

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

SEAMLESS AND SECURE FEDERATION AMONG HIGHLY AND LOOSELY
CONNECTED INFOSPACES (INFOFED)

FLORIDA INSTITUTE FOR HUMAN & MACHINE COGNITION
(IHMC)

JULY 2011

FINAL TECHNICAL REPORT

 ROME, NY 13441 UNITED STATES AIR FORCE AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2011-174

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2011-174 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
ASHER SINCLAIR JULIE BRICHACEK, Chief
Work Unit Manager Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUL 2011
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

MAY 2007 – NOV 2010
4. TITLE AND SUBTITLE

SEAMLESS AND SECURE FEDERATION AMONG
HIGHLY AND LOOSELY CONNECTED INFOSPACES
(INFOFED)

5a. CONTRACT NUMBER
FA8750-07-2-0174

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

Niranjan Suri, Andrzej Uszok

5d. PROJECT NUMBER
558J

5e. TASK NUMBER
07

5f. WORK UNIT NUMBER
02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Florida Institute for Human & Machine Cognition (IHMC)
40 S. Alcaniz Street
Pensacola FL 32502

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RISE
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2011-174

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2011-3478
Date Cleared: 15 Jun 11

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report describes research conducted toward developing a federated approach to interconnecting multiple information spaces to
enable data interchange. We propose a set of interfaces to facilitate dynamic, runtime discovery and federation of information spaces.
We also report on integrating with the KAoS policy and domain services framework to realize policy-based control over the
federation and exchange of information. Our approach allows clients to transparently perform publish, subscribe, and query
operations across all the federated information spaces. We have integrated with three existing JBI implementations – Apollo from the
Air Force Research Laboratory, Mercury from General Dynamics and AIMS (Advanced Information Management System) from
Northrop Grumman. Both Mercury and AIMS are independent implementations that comply with the JBI architecture. Most
recently, we have integrated with Phoenix, a fully SoA (Service-oriented Architecture) based approach to information management.
As part of this effort, we identified changes that needed to be made to the Phoenix architecture and implementation to support
federation, and refactored the federation capabilities into a set of services that can be enabled on demand within Phoenix.
15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

73

19a. NAME OF RESPONSIBLE PERSON
ASHER D. SINCLAIR

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

Table of Contents

Summary ... 1

1. Introduction ... 2

2. Methods, Assumptions, and Procedures ... 2

3. Results and Discussion ... 3

3.1. Design, Architecture, and Implementation .. 4

3.1.1 Approach for CAPI-based Infospaces ... 6

3.1.2 Approach for Apollo ... 12

3.1.3 Initial Approach for Mercury .. 13

3.1.4 Evolving Approach for Phoenix ... 13

3.2 Discovery ... 16

3.3 Monitoring .. 17

3.4 Policies and Contracts ... 20

3.4.1 Technical Overview of the KAoS Services Framework 21

3.4.2 Controlling Federation ... 23

3.4.3 Contract Negotation Example ... 28

3.5 Adaptation ... 30

3.5.1 Federation Adaptation Service Components ... 33

3.5.2 Network Monitoring Using Mockets ... 37

3.5.3 State Memory Algorithm .. 38

3.6 Performance Evaluation .. 42

3.6.1 Experiments with Apollo and Federation ... 42

3.6.2 Experiments with Apollo, Phoenix, and Federation 47

3.6.3 Experiments with Phoenix and Federation .. 49

4. Conclusions ... 63

5. Recommendations .. 63

5.1 Extensions to Current Federation Capabilities ... 64

5.2 Integration with Other Systems and Frameworks .. 64

5.3 Enhancement of Transport and Dissemination Channels 65

5.4 Integration, Evaluation, and Experimentation .. 65

6. References .. 66

List of Symbols, Abbreviations, and Acronyms ... 67

ii

List of Figures

Figure 1: Architecture of a JBI-Oriented Information Management System 3
Figure 2: Example federation between Federates A, B and C .. 5
Figure 3: Federation Services inside CAPI-based infospace architecture 7
Figure 4: Federation Interfaces and Federation Service Architecture 9
Figure 5: Details of the Federation Service interfaces for CAPI based information
spaces ... 10
Figure 6: Federation query workflow ... 11
Figure 7: Federation Service components inside the Apollo Architecture 13
Figure 8: Final architecture of the Federation Service integration into Phoenix 14
Figure 9: Monitoring Service for Phoenix .. 18
Figure 10: Updating and Notification of Metrics in the Monitoring Service 20
Figure 11: KAoS Policy Services Conceptual Architecture .. 22
Figure 12: KAoS Guard – the policy decision point integrated with the Federation
Service .. 23
Figure 13: Federation Metadata GUI in KPAT ... 25
Figure 14: Contract GUI in KPAT .. 25
Figure 15: KPAT configuration for the Federation Service Policy 27
Figure 16: Policy Wizard for the definition of federation policies 28
Figure 17: Contract Example Details ... 29
Figure 18: Components and Connections Related to Federation Adaptation Service ... 35
Figure 19: UML Diagram of Classes Used in the State Memory Algorithm 40
Figure 20: Configuration to Measure Baseline Performance of Apollo 43
Figure 21: Configuration to Measure Performance of Two Federates with Apollo 43
Figure 22: Configuration to Measure Performance of Three Federates with Apollo 43
Figure 23: Configuration to Measure Latency with Baseline Apollo 44
Figure 24: Configuration to Measure Latency with Two Federates and Apollo 44
Figure 25: Publisher Performance with Apollo and Federation 45
Figure 26: Subscriber Performance with Apollo and Federation 46
Figure 27: Latency of Information Delivery with Apollo and Federation 47
Figure 28: Experimental Scenario for the Performance Evaluation: The Baseline Version
of the Tested IMS is shown in A. B shows the Configuration for the Tests with the
Federation Service .. 48
Figure 29: Comparison of Publication Time with 0 KB Payload 52
Figure 30: Comparison of Publication Time with 10 KB Payload 52
Figure 31: Comparison of Publication Time with 100 KB Payload 52
Figure 32: Comparison of Publication Rate with 0 KB Payload 53
Figure 33: Comparison of Publication Rate with 10 KB Payload 53
Figure 34: Comparison of Publication Rate with 100 KB Payload 53
Figure 35: Comparison of Subscriber Time with 0 KB Payload 54
Figure 36: Comparison of Subscriber Time with 10 KB Payload 54
Figure 37: Comparison of Subscriber Time with 100 KB Payload 55
Figure 38: Comparison of Subscription Rate with 0 KB Payload 55
Figure 39: Comparison of Subscription Rate with 10 KB Payload 56

iii

Figure 40: Comparison of Subscription Rate with 100 KB Payload 56
Figure 41: Average Latency of Objects Received by Subscribers with 0 KB Payload ... 57
Figure 42: Average Latency of Objects Received by Subscribers with 0 KB Payload ... 57
Figure 43: Average Latency of Objects Received by Subscribers with 10 KB Payload . 58
Figure 44: Average Latency of Objects Received by Subscribers with 100 KB Payload
 .. 58
Figure 45: Bandwidth Comparison (Bytes) of Baseline Phoenix and Federation 60
Figure 46: Bandwidth Comparison (Packets) of Baseline Phoenix and Federation 61
Figure 47: Performance (Time) Comparison for Publisher with Varying Channel
Capacities ... 62
Figure 48: Performance (Rate) Comparison for Publisher with Varying Channel
Capacities ... 62
Figure 49: Performance (Time) Comparison for Subscribers with Varying Channel
Capacities ... 63
Figure 50: Performance (Rate) Comparison for Subscribers with Varying Channel
Capacities ... 63

Approved For Public Release; Distribution Unlimited.

1

Summary

Network-centric warfare is a cornerstone of modern warfighting. Timely access to relevant data
and information is critical to successful mission execution in network centric warfare. Often, the
data required to support a mission is not always produced or resident within a single system, but
is distributed among multiple systems that must be dynamically interconnected to support the
overall data and information needs.

While proprietary and stove-piped information systems have slowly given way to standardized
information management architectures (such as the Joint Battlespace Infosphere (JBI)
architecture developed by the US Air Force Research Laboratory), each independent
organization and/or mission is normally associated with a separate instance of a managed
information space that operates in an independent manner. This is necessary given the different
stakeholders and administrative domains responsible for the information. However, the demands
for coordination and cooperation require interoperability and information exchange between
these independently operating information spaces.

This report describes research conducted toward developing a federated approach to
interconnecting multiple information spaces to enable data interchange. We propose a set of
interfaces to facilitate dynamic, runtime discovery and federation of information spaces. We also
report on integrating with the KAoS policy and domain services framework to realize policy-
based control over the federation and exchange of information. Our approach allows clients to
transparently perform publish, subscribe, and query operations across all the federated
information spaces. We have integrated with three existing JBI implementations – Apollo from
the Air Force Research Laboratory, Mercury from General Dynamics and AIMS (Advanced
Information Management System) from Northrop Grumman. Both Mercury and AIMS are
independent implementations that comply with the JBI architecture. Most recently, we have
integrated with Phoenix, a fully SoA (Service-oriented Architecture) based approach to
information management. As part of this effort, we identified changes that needed to be made to
the Phoenix architecture and implementation to support federation, and refactored the federation
capabilities into a set of services that can be enabled on demand within Phoenix.

We also report on discovery mechanisms that were developed and integrated to facilitate
discovery of potential federates to form a federation, a novel transport protocol based on the
Mockets communications library, and an adaptation mechanism that dynamically modifies the
behavior of the federation in order to maintain desired quality of service properties.

During the course of the project, several experiments were conducted to measure the
performance and overhead of federation, which are reported in this document. We also report on
numerous experiments conducted with the Mockets communications library in the context of the
JEFX (Joint Expeditionary Force Experiment) 2010.

As a result of this project, we have shown the feasibility of federation, as well as empirically
measured the performance of a reference implementation for federation. We have identified and
provided solutions for key requirements, such as policy-based control, discovery, transport
protocols, and adaptation capabilities.

Approved For Public Release; Distribution Unlimited.

2

1. Introduction
Information systems are a key component of any military mission and are essential to ensuring
their successful execution. Traditionally, information management was supported by stove-piped
systems that were difficult to update, modify, and integrate. In order to address this problem, the
US Air Force Research Laboratory developed the Joint Battlespace Infosphere (JBI) architecture
[1] first and started working on the Phoenix specification [2] afterwards. Both JBI and Phoenix
try to define a standard for the implementation of information management architectures that
support a publish/subscribe/query model. In addition to that, the JBI architecture standardizes the
interfaces for client applications (CAPI – the Client API) to facilitate client integration into any
JBI implementation.

This standardization enables the implementation of information management architectures that
are based on a common information management model. However, the interconnection and
information sharing between information spaces (infospaces) that may belong to different
administrative domains still remains an open issue.

Federation solves this problem by supporting the interconnection of multiple, independently
managed infospaces for information sharing. This report describes our approach to federation, in
the context of the Apollo and Mercury implementations of JBI, and then in the context of the
Phoenix services-based approach to JBI. We propose a set of interfaces and services to facilitate
dynamic, runtime discovery and federation of infospaces. We integrate with KAoS - policy and
domain services framework, to realize policy-based control over the federation and the exchange
of information. We also describe our approaches to discovery, monitoring, and adaptation. Our
approach allows clients to transparently perform publish, subscribe, and query operations across
all the federated information spaces.

2. Methods, Assumptions, and Procedures
The primary method applied to this project was a spiral design-implement-evaluate process,
which resulted in several iterations and implementations, with each implementation coming
closer to satisfying the needs of federating multiple information spaces.

The assumptions we make are that the federation capability is designed in particular for JBI-style
information management systems. The architecture and motivations for JBI are described in
detail in [3], which presents a reference model for information management. The elements of the
JBI architecture essential for the scope of federation are highlighted in Figure 1.

An Information Space is defined as one instance of a JBI based system, which facilitates
exchange of information between clients. A number of clients connect to the system, behaving as
producers and/or consumers of information.

The system includes both an Information Catalogue, that is a directory of information types
known to the system, as well as an Information Repository, which handles the actual data. The
Information Repository may optionally archive information for later retrieval using queries.
Different JBI based implementations are free to use any approach as long as they comply with
the syntax and semantics of the CAPI - the Client API. In the case of Apollo, one of AFRL’s

Approved For Public Release; Distribution Unlimited.

3

reference implementations of the JBI information management concepts, the Information
Catalogue is called the Metadata Repository (MDR), while the Information Repository is called
the Information Object Repository (IOR). Published data is represented as a Managed
Information Object (MIO). Each MIO has a corresponding data type that is registered in the
MDR, metadata in the form of an XML document, and a payload. Clients may have standing
subscriptions based on the type, with an optional predicate to match against published metadata.
If a predicate is specified, it is in the form of an XPATH expression, which can filter out
unnecessary MIOs that a client is not interested in receiving. Clients may also execute queries
that result in matching MIOs being retrieved from the IOR and returned to the client.

Figure 1: Architecture of a JBI-Oriented Information Management System

A client typically connects to one (and only one) Information Space. While it is possible to
connect to multiple information spaces, doing so places the onus on the client to discover the
information spaces and connect to each one. The client would also need to be authenticated with
multiple information spaces, which implies that all of them must have accounts for the client
(difficult when there are multiple administrative domains involved). One of the benefits of
Federation is to make the presence of multiple information spaces transparent to the clients. A
client does not need to know the network endpoints of multiple information spaces to attach to.
Each client continues to connect to one information space, but has access to all allowed
information (controlled by policy) across multiple information spaces.

3. Results and Discussion
This section presents and discusses the results of the project. The results are divided into two
distinct kinds. Firstly, we present the result of our iterative design process, and describe the
federation architecture that was developed initially for Apollo and Mercury, and then redesigned
for Phoenix. Secondly, we describe other key components of the federation capability, including
the KAoS Policy and Domain Services components, the Discovery components, the Monitoring

Approved For Public Release; Distribution Unlimited.

4

components, and the Adaptation components. Finally, we present detailed experimental results
obtained by using these implementations in specific scenarios.

3.1. Design, Architecture, and Implementation
The goal of federation architecture has been to supports seamless and secure integration of
multiple information spaces, each of which is called a federate. Seamless implies that the
architecture supports automatic discovery of and interconnection between federates. The process
of federation is transparent to clients, which still connect to their home federate as normal.
Secure implies that the federation process is not arbitrary and open. The establishment of
federation and exchange of information is controlled via policies.

One important aspect of our federation architecture is that all federates are peers. Each federate
independently manages its connection with other federates. Each federate has its own set of
policies that govern the exchange of information with other federates. This approach is logical
given that each federate could potentially be in a separate administrative domain.

Primary goal of this research effort was the development of a generic set of services (and their
interfaces) supporting federation in order to obtain a flexible architecture easily adaptable to
different IMS implementations. After examining both the legacy JBI CAPI specification and a
number of its implementations (i.e. Apollo from AFRL, Mercury from General Dynamics and
AIMS from Northrop Grumman) as well as the most recently released service-based
specification, Phoenix and its initial release, we came out with the below set of federation
services, which will be in detail described in the subsequent part of the report:

• Discovery Manager (DM) provides the discovery functionalities that are necessary to
automatically find other potential federates in the network.

• Federation Manager (FM) takes the necessary actions when new potential federates are
discovered by the DM and when connections with remote federates are terminated.

• Remote Federation Service Proxy (RFSP) responsible for interception of local
subscription, publication and queries and forwarding them to the remote federate.

• Federation Monitoring Component (FMC) implements the functionalities for monitoring
the behavior of Federation services.

• Federation Policy and Contract Service which controls federation through policies and
negotiates contracts with new federates.

• Adaptation Manager (AM) takes advantage of the application-level statistics along with
information about system and network behavior to dynamically adapt the behavior of
federation.

Approved For Public Release; Distribution Unlimited.

5

Figure 2: Example federation between Federates A, B and C

At this point, we generally describe how the functionality of federation is being handled by these
designed and developed services. For simplicity, we will consider a scenario where the
federation happens between three instances of an Information Management System (IMS), which
we will refer to as Federate A, Federate B and Federate C (Figure 2). We will also assume that
the nodes where the IMSs run are discovered with a lower level discovery-enabled
communication substrate. The specific discovery approaches supported by our Federation
implementation are described later. From the perspective of the Federation Service, we assume
that each instance (each Federate) has created a Server Socket (using a configured port on the
host system that it has been installed). This endpoint (a combination of the IP address of the host
and the port being used by the Federation Service) is advertized to the underlying discovery
capability. This discovery process then provides the endpoint address (IP address and port) for
each federate to the other, as they become available (that is, visible and reachable across a
network).

Federation Establishment
When the Federation Service is instantiated along with the other services that are part of the IMS
architecture, the first step is the registration by the Discovery Manager with the discovery and
grouping API provided by the sub-layer with such capabilities. By registering and joining a
predefined group, the IMS manifests its intention of being part of the federation. Once that

Approved For Public Release; Distribution Unlimited.

6

happens, each IMS instance is notified about the presence of the other. At this point, a handshake
phase starts. During the handshake, each potential federate opens a connection to the other and
eventually a contract negotiation occurs. Upon contract acceptance by both nodes, the federation
is officially established, and each federate creates an instance of a Remote Federation Service
Proxy. At this point existing subscriptions are exchanged by federates.

Subscription forwarding
When a client connected to Federate A issues a subscription with its local IMS, the request is
intercepted by the RFSPs for B and C which forward the received request for subscription to its
remote federates. Once Federate B and C obtain it, the subscription is stored in a remote
subscriptions table, ready to be matched against local publications.

Publication handling
When a client publishes information to the local IMS (Federate A), such publication is
intercepted by the RFSPs for B and C. In normal conditions (i.e., with no adaptations in effect),
Federate A attempts to execute the predicate matching locally, by comparing the publication type
and metadata with the remote subscriptions it may have previously stored in its remote
subscription table. Publications for which the local matching succeeds are marked as matched,
and sent to Federate B via the RFSP. Federate B receives the publication, verifies if it was
already matched (and if it was not it matches it with the local subscriptions), and forwards it to
the IMS. Finally the IMS takes care of the delivery to the correct subscriber clients.

Query handling
When a client queries a local IMS (Federate A), the query is intercepted by the RFSP for B and
C. They forward the query to the remote federates and then wait for the possible query results
from them. If they receive any results then they combine them with the local results delivered to
the client.

Federation termination
Federation lasts until at least one of the nodes dies or leaves the federation group. When the other
is notified about one of these events, it cleans up any references to the former remote federate,
including any cached remote subscriptions.

Policies and contract
All the federation operational behavior detailed above is entirely governed by policies. Before
performing any step in its execution flow, the FS verifies with the policy framework whether the
current operation is allowed, and whether there are any restrictions to be imposed.

3.1.1 Approach for CAPI-based Infospaces
Figure 3 below shows federation service components inside the CAPI-based infospace. The
shaded boxes represent new components that have been added to the original architecture for an
information space. The three major components are: a Federation Service (FS), a Federation
Connector (FC), and Transformation Components (TC). Each federate has one instance of an FS.
Each federate also has n-1 instances of FCs, where n is the number of other federates that are

Approved For Public Release; Distribution Unlimited.

7

part of the federation. That is, each FC instance handles the connection to one remote infospace.
The TCs are deployed as needed based on policy requirements.

The Federation Service (FS) handles the problem of redirection, as it manages data exchange
between the infospace and its federates. As a prerequisite for interaction with federates, the
manager of a given infosphere can configure its FS with information about other infospaces. This
can include a set of policies that specify obligations and constraints on the behavior of the FS.

Note that the FS behaves both in the role of a consumer and producer with respect to other FS
instances. In the role of a consumer, the FS will forward queries and predicates to receive remote
MIOs whereas in the role of a producer, the FS will forward advertisements and locally produced
MIOs to remote infospaces.

CAPI

CAPI

Local
Information

Space

Producer Producer

Consumer

Publisher Data
(Access Control,

Information Preprocessing,
QoS Enforcement,

Information
Transformation)

Publisher Control
(Registration,

Advertisement,
Feedback, RFIs)

Broker
(Consumer Data)

Consumer Control
(Registration,

Subscription, Search
and Query
Requests)

Transformation
Components

(Policy-based)

Quality of Service
Management

Federation Service

Federation
Connector

Federation
Connector

Consumer

Federated
Infospace

Federated
Infospace

Figure 3: Federation Services inside CAPI-based infospace architecture

After examining the JBI CAPI architecture and its different implementations, Apollo from AFRL
and Mercury from General Dynamics, we developed the following five key interfaces:
IMDService, InfoObjectReceptor, QueryReceptor, PredicateEvaluator, and AdaptationOracle.
These interfaces are implemented by various classes as described below. Figure 4 and Figure 5
below show the important components inside the Federation Service.

Approved For Public Release; Distribution Unlimited.

8

The IMDService supports all of the operations that one federate may want to execute on another
federate. It is implemented by the Federation Service (FS) and is invoked by the local
implementation of the information management system (IMS) – for example, Apollo. Each
remote federate is represented by an instance of a Remote Federation Service Proxy (RFSP),
which also implements the IMDService interface. Each proxy contains an instance of a
Federation Connector (FC) and an instance of a Remote Request Handler (RRH), both of which
also implement the same interface. The FC handles the network communication with the remote
federate. The RRH receives incoming requests from the remote federate and executes them on
the local IMS.

Consider the example of handling a new publication from a client. This results in the local
information space invoking newPublication() on the FS. The FS invokes newPublication() on
each of the active RFSP. If allowed by policy, and if the publication matches a remote
subscription, the RFSP invokes newPublication() on the FC, which serializes and transmits the
published object to the remote federate. The RFSP therefore acts as a Policy Enforcement Point
(PEP). On the remote side, the FC receives the object and passes it to the RRH, using the
newPublication() method again. The RRH on the remote side then injects the published object
into the remote information space, where it is delivered to any relevant clients. Information
objects are delivered via the InfoObjectReceptor interface, which is implemented by a
modification made to the remote information space implementation. The process is inverted
when a client of a remote federated publishes an information object that is received by the local
federate.

In the case of a remote federate invoking a query, the query is executed by invoking the local
IMS via the QueryReceptor interface. While not shown in the figure, the PredicateEvaluator
interface is used when a predicate for a remote subscription needs to be evaluated. This is
invoked by the RFSP, when a new publication is received, in the cases where a remote
subscription has a predicate.

Approved For Public Release; Distribution Unlimited.

9

Figure 4: Federation Interfaces and Federation Service Architecture

The other major components shown in the figure are the Discovery Manager (DM) and the
Federation Manager (FM). The DM handles the discovery of remote federates using two options
– one based on the Group Manager and the other based on the XLayer cross-layer substrate. The
XLayer substrate also provides a monitoring service that maintains detailed statistics and trends
regarding the behavior of the network as well as the federation. For example, statistics such as
CPU load, bandwidth utilized per connection to each remote federate, and the hit rate of remote
predicates.

The final important component in the architecture is the Adaptation Manager (AM) and the
AdaptationOracle interface. The AM automatically and dynamically changes the behavior of the
federation to adapt to changing runtime conditions. The other components in the FS consult the
AM via the AdaptationOracle interface.

Approved For Public Release; Distribution Unlimited.

10

Figure 5: Details of the Federation Service interfaces for CAPI based information spaces

Federation Query
Queries are first satisfied using the local IMS. However if the federation was established then
queries are forwarded to all federates allowed by policies. The remote federate attempts to report
expected number of query results first to the querying federate and then actual queries. The
remote query results are stored and used when the local results are exhausted. If there are no
remote query results, the system times out after waiting for a configured length of time. Remote
results can be archived locally in order to serve subsequent queries from local cache, dependent
on policy settings. The federation query mechanism ensures that MIOs are not replicated when
reporting remote results. Because of the distributed nature of the federation queries and the
uncertainty of federate response times, we’ve introduced a default wait time for federate results.
Clients can use a query sequence attribute to specify its specific timeout:
FederationQueryTimeOut (default 5000 ms). Waiting for the whole timeout period is not
required if:

• The query is not sent to any federate (because there are not federates due to prevention by
policy),

• The query sent to all federates reports 0 results,
• The federates already returned the number of results they originally reported,

Approved For Public Release; Distribution Unlimited.

11

This information is sent to Query Receptor, so it interrupts its wait if no query results are
expected.

Figure 6: Federation query workflow

The query workflow presented on Figure 6 begins when the client issues the query. The query it
sent to the local IMS query Service (step 1). This service has been modified and includes the
Query Receptor. Thus the query is sent both to the local IMS (step 2) and to the Federation
Service (step 3). Next the query is sent to the Remote Federation Service Proxy (step 4), which
consults the policy how to handle the query and next to the Federation Connector (step 5). The
connector forwards the query to the remote federate (step 6). The remote Federation Connector
sends the query to the Remote Federation Service Proxy (step 7) which issues the query to the
local IMS (step 8 and 9). The local IMS first reports the number of results for the query (step 10)
to the federation Query Receptor, which forwards it through the Federation Connector (step 11)
to the original federate (step 12). The results are similarly forwarded to the original federate
(steps 13, 14, 15 and 16) The Federation Connector consults the policy how to handle the query
results. The original federate combines the remote results with the local results (steps 17, and 18)
and reports them to the client (step 19 and 20).

Interoperable InfoObject
Each implementation of the Infosphere can implement CAPI InfoObject differently. Thus we
have designed InfoFedInfoObject to be a common denominator between incompatible Infosphere
InfoObjects. It is used when objects are published and in query results are passed between
federate with incompatible representation. The usage of InfoFedInfoObject introduces overhead
for federation communication because of the need for double translation. In order to avoid
unnecessary translation federates, when connecting, exchange namespaces of the InfoObject
implementation. The InfoFedInfoObject is employed in the federation between two federates
only when the classes differ.

Approved For Public Release; Distribution Unlimited.

12

Generalization of Federation Integration with Infospheres
Our experience in integrating with Apollo and Mercury has helped us determine what extension
elements would be needed for other implementations. These integration components have to be
introduced into the original CAPI-based infospace implementation in order to integrate
Federation Service.

• Subscription Receptor is a component responsible for local publication of remote
InfoObject. It receives the object from Federation Service through the call to its
newObject method. If the subscription id matching this object is provided, the federate
services are being used directly. If no subscription id is returned, it uses the local broker
to locate subscribers.

• Query Receptor is responsible for receiving remote queries, processing them locally, and
sending the query results back to the remote federate. It implements startQuery and
terminateQuery methods. It calls local RepositoryService to execute the query on the
local Archive.

• Predicate Matcher is used by the federation service to perform subscription matching on
remote subscriptions. It needs to implement the evaluate method. It has to deal with the
federate-specific representation of the predicate.

• InfoObject Mapper is responsible for constructing local representation of the InfoObject
based on the InfoFedInfoObject received from the remote federate. It needs to fill up
specific federate fields of the extended InfoObject with application data.

• Policy Service Container encapsulates the generic Federation Policy Service
implementation. It makes the policy service available to the Federation Service. It needs
to configure Policy Service using the local federate environment.

• Federation Service Container creates all the federation integration components and
initializes them in the local infosphere. It also creates the generic Federation Service and
Configures access to the federation properties needed by the Federation Service.

The actual bulk of the federation functionality has been developed as a generic functionality
which can be integrated with any CAPI based infospace by developing the above listed
integration components. The two subsequent sections will describe how theses integration
components have been develop for Apollo and Mercury.

3.1.2 Approach for Apollo
The Federation Service for Apollo (Figure 7) is packaged as another MBean and has an
associated helper class. It imitates other Apollo services which also are implemented as MBeans.
It implements the generic Federation Service interfaces. It uses native Apollo Services to publish
MIOs, get subscriptions and submit queries. The modified Apollo classes calling the Federation
Service MBean are deployed as a patch to the original Apollo source code base. They implement
the integration components.

Approved For Public Release; Distribution Unlimited.

13

Figure 7: Federation Service components inside the Apollo Architecture

3.1.3 Initial Approach for Mercury
To develop the integration components the MercuryFederationService Component was created.
It is installable component in OpenWings used by Mercury. It exports the generic
FederationService interface. It defines MercuryDisseminator interface – implemented by
BrConnectionManager. The integration also includes MercurySubscriptionReceptor to receive
and disseminate remote MIOs. The Synchronous (RMI) Connector has been generated for
MercuryFederationService Interface. InstallableComponentDescriptorPolicy has been created as
well as an necessary Java Security Policy. Finally BrConnectionManager,
BrSubscribeSequenceManager, BrPublishSequenceManager and InstallableComponentDescri-
ptorPolicy have been modified. The Federation Query has not been integrated with Mercury.
Additionally we developed GUI to show Federation-related Status Information for Mercury.

3.1.4 Evolving Approach for Phoenix
Following the services-based approach of Phoenix, the federation capability is realized through a
set of services that work in conjunction with each other and the original Phoenix services. Four
possible approaches to the integration have been designed and prototyped:

• Wrapping Approach; it has a single, integrated, Federation Service Component which
appears as a single service to Phoenix. It ensures that all aspects of Federation are
transparent to Phoenix. The Federation Service Component internals is the CAPI

Approved For Public Release; Distribution Unlimited.

14

originated federation services with translation mechanism to Phoenix specific datatypes.
The component implements federation discovery, contracts, policies and adaptation
mechanisms.

• The Phoenix Services Approach extends necessary Phoenix services to support
Federation. The original Phoenix services modified include Broker, Dissemination
Service, Query Service, and Discovery Service. It provides two versions of each Phoenix
service. The original version and the federation-capable version. The run-time
configuration allows switching between versions.

• The Service Composition Approach which dynamically instantiates and injects federation
services into Phoenix. This process is managed via Service Orchestration and Workflows
(e.g., BPEL)

• The Multiple (Native) Phoenix Services Approach; federation capabilities are realized as
a set of Phoenix-level Services (Figure 8). This is the final approach. The architecture of
this approach best matches the Phoenix services architecture. It allows selectively
creating multiple instances of chosen federation services either for load-balancing or
redundancy purposes. In this approach, the native Phoenix channel mechanism has also
been adopted as the primary communication channel between federates, replacing direct
TCP and Mocket connections.

Figure 8: Final architecture of the Federation Service integration into Phoenix

Federation Manager Service
Once potential new federates are identified by the Discovery Manager, the Federation Manager
(FM) Service is responsible for setting up the federation across the newly discovered entities. In
particular the FM communicates with the new federates, negotiates contracts and informs the

Approved For Public Release; Distribution Unlimited.

15

other federation services about the new federates. The FM is also responsible for handling
disconnections and termination of federation.

Federation Information Broker
Information brokering is one of the fundamental services performed by Phoenix. Brokering
involves examining new, incoming information that has been published and matching it against
active subscriptions from clients. Any matching information is then forwarded to the appropriate
clients through the Dissemination Service. The Federation Information Brokering Service (FIBS)
extends information brokering to handle federates. It receives subscription registrations from the
Subscription Service and forwards them to the federates. It also receives the local publications
from the Submission Service, brokers them locally on the behalf of the remote federates, and
forwards them to appropriate federates. In particular, it forwards them to remote Federation
Dissemination services (see below).

Federation Dissemination Service
Dissemination is the post-processing step that follows brokering and involves transmitting
matched information to the clients. The Dissemination Service normally receives matched data
from the Information Brokering Service. When federation is involved, the Federation
Dissemination Service (FDS) is responsible for receiving matched information from remote
federates that is destined to local clients. In most cases, when the FDS receives forwarded
publications from remote federates, they have already been matched for the local clients (by the
remote Federation Information Broker). In such cases, it uses local Dissemination Service to
transmit the data to the clients. Otherwise, it uses the local Information Broker to publish the
information locally.

Federation Query Service
Querying for archived information compliments publish and subscribe as the third core operation
provided by Phoenix in the context of information management. Query differs from subscribe in
being able to retrieve previously published and stored data. The query service permits
information retrieval from the client's data stores and supports synchronous and asynchronous
query execution. Data stores are managed by the Repository Service and they could be of two
different kinds: repositories and archives. Repositories are low-latency high-access data stores
that should support higher data read and write rates. Archives are expected to store much more
data than repositories, but with a lower data access rate.

The Federation Query Service (FQS) extends the query capability to remote federates. It receives
local queries and sends them for processing from both the remote federates and the local Query
Service, collects the results, and returns them to the client. One of the assumptions made by the
FQS is that federates do not have duplicated data, which simplifies the distributed query
problem. The FQS may locally cache data that results from a remote query, thereby improving
performance for repeated queries. The nature of the queries, as well as the behavior of the FQS,
can be controlled via policy. For example, a query by a coalition partner being executed against a
US database may be modified in order to limit the scope and nature of the query. This control is
independent from the ability to control the individual objects that are a result of the query.

Approved For Public Release; Distribution Unlimited.

16

3.2 Discovery
Discovery refers to the process through which a node becomes aware of other nodes and the
services they provide. Nodes make use of the discovery mechanism to register services and
advertise the availability of computational resources through the dissemination of messages
across the network.

Because of the lack of a fixed infrastructure and the presence of non-fixed nodes that
characterize tactical networks, discovery is often accomplished by the broadcasting of packets.
The most simplistic form of broadcasting, called flooding, typically causes unproductive and
harmful bandwidth congestion as each node retransmits each received packet exactly once.

The initial approach used by Federation relied on the Group Manager, a component of the Agile
Computing Middleware that supports peer-to-peer node and resource discovery [4] [5].
Subsequently, discovery was supported by the XLayer Adaptive Discovery and Group Service.

The approach that the XLayer offers is a hybrid discovery mechanism that is capable of self-
adapting to different network topologies and traffic scenarios. This self-adapting mechanism
monitors the network at different levels to make use of a broadcasting algorithm that is more
suitable for a set of localized network conditions. The main goal of this mechanism is to reduce
the number of retransmissions for broadcast packets while attempting to maintain the same
delivery rate of more simplistic broadcast techniques that are known to cause undesired
bandwidth congestion.

This adaptive mechanism makes use of different broadcasting algorithms that are known to
perform better under certain network conditions. Based on the characteristics of the current
network topology (i.e. sparse versus dense), the dissemination service would activate a broadcast
algorithm that is more suitable for the given network topology and traffic conditions, reducing
the number of retransmissions, and improving the effectiveness of the broadcasting algorithm
and the overall performance of the dissemination mechanism.

Additionally XLayer offers a Grouping Service. By taking advantage of the adaptive
dissemination described above nodes can permanently advertise group membership and perform
peer searches within a certain scope.

The adaptive discovery using efficient broadcasting offered by XLayer is now being redesigned
and reimplemented within VIA (Virtual Interface Approach to Cross-Layer Communications).
VIA is a replacement implementation of XLayer that enables applications to better adapt and
leverage the characteristics of the dynamic communication environment, and it also enables the
underlying communications infrastructure to better support application requirements and
constraints. VIA operates at the data link level: it creates a virtual network interface that
applications can use to manage traffic over multiple physical network interfaces.

Discovery, Grouping and Federation
During the Federation establishment phase, the Discovery Manager component that runs within
the Federation core set of services registers with the underlying XLayer for discovery and

Approved For Public Release; Distribution Unlimited.

17

grouping, through the Java XLayer Proxy. Then a predefined group for federation is created.
Any IMS that joins such group manifests its desire of becoming part of the Federation.

The discovery controller in XLayer notifies federates about the presence of other potential
federates, providing an endpoint –typically an IP and a port- where to reach each of them. This
notification triggers a handshake phase between federates. Once this phase is completed the
Federation is officially established.

If one of the nodes involved in the federation dies or leaves the federation group the XLayer
notifies the other peers almost instantly. This way when a federate is disconnected or leaves the
network all the references to it can be cleaned up by the other federates so that they will no
longer attempt to send information it.

3.3 Monitoring
The Monitoring Service [6] was initially developed for Apollo, and was more recently migrated
to the Phoenix architecture. It was designed to provide monitoring capabilities for the Federation
environment, for the QoS-Enabled Dissemination set of services and in general, for any service
within the architecture that may want to take advantage of it.

The Monitoring Service operates as a high-level interface for the monitoring functionalities of
storing time-series containing sets of values for each desired metric and providing real-time
statistics exposed by the XLayer [7] substrate.

The monitoring API includes two different sets of functionalities: the first set manages the
registration of new metrics provided by monitoring components and enables the update of
existing metrics. The second set of operations allows other services to retrieve statistics about the
currently monitored metrics, either by polling or via the subscription mechanism.

The Monitoring Service takes care of interacting with the XLayer substrate that supports the
metric storage and retrieval at a lower level. In addition XLayer incorporates a set of built-in
system related metrics (e.g., CPU and memory utilization and network traffic per interface).
Figure 9 shows the architecture of the Monitoring Service highlighting how it is placed into the
IM services.

The next paragraphs describe the Monitoring Service in more detail as a service in the context of
Phoenix. The functionalities that were initially developed for Apollo are a subset of the ones
presented below. Due to the distributed nature of Phoenix we had to extend and improve the
monitoring architecture in order to best fit the Phoenix environment.

Approved For Public Release; Distribution Unlimited.

18

Figure 9: Monitoring Service for Phoenix

Monitoring Service for Phoenix
The Monitoring Service for Phoenix provides monitoring capabilities to the entire architecture.
In addition to the set of services that compose the Federation architecture, other services within
Phoenix may take advantage of this service to store and retrieve values for metrics that need to
be monitored.

Collecting metric information: Monitoring Components
One of the key aspects of the Monitoring Service is its extensibility and flexibility. Other
services that are part of the Information Management System may define their own Monitoring
Components that can be dynamically plugged-in to the main Monitoring Service. Monitoring
Components define customized metrics they wish to monitor, registering them with the
Monitoring Service and specifying themselves as providers. Once a metric is registered the
Monitoring Service returns (and stores) a reference to the related Metric Recorder. Metric
Recorders expose the API to update the values for the metrics to which they are related.
Collecting metric information: Remote Monitoring Components for Phoenix
Given the distributed nature of Phoenix, with services potentially sitting on different nodes, the
Monitoring Components that are plugged in the Monitoring Service must provide remote
monitoring capabilities. For this reason, in addition to the regular Monitoring Components we
developed Remote Monitoring Components. Their API enables dynamic remote registration,
deregistration and update of metrics in a completely transparent way to services that wish to use

Approved For Public Release; Distribution Unlimited.

19

monitoring functionalities. Upon registration of a Remote Monitoring Component with the
central Monitoring Service via the corresponding stub, a related Remote Monitoring Component
Receptor is created. The role of the Receptor is to handle the interaction with the Metric
Recorders mentioned above while receiving metric information and control messages from the
associated remote component. The communication between the Remote Monitoring Components
can be done using any protocol. For simplicity the default implementation uses TCP, but it
would be easy to switch to Mockets or even to Phoenix’s channels.

Accessing metric statistics
The statistics collected and aggregated by the Monitoring Service can be accessed either by
polling or using a subscription mechanism, both exposed by the service (and service stub)
interface. The polling API supports the listing of all the available metrics at the time of the
invocation and for each of the metrics the retrieval of the aggregated statistics, i.e. last value,
average value, variance and trend. The subscription API (currently working both locally as well
as remotely via RMI) provides two different ways of subscribing. Persistent subscriptions enable
subscribers to be notified every time metrics they are interested in are updated. On the other
hand, one-time subscriptions with threshold are triggered the first time the related metrics are
updated exceeding the predefined range of values.

Configurable Monitoring Component and Phoenix events
To better integrate the Monitoring Service inside the Phoenix architecture and to fully take ad-
vantage of the capabilities offered by the framework, the Monitoring Service was extended to
include event notification capabilities.

Specifically, the latest version of the Monitoring Service can be configured to monitor a
predefined set of metrics of interest. When the service starts up, a properties file is read to extract
the configuration parameters for such metrics and the needed Metric Recorders are instantiated.
At the same time a Phoenix Subscription Proxy is created: its role is acting as a proxy between
the native subscription support provided by the Monitoring Service and the Event Notification
Service available in Phoenix. In particular, the Phoenix Subscription Proxy issues a set of
subscriptions with thresholds and registers itself as the recipient for the callbacks for such
subscriptions. Every time one of the observed metrics falls outside the specified range the proxy
is notified. Notifications cause the triggering of a Metric Updated Event via the Event
Notification Service; hence any service interested in such events will be eventually notified.
Figure 10 highlights the components that support these capabilities.

Some metrics, because of their nature, may not be known at configuration time. Client-related
metrics are a good example: they only live as long as the corresponding client is alive, i.e.
connected to Phoenix. In order to support this, the Configurable Monitoring Component as well
as the Phoenix Subscription Proxy allows for wildcards in the metric configuration file.
Therefore, the Phoenix Subscription Proxy will be notified of relevant metrics regardless of the
specific client identifications.

Approved For Public Release; Distribution Unlimited.

20

Figure 10: Updating and Notification of Metrics in the Monitoring Service

Monitoring Service and Federation
As any other service that wishes to use the monitoring functionalities, the Federation code
implements its own Federation Monitoring Component that exposes all the functionalities for
monitoring the behavior of the services that are part of Federation. The Federation Monitoring
Component registers with the underlying Monitoring Service as a provider for application-level
statistics about the performance of the local IMS (e.g., number of info objects published per
second, predicate matching rate per subscription, etc.). The Adaptation Manager can then take
advantage of the application-level statistics along with information about system and network
behavior to dynamically adapt the behavior of federation.

3.4 Policies and Contracts
The key to coordinated operation of federated infospheres is a comprehensive, semantically-rich,
and enforceable service agreement. The privileges and obligations of each infosphere within the
federation must be established and monitored for compliance at all times. The service agreement
binds all parties to act according to the constraints accepted when the federation was formed.
This approach is necessary to ensure the proper flow of information through the federation. The
KAoS based Federation Policy and Contract Service is used by the Federation Service to create
and enforce federation contracts.

This service has been integrated with the Federation Service for Apollo. It has not yet been
ported to Phoenix Federation Services. The primary reason for this was that Phoenix was still

Approved For Public Release; Distribution Unlimited.

21

undergoing development during the course of the Federation project effort. Therefore, given the
timeframe allowed, our effort was focused on developing and updating basic federation services
to the new version of Phoenix, and did not allow us to complete porting the policy and contract
mechanism.

3.4.1 Technical Overview of the KAoS Services Framework
KAoS, a set of platform-independent services, enables people to define policies ensuring
adequate security, configuration, predictability, and controllability of distributed systems,
including traditional distributed platforms (e.g., CORBA, Web Services, Grid Services),
software agent frameworks (e.g., NOMADS, Cougaar), and multi-robot configurations. KAoS
Domain Services provide the capability for groups of software components, people, resources,
roles, groups, and other entities to be semantically described and structured into organizations of
domains and subdomains to facilitate collaboration and external policy administration. KAoS
Policy Services allow for the specification, management, conflict resolution, and enforcement of
policies within domains. KAoS policies distinguish between authorizations (i.e., constraints that
permit or forbid some action by an actor or group of actors in some context) and obligations
(i.e., constraints that require some action to be performed when a state- or event-based trigger
occurs, or else serve to waive such a requirement).

Policies are represented in ontologies, not rules. The use of ontologies, encoded in OWL (Web
Ontology Language, http://www.w3.org/TR/owl-features/), to represent policies enables
reasoning about the controlled environment, about policy relations and disclosure, policy
conflict resolution, as well as about domain structure and concepts. KAoS reasoning methods
exploit description-logic-based subsumption and instance classification algorithms and, if
necessary, controlled extensions to description logic (e.g., role-value maps).

KAoS Architecture. Two important requirements for the KAoS architecture have been
modularity and extensibility. These requirements are supported through a framework with well-
defined interfaces that can be extended, if necessary, with the components required to support
application-specific policies. The basic elements of the KAoS architecture are shown in Figure
11; its three layers of functionality correspond to three different policy representations:

http://www.w3.org/TR/owl-features/

Approved For Public Release; Distribution Unlimited.

22

Figure 11: KAoS Policy Services Conceptual Architecture

Human Interface layer: This layer uses a hypertext-like graphical interface for policy
specification in the form of natural English sentences. This capability, called KPAT (KAoS
Policy Administration Tool), hides the complexity of OWL from users, and provides the ability
to analyze, monitor, and manage ontologies and policies. Further simplification of the policy
specification task is possible through Policy Templates and Wizards. The vocabulary for
policies is automatically provided from the relevant ontologies, consisting of highly-reusable
core concepts augmented by application-specific ones. Unlike most other policy frameworks,
changes of any kind can be made efficiently at runtime.

Policy Management layer: Within this layer, OWL is used to encode and manage policy-related
information. The Distributed Directory Service (DDS) encapsulates a set of OWL reasoning
mechanisms.

Policy Monitoring and Enforcement layer: KAoS automatically “compiles” OWL policies to an
efficient format that can be used for monitoring and enforcement. This representation provides
the grounding for abstract ontology terms, connecting them to the instances in the runtime
environment and to other policy-related information.

Approved For Public Release; Distribution Unlimited.

23

Figure 12: KAoS Guard – the policy decision point integrated with the Federation Service

3.4.2 Controlling Federation
The FS on each federate is integrated with the KAoS Guard software component (Figure 12),
which stores policies controlling establishment, lifecycle, information exchange and adaptation
of the federations established by this federate.

The Guard interface has been customize for the federation functions with methods allowing
checking authorization of different federation actions.

public interface FederationPolicyService
{
 public void registerFederate (String federateName, String federationName);
 public void registerRemoteFederate (String federateName);

 public void deregisterRemoteFederate (String federateName);
 public void setFederateProperty (String federateName, String propertyName, String properyValue,

String valueDescription);
 public boolean authorizeNewFederateConnection (String remoteFederateName);

 //--------------------------------

Approved For Public Release; Distribution Unlimited.

24

 // Methods dealing with authorization and modification of federation subscriptions
 //--------------------------------
 public Object authorizeForwardingOfSubscription (String remoteFederateName, Object infoObjectType,

String infoObjectTypeVersion, Object subscriptionPredicate);
public Object authorizeAcceptingOfRemoteSubscription (String remoteFederateName, Object infoObjectType,

String infoObjectTypeVersion, Object subscriptionPredicate);

 //--------------------------------
 // Methods dealing with authorization and modification of federation publishing
 //--------------------------------
 public Object authorizeForwardingOfInfoObject (String remoteFederateName, Object infoObjectType,

String infoObjectTypeVersion, Object publishedEntity);
 public Object authorizeAcceptingOfRemoteInfoObject (String remoteFederateName, Object infoObjectType,

String infoObjectTypeVersion, Object publishedEntity);

 //--------------------------------
 // Methods dealing with authorization and modification of federation query
 //--------------------------------
 public Object authorizeForwardingOfQuery (String remoteFederateName, Object infoObjectType,

String infoObjectTypeVersion, Object queryPredicate);
 public Object authorizeAcceptingOfRemoteQuery (String remoteFederateName, Object infoObjectType,

String infoObjectTypeVersion, Object queryPredicate);
}

This interface has been simplified; instead of separate methods authorizing the actions and
informing about the required changes, we implemented a single method for each action control
returning:

• Null – if the action is not authorized,
• Modified Predicate (for subscription and query) or Metadata (for publication and query

results),
• Original Predicate or Metadata if no changes are required.

Approved For Public Release; Distribution Unlimited.

25

Figure 13: Federation Metadata GUI in KPAT

KPAT draws information from the local and remote federate metadata repositories and allows
the user to examine local and remote federate metadata types and their schemas and to define
priorities specific to metadata types for the given remote federate.

Figure 14: Contract GUI in KPAT

The Contract GUI in KPAT allows the user to prioritize metadata types and to select which
adaptation strategies are acceptable by this federate. This default contract setting is sent to the
remote federate. It contains:

Approved For Public Release; Distribution Unlimited.

26

• A List of metadata types it potentially intends to subscribe to or query about with
importance priority attached to it

o The metadata types have priorities associated with itself depicting importance of
the information of this type to the federate clients

o This list displays the metadata types the local clients will be able to use
• An Adaptation matrix

o Informing what types of adaption can be used or should be used on the
connection with this federate

• The type of the Information Object used by the federate
o Will determine if the usage of the Interoperable InfoObject would be necessary

When a node discovers a new possible federation partner and the initial connection is
established, the two potential federates exchange information about their current configuration.
Based on this information as well as its own local policies, each federate independently decides:

• Whether to establish a federation with the remote federate,
• What priority to attach to the remote federate,
• Based on the current resource usage for the federation operations and the assigned

federate priority, how to estimate the quantity of resources it can devote to server
requests from the federate,

• What metadata type subscriptions or queries it would be able to support for a given
federate.

As a next step, based on the publication level and archive size for the given metadata type
(obtained from monitor), estimate for each requested metadata type in the contract the expected
utilization of local resources for processing publication and queries.

The metadata types are processed according to their priorities from the contracts. When a certain
limit of resource usage is reached either the rest of metadata types will be not supported or
certain adaptation will be employed for them. It can result in a Contract Revision, which is sent
to the remote federation with information about what metadata types will be supported and in
what fashion.

Policies controlling this contract revision process can forbid sending information about certain
metadata types based on the properties of the remote federate. Further, the policies can limit the
usages of local resources to support the federate based on the local priority assigned to the
federate. Policies can also trigger usage of certain adaptation after reaching a certain limitation
of calculated resource usage based on local priority assigned to the federate and the adaptation
matrix from the Contract Proposal.

The remote federate analyzes the contract revision. It accepts the revision if its minimal request
was accepted and if its local expected resource usage by the remote federate is balanced with
promised services. As a result, it either accepts the revision and continues with the federation or
rejects the revision and terminates the federation. The counter offer mechanism has not been
considered.

Approved For Public Release; Distribution Unlimited.

27

Policies setting characteristics for acceptable contract revision are base on the property of the
remote federate, the list of required supported metadata types, and the list of employed
adaptations.

If the federation is established then during subsequent subscription exchanges, queries, and
publication with federates, each operation is analyzed with respect to current policies. Policies
may allow or prevent a given operation. They may also modify the operation by changing the
subscription or query predicate, or by removing metadata from the published information object
being forwarded to the remote federate. Moreover, they may enforce or waive obligations (e.g.,
logging) relevant to certain types of operations. In addition, policies and the agreed adaptation
policies control how and when a given adaptation mechanism is activated when the share of
resources used by the given federate exceeds the agreed-upon limit. KPAT configuration for the
control of federation consists of sets of predefined policy templates and policies associated with
them. Each policy can be easily activated and deactivated. The policy templates are grouped
into four categories:

• Federation Acceptance Polices,
• Gatekeeping Policies,
• Adaptation Policies,
• Contract Policies.

Figure 15: KPAT configuration for the Federation Service Policy

Approved For Public Release; Distribution Unlimited.

28

The GUI allows the management of federation policies using user friendly wizards to hide the
complexity for the underlaying represention of policies.

Figure 16: Policy Wizard for the definition of federation policies

3.4.3 Contract Negotation Example
The example presents federation between two federates – Alpha and Beta. Federate Alpha
possesses a Predator UAV and thus produces the following metadata types with the following
publishing rates:

• mil.af.predator.radar 1-2 Hz
• mil.af.predator.stillDayTime 1-2 Hz
• mil.af.predator.stillInfrared 1-2 Hz
• mil.blueforcetrack 1 Hz
• mil.spotreport 1/15 Hz

The federate already provides intelligence data to a few Air Force and US Army units connected
as clients to this information space. Information processing currently consumes about 80% of
the CPU and 75% of the network bandwidth (from the ground station).

Approved For Public Release; Distribution Unlimited.

29

Federate Beta is a NATO Country Army Unit, which attempts to create federation with Federate
Alpha.

Figure 17: Contract Example Details

Contracts are created on both sides of the federation but below we present contract creations for
Federate Beta on the Federate Alpha side. The subsequent sections of the contract, relevant
policies and the result of the modification are presented below.

Requested Access to Subscription Data
Federate Beta requested in its contract subscription access to the following types of information
with the following priority:

• mil.af.predator.radar
• mil.af.predator.stillInfrared
• mil.blueforcetrack
• mil.spotreport

Federate Alpha’s local policies forbid access to mil.af.predator.still by any non-US Federate.
Additionally, the policies limited the amount of resources the federate uses for processing of
information dedicated to the non-US federates to maximum CPU utilization of 5%.

The contract service analyzes the forecasted need of processing power (provided by the
Federation Monitoring) and provides the following modifications allowing access to the
information of type:

• mil.af.predator.radar

Approved For Public Release; Distribution Unlimited.

30

• mil.blueforcetrack 1/5 Hz (reduced frequency)
• mil.spotreport

Requested Access to Query Data
Federate Beta requested in its contract query access to the following types of information with
the following priority:

• mil.af.predator.stillInfrared
• mil.blueforcetrack mil.spotreport
• mil.spotreport

Since query is a type of access policy forbidding access to mil.af.predator.still by any non-US
Federate also applies here. In addition there a special policy restricting query on mil.spotreport.
As a result the modified contract allows query for:

• mil.af.predator.stillInfrared but max 1/120 Hz max and result size not bigger than 200
objects

• mil.blueforcetrack but max 1/60 Hz

In addition Federate B specifies its preferences on adaptation mechanism such as: predicate
matching adaptation, deferred payload handling for subscription, query pre-staging or query
deferred payload. For instance, not authorizing deferred payload forwarding for information
type: mil.af.predator.radar.

This contract will govern how data will be published and query performed from Federate Beta
on Federate Alpha.

3.5 Adaptation
During the course of operations, the resources available for information management are likely
to change over time. For example, the network links connecting federates may become saturated,
or the systems hosting federation services may become overloaded. The Federation Adaptation
Service performs local adaptations to offset such shortage of resources. For example, under low-
bandwidth situations, the Adaptation Service can temporarily suspend low-priority subscriptions
in order to provide reasonable performance for the remaining subscriptions. The priorities of the
subscriptions can be specified via the client or via policies. On the other hand, when
computational resources fall short, the Adaptation Service temporarily disables local predicate
processing. This causes the Federation Information Broker to send all publications to the remote
federate, and for the brokering to occur on the remote federate. Subscriptions are sorted based on
their hit-rate (i.e., the percentage of publications that match the predicate) and the subscription
with the highest hit-rate is selected first. This minimizes the impact of an increase in the
bandwidth utilization as a result of this adaptation.

The Federation Adaptation Service was the last service integrated into Phoenix. While the
architecture of the adaptation service is generic, we realized two specific behaviors to illustrate
the operation: handling CPU overload on one of the federates and handling network overload
over a link between two federates.

Approved For Public Release; Distribution Unlimited.

31

In particular, the adaptation service subscribes to the Monitoring Service for monitoring the
CPU, and relies on the feedback information provided by the Mockets communications library
for the status of the network links. As described above, a CPU overload is handled by turning off
local predicate matching for remote subscriptions, and a network overload is handled by
suspending low priority subscriptions.

One of the aspects addressed by the adaption service is the need for hysteresis, in order to
prevent the service from continually adapting between good and bad states. As a simple example,
consider the scenario where, with n subscriptions and k bandwidth, the channel becomes
overloaded. The adaptation service may decide to disable one subscription. Now, the system
observes a small increase in bandwidth, which might cause it to re-activate the disabled
subscription, only to observe that the bandwidth is still not adequate, and the subscription must
be disabled again. In order to prevent the adaptation service from vacillating, we have developed
the notion of a state memory, which would allow the adaptation service to essentially learn good
and bad states. This introduces hysteresis into the adaptation mechanism and reduces the number
of times the adaption service would cause the system to re-enter a bad state.

The Federation Adaptation Service has two different control connections to services within the
federate. The first connection is between the adaptation service and the Federation Information
Brokering Service, which is utilized to suspend and resume subscriptions during the low-
bandwidth adaptation mechanism. The second one involves the Event Notification Service and it
is used to subscribe for Monitoring Service events for CPU overload.

A Phoenix byte channel is also established with the Federation Adaptation Service of each of the
other federates that are currently a part of the federation. This allows the local adaptation service
to notify the remote adaptation services about local adaptations and network information.

The following XML code is the portion of the spring configuration file which regards the
Federation Adaptation Service.

<bean id="federationAdaptationService" class="us.ihmc.infofed.federationAdaptation.FederationAdaptationService">
 <constructor-arg>
 <bean class="us.ihmc.infofed.federationAdaptation.context.FederationAdaptationServiceContext">
 <property name="serviceName" value="MainFederationAdaptationService" />
 <property name="serviceTypes">
 <list>
 <value>FEDERATION_ADAPTATION</value>
 </list>
 </property>
 <property name="performeAdaptation" ref="PERFORME_ADAPT" />
 <property name="mocketMode" ref="MOCKET_MODE_FOR_ADAPTATION" />
 <property name="ipAddress" ref="MY_IP" />
 <property name="port" ref="FED_ADP_INPUT_PORT" />
 </bean>
 </constructor-arg>

 <property name="channelManager">
 <bean class="mil.af.rl.phoenix.service.channel.manager.BaseChannelManager">
 <constructor-arg>
 <bean class="mil.af.rl.phoenix.service.contexts.ChannelManagementContext">
 <property name="inputChannelMap">
 <map>
 <entry key="FederationAdaptation.InputChannel.1">
 <bean class="mil.af.rl.phoenix.channel.ChannelContext">

Approved For Public Release; Distribution Unlimited.

32

 <property name="channelType" value="BYTE" />
 <property name="name" value="FederationAdaptation.InputChannel.1" />
 <property name="applicationLevelContext">
 <bean class="mil.af.rl.phoenix.channel.data.ApplicationLevelContext">
 <property name="protocolId" value="simple" />
 </bean>
 </property>
 <property name="endPointContext">
 <bean class="mil.af.rl.phoenix.channel.EndPointContext">
 <property name="hostAddress" ref="MY_IP" />
 <property name="hostPort" ref="FED_ADP_INPUT_PORT" />
 </bean>
 </property>
 <property name="transportLevelContext">
 <bean class="mil.af.rl.phoenix.channel.transport.TransportLevelContext">
 <property name="protocolId" value="tcp" />
 </bean>
 </property>
 </bean>
 </entry>
 </map>
 </property>

 <property name="inputManagerMap">
 <map>
 <entry key="FederationAdaptation.InputMGR.1">
 <bean class="mil.af.rl.phoenix.service.managers.input.TimerBasedBufferByteCallbackInputManager">
 <constructor-arg>
 <bean class="us.ihmc.infofed.federationAdaptation.FederationAdaptationServiceWorker" />
 </constructor-arg>
 <constructor-arg value="MainFederationAdaptationService" />
 <constructor-arg value="FederationAdaptation.InputMGR.1" />
 </bean>
 </entry>
 </map>
 </property>

 <property name="channelToManagerMap">
 <map>
 <entry key="FederationAdaptation.InputMGR.1">
 <list>
 <value>FederationAdaptation.InputChannel.1</value>
 </list>
 </entry>
 </map>
 </property>
 </bean>
 </constructor-arg>
 </bean>
 </property>

 <property name="controlChannelManager">
 <bean class="mil.af.rl.phoenix.service.channel.control.manager.BaseControlChannelManager">
 <constructor-arg>
 <bean class="mil.af.rl.phoenix.service.contexts.ControlChannelManagementContext" >
 <property name="stubMap">
 <map>
 <entry key="ENS-Stub-For-FED-ADP">
 <bean class="mil.af.rl.phoenix.eventnotification.control.stubs.RMIEventNotificationServiceStub">
 <property name="context">
 <bean class="mil.af.rl.phoenix.contexts.StubContext">
 <property name="connectorName" value="ens-connector" />
 <property name="connectorAddress" ref="RMI_SERVER_ADDRESS" />
 <property name="connectorPort" ref="RMI_PORT" />
 </bean>
 </property>
 </bean>
 </entry>
 <entry key="FED-IBS-Stub-For-FED-ADP">

Approved For Public Release; Distribution Unlimited.

33

 <bean class="us.ihmc.infofed.federationinformationbrokering.control.stubs.RMIFederationInformationBrokerServiceStub">
 <property name="context">
 <bean class="mil.af.rl.phoenix.contexts.StubContext">
 <property name="connectorName" value="federationBrokerConnector" />
 <property name="connectorAddress" ref="RMI_SERVER_ADDRESS" />
 <property name="connectorPort" ref="RMI_PORT" />
 </bean>
 </property>
 </bean>
 </entry>
 </map>
 </property>
 </bean>
 </constructor-arg>
 </bean>
 </property>

 <property name="serviceMultiplexor">
 <bean class="mil.af.rl.phoenix.service.multiplexor.DefaultServiceMultiplexor">
 <constructor-arg>
 <bean class="mil.af.rl.phoenix.service.contexts.ServiceMultiplexorContext">
 <property name="conditionMap">
 <map>
 <entry key="mil.af.rl.phoenix.subscription.SubscriptionContextInterface">
 <list>
 <value>FED-IBS-Stub-For-FED-ADP</value>
 </list>
 </entry>
 <entry key="mil.af.rl.phoenix.event.EventInterface">
 <list>
 <value>ENS-Stub-For-FED-ADP</value>
 </list>
 </entry>
 </map>
 </property>
 <property name="dispatchContainerMap">
 <map>
 <entry key="FED-IBS-Stub-For-FED-ADP">
 <bean class="mil.af.rl.phoenix.service.contexts.DispatchContainerContext">
 <property name="returnType" value="STUB" />
 <property name="nextEntityId" value="FED-IBS-Stub-For-FED-ADP" />
 </bean>
 </entry>
 <entry key="ENS-Stub-For-FED-ADP">
 <bean class="mil.af.rl.phoenix.service.contexts.DispatchContainerContext">
 <property name="returnType" value="STUB" />
 <property name="nextEntityId" value="ENS-Stub-For-FED-ADP" />
 </bean>
 </entry>
 </map>
 </property>
 </bean>
 </constructor-arg>
 </bean>
 </property>

 <property name="doServiceRegistration" ref="DO_SERVICE_REGISTRATION" />
 <property name="doBrokeringForServices" value="false" />
</bean>

3.5.1 Federation Adaptation Service Components
As any other Phoenix service, between the Federation Adaptation Service components we can
find:

• the main service class: FederationAdaptationService
• context:

o FederationAdaptationServiceContext

Approved For Public Release; Distribution Unlimited.

34

o FederationAdaptationServiceContextInterface
• connectors:

o RMIFederationAdaptationServiceConnector
o RMIFederationAdaptationServiceConnectorInterface

• stubs:
o RMIFederationAdaptationServiceStub
o FederationAdaptationServiceStubInterface

In addition to these, the components which follow characterize just the Federation Adaptation
Service:

• EventNotificationCallback
• Network monitoring using Mockets:

o MocketStatusMonitor
o MocketStatus
o MocketStats

• State memory algorithm:
o FederationAdaptationServiceWorker
o BadState
o BadStateSolution
o BadStateSolutionsList
o BadStatesList
o ResumeSubsList

The FederationAdaptationService class manages the overall service. It implements the usual
methods to start and stop the service and registers itself for monitor events in order to receive
metric update notifications, handled by the EventNotificationCallback class.

When a new federate joins the federation, a new connection is established. This means that the
service instantiates a byte channel with the new Federation Adaptation Service and it creates a
MocketStatusMonitor object. This implements a thread which collects and analyzes the Mocket
statistics and sends a notification via the byte channel to the corresponding federate in case of
low-bandwidth situations.

It is also possible to specify that the Federation Adaptation Service does not have to perform
network adaptation by disabling the PERFORM_ADAPT parameter in the spring configuration
file. In such a case, the MocketStatusMonitor will not be initialized and the service will not
collect mocket statistics coming from any other federates.

The classes that are grouped under “state memory algorithm” are responsible for the learning
procedure that introduces hysteresis and prevents continuous vacillation from occurring between
good and bad states.

Figure 18 shows the components involved in the network adaptation mechanisms performed by
the Federation Adaptation Service. This particular example shows the simple case of two
federates with a publish/subscribe relationship – with a single client that subscribes to a given
type of information in Federate One, and a single client in Federate Two that publishes the

Approved For Public Release; Distribution Unlimited.

35

desired type of information. However, the same structure applies to multiple federates, given that
each federation is treated as a pair-wise relationship. This approach should work unless federates
share network links, and subscriptions between two federates take away from the bandwidth
available between two other federates. Also, while this adaptation mechanism only addresses
subscriptions, it would not be difficult to extend it in order to perform adaptations, for example
in the case of query operations.

Figure 18: Components and Connections Related to Federation Adaptation Service

The overall operation of the Federation for publish / subscribe is described as follows. When the
first client issues a subscription to the local Information Management System (IMS), the request
is captured by the Federation Information Brokering Service (FIBS) via the Subscription Service.
The FIBS retrieves the Remote Federation Service Proxy (RFSP) for Federate Two and uses it to
remotely forward the received request for subscription. Once Federate Two obtains the request,
the subscription is stored in a remote subscriptions table, ready to be matched against local
publications.

When a client publishes information to the local IMS (Federate Two), such a publication is
intercepted by the FIBS via Submission Service, which attempts to execute the predicate
matching locally, by comparing the publication type and metadata with the remote subscriptions
it may have previously stored in its remote subscription table. Publications for which the local
matching succeeds are marked as matched, and sent to Federate One via the RFSP. Federate One
receives the publication, verifies if it was already matched (and if it was not it matches it with the
local subscriptions) and forwards it to the IMS. Finally the IMS takes care of the delivery to the
correct subscriber clients.

The channel used to send publications from Federate Two to Federate One is marked as
“Information channel” in Figure 18. If a network overload were to occur, this is the channel that
would be transferring the majority of the data that would cause the overload. In order to monitor
the behavior and performance of this channel, we use the Mockets communications library to
perform the underlying transport. The channel is configured by the Federation Dissemination

Approved For Public Release; Distribution Unlimited.

36

Service (FDS) of the Federate One as shown in the following XML code, which reports the
portion of the spring configuration file that defines the channel manager.

<property name="channelManager">
 <bean class="mil.af.rl.phoenix.service.channel.manager.BaseChannelManager">
 <constructor-arg>
 <bean class="mil.af.rl.phoenix.service.contexts.ChannelManagementContext">
 <property name="inputChannelMap">
 <map>
 ...
 <entry key="FederationDissemination.InputChannel.FromFedInfoBrokering">
 <bean class="mil.af.rl.phoenix.channel.ChannelContext">
 <property name="channelType" ref="CHANNEL_TYPE" />
 <property name="name" value="FederationDissemination.InputChannel.FromFedInfoBrokering" />
 <property name="applicationLevelContext">
 <bean class="mil.af.rl.phoenix.channel.data.ApplicationLevelContext">
 <property name="protocolId" value="serial" />
 </bean>
 </property>
 <property name="endPointContext">
 <bean class="mil.af.rl.phoenix.channel.EndPointContext">
 <property name="hostAddress" ref="MY_IP" />
 <property name="hostPort" ref="REMOTE_FED_DS_INPUT_PORT" />
 </bean>
 </property>
 <property name="transportLevelContext">
 <bean class="mil.af.rl.phoenix.channel.transport.TransportLevelContext">
 <property name="protocolId" value="mocket" />
 </bean>
 </property>
 </bean>
 </entry>
 </map>
 </property>
 ...
 <property name="inputManagerMap">
 <map>
 <entry key="FederationDissemination.InputMGR.FromFedInfoBrokering">
 <bean class="mil.af.rl.phoenix.service.managers.input.TimerBasedBufferInputManager">
 <constructor-arg>
 <bean class="us.ihmc.infofed.federationdissemination.service.FederationDisseminationServiceWorker" />
 </constructor-arg>
 <constructor-arg value="MainFederationDisseminationService" />
 <constructor-arg value="FederationDissemination.InputMGR.FromFedInfoBrokering" />
 </bean>
 </entry>
 ...
 </map>
 </property>
 ...
 <property name="channelToManagerMap">
 <map>
 <entry key="FederationDissemination.InputMGR.FromFedInfoBrokering">
 <list>
 <value>FederationDissemination.InputChannel.FromFedInfoBrokering</value>
 </list>
 </entry>
 ...
 </map>
 </property>
 </bean>
 </constructor-arg>
 </bean>
</property>

Approved For Public Release; Distribution Unlimited.

37

The channel is connected to the FIBS of Federate Two during the federation establishment
process, when the presence of Federate One is notified to the other federates (Federate Two in
this example). Using the Mockets communications library in this case is necessary as it provides
statistics about the messages sent and received, as well as information about the size of the
outgoing message queue, the capacity of the link, the latency of the link, and the number of
underlying transmission errors (as measured by the number of retransmissions). The following
subsection provides details regarding monitoring the network channel using Mockets.

3.5.2 Network Monitoring Using Mockets
The Mockets communications library is used to provide the underlying transport service for the
information channel that is used to transfer information between federates connected together.
The main class performing network monitoring is Mocket Status Monitor (MSM). It is
instantiated by the Federation Adaptation Service the first time there is a new connection due to a
federate that joins the federation. The MSM is configured during initialization with the following
parameters:

• The port used by the service to receive information from Mockets (Mocket Status Port);
• The minimum (MinPDS, MinRSDS) and maximum (MaxPDS, MaxRSDS) values

representing the thresholds for the Mocket parameters Pending Data Size and Reliable
Sequenced Data Size, necessary for the network monitoring;

• The IP address of the local federate;
• A reference to the byte channel just created to the new remote federate.

Every time a new federate joins the federation system the service simply adds the new byte
channel to the Mocket Status Monitor instance to be able to send messages to it.

Mocket Status Monitor creates an object of the class Datagram Socket listening on the Mocket
Status Port (default port is 1400) and periodically receives datagram packets containing two
kinds of information about the Mocket channel:

− Endpoint information;
− Statistics information.

Endpoint information provides the local address and the local port which, usually are not very
significant as are assigned by the system, and remote address and local port, which, instead are
important as they allow the monitoring code to identify the channel to which the packet
corresponds.

Statistics information are:

• The number of bytes transmitted
• The number of sent packets
• The number of retransmitted packets
• The number of bytes received
• The number of packets received
• The number of incoming packets that were discarded because they were duplicated
• The number of incoming packets that were discarded because there was no room to

buffer them

Approved For Public Release; Distribution Unlimited.

38

• The number of incoming packets that are discarded because a message was not
reassembled; this occurs when reassembly of a message from packet fragments is
abandoned due to a timeout and the packets discarded are the fragments of the message
that were received

• The size (in bytes) of the data that is queued in the pending packet queue awaiting
transmission (Pending Data Size)

• The number of packets in the pending packet queue awaiting retransmission
• The size (in bytes) of the data that is in the reliable, sequenced packet queue awaiting

acknowledgment (Reliable Sequenced Data Size)
• The number of packets in the reliable, sequenced packet queue awaiting acknowledgment
• The size (in bytes) of the data that is in the reliable, unsequenced packet queue awaiting

acknowledgment
• The number of packets in the reliable, unsequenced packet queue awaiting

acknowledgment.

The parameters that are important for the federation network monitoring are those indicated in
the list as Pending Data Size and Reliable Sequenced Data Size.

When a new datagram packet with updated statistics information arrives, the Mocket Status
Monitor checks the values of the two parameters and compares them with the thresholds. It could
happen that, up until this moment, the network values were fine but now either one or both of the
parameters are greater than the threshold: this means that the network is overloaded so a message
is sent to the Federation Adaptation Service of the corresponding federate via a byte channel.

The other possibility is that the network was already overloaded but in the last update indicates
that both Pending Data Size and Reliable Sequenced Data Size are lower than the thresholds.
This means that there has been an improvement in the network channel, and a message is sent to
the remote Federation Adaptation Service accordingly.

Note that these messages from the Mocket Status Monitor do not directly trigger adaptation of
the subscriptions. Doing so might result in an unstable system that is continuously and
unnecessarily adapting to changes. Instead, the input from the Mocket status Monitor is provided
to the State Memory Algorithm, which decides on the actual adaption actions. The State Memory
Algorithm is described in the following subsection.

3.5.3 State Memory Algorithm
The state Memory Algorithm introduces the hysteresis necessary into the adaptation mechanism
of the federation service. The purpose of the hysteresis is to prevent unnecessary vacillations
among different states due to borderline conditions and/or fluctuations in the environment.

The state memory algorithm has been realized in the FederationAdaptationServiceWorker class.
The general structure of a worker in Phoenix is a class that manages channel inputs. It
implements the interface ServiceWorkerInterface<T>, specifying the kind of channel has been
used. In this case it is the byte channel that connects the two instances of the Federation
Adaptation Service in the two federates (as shown in Figure 18). When Federate One receives

Approved For Public Release; Distribution Unlimited.

39

input from Federate Two on that channel, it means that the system, and in particular the
connection between the two federates, is in a low-bandwidth situation.

The message that arrives contains the following information:

• Remote address of the federate that just sent the message
• A Boolean flag that indicates whether the federate needs to stop or to resume

subscriptions
• The Pending Data Size
• The size (in bytes) of the data that is in the reliable, sequenced packet queue awaiting

acknowledgment
• The Reliable Sequenced Data Size
• The number of packets in the reliable, sequenced packet queue awaiting acknowledgment
• The size (in bytes) of the data that is in the reliable, unsequenced packet queue awaiting

acknowledgment
• The number of packets in the reliable, unsequenced packet queue awaiting

acknowledgment.

Based on the value of the Boolean flag, it is possible to divide the algorithm in two parts: the first
condition represents the situation where the network is overloaded and the system turned from a
good state into a bad state. The second condition represents the case of an increase in bandwidth,
which could imply that one or a few of the suspended subscriptions may be resumed.

The structure of the classes involved in the algorithm is shown in the UML schema of Figure 19.
Bad State is the object that represents and collects all the information about a bad state of the
system. It includes the ids of the subscriptions that are active at that moment, their priorities, the
value of Pending Data Size and Reliable Sequenced Data Size, the number of times the system
turned into that bad state and the list of solutions have been already tried.

Bad States List is a collection of all these bad states.

A solution, described by an object of the class Bad State Solution, is characterized by two lists of
subscriptions: those that have been both stopped and those kept active, and by an instance of
Resume Subs List, which collects the subscriptions that have been resumed.

Approved For Public Release; Distribution Unlimited.

40

Figure 19: UML Diagram of Classes Used in the State Memory Algorithm

First Case: Network Overloaded
When the system registers a network overload, the system has entered a bad state. The
Federation Adaptation Service examines the list of all the bad states previously recorded by the
system, which could result in one of three possibilities:

1. The characteristics of the current bad state already occurred in the past, and was
previously recorded;

2. A part of the current bad state is present;
3. The current bad state has not occurred in the past.

The first case means that the system has already been in that bad state sit uation so, at least a bad
state solution for that already exists but none of the solutions were good enough. One possibility
is to randomly search for another solution that has never been tried. After that the service can
update the information of Pending Data Size and Reliable Sequenced Data Size if those stored in
the bad state list are greater than those of the new bad state.

The second case, where the list already contains part of the new bad state, means that, even after
disabling (some) low priority subscription(s), the current solution still represents a bad state.
Therefore, the current solution needs to be further altered by disabling one or more additional
low priority subscriptions that are still active, or changing the subscriptions that are disabled.

The third case means that this is the first time the system has entered into that bad state. To
address this case, the adaptation service randomly chooses one or more low priority subscriptions
to disable, which becomes the first solution for that bad state.

Approved For Public Release; Distribution Unlimited.

41

Once the subscriptions have been selected, the Federation Adaptation Service can invoke
methods of the Federation Information Brokering Service, using the Brokering Control
Connector, in order to suspend them.

Second Case: Bandwidth Increase
When the system registers an increase in bandwidth, it is possible that some of the suspended
subscriptions could be resumed. The list of suspended subscriptions is stored into the last bad
state with the solution that was determined for the bad state.

Two important parameters of each solution are the required pending data size
(ReqPendingDataSize) and the required reliable sequenced data size
(ReqReliableSequencedDataSize). These correspond to the maximum values allowed for these
two network parameters while still maintaining good performance with this solution. Every time
the system turns into that bad state and recognizes that as the good solution, the system needs to
update those values if they are greater than the ones just measured for the network.

When the adaptation service receives a message indicating that the available bandwidth has
increased, the first thing that it does is to check if a relationship exists between the subscriptions
into the solution and those are effectively suspended. If the two sets are different those which
exceed the solution are resumed and the algorithm ends.

Otherwise, one of many things could happen. The first case is determined by the number of
elements in the resumed subscription list for the solution. If that list is empty it means that none
of the suspended subscriptions have ever been restarted so we can choose one or more of them in
a random way. On the other hand, if that list contains some of the subscription ids, we are
probably creating a cycle and turning the system again into the same bad state. The list of the
suspended subscriptions of the last solution may contain:

• just one element
• more than one element.

The first case provides no options because it means that the system is forced to create a cycle by
resuming that subscription, as there are no other possibilities. The only thing the adaptation
service can do is to restart that only if the ReqPendingDataSize and
ReqReliableSequencedDataSize stored in the solution are greater than the values just measured
in the system, otherwise it must simply wait.

The second case is better and it presents two different possibilities related to the number of
possible combinations of resumed subscriptions. If this value is greater than the number of
entries present in the resumed list in the solution, it means that the system still has a chance to
restart suspended subscriptions without creating a cycle. One possibility is to randomly mix the
stopped subscriptions until a new solution has been found.

On the other hand, if the system has already tried all the possible combination, this case is
similar to the one described earlier, with just one subscription. Therefore, the system must wait
until the values of ReqPendingDataSize and ReqReliableSequencedDataSize are greater than
those just measured in the network prior to selecting a random subscription to resume.

Approved For Public Release; Distribution Unlimited.

42

Once the subscription(s) have been selected, if any, the Federation Adaptation Service can
invoke methods of the Federation Information Brokering Service, using the Brokering Control
Connector, in order to resume them.

3.6 Performance Evaluation
The Federation Service has been experimentally evaluated in terms of measuring overhead from
adding federation capabilities to the base Information Management System (IMS). For this
experimentation we considered both Apollo as well as Phoenix. We measured the performance
of publish and subscribe operations considering a baseline installation of the evaluated IMS
versus two installations of the same IMS sitting on two different nodes collaborating together
through federation.

In order to understand the overhead that may be caused by the Federation Service, we measured
the throughput in terms of time spent to send and receive information by the clients (execution
time) and the maximum number of Information Objects per second that clients were able to send
and receive (throughput).

Three different sets of experiments were conducted during the course of the project:

• Apollo and Apollo with Federation
• Apollo, Apollo with Federation, Phoenix (initial development verison), Phoenix with

Federation
• Phoenix (Version 1.1.9), and Phoenix with Federation

While indirect comparisons are possible between Apollo and Phoenix by using these two
independent sets of experiments, we did not have the opportunity to conduct a single experiment
comparing all four configurations.

3.6.1 Experiments with Apollo and Federation

The first set of experiments compared Apollo with the initial version of Federation developed for
Apollo. The experiment measured performance of publish and subscribe operations, with 1-4
publishers and 1-4 subscribers. Two different payload sizes were used, 0 KB (i.e., only metadata,
no payload) and 10 KB (i.e., metadata + 10 KB payload). We measured both the time taken to
publish as well as the latency of information delivery.

The experiments were performed on the MLAB testbed, consisting of 16 server nodes. Each
node contained an Intel Celeron Processor at 2.66 GHz with 1 GB RAM, interconnected with
100 Mbps Fast Ethernet, running the Linux operating system

The test utilized was part of the standard Apollo benchmark suite, located in the package
mil.af.rl.im.benchmark. This test publishes 1275 objects with varying payload sizes.

To measure the time taken to publish, we used the following configurations:

Approved For Public Release; Distribution Unlimited.

43

Figure 20: Configuration to Measure Baseline Performance of Apollo

Figure 21: Configuration to Measure Performance of Two Federates with Apollo

Figure 22: Configuration to Measure Performance of Three Federates with Apollo

To measure the latency of information delivery, we used the following configurations. Note that
in this case, we host the publisher and subscriber on the same physical host to avoid any clock
synchronization problems. That makes it simpler to measure the publish time and arrival time
and measure the latency.

Approved For Public Release; Distribution Unlimited.

44

Host 101

Host 104

Baseline
Apollo

Publisher Subscriber

Host 105

Publisher Subscriber

Figure 23: Configuration to Measure Latency with Baseline Apollo

Figure 24: Configuration to Measure Latency with Two Federates and Apollo

The results from the experiments are shown in the tables below. As the results show, the
performance of the publisher and subscriber actually improves with federation enabled. This
counter-intuitive result can be explained by the distribution in processing load that occurs with
federation enabled. Without federation, the entire processing load is placed on the single Apollo
server instance. When federation is enabled, multiple instances of Apollo are used to serve
different clients, with the resulting improvement in overall performance.

Table 1: Publisher Performance with Apollo and Federation

Publisher Performance (Time in Seconds to Publish 1275 Objects)
Clients Apollo - 0KB Apollo - 10KB Two Federates - 0KB Two Federates - 10KB Three Federates - 0KB Three Federates - 10bKB

2 32.04 38.87 29.85 31.12
4 74.25 97.1 50.52 56.1 35.88 44.3
6 116.94 152.25 57.31 79.22 67.86 92.38
8 191.67 250.18 106.87 125.99 86.4 114.91

Approved For Public Release; Distribution Unlimited.

45

Table 2: Publisher Performance Improvement Factor with Apollo and Federation

Figure 25: Publisher Performance with Apollo and Federation

Table 3: Subscriber Performance with Apollo and Federation

Subscriber Performance (Time in Seconds to Receive 1275 Objects)
Clients Apollo - 0KB Apollo - 10KB Two Federates - 0KB Two Federates - 10KB Three Federates - 0KB Three Federates - 10bKB

2 31.08 37.65 28.79 30.11
4 38.76 49.43 25.78 28.8 23.16 26.83
6 42.71 51.98 24.38 24.9 27.13 34.13
8 50.42 64.18 30.28 33.56 23.29 30.84

Publisher Performance (Improvement!)
Clients Two Federates - 0KB Two Federates - 10KB Three Federates - 0KB Three Federates - 10bKB

2 1.07 1.25
4 1.47 1.73 2.07 2.19
6 2.04 1.92 1.72 1.65
8 1.79 1.99 2.22 2.18

Approved For Public Release; Distribution Unlimited.

46

Table 4: Subscriber Performance Improvement Factor with Apollo and Federation

Subscriber Performance (Improvement!)
Clients Two Federates - 0KB Two Federates - 10KB Three Federates - 0KB Three Federates - 10bKB

2 1.08 1.25
4 1.50 1.72 1.67 1.84
6 1.75 2.09 1.57 1.52
8 1.67 1.91 2.16 2.08

Figure 26: Subscriber Performance with Apollo and Federation

While the throughput increases with federation, there is an increase in latency of information
delivery, caused by the extra instance(s) of Apollo injected into the overall system, as shown
below. This latency is to be expected, given that any published information object has to traverse
an additional network link, as well as another instance of the IM system. The increase in latency
observed by our experimentation was relatively small (between 13.83%, and 36.28%), given that
the experiments were conducted over high-speed Local Area Networks. In a deployment
scenario where the federation occurs over long-haul links (e.g., Satellite), then the latency would
be higher.

Approved For Public Release; Distribution Unlimited.

47

Table 5: Latency Measurements with Apollo and Federation

Subscriber - Latency
Sleep Time (ms) 10 100 1000
Publisher - Baseline 41.61 154.58 1302.58
Publisher - Federated 39.44 153.69 1302.04
Subscriber - Baseline 24.21 21.79 22.35
Subscriber - Federated 27.56 26.40 30.46

Figure 27: Latency of Information Delivery with Apollo and Federation

Overall, the results showed that latency increased slightly whereas throughout actually improved
with the addition of Federation into Apollo.

3.6.2 Experiments with Apollo, Phoenix, and Federation

This experimental evaluation was conducted on virtual machines running on VMWare Server.
The host machines have a dual core 3.06 GHz Intel Xeon processor and 4GB of memory. We
deployed one virtual machine per physical machine. All the virtual machines were running
Ubuntu Server 8.04, and were provided with 1GB of RAM.

All the tests involved one publisher client and two subscriber clients. In the first set, all are
connected to the same instance of the IMS. In the second set of experiments, the publisher was
connected to the first instance of the IMS and the subscribers were both connected to the second
one, so the Information Objects were sent to the other side across the federation. The
performance evaluation was executed using the benchmark suite provided with Apollo and
adding clients that would support the information exchange protocols defined by the Phoenix
architecture. We chose to run the clients with 55 iterations. With this configuration, publisher

Approved For Public Release; Distribution Unlimited.

48

and subscriber clients exchange 1275 Information Objects. Figure 28 shows the experimental
scenario.

Figure 28: Experimental Scenario for the Performance Evaluation: The Baseline Version of the Tested IMS is

shown in A. B shows the Configuration for the Tests with the Federation Service

The results are shown in the tables below:

Table 6: Time Spent to Publish and Receive Information Objects by Clients

Configuration Publisher
Time

Subscriber 1
Time

Subscriber 2
Time

Apollo Baseline 46.62 sec 41.16 sec 40.87 sec
Apollo with Federation 29.00 sec 28.14 sec 28.19 sec

Phoenix Baseline 3.81 sec 9.27 sec 9.26 sec

Phoenix with Federation 3.88 sec 4.81 sec 4.81 sec

Table 7: Throughput of Information Objects Published and Received by Clients

Configuration Publisher Subscriber 1 Subscriber 2

Apollo Baseline 29.2 IO/s 30.97 IO/s 31.19 IO/s
Apollo with Federation 42.10 IO/s 45.31 IO/s 45.22 IO/s

Phoenix Baseline 327.80 IO/s 137.55 IO/s 137.63 IO/s
Phoenix with
Federation 322.09 IO/s 265.29 IO/s 265.29 IO/s

From the results presented in Table 6 and Table 7, we make two different observations. In the
case of Apollo, we can see how the presence of the Federation Service improves the overall
performance of the IMS instead of creating overhead. That actually makes sense: by adding
federation capabilities, we split the load between the two federates (which are on separate
physical nodes). In particular the publications are handled by the first instance of the IMS while
the subscriptions are managed by the second instance.

This becomes even clearer when considering the numbers obtained in Phoenix tests. Phoenix
uses asynchronous channels that rely on the Netty framework [8] for exchanging information
from and to clients. On the publisher side, this means that the publication time and rate are not

Approved For Public Release; Distribution Unlimited.

49

affected by the computation that is necessary to manage every single piece of information being
published. The publisher keeps putting information into the channel as fast as it can. The
underlying layer will then manage the delivery to the IMS. This explains the very small
difference in terms of performance of the publishing information to Phoenix with or without
federation.

On the other hand, the subscribers’ performance is affected by the computation the IMS needs to
accomplish in order to manage the Information Objects it receives from the publisher and then
dispatch them to the right subscriber clients. Time and reception rate are calculated from when
the first piece of information is received to when the last one is delivered, which occurs
concurrently with incoming information from publishers that needs to be handled. Having the
load divided between two IMSs interconnected with federation shows its benefits also in the case
of Phoenix.

The throughput results presented above show that from the client perspective, there is no
performance degradation in terms of time and rate caused by adding federation capabilities to an
IMS. The overhead of federation does manifest itself in terms of increased latency in information
delivery. Latency of the information, i.e. the difference in time between when the information is
produced by the publisher and when the same information is received by the subscriber, is
crucial for certain types of applications, particularly in the tactical environment. The delay in the
delivery of Information Objects to the subscribers clearly increases when such Information
Objects have to be transmitted through the network to remote federates. Preliminary tests show
that when the Federation Service is involved in the publish-delivery process, the latency of a
single Information Object increases by 20% on average. This increase in latency is highly
dependent on the network latency. As shown in Figure 28, there is an extra network hop involved
with federation, which is the primary factor contributing to the latency.

One more noteworthy aspect with the results is the comparison between Apollo and Phoenix.
The results show a slight improvement in the performance of federation between Apollo and
Phoenix. When adapting our architecture for the Phoenix environment we started moving
towards a lighter-weight services approach, and that seems to have produced benefits in terms of
efficiency of the federation implementation. If we evaluate the subscriber side, Apollo with
federation was about 1.4 times faster than Apollo baseline. Phoenix with federation instead is
almost 2 times faster than Phoenix baseline.

3.6.3 Experiments with Phoenix and Federation
This final experimental evaluation was conducted using the latest version of Phoenix (1.1.9)
made available to us towards the end of the project.

The hardware configuration utilized remains the same as the previous set of experiments. The
evaluation was conducted on virtual machines running on VMWare Server. The host machines
have a dual core 3.06 GHz Intel Xeon processor and 4GB of memory. We deployed one virtual
machine per physical machine. All the virtual machines were running Ubuntu Server 8.04, and
were provided with 1GB of RAM.

Approved For Public Release; Distribution Unlimited.

50

Like in the previous set of experiments, all the tests involved one publisher client and two
subscriber clients. In the first set, all are connected to the same instance of the IMS. In the
second set of experiments, the publisher was connected to the first instance of the IMS and the
subscribers were both connected to the second one, so the Information Objects were sent to the
other side across the federation. The performance evaluation was executed using the benchmark
suite provided with Apollo and adding clients that would support the information exchange
protocols defined by the Phoenix architecture. We chose to run the clients with 55 iterations.
With this configuration, publisher and subscriber clients exchange 1275 Information Objects.
Figure 28 showed the experimental scenario.

Time, Throughput, and Latency Results

The following tables and graphs show the performance measurements. The first set of three
tables shows the performance of just the baseline Phoenix implementation. Each row of the table
corresponds to running the benchmark test with a different number of iterations. For each
iteration, the second column shows the number of objects that are actually published by the
publisher client. For each subscriber client, we report on the time, the rate, and the latency of
objects received. These are repeated with payloads of 0 bytes, 10 KB, and 100 KB.

Table 8: Performance of Baseline Phoenix with 0 KB Payload

Table 9: Performance of Baseline Phoenix with 10 KB Payload

1 1 0.048 0.000 0.166 6.024 0.166 1.459 0.685 1.459 0.129 7.752 0.129 1.219 0.820 1.219
5 15 0.088 113.636 0.150 33.333 0.030 2.031 7.386 0.135 0.165 30.303 0.033 1.755 8.547 0.117

10 55 0.192 234.375 0.151 66.225 0.015 3.585 15.342 0.065 0.444 22.523 0.044 3.472 15.841 0.063
20 210 0.536 354.478 0.517 38.685 0.026 9.108 23.057 0.043 0.476 42.017 0.024 8.908 23.574 0.042
30 465 0.919 473.341 0.200 150.000 0.007 13.067 35.586 0.028 0.387 77.519 0.013 13.158 35.340 0.028
40 820 1.653 496.068 0.422 94.787 0.011 16.312 50.270 0.020 0.246 162.602 0.006 16.207 50.595 0.020
50 1275 2.299 532.840 0.262 190.840 0.005 19.690 64.754 0.015 0.313 159.744 0.006 19.666 64.833 0.015

RATE
(obj/sec)

LATENCY
(sec/obj)

TIME
(sec)

RATE
(obj/sec)

LATENCY
(sec/obj)ITER RATE

(obj/sec)
LATENCY
(sec/obj)

TIME
(sec)

RATE
(obj/sec)

LATENCY
(sec/obj)

TIME
(sec)

N PUBL
OBJECTS

TIME
(sec)

RATE
(obj/sec)

TIME
(sec)

Publisher First Subscriber Second Subscriber
Subscription Entire Communication Subscription Entire Communication

1 1 0.001 0.000 0.014 71.429 0.014 0.151 6.623 0.151 0.009 111.111 0.009 0.119 8.403 0.119
5 15 0.037 270.270 0.065 76.923 0.013 0.465 32.258 0.031 0.046 108.696 0.009 0.434 34.562 0.029

10 55 0.104 432.692 0.260 38.462 0.026 1.894 29.039 0.034 0.576 17.361 0.058 1.690 32.544 0.031
20 210 0.274 693.431 0.423 47.281 0.021 7.504 27.985 0.036 0.709 28.209 0.035 6.958 30.181 0.033
30 465 0.707 615.276 0.318 94.340 0.011 13.436 34.609 0.029 0.460 65.217 0.015 13.031 35.684 0.028
40 820 1.229 634.662 0.259 154.440 0.006 15.907 51.550 0.019 0.263 152.091 0.007 15.941 51.440 0.019
50 1275 2.112 580.019 0.202 247.525 0.004 18.475 69.012 0.014 0.238 210.084 0.005 18.442 69.136 0.014

RATE
(obj/sec)

LATENCY
(sec/obj)

TIME
(sec)

RATE
(obj/sec)

LATENCY
(sec/obj)ITER RATE

(obj/sec)
LATENCY
(sec/obj)

TIME
(sec)

RATE
(obj/sec)

LATENCY
(sec/obj)

TIME
(sec)

N PUBL
OBJECTS

TIME
(sec)

RATE
(obj/sec)

TIME
(sec)

Publisher First Subscriber Second Subscriber
Subscription Entire Communication Subscription Entire Communication

Approved For Public Release; Distribution Unlimited.

51

Table 10: Performance of Baseline Phoenix with 100 KB Payload

The following set of three tables show the performance of Phoenix with federation. As before,
we report on the results for the publisher, the first subscriber, and the second subscriber. The
payloads are also the same as before – 0 KB for the first table, 10 KB for the second table, and
100 KB for the third table.

Table 11: Performance of Phoenix with Federation with 0 KB Payload

Table 12: Performance of Phoenix with Federation with 10 KB Payload

Table 13: Performance of Phoenix with Federation with 100 KB Payload

1 1 0.003 0.000 0.020 50.000 0.020 0.650 1.538 0.650 0.050 20.000 0.050 0.626 1.597 0.626
5 15 0.080 125.000 0.148 33.784 0.030 0.576 26.042 0.038 0.257 19.455 0.051 0.642 23.364 0.043

10 55 0.510 88.235 0.288 34.722 0.029 0.941 58.448 0.017 0.316 31.646 0.032 0.931 59.076 0.017
20 210 2.196 86.521 0.751 26.631 0.038 2.892 72.614 0.014 0.742 26.954 0.037 2.864 73.324 0.014
30 465 4.885 89.048 1.247 24.058 0.042 7.333 63.412 0.016 1.273 23.566 0.042 7.325 63.481 0.016
40 820 8.944 87.209 1.549 25.823 0.039 11.604 70.665 0.014 1.580 25.316 0.040 11.623 70.550 0.014
50 1275 14.073 87.046 1.930 25.907 0.039 17.568 72.575 0.014 1.973 25.342 0.039 17.598 72.451 0.014

RATE
(obj/sec)

LATENCY
(sec/obj)

TIME
(sec)

RATE
(obj/sec)

LATENCY
(sec/obj)ITER RATE

(obj/sec)
LATENCY
(sec/obj)

TIME
(sec)

RATE
(obj/sec)

LATENCY
(sec/obj)

TIME
(sec)

N PUBL
OBJECTS

TIME
(sec)

RATE
(obj/sec)

TIME
(sec)

Publisher First Subscriber Second Subscriber
Subscription Entire Communication Subscription Entire Communication

1 1 0.042 0.000 0.139 7.194 0.139 2.096 0.477 2.096 0.158 6.329 0.158 2.077 0.481 2.077
5 15 0.106 94.340 0.076 65.789 0.015 2.671 5.616 0.178 0.218 22.936 0.044 2.660 5.639 0.177

10 55 0.278 161.871 0.679 14.728 0.068 4.363 12.606 0.079 0.271 36.900 0.027 4.315 12.746 0.078
20 210 0.773 245.796 0.363 55.096 0.018 9.666 21.726 0.046 0.728 27.473 0.036 9.565 21.955 0.046
30 465 2.267 191.884 0.216 138.889 0.007 13.569 34.269 0.029 0.198 151.515 0.007 13.445 34.585 0.029
40 820 5.794 134.622 0.302 132.450 0.008 16.728 49.020 0.020 0.498 80.321 0.012 16.532 49.601 0.020
50 1275 9.332 131.269 0.175 285.714 0.003 19.841 64.261 0.016 0.307 162.866 0.006 19.693 64.744 0.150

RATE
(obj/sec)

LATENCY
(sec/obj)

TIME
(sec)

RATE
(obj/sec)

LATENCY
(sec/obj)ITER RATE

(obj/sec)
LATENCY
(sec/obj)

TIME
(sec)

RATE
(obj/sec)

LATENCY
(sec/obj)

TIME
(sec)

N PUBL
OBJECTS

TIME
(sec)

RATE
(obj/sec)

TIME
(sec)

Publisher First Subscriber Second Subscriber
Subscription Entire Communication Subscription Entire Communication

1 1 0.044 0.000 0.033 30.303 0.033 2.190 0.457 2.190 0.116 8.621 0.116 2.255 0.443 2.255
5 15 0.119 84.034 0.106 47.170 0.021 3.422 4.383 0.228 0.166 30.120 0.033 3.254 4.610 0.217

10 55 0.307 146.580 0.242 41.322 0.024 4.998 11.004 0.091 0.328 30.488 0.033 4.868 11.298 0.089
20 210 0.966 196.687 0.412 48.544 0.021 10.689 19.646 0.051 0.799 25.031 0.040 10.968 19.147 0.052
30 465 3.246 134.011 0.489 61.350 0.016 17.601 26.419 0.038 0.913 32.859 0.030 16.840 27.613 0.036
40 820 7.089 110.030 0.245 163.265 0.006 21.226 38.632 0.026 0.257 155.642 0.006 20.700 39.614 0.025
50 1275 10.875 112.644 0.149 335.570 0.003 23.825 53.515 0.019 0.308 162.338 0.006 23.601 54.023 0.019

RATE
(obj/sec)

LATENCY
(sec/obj)

TIME
(sec)

RATE
(obj/sec)

LATENCY
(sec/obj)ITER RATE

(obj/sec)
LATENCY
(sec/obj)

TIME
(sec)

RATE
(obj/sec)

LATENCY
(sec/obj)

TIME
(sec)

N PUBL
OBJECTS

TIME
(sec)

RATE
(obj/sec)

TIME
(sec)

Publisher First Subscriber Second Subscriber
Subscription Entire Communication Subscription Entire Communication

1 1 0.052 0.000 0.053 18.868 0.053 0.944 1.059 0.944 0.034 29.412 0.034 0.941 1.063 0.941
5 15 0.131 76.336 0.585 8.547 0.117 1.016 14.764 0.068 0.563 8.881 0.113 1.006 14.911 0.067

10 55 0.513 87.719 0.627 15.949 0.063 1.319 41.698 0.024 0.672 14.881 0.067 1.350 40.741 0.025
20 210 1.937 98.090 1.975 10.127 0.099 4.290 48.951 0.020 1.973 10.137 0.099 4.282 49.043 0.020
30 465 4.346 100.092 6.210 4.831 0.207 22.691 20.493 0.049 6.207 4.833 0.207 22.684 20.499 0.049
40 820 7.417 105.164 6.937 5.766 0.173 61.500 13.333 0.075 6.931 5.771 0.173 61.503 13.333 0.075
50 1275 10.810 113.321 8.950 5.587 0.179 113.768 11.207 0.089 8.945 5.590 0.179 113.757 11.208 0.089

RATE
(obj/sec)

LATENCY
(sec/obj)

TIME
(sec)

RATE
(obj/sec)

LATENCY
(sec/obj)ITER RATE

(obj/sec)
LATENCY
(sec/obj)

TIME
(sec)

RATE
(obj/sec)

LATENCY
(sec/obj)

TIME
(sec)

N PUBL
OBJECTS

TIME
(sec)

RATE
(obj/sec)

TIME
(sec)

Publisher First Subscriber Second Subscriber
Subscription Entire Communication Subscription Entire Communication

Approved For Public Release; Distribution Unlimited.

52

The following graphs compare the performance of baseline Phoenix and Phoenix with
Federation. We compare publication time, publication rate, subscription time, subscription rate.
For the subscription, we provide results for each of the two subscribers. Independent graphs are
shown for each payload (0 KB, 10 KB, and 100 KB).

Figure 29: Comparison of Publication Time with 0 KB Payload

Figure 30: Comparison of Publication Time with 10 KB Payload

Figure 31: Comparison of Publication Time with 100 KB Payload

Approved For Public Release; Distribution Unlimited.

53

Figure 32: Comparison of Publication Rate with 0 KB Payload

Figure 33: Comparison of Publication Rate with 10 KB Payload

Figure 34: Comparison of Publication Rate with 100 KB Payload

Approved For Public Release; Distribution Unlimited.

54

Figure 35: Comparison of Subscriber Time with 0 KB Payload

Figure 36: Comparison of Subscriber Time with 10 KB Payload

Approved For Public Release; Distribution Unlimited.

55

Figure 37: Comparison of Subscriber Time with 100 KB Payload

Figure 38: Comparison of Subscription Rate with 0 KB Payload

Approved For Public Release; Distribution Unlimited.

56

Figure 39: Comparison of Subscription Rate with 10 KB Payload

Figure 40: Comparison of Subscription Rate with 100 KB Payload

The results show that the publication times and rates are slower as a result of the additional
overhead introduced by federation. This result differs from the Apollo case, where publication
was actually faster with federation. There was insufficient time in the project to further analyze
this result. The results also show that the subscription times and rates are slower with federation.
This decrease in performance is caused by the need to transmit the published object and payload
an extra hop over the network to the destination node.

The next set of results compare the average latency of arrival of objects at the subscribers. Since
the latency of the first object is always high, including that data point tends to make the other
comparisons more difficult (as seen in Figure 41). Therefore, we show the results without the
single object case in the following three graphs, one for each payload configuration.

Approved For Public Release; Distribution Unlimited.

57

Figure 41: Average Latency of Objects Received by Subscribers with 0 KB Payload

(Including Single Object Case)

Figure 42: Average Latency of Objects Received by Subscribers with 0 KB Payload

Approved For Public Release; Distribution Unlimited.

58

Figure 43: Average Latency of Objects Received by Subscribers with 10 KB Payload

Figure 44: Average Latency of Objects Received by Subscribers with 100 KB Payload

The results show that from a latency perspective, the latency increases slightly with federation as
a function of the payload size. With a payload size of 0 KB or 10 KB, there is virtually no
increase in the observed latency of information delivery. With a payload size of 100 KB, there is
an increase, which is caused by the extra network link that must be traversed in the case of
federation. Note that these results are over a 100 Mbps wired network. With a constrained
network, the latency is likely to be higher even with smaller payloads.

Bandwidth Results

The next set of results report on the bandwidth consumed in performing the above publish and
subscribe experiments. The following tables show the results for Phoenix and Phoenix and
Federation, broken down into the different communication pairs (e.g., Publisher to IMS, IMS to
Subscriber, IMS to IMS, etc.) As before, we provide results for payloads of 0 KB, 10 KB, and
100 KB.

Approved For Public Release; Distribution Unlimited.

59

Table 14: Bandwidth Utilization for Phoenix with 0 KB Payload

Table 15: Bandwidth Utilization for Phoenix with Federation with 0 KB Payload

Table 16: Bandwidth Utilization for Phoenix with 10 KB Payload

Table 17: Bandwidth Utilization for Phoenix with Federation with 10 KB Payload

FROM TO PACKETS TIME (sec) AVG. PACKET/SEC BYTES AVG. BYTE/SEC
publisher phoenix 974 100.632 9.679 1260142 12522.279
phoenix publisher 761 100.665 7.560 50234 499.022
phoenix 1st subscriber 1174 104.233 11.263 1142017 10956.386
1st subscriber phoenix 987 104.223 9.470 65150 625.102
phoenix 2nd subscriber 1164 104.251 11.165 1141357 10948.164
2nd subscriber phoenix 960 104.251 9.209 63368 607.841

TOTAL 6020 3722268

FROM TO PACKETS TIME (sec) AVG. PACKET/SEC BYTES AVG. BYTE/SEC
publisher 1st federate 990 113.925 8.690 1261850 11076.147
1st federate publisher 770 113.924 6.759 54240 476.107
1st federate 2nd federate 1653 202.256 8.173 1702546 8417.777
2nd federate 1st federate 692 202.256 3.421 67106 331.787
2nd federate 1st subscriber 1252 103.619 12.083 1485040 14331.735
1st subscriber 2nd federate 985 103.619 9.506 65018 627.472
2nd federate 2nd subscriber 1247 103.649 12.031 1484710 14324.403
2nd subscriber 2nd federate 977 103.649 9.426 64490 622.196

TOTAL 8566 6185000

FROM TO PACKETS TIME (sec) AVG. PACKET/SEC BYTES AVG. BYTE/SEC
publisher phoenix 9897 113.559 87.153 14906335 131265.113
phoenix publisher 1793 113.558 15.789 118346 1042.163
phoenix 1st subscriber 10106 105.179 96.084 14788804 140606.053
1st subscriber phoenix 3924 105.180 37.307 258992 2462.369
phoenix 2nd subscriber 10096 105.090 96.070 14788144 140718.851
2nd subscriber phoenix 3646 105.090 34.694 240644 2289.885

TOTAL 39462 45101265

FROM TO PACKETS TIME (sec) AVG. PACKET/SEC BYTES AVG. BYTE/SEC
publisher 1st federate 9914 102.646 96.584 14908109 145238.090
1st federate publisher 1705 102.780 16.589 115950 1128.138
1st federate 2nd federate 11666 109.397 106.639 15376199 140554.119
2nd federate 1st federate 650 109.336 5.945 60644 554.657
2nd federate 1st subscriber 10184 104.737 97.234 15131827 144474.512
1st subscriber 2nd federate 3879 104.737 37.036 256022 2444.427
2nd federate 2nd subscriber 10177 104.740 97.164 15131365 144465.963
2nd subscriber 2nd federate 4014 104.740 38.323 264932 2529.425

TOTAL 52189 61245048

Approved For Public Release; Distribution Unlimited.

60

Table 18: Bandwidth Utilization for Phoenix with 100 KB Payload

Table 19: Bandwidth Utilization for Phoenix with Federation with 100 KB Payload

The following graphs compare the bandwidth utilization of Phoenix and Phoenix with
Federation. As is to be expected, the bandwidth utilized is higher given the extra link that must
be traversed by the act of federating two instances of Phoenix.

Figure 45: Bandwidth Comparison (Bytes) of Baseline Phoenix and Federation

FROM TO PACKETS TIME (sec) AVG. PACKET/SEC BYTES AVG. BYTE/SEC
publisher phoenix 90134 125.299 719.351 136397428 1088575.551
phoenix publisher 18454 125.298 147.281 1218432 9724.273
phoenix 1st subscriber 90623 118.244 766.407 136651020 1155669.801
1st subscriber phoenix 22358 118.244 189.084 1477632 12496.465
phoenix 2nd subscriber 90422 118.112 765.562 136207376 1153205.229
2nd subscriber phoenix 25082 118.112 212.358 1657856 14036.305

TOTAL 337073 413609744

FROM TO PACKETS TIME (sec) AVG. PACKET/SEC BYTES AVG. BYTE/SEC
publisher 1st federate 91062 121.932 746.826 137761912 1129825.739
1st federate publisher 197748 121.931 1621.802 1314084 10777.276
1st federate 2nd federate 99513 237.523 418.962 141433292 595450.933
2nd federate 1st federate 4801 237.461 20.218 439363 1850.253
2nd federate 1st subscriber 91787 233.087 393.789 138021452 592145.645
1st subscriber 2nd federate 42332 233.371 181.394 2794444 11974.256
2nd federate 2nd subscriber 91768 233.035 393.795 138004270 592204.047
2nd subscriber 2nd federate 33418 233.035 143.403 2206508 9468.569

TOTAL 652429 561975325

Approved For Public Release; Distribution Unlimited.

61

Figure 46: Bandwidth Comparison (Packets) of Baseline Phoenix and Federation

Varying Network Link Capacity

The final set of results we report on is the performance of baseline Phoenix and Phoenix with
Federation with different network link capacities. For these particular set of experiments, we
used the capability of the NOMADS Testbed to vary the channel capacity from 1024 Kbps down
to 56 Kbps. The following tables show the performance results, and the following graphs
compare the performance between the two configurations. For these experiments, the publisher
was configured to always publish 1250 objects each with a payload size of 10 KB.

Table 20: Performance (Time) of Baseline Phoenix and Federation with Different Channel Capacities

Table 21: Performance (Rate) of Baseline Phoenix and Federation with Different Channel Capacities

PUBLISHER 1st SUBSCRIBER 2nd SUBSCRIBER PUBLISHER 1st SUBSCRIBER 2nd SUBSCRIBER
1048 3.634 18.475 18.442 3.224 23.825 23.601
512 286.830 351.732 387.964 544.295 680.855 652.305
256 623.319 820.475 871.529 1264.900 1480.841 1482.407
128 1151.644 1689.977 1809.624 1583.198 3449.844 3399.522
56 2774.609 4394.293 3533.210 5504.411 8152.371 8536.092

CAPACITY (Kbps)
Performance (Time in Seconds)

PHOENIX FEDERATION + PHOENIX

PUBLISHER 1st SUBSCRIBER 2nd SUBSCRIBER PUBLISHER 1st SUBSCRIBER 2nd SUBSCRIBER
1048 350.853 69.012 69.136 395.471 53.515 54.023
512 4.445 3.625 3.286 2.342 1.873 1.955
256 2.046 1.554 1.463 1.008 0.861 0.860
128 1.107 0.754 0.705 0.805 0.370 0.375
56 0.460 0.290 0.361 0.232 0.156 0.149

CAPACITY (Kbps)
Performance (Rate in Objects per Second)

PHOENIX FEDERATION + PHOENIX

Approved For Public Release; Distribution Unlimited.

62

Figure 47: Performance (Time) Comparison for Publisher with Varying Channel Capacities

Figure 48: Performance (Rate) Comparison for Publisher with Varying Channel Capacities

Approved For Public Release; Distribution Unlimited.

63

Figure 49: Performance (Time) Comparison for Subscribers with Varying Channel Capacities

Figure 50: Performance (Rate) Comparison for Subscribers with Varying Channel Capacities

These results demonstrate that the behavior of the Phoenix and Phoenix with federation is as
expected under varying network capacities. The time to publish information increases as the
network capacity degrades. Also as it is to be expected, the rate of publication and the rate at
which objects are delivered to the subscribers increases as the network capacity increases.

4. Conclusions
This project has demonstrated both the importance and the viability of federating multiple
information spaces in a policy controlled manner. During the iterative development process, we
have designed interfaces and services appropriate for providing federation as well as
implemented these capabilities with Apollo, Mercury, and Phoenix. We have integrated KAoS
Policy and Domain services components, the XLayer Discovery and Monitoring services, as well
as an Adaptation service designed specifically for federation. Extensive experimental analysis
has measured the performance of the federation components as well as the integration of
federation capabilities into Apollo and Phoenix.

5. Recommendations
While we have demonstrated the feasibility and benefits of Federation, further research and
development remains to be accomplished in order to enhance the federation capability as well as

Approved For Public Release; Distribution Unlimited.

64

ensure complete integration into the Phoenix implementations such as Fawkes. Below are some
suggestion directions for continued research:

5.1 Extensions to Current Federation Capabilities
Our current set of Federation Services provides full support for subscription and publication
across the established federation as well as basic federation query implementation. The
Federation Manager component enables discovery of new peer federates, dynamic creation of
agreements, and fine-grained management of the federation through policies.

While the current approach supports peer-to-peer federation, hierarchical and chain federation
structures are also needed for some situations. The Federation Manager could be extended with
capabilities to allow the straightforward creation of such federations under policy control, and
with the mechanisms needed to route subscriptions, publications, and queries. Moreover, the
current federation discovery mechanism can be supplemented with the ability to advertise and
discover information needs and offers, as well as exploit knowledge about information
requirements to dynamically propose new federations to satisfy them.

The basic federation query could be augmented with a capability for distributed, joint queries
and exploitation of intra-query parallelism. Based on a cost model, it could be optimized for
parameters such as response time, network utilization, and memory usage by exploiting methods
to reduce communication costs and to implement caching and replication of data.

Policy-based publisher and subscriber control could be extended to the federation, allowing
producers to advertise capabilities, consumers to request information, and to provide feedback or
retraction of inaccurate information (probably using the Notification Channel in Phoenix).

A group of federates may not necessarily share common meta-information types. Federation
Services could allow the manager to create structural and semantic mappings between metadata-
types and then exploit such mappings for data mediation. In addition, autonomic mapping should
be incorporated so that the Federation Services can use the anticipated Information Catalog of
the IMS with a new, richer, information model.

5.2 Integration with Other Systems and Frameworks
In addition to providing a set of services that enable federating Phoenix, it would also be useful
to support other legacy systems and architectures. For example, the addition of CoT Listener and
CoT Emitter services could enable seamless integration with existing, non-Phoenix based CoT
clients and routers. The addition of these services would bring all of the capabilities of
Federation Services, including dynamic adaptation, forwarding, and policy-based control, to
handling of legacy CoT-only clients and routers.

At a generic level, federation can be seen as a mechanism to integrate multiple information
systems, such as databases (each of which can be viewed as an information enclave), and not just
information management systems. Federation should be generalized to provide a policy-
controlled approach to transparently and dynamically sharing information across enclaves.

Approved For Public Release; Distribution Unlimited.

65

Another important integration should be with Quality-of-Service (QoS) frameworks, such as
QED, that are being integrated into Phoenix. The key challenge here is to extend QoS
management and enforcement across federates, as opposed to within just a single instance of
Phoenix. Example applications such as NCET (Network Centric Exploitation and Targeting)
require that information be prioritized across multiple federates, in order to enable timely
information fusion across federates. Mechanisms to interface with QoS frameworks should be
developed, as well as provide the enforcement mechanisms within the federation capability.

The federation capability relates to ongoing efforts in Cross-Domain information management,
currently being developed by AFRL’s CDIS group. There are similarities that are worth
recognizing, supporting, and exploiting. For example, the CDIS effort performs information
shaping for security purposes. Federation performs information shaping for resource
management purposes. Both efforts provide transparency to the client, which connects to one and
only one instance of Phoenix. Federation should support the efforts of the CDIS group by
recognizing common capabilities and leveraging them to avoid duplication.

Finally, the federation services will also interface with system-wide monitoring services, and
mechanisms to support survivability. To this end, the federation services will be designed to
allow multiple instances to be instantiated to support failover and load-balancing.

5.3 Enhancement of Transport and Dissemination Channels
The Mockets Communications Library provides higher-performance while communicating over
wireless ad-hoc networks. The capabilities of Mockets have been integrated into Phoenix as a
communications channel. However, Mockets currently does not support asynchronous I/O.
Mockets should be extended by implementing asynchronous I/O in order to support
asynchronous communication channels within Phoenix.

In addition, DisService provides disruption tolerant, reliable, point-to-multipoint
communications. DisService should be integrated as a point-to-multipoint channel within
Phoenix. DisService provides a number of advanced features, such as opportunistic listening and
multi-channel communications, which could significantly enhance the performance of Phoenix.

5.4 Integration, Evaluation, and Experimentation
The current version of the federation services exist as a branch of the Phoenix repository.
However, Phoenix has undergone additional changes after the last iteration of Federation
redesign and development. The new features of the federation services need to be integrated into
Phoenix on a permanent basis. Furthermore, unit tests need to be developed to provide better
support for automated integration testing, as changes continue to be made to both Phoenix and
the federation services.

Additional, larger scale experimentation needs to be performed as well, for example on the 96-
node NOMADS testbed. The testbed can support medium scale configurations with three-six
federates and several clients attached to each federate.

Approved For Public Release; Distribution Unlimited.

66

Finally, participation in other experimentation, such as the Limited Technology Experiments
(LTEs) that AFRL conducts in collaboration with the Navy, can provide invaluable feedback
regarding the success and behavior of federation.

6. References

[1] Infospherics Web Site. Online reference: http://www.infospherics.org.

[2] Grant, R., Combs, C., Hanna, J., Lipa, B., Reilly, J. “Phoenix: SOA based information
management services,” Proceedings of the 2009 SPIE Defense Transformation and Net-Centric
Systems Conference, Orlando, Fl, April 2009.

[3] Linderman, M., et. al., "A Reference Model for Information Management to Support
Coalition Information Sharing Needs", In Proceedings of 10th International Command and
Control Research and Technology Symposium, 2005.

[4] Suri, N., Rebeschini, M., Breedy, M., Carvalho, M., and Arguedas, M. Resource and Service
Discovery in Wireless Ad-Hoc Networks with Agile Computing. In Proceedings of the 2006
IEEE Military Communications Conference (MILCOM 2006), October 2006, Washington, D.C.

[5] Suri, N., Benincasa, G., Tortonesi, M., Stefanelli, C., Kovach, J., Winkler, R., Kohler, R.,
Hanna, J., Pochet, L., and Watson, S.C. Peer-to-Peer Communications for Tactical
Environments: Observations, Requirements, and Experiences. In IEEE Communications
Magazine, Vol. 48, No. 10 (October 2010), pp. 60-69.

[6] Loyal J. P., Carvalho, M., Martignoni III A., Schmidt, D., Sinclair, A., Gillen, M., Edmonson
J., Bunch, L., Corman, D. QoS Enabled Dissemination of Managed Information Objects in a
Publish – Subscribe – Query Information Broker. In Proceedings of the SPIE Conference on
Defense Transformation and Net-Centric Systems 2009.

[7] Carvalho, M., Suri, N., Arguedas, M., Rebeschini, M., and Breedy, M. A Cross-Layer
Communications Framework for Tactical Environments. In Proceedings of the 2006 IEEE
Military Communications Conference (MILCOM 2006), October 2006, Washington, D.C.

[8] Netty Framework Web Site: http://www.jboss.org/netty.

http://www.infospherics.org
http://www.jboss.org/netty

Approved For Public Release; Distribution Unlimited.

67

 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

AFRL Air Force Research Laboratory
AIMS Advanced Information Management System
API Application Programming Interface
CAPI Client API (Application Programming Interface)
CDIS Cross Domain Information Sharing
CoT Cursor-on-Target
IMS Information Management System
JBI Joint Battlespace Infosphere
JEFX Joint Expeditionary Force Experiment
KAoS Not an acronym – the name assigned to a system
NCET Network Centric Exploitation and Targeting
NOMADS Not an acronym – the name assigned to a system
QoS Quality of Service
SoA Service-oriented Architecture

