k2
ju

j = 0 in the domains Dj , j = 1, 2

for the electromagnetic fields uj , j = 1, 2 in the (bounded) scatterer D2 and the surrounding space D1,
respectively; in what follows we assume the domains D1 and D2 are separated by a bounded surface
Γ. The material properties of the regions Dj are characterized by two wave-numbers kj . The Maxwell
equations are supplemented with (1) transmission boundary conditions on the material interface Γ of the

2



Figure 3: Left. General composite, consisting of a number of penetrable regions containing dielectric/magnetic
materials of various permittivities and/or permeabilities, and partially coated by thin metallic surface coatings and/or
containing embedded metallic plates or bodies. Right. An example of such a configuration: Pendry’s negative index
composite. Manifold important applications of the proposed dielectric-metallic electromagnetic solvers exist; see
points (a) through (d) above.

form γ1
Du

1 − γ2
Du

2 = −γ1
Du

inc and γ1
Nu

1 − γ2
Nu

2 = −γ1
Nu

inc in terms of the Dirichlet γjD = n × · and

Neumann traces γjN = n× curl · for an incident field uinc, and (2) radiation conditions at infinity on u1.
The transmission problem in dielectric materials with bounded interfaces is amenable to a wider variety of
boundary integral equation formulations than is the corresponding PEC problem. Among these, integral
equations of the second kind have been obtained using subtractive cancellations of the principal parts of
hypersingular operators in the form T PV

1 − T PV
2 (where the operators Tj correspond to the wavenumbers

kj). However, these formulations become ill-conditioned for low and high-contrast dielectrics (see also
our results in Figure 4) and thus are of limited use for a range of applications that involve such material
properties (such as, e.g., narrow-band dielectric photonic crystals).

Since the availability of robust integral equation formulations throughout the range of dielectric con-
trasts is highly desirable for treatment of the types of problems under consideration, we seek to de-
sign such formulations on the basis of coercive approximations of the dielectric admittance/capacity
operators. The latter operators –reminiscent of the Dirichlet-to-Neumann acoustic operators, and de-
noted hereby as RT –are defined to map the boundary conditions of the dielectric transmission prob-
lems for the field u = (u1,u2), that is γT (u) =

(
γ1
D − γ2

D; γ1
N − γ2

N

)
(u) to the Cauchy data of u on

Γ defined as γC(u) = (γ1
Du

1, γ1
Nu

1; γ2
Du

2, γ2
Nu

2), and thus RTγT = γC . Since the electromagnetic
field u can be obtained from knowledge of its traces on Γ via the Stratton-Chu formulas in the form
uj = Cj(γjDuj , γ

j
Nu

j) = (−1)j(Mj(γ
j
Du

j)+1/k2
j Ej(γ

j
Nu

j)), where (Mja)(z) = curl
∫

ΓGkj (z−y)a(y)dσ(y)

and (Eja)(z) = curl curl
∫

ΓGkj (z−y)a(y)dσ(y), it follows that γT (C1, C2)RT = I on Γ. The main idea of

our approach in this context is to seek suitable approximations of the admittance operator RT in the form
(R̃T1 , I−R̃T1 ) —where the operator R̃T1 approximates in a certain sense the operatorRT1 γT = (γ1

D, γ
1
N )—and

seek for electromagnetic fields uj , j = 1, 2 in the form

u1 = [C1(R̃T1 )](w), u2 = [C2(I − R̃T1 )](w)

for an unknown tangential current distribution w = (w1,w2). The representation presented above for the

3



Figure 4: Left: number of GMRES iterations required by the various formulations for the nearly resonant
electromagnetic transmission problem, ω = 50, ε1 = 1, ε2 = 2, spherical geometries–Diel-CFIE-RC (red), –
Diel-CFIE-RPS (blue), – Müller’s CFIE (black); Right: Number of iterations required by each formulation
as a function of the frequency ω = 1, 1.1, . . . , 50.

fields uj , j = 1, 2 leads to boundary integral equations of the form

[γT (C1, C2)(R̃T1 , I − R̃T1 )](w) = −(γ1
Du

inc, γ1
Nu

inc). (1)

Adopting the approximation convention that R̃ ∼ R if the difference R̃−R is a compact operator, we use
the following operator in equation (1)

R̃T1 =
1

k2
1 + k2

2

(
2k2

2(k1k2T1T2 − I
4) i(k1T1 + k2T2)

ik1k2(k1T2 + k2T1) 2k2
1(k2k1T1T2 − I

4)

)
(2)

whose derivation is based on the pseudo-differential calculus. Taking into account the fact that γT (C1, C2)
is the exact inverse of RT , the choice of R̃T1 in equation (2) will yield regularized integral equations (1)
whose spectra will accumulate at 1. Thus, the operators R̃T1 can be thought of as regularizing operators,
and the ensuing integral equations (1) as dielectric CFIE-R formulations. Taking a cue from our recent
work [1] on CFIE-R formulations for the PEC case, in the lossless case when the wavenumbers kj are real
we will complexify them in the form kj → kj + iεj , εj > 0 in equation (2) in order to obtain coercive
operators R̃T1 which thus render uniquely solvable integral equations (1).

Results of our ongoing effort suggest that significant gains can result from use of our proposed regu-
larized formulations (1). Indeed, in Figure 4 we compare the number of iterations needed for a GMRES
residual of 10−4 by the classical Müller’s formulations, and the regularized formulations (1) with the electric
field operators replaced by their principal symbols in the definition of the regularizing operators R̃T1 —the
resulting formulations are denoted by Diel-CFIE-RPS—and the complexified wavenumbers—the resulting
formulations are denoted by Diel-CFIE-RC. Clearly, the Diel-CFIE-RC equations consistently produce
significant gains in numbers of iterations throughout the frequency spectrum (Figure 4 right) —about one
order of magnitude reductions compared to those required by the classical Müller formulations, even near
resonances. We anticipate that commensurate gains will be produced in the case of a variety of dielec-
tric configurations of practical interest through the use of our proposed dielectric CFIE-R formulations.
Furthermore, our methodologies for open surfaces and for singular geometries allows for a seamless incor-
poration of the dielectric CFIE-R formulations in the case where the interfaces of material discontinuities
exhibit geometric singularities and may contain lossy or lossless metallic components.
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In view of the normal and tangential singularities of surface currents for open surfaces, we seek the
scattered electric field off an open Perfect Electrically Conducting (PEC) surface Γ in the form

Es(z) = ik

∫
Γ
Gk(|z − y|)W I(y)ds(y) +

i

k
∇
∫

Γ
Gk(|z − y|)divΓ(W I)ds(y), (3)

where W is a “weight” matrix and where, denoting by J the actual surface current and letting J = W I
(I is a “regularized” bounded surface current and W carries explicitly the current singularity at the edge),
the regularized current I satisfies the EFIE equation

TW I = −n×Einc. (4)

Here n is the normal to Γ. The weighted integral operator can be written as

TW I = SW I +DW I (5)

where operators SW and DW are defined as

SW I = ikn×
∫

Γ
Gk(|x− y|)W I(y)ds(y) (6)

and

DW I = − i
k

−−→
curlΓ

∫
Γ
Gk(|x− y|)divΓ(W I)ds(y) (7)

respectively. Here, for a scalar field F defined on the surface Γ,
−−→
curlΓ denotes the operator

−−→
curlΓF =

(∇F )× n.
Let ~r(u, v) be a local coordinate chart with (u, v) ∈ (0, 1) × (0, 1) such that v = 0 correspond to an

open edge. In this case, the unknown density I can be decomposed as

I = Iu~ru + Iv~rv

where Iu and Iv are the tangential and normal components of the surface current. Given that the tangent
and normal components of the solution have singularity of O(1/

√
d) and O(

√
d) respectively, where d

denotes the distance to the edge, the choice of weight matrix

W =
1

ω

(
1 −θω2

0 ω2

)
(8)

with ω ∼
√
d, and θ = ~ru · ~rv/~ru · ~ru, that act on tangential and normal components (Iu, Iv)T of I as a

multiplication by the matrix renders Iu and Iv smooth.
Before we discuss the numerical method that is used of to solve (4), we note that once the surface

current density J is obtained as a solution of (4), the electric field can be retrieved using equation (3).
Also, if we define the electric far field E∞(x̂) as

Es(x) =
eik|x|

|x|
(E∞(x̂) +O(|x|−1)) (9)

then, one can use the expression

E∞(x) =
ik

4π
x̂×

∫
Γ
e−ikx̂·y(W I(y)× x̂)ds(y) (10)

for the electric far field computation.
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Figure 5: Electromagnetic scattering by a structure made out of an array of 5 × 5 thin metallic surfaces
containing corners and edges. (As discussed in the text, related solutions for the significantly simpler scalar
case were available previous to this work.) The edges are treated by means of the algorithm described
in Section 2.2.1, and the corners are modeled by extremely sharp rounded edges, as shown in Figure 6.
Structures of this type are ubiquitous amongst the configurations and devices that we seek to treat as part
of the present effort; compare Figure 3.

2.2 Electromagnetic solvers for open surfaces with corners

These methods build upon previous solvers, which were described as part of our STTR proposal, for scalar
scattering by open surfaces containing corners. The present solvers provide a significant generalization
to the electromagnetic case: the methods and implementations for solution electromagnetic scattering by
open surfaces containing corners is the result of work associated with the present effort.

The presence of corners in a scattering geometry results in solutions that become unbounded where
this blow-up is of different nature from that at open edges. It, thus, poses a significant challenge for the
numerical scheme described above in term of achieving high accuracy. In view of this, we adopt a strategy
where we solve “nearby” problems on smooth domains that coincide with the original scatterer except in
small neighborhoods near the corner. The success of the strategy hinges on its ability to use extremely close
approximations of the domains with corners and use of discretization that give rise to solution with limited
computational cost. Here, corners have been smoothed via a systematic blending of two arcs on either
side of the corner. In the following discussion, we describe the procedure that we adopt to smoothly round
these corners. We emphasize that the procedure is completely general and automatic: it can be applied with
ease to a general open surface, with curved edges and associated corners.

2.2.1 Numerical scheme

In this section, we present the main algorithmic components of the numerical scheme that we employ in
solving (4), which in turn reduces to accurate evaluations of the weighted integral operator TW and hence
SW and DW .

We note that the accurate evaluation of SW in (6) entails obtaining (Iu, Iv)T from I, which is quite

6



Figure 6: A unit square with smoothly rounded corners. The geometry is divided into interior, edge and
corner patches and are discretized as shown above.

straightforward. An application of the W -matrix on (Iu, Iv)T leads to integrals of the form

Sω[φ](x) =

∫
Γ

1

ω
Gk(|x− y|)φ(y)ds(y), (11)

where φ is smooth, that can then be approximated through a specialized numerical integration method.
Toward this end, we employ a high order quadrature that relies on a smooth cut-off function ηx supported
in a small neighborhood of the target point x that is also identically equal to one, i.e., ηx ≡ 1, in the
immediate neighborhood of x, to split (11) as

Sω[φ](x) =

∫
ηx 6=0

1

ω
Gk(|x− y|)ηx(y)φ(y)ds(y) +

∫
Γ

1

ω
Gk(|x− y|)(1− ηx(y))φ(y)ds(y). (12)

Clearly, the second integral in (12) can be accurately approximated using a “Weighted Clenshaw-Curtis”
quadrature of the form ∫ 1

0

1√
v
f(v)dv ≈

N∑
n=0

wnf(vn), (13)

7



where the quadrature points are given by

vn =
1

2

(
1 + cos

((
n+

1

2

)
π

N

))
and quadrature weights, wn, by

wn =
1

N

N∑′

m=0

− 4

4m2 − 1
cos

((
n+

1

2

)
mπ

N

)
where the primed sum denotes that the first term (m = 0) is halved. The first integral in (12), on the
other hand, is evaluated by changing to polar coordinates, where ρ-integrals are performed using a scaled
version of (13) and θ-integral is evaluated using regular Clenshaw-Curtis quadrature for each piecewise
smooth θ-interval.

In the evaluation of DW in (7), however, care should be taken when dealing with the term divΓ(W I) so
that the singular weight ω gets proper treatment. To this end, we use the formula for the surface divergence
in coordinates. For this, we use the fact that for a given tangential field X = Xu~ru + Xv~rv on the patch
~r(u, v), the formula for the tangential divergence reads:

divΓX =
1
√
g

[∂u(
√
gXu) + ∂v(

√
gXv)] (14)

where g = EG − F 2 is the Riemannian metric tensor, with E = ~ru · ~ru, F = ~ru · ~rv and G = ~rv · ~rv. A
straightforward application of (14) thus yields

divΓ(W I) =
1

ω

[
1

2g

(
∂ug(Iu − θω2Iv) + ∂vg ω

2Iv
)

+ ∂uI
u − ∂uθω2Iv − θω2∂uI

v + ω2∂vI
v +

1

2
∂v(ω

2)Iv
]

(15)

assuming that ω depends only on v. From the expression in (15), it follows that the integral∫
Γ
Gk(|x− y|)divΓ(W I)ds(y)

in (7) has the same form as in (11) and thus can be evaluated using the integration scheme described
above.

The last remaining element of our numerical algorithm pertains to derivative computations that arise
in (15) as well as in the surface curl differential operator in (7). As these expressions only involve partial
derivatives of smooth functions, one can use Chebyshev polynomials as spectrally accurate functional
approximations, which can then be used for finite difference approximation of the derivatives of these
functions. One can also directly differentiate the approximating Chebyshev series to obtain necessary
derivatives. In this case, the loss of accuracy near patch edges can be controlled by restricting the degree
of Chebyshev polynomials to a moderate number.

2.2.2 Preconditioned Equation

In order to solve better conditioned integral equations, we precondition equation (4) on the left by means
of the regularizing operator Tω defined by

TωK = ikn×
∫

Γ
Gk(|x− y|)WK(y)ds(y)

− i

k

−−→
curlΓ

∫
Γ
Gk(|x− y|)ω(y)divΓ(K)ds(y)

= SWK +DωK. (16)

8



More precisely, we solve
Tω ◦ TW (I) = −Tω(n×Einc) (17)

where we express the operator on the left-hand side as

Tω ◦ TW = SW ◦ SW + SW ◦ DW +Dω ◦ SW . (18)

We note that the operator Dω can be evaluated in a straightforward manner using differentiation and
integration methods described in the previous section.

2.2.3 Numerical Results

Some of our first results obtained by this methodology are displayed in Figure 6, which shows the solution
of a problem of electromagnetic scattering by a structure made out of thin metallic surfaces containing
corners and edges. Structures of this type are ubiquitous amongst the configurations and devices that we
seek to treat as part of the present effort; compare e.g. Figure 3.

2.3 Integral equations based on periodic Green’s functions

A variety of integral equations for the electromagnetic transmission and reflection problem exist, including
those arising from the Stratton-Chu representation formulas, that express the scattered fields in terms of
the physical surface currents. Integral equation formulations of the dielectric scattering problems are posed
in terms of the magnetic and electric field integral operators Kk and Tk, which map tangential fields a into
tangential fields, and are defined by

(Kka)(x) = n(x)×
∫

Γ
∇yGk(x− y)× a(y)dσ(y), (19)

and

(Tka)(x) = ikSka +
i

k
T PV
k a = ikn(x)×

∫
Γ
Gk(x− y)a(y)dσ(y)

+
i

k
n(x)×∇x

∫
Γ
Gk(x− y)divΓa(y)dσ(y), (20)

where, in the non-periodic case, Gk is the outgoing fundamental solution of the Helmholtz equation cor-

responding to the wavenumber k, Gk(x,y) = Gk(x − y) = eik|x−y|

4π|x−y| ; the hyper-singular integral in the
definition of K should be interpreted in the sense of Cauchy principal value. We denote the corresponding
periodic operators, that is, the integral operators arising from the periodic Green’s functions by the super-
script per. Integral equation formulations of periodic dielectric scattering problems assume as unknowns
the (interior) magnetic and electric currents j2 = −n×H2 and m2 = n×E2 and takes on the form ICFIE
on Γ:(

(µ2 + µ1)(2µ1)−1I + µ2µ
−1
1 K2 −Kper1 −iωε1Sper1 + iωε2S2 + i(ωµ1)−1(T PV,per

1 − T PV
2 )

iωµ1Sper1 − iωµ2S2 + i(ωε1)−1(T PV,per
1 − T PV

2 ) (ε2 + ε1)(2ε1)−1I + ε2ε
−1
1 K2 −Kper1

)

×
(

j2
m2

)
=

(
n×Hi

n×Ei

)
(21)

where the wavenumbers ki are defined as ki = ω
√
εiµi for i = 1, 2. For the case of smooth interfaces Γ,

the integral operators Ki and T PV,per
1 − T PV

2 are compact operators from H
− 1

2
div (Γ) to itself. However, the

9



operators Si are not compact on H
− 1

2
div (Γ). Nevertheless, if one views the operator on the left-hand side

of equation (21) as an operator from Hs(TM(Γ))×Hs(TM(Γ)), where Hs(TM(Γ)) denotes the classical
Sobolev space of tangent vector field on Γ, then all the operators Si, Ki, and T PV

1 − T PV
2 are compact.

The significant computational challenge associated with the numerical solution of equations (21) is
related to the efficient evaluation of the periodic Green’s function Gperk . There is an extensive literature
devoted to the issues related to the efficient evaluation of periodic Green’s function. In what follows
we present a method of solution of such integral equations based on three main elements: (1) use of
windowing/cutoff functions to approximate the infinite series representations of Gperk by truncated, rapidly
convergent sums; (2) Taylor expansions of the terms in the series representation of Gperk corresponding

to (m2d2
1 + n2d2

2)
1
2 > N that achieve a separation of the contributions of the integration points x′ from

the contributions of the target points x; (3) high-order quadrature methods based on overlapping or
non-overlapping Chebyshev patches are used to integrate the terms in the relevant integral operators
corresponding to the contributions in Gperk that arise from modes such that (m2d2

1 + n2d2
2)

1
2 ≤ N ; and (4)

accelerated evaluations based on periodic arrays of equivalent sources and FFT convolutions.

Truncated sums using windowing functions. The very slow/conditional convergence of the periodic
Green’s function has been extensively discussed in the literature and several methods to accelerate its
convergence, notably the Ewald’s method, have been proposed. We propose a novel idea for fast evaluations
of periodic Green’s functions: we use a smooth windowing function χ such that χ(t) = 1, t ≤ 1 and
χ(t) = 0, t ≥ 2 and we approximate Gperk in the following manner:

Gperk (x,x′) ≈
∑

(md1)2+(nd2)2≤4L2

χ

(
dmn
L

)
eiαnd1eiβmd2

× Gk(x1 − (x′1 + nd1), x2 − (x′2 +md2), x3 − x′3) = Gper,Lk (x,x′), (22)

where dmn = ((md1)2 +(nd2)2)
1
2 . The following result establishes the super-algebraic convergence of Gper,Lk

to Gperk :

Theorem 2.1 (Bruno, Shipman, Turc, Venakides) If k is not a Wood anomaly, that is if k2 6= α2
m + β2

n

for all (m,n) ∈ Z×Z where αm = α+ 2πm
d1
, βn = β + 2πn

d2
, then for all x 6= x′ and all integers p such that

2 ≤ p
|Gperk (x,x′)−Gper,Lk (x,x′)| ≤ CL

1
2
−p.

Figure 7 demonstrates the excellent accuracies arising from use of Theorem 2.1.

Separable variables representations of non-adjacent interactions. In order to further accelerate
the evaluation of Gper,Lk , we derive Taylor series expansions of quantities Gk(x1 − (x′1 + nd1), x2 − (x′2 +

md2), x3−x′3) for |m|, |n| > N >> 1 in terms of the small parameter (m2d2
1 +n2d2

2)−
1
2 and expressions that

involve separable variables x = (x1, x2, x3) and x′ = (x′1, x
′
2, x
′
3). To this end, we introduce the notations

rmn = ((x+m)2 + (y + n)2 + z2)
1
2 , r0

mn = (m2 + n2)
1
2 , ûmn =

(m,n)

r0
mn

and express

rmn = r0
mn(1 + a1α1 + a2α2 + a2

1 + a2
2 + a2

3) = r0
mn

(
1 +

1

2
(α1a1 + α2a2) +O

(
1

(r0
mn)2

))
= r0

mn + (x, y) · û0
mn + f, (23)

10



Figure 7: log10 of the periodic Green function errors as a function of the log10 of the number of periods L considered
in the smooth truncation of the periodic Green function, according to Theorem 2.1.

where

a1 =
x

r0
mn

, a2 =
y

r0
mn

, a3 =
z

r0
mn

, α1 =
2m

r0
mn

, α2 =
2n

r0
mn

. (24)

Using the fact that for small ε

(1 + ε)
1
2 = 1 +

∞∑
`=1

δ`ε
`

where δ1 = 1/2 and δ`+1 = − `−1/2
`+1 δ`, ` ≥ 1 we get that

f = r0
mn

∞∑
`=1

δ`(a1α1 + a2α2 + a2
1 + a2

2 + a2
3)` − 1

2
r0
mn(α1a1 + α2a2). (25)

It follows then that

eikrmn = eikr
0
mneik(x,y)·û0mneikf = eikr

0
mneik(x,y)·û0mn(1 + ikf − 1

2
k2f2 + . . .)

= eikr
0
mneik(x,y)·û0mn(1 + h). (26)

Furthermore, we have

r−1
mn = (r0

mn)−1(1 + g), g =

∞∑
`=1

γ`(a1α1 + a2α2 + a2
1 + a2

2 + a2
3)`, (27)

where γ1 = −1/2 and γ`+1 = −1/2+`
`+1 γ` and hence

eikrmn

rmn
=

eikr
0
mn

r0
mn

eik(x,y)·û0mn(1 + g + h+ gh)

=
eikr

0
mn

r0
mn

eik(x,y)·û0mn

1 +
∑

i=(i1,i2,i3)

(x, y, z)i
[|i|/2]∑
j=0

Ci,j
mn

(r0
mn)|i|−j

 (28)
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where the coefficients Ci,j
mn are of the form np1mp2

(r0mn)p1+p2
and can be computed explicitly for all m,n. For

instance, we have

C(1,0,0),0
mn = −α1

2
, C(0,1,0),0

mn = −α2

2
, C(0,0,1),0

mn = 0

C(2,0,0),0
mn = −1

2
+

3

8
α2

1, C
(0,2,0),0
mn = −1

2
+

3

8
α2

2, C
(0,0,2),0
mn = −1

2
, C(1,1,0),0

mn =
3

4
α1α2

C(2,0,0),1
mn =

ik

2
(1− α2

1/2), C(0,2,0),1
mn =

ik

2
(1− α2

2/2), C(0,0,2),1
mn =

ik

2
, C(1,1,0),1

mn =
ik

2
(1− α1α2/2).

(29)

Consequently, we obtain that

Gk(x1 − (x′1 + nd1), x2 − (x′2 +md2), x3 − x′3) =
eikdmn

4πdmn
eik(x′1−x1,x′2−x2)·umn

×

1 +
∑

(i,i′)6=(0,0)

xi′x′
i
(−1)|i|

(
i + i′

i

) |i+i′|
2∑
j=0

Ci+i′,j
mn

(dmn)|i+i′|−j


(30)

where

dmn = ((md1)2 + (nd2)2)
1
2 , umn =

(md1, nd2)

dmn
(31)

and we used the classical notation xi = xi11 x
i2
2 x

i3
3 .

Fast evaluations of the boundary layer potentials with periodic Green’s functions. Based on
the ideas developed in the previous sections, we approximate the evaluations of the single layer potential
in the following manner:∫

Γ
Gperk (x,x′)µper(x

′)ds(x′) ≈
∑

|m|,|n|<N

χ

(
dmn
L

)
eiαnd1eiβmd2

×
∫

Γ
Gk(x1 − (x′1 + nd1), x2 − (x′2 +md2), x3 − x′3)µper(x

′)ds(x′)

+
∑

N≤|m|,|n|≤2L/d1

χ

(
dmn
L

)
eiαnd1eiβmd2

eikdmn

4πdmn
e−ik(x1,x2)·umn

×
T∑

|i|,|i′|=0

I(umn, i, µper)(x1, x2, x3)i
′
(−1)|i|

(
i + i′

i

) |i+i′|
2∑
j=0

Ci+i′,j
mn

(dmn)|i+i′|−j

(32)

where the quantities I(umn, i
′, µper) are defined as

I(umn, i, µper) =

∫
Γ
eik(x′1,x

′
2)·umn(x′1, x

′
2, x
′
3)iµper(x

′)ds(x′). (33)

We obtain similar expressions for all of the other necessary boundary layer potentials in equations (21).

In that case of open surfaces, the unknown integral density µper is singular and we have µper(x) = µreg(x)
ω(x)

12



where µreg is a smooth function and for a point x ∈ Γ the weight ω(x) = (d(x, ∂Γ))
1
2 . Thus we pose the

corresponding integral equations in terms of the smooth density µreg via the ansatz above. Taking into
account the approximations (32), we solve the following integral equations:∑
|m|,|n|<N

χ

(
dmn
L

)
eiαnd1eiβmd2

∫
Γ
Gk(x1 − (x′1 + nd1), x2 − (x′2 +md2), x3 − x′3)

µreg(x
′)

ω(x′)
ds(x′)

+
∑

N≤|m|,|n|≤2L/d1

χ

(
dmn
L

)
eiαnd1eiβmd2

eikdmn

4πdmn
e−ik(x1,x2)·umn

×
T∑

|i|,|i′|=0

I(umn, i, µreg)(x1, x2, x3)i
′
(−1)|i|

(
i + i′

i

) |i+i′|
2∑
j=0

Ci+i′,j
mn

(dmn)|i+i′|−j

= − exp(ikd · x), x ∈ Γ (34)

where

I(umn, i, µreg) =

∫
Γ
eik(x′1,x

′
2)·umn(x′1, x

′
2, x
′
3)i
µreg(x

′)

ω(x′)
ds(x′). (35)

and the expressions umn, dmn and Ci,j
mn are defined in the previous Section.

In order to obtain high-order discretizations of the integral operators that involve periodic Green’s
functions we use our previously developed strategy based on overlapping patches for the cases when the
solutions of the integral equations are smooth and non-overlapping Chebyshev patches in the cases when
the solutions undergo rapid transitions in the vicinity of geometric singularities. Our approach calls for
(1) the evaluation of far-away smooth interactions — that is, contributions to the integrals related to
integration points x′ that are sufficiently separated by the target points x and (2) the evaluation of nearby
singular interactions — that is, contributions to the integrals related to integration points x′ that are close
to the target points x. In case (2), the terms Gk(x1 − (x′1 + nd1), x2 − (x′2 + md2), x3 − x′3) are singular
only for x = x′ and n = m = 0—that is the free-space Green’s function, and the singularity is resolved
with high-order by polar changes of variables and interpolation techniques. The far-away interactions
(1) in the case of the free-space Green’s function Gk are accelerated by use of equivalent sources placed
on Cartesian grids and 3D sparse FFT convolutions. These techniques extend to the case of evaluating
far-away interactions via GL,perk which we describe next.

The first step of this approach consists of partitioning a cube C of size A circumscribing the scatterer
into L3 identical cubic cells ci of size adjusted (in the sense of small enough) so that they do not admit
either inner acoustic resonances – eigenfunctions of the Laplacian with Dirichlet boundary conditions. The
main idea of the acceleration algorithm is to seek to substitute the surface “true” sources which correspond
to the discretization points contained in a certain cube ci by acoustic periodic “equivalent sources” on the
faces of ci in a manner such that the acoustic fields generated by the ci-equivalent sources approximate
to high order accuracy the fields produced by the true ci sources at all points in space non-adjacent to
ci. The precise concept of adjacency [2] results from requiring that the approximation corresponding to
a given cell ci be valid within exponentially small errors outside the concentric cube Si of triple size. At
the heart of this method lies the use of equivalent sources which consist of acoustic monopoles and dipoles
placed on three independent sets Πl

ac, each one parallel to xl = 0. For a fixed value l = 1, 2, 3, we associate

to an acoustic field u and each cell ci-equivalent sources, acoustic monopoles ξ
(m)l
i,j GL,perk (x − xli,j) and

dipoles ξ
(d)l
i,j ∂GL,perk (x− xli,j)/∂xl placed at points xli,j , l = 1, · · · ,M equiv contained within certain subsets

Πl
i which lie within the union of two circular domains concentric with and circumscribing the faces of ci,

their radius chosen according to the prescriptions in [2]. The fields ψci,true radiated by the ci-true sources

13



Scatterer Unknowns L ε εconv It/Time

Sphere 6× 16× 16 20 8.0 × 10−3 1.8 × 10−2 7/3m12sec
Sphere 6× 16× 16 30 1.4 × 10−4 1.8 × 10−4 7/7m3sec
Sphere 6× 16× 16 50 2.8 × 10−5 7/19m33sec

Sphere(T Ac) 12× 16× 16 20 2.1 × 10−3 8.2 × 10−4 19/5m38sec
Sphere(T Ac) 12× 16× 16 30 8.4 × 10−4 2.4 × 10−4 19/9m29sec
Sphere(T Ac) 12× 32× 32 50 4.9 × 10−5 19/26m10sec

Sphere(T Diel) 24× 16× 16 20 7.2 × 10−4 9.8 × 10−5 103/28m23sec
Sphere(T Diel) 24× 16× 16 30 6.3 × 10−4 8.0 × 10−6 103/31m50sec
Sphere(T Diel) 24× 32× 32 50 3.4 × 10−5 103/44m8sec

Cube 6× 16× 16 20 1.6 × 10−3 6.4 × 10−3 34/7m57sec
Cube 6× 16× 16 30 8.6 × 10−5 2.3 × 10−3 34/11m42sec
Cube 6× 16× 16 50 5.5 × 10−5 34/53m13sec

Disc 5× 16× 16 20 1.3 × 10−3 3.7 × 10−3 10/4m37sec
Disc 5× 16× 16 30 7.1 × 10−5 4.2 × 10−4 10/8m18sec

Table 1: Convergence of the solvers using GL,perk even without use of Taylor expansions.

are approximated themselves by fields ψci,eq radiated by the ci-equivalent sources

ψci,eq(x) =

1
2
Mequiv∑
j=1

(
ξ

(m)l
i,j GL,perk (x,xli,j) + ξ

(d)l
i,j

∂GL,perk (x,x
(d)l
i,j )

∂xl

)
. (36)

The parameters nt, M
equiv and the unknown monopole and dipole intensities in (36) are chosen so that the

truncated spherical wave expansions of order nt for ψci,true and ψci,eq differ in no more than O(ε) outside
Si. Based on considerations on spherical harmonics, it was required in [2] that M equiv & n2

t equivalent
sources are used for each acoustic component and the the intensities are chosen such that to minimize in
the mean-square norm the differences (ψci,eq(x) − ψci,true(x)) as x varies over a number ncoll collocation
points on ∂Si. Hence, the intensities in (36) are obtained in practice as the least-squares solution of three
overdetermined linear systems Aξ = b where A are ncoll × M equiv matrices. This strategy leads to a
computational cost of O(4L2N4/3 logN) to evaluate the boundary layer potentials involving GL,perk , where
N is the number of discretization points.

Finally, the terms in equations (33) and (34) that involve separate contributions of the target point
x from the integration point x′ are computed in the following manner: (a) for all (m,n) such that N ≤
|m|, |n| ≤ 2L the coefficients Ci,j

mn are precomputed for all multi-indices i such that |i| ≤ 2T and all
indices j such that 0 ≤ j ≤ T following the Taylor series algebra manipulations described in Section 3.1
and (b) for all multi-indices i per part (a) the integrals I(uj , i, µreg) are computed for a number J of
directions j uniformly distributed on the two-dimensional unit circle S1 and the quantities I(umn, i, µreg)
for all (m,n) such that N ≤ |m|, |n| ≤ 2L, in turn, are obtained from Fourier interpolation from the values
I(uj , i, µreg), j = 1, . . . J— the number J is typically much smaller than 4(2L−N)2. Thus, we must choose
three parameters N,L, and T in equations (34) so that we get high-order accuracy in small computational
times.

2.4 Numerical results

In this section we present several numerical results concerning scattering off of periodic arrays of scatterers.
In order to assess the accuracy of our solver, we present the energy balance, that is the energy of the incident
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wave equals the energy of the reflected wave plus the energy of the transmitted wave. The energy balance
can be expressed mathematically in terms of the Rayleigh coefficients (also called “efficiencies”), and it
takes on the following form:∑

(n,m)∈U

γn,m|B+
n,m|2 +

∑
(n,m)∈U

γn,m|B−n,m + δ0,0
n,m|2 = γ. (37)

in the acoustic case and ∑
(n,m)∈U

γn,m|B+
n,m|2 +

∑
(n,m)∈U

γn,m|B−n,m + δ0,0
n,m|2 = γ. (38)

in the electromagnetic case. We will present in our numerical tests the energy balance which is defined as

ε =

∣∣∣∑(n,m)∈U γn,m|B+
n,m|2 +

∑
(n,m)∈U γn,m|B−n,m + δ0,0

n,m|2 − γ
∣∣∣

γ
. (39)

In the case of transmission problems, the transmission quantity is a measure of the fraction of the energy
of the incident wave which is transmitted by the periodic scatterer and it is defined as:

T =

∑
(n,m)∈U γn,m|B−n,m + δ0,0

n,m|2

γ
. (40)

We present numerical results for three geometries: spheres, cubes, and discs. The first case is treated
with the overlapping method and the other two with the non-overlapping method. We present the energy
balance ε as well as the errors, evaluated by means of a resolution study, in the coefficient B−0,0 in the
sound-soft case and in T in the transmission case–we denote these errors by εconv. All linear systems were
solved using GMRES to a residual of 10−4.

We present in Table 1 the high-order nature of our solver as a function of the parameter L in the
definition of GL,perk . In all of the sound soft cases the periods are d1 = d2 = 4, we consider normal
incidence ψ = φ = 0, the wavenumber k = 0.75. In the case of the transmission problem, we take ω = 1,
ε1 = 1, ε2 = 40 and ψ = π/6, φ = 0. With regards to computational times, for comparison we note that
the implementation one of the most advanced techniques for evaluation of periodic Green’s functions [3]
(which is based on Kummer transforms, either spatial or spectral representations, supplemented by Shanks
transforms) is reported to take several milliseconds per evaluation point [4]. Thus, for a discretization
6× 16× 16 there are about 1.8× 106 evaluations of periodic Green’s functions which will require at least
1.8× 103 seconds (30 minutes) to evaluate just one matrix vector product. In contrast, as it can be seen in
Tables 1-4, our solvers require about 82 sec for a matrix vector product to obtain results with four digits
of accuracy.

In the next three tables, Tables 2-4 we present results for the cases when Taylor expansions are used.
The results concern the sound-soft case, normal incidence, d1 = d2 = 4. We conclude that reductions about
one order in magnitude in computational times can be garnered from use of Taylor expansions, while the
results are still accurate with two digits.

We present in Figure 8 the acoustic transmission coefficient as a function of the frequency ω in the case
of scattering from a periodic array of spheres with ε2 = 40 and two values of the azimuthal angle ψ = 0
(left) and ψ = π/6 (center) and a periodic array of smoothed cubes (d=0.1) (right) with normal incidence
and ε2 = 40. We note that sharp transitions in the transmission curves correspond to resonant behavior
— around ω = 0.7 for normal incidence and ω = 0.5 for the case of oblique incidence in the case of spheres
and for ω = 0.79 in the case of smoothed cubes.
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k Unknowns N L T ε εconv It/Time

1.75 6× 16× 16 20 20 2.8 × 10−2 9/3m15sec
1.75 6× 16× 16 14 20 2 5.8 × 10−3 3.5 × 10−2 10/1m20sec

3.75 6× 16× 16 80 80 1.9 × 10−3 18/51m4sec
3.75 6× 16× 16 20 40 2 1.4 × 10−2 1.3 × 10−2 18/3m41sec

4.75 6× 16× 16 80 80 1.9 × 10−3 29/54m51sec
4.75 6× 16× 16 28 80 2 5.9 × 10−3 2.0 × 10−3 29/9m59sec

Table 2: Scattering by a by-periodic array of spheres; ε and εconv denote the energy balance error and
the error in reflection/transmission evaluated by means of a convergence study. Note that use of a Taylor
expansion (indicated in the table by displaying the Taylor truncation order T = 2) significantly accelerates
the solution process.

k Unknowns N L T ε εconv It/Time

1.75 6× 16× 16 20 20 9.0 × 10−3 50/10m4sec
1.75 6× 16× 16 14 20 2 2.0 × 10−2 4.2 × 10−2 50/8m42sec

3.75 6× 16× 16 80 80 1.3 × 10−5 70/58m42sec
3.75 6× 16× 16 20 40 2 1.9 × 10−3 1.9 × 10−2 70/14m21sec

4.75 6× 16× 16 80 80 5.7 × 10−3 80/60m8sec
4.75 6× 16× 16 28 80 2 9.0 × 10−3 2.9 × 10−2 80/27m59sec

Table 3: Scattering by a by-periodic array of cubes; otherwise same as figure 2.

k Unknowns N L T ε εconv It/Time

1.75 6× 16× 16 20 20 4.0 × 10−2 11/4m47sec
1.75 6× 16× 16 14 20 2 1.2 × 10−2 4.1 × 10−2 11/3m8sec

3.75 6× 16× 16 80 80 1.4 × 10−5 17/50m56sec
3.75 6× 16× 16 20 40 2 2.0 × 10−2 2.4 × 10−2 17/5m54sec

4.75 6× 16× 16 80 80 6.5 × 10−3 20/51m8sec
4.75 6× 16× 16 28 80 2 2.3 × 10−2 4.4 × 10−2 29/10m47sec

Table 4: Scattering by a by-periodic array of plates (see Figure 2); otherwise same as figure 2.

Figure 8: Transmission coefficients as a function of the frequency ω in the case of scattering from a periodic
array of ¡spheres with ε2 = 40 and ψ = 0 (left) and ψ = π/6 (center) and from a periodic array of cubes
(right).

16



To conclude this report we return to its first image, Figure 1, which displays the dielectric transmission
coefficient as a function of the frequency ω in the case of scattering from a periodic array of spheres with
ε2 = 40 and normal incidence around the resonant frequency ω = 0.69, and the fields inside and around a
spherical element in a periodic array. Experiments such as these demonstrate the ability of the new solvers
to produce rapidly, efficiently and accurately important physical observables such as total reflection and
total transmission for challenging three dimensional photonic crystals. In view of the computational times
reported above in this text, we believe these solvers are orders of magnitude faster, for a given accuracy,
than all other methods available at present and, in fact, will enable solution of previously intractable
problems.
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