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Abstract

Monostatic and bistatic Radar Cross Sections (RCS) of Canadian Coast Guard Ship
Teleost and cargo-container vessel named Bonn Express are simulated using FEKO
commercial electromagnetic simulation software. A good agreement is achieved between
the simulated values and the measured values supplied by DRDC Ottawa, at the radar
frequency of 4.1 MHz. With confidence in these FEKO models, the effect of pitch, roll
and freighter loading was then investigated to account for such practical situations in
oceanic environments.

Résumé

La surface équivalente radar (SER) de radars monostatiques et bistatiques a bord du
navire de la Garde cotiere canadienne (NGCC) Teleost et du transporteur de conteneurs
de fret Bonn Express a fait ’objet de simulations a I’aide du logiciel commercial de
simulation ¢lectromagnétique FEKO. Une bonne concordance est obtenue entre les
valeurs simulées et les valeurs mesurées fournies par RDDC Ottawa, a la fréquence radar
de 4,1 MHz. Ces mod¢les FEKO inspirant confiance, on a alors étudi¢ 1’effet du tangage,
du roulis et de la charge des navires pour tenir compte de telles situations pratiques en
milieu océanique.
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Executive summary

Monostatic and bistatic HF Radar Cross Section Analysis of
Large Vessels Using FEKO (U)

Symon L. Podilchak and Hank Leong; DRDC Ottawa CR 2010-262; Defence
R&D Canada — Ottawa, December 2010.

Introduction or background:

One of the key parameters required in the simulation of HF Surface Wave Radar (HFSWR)
performance is the Radar Cross Sections (RCS) of the targets of interest. DRDC Ottawa had an
interest in the performance of bistatic HFSWR. As part of his Master’s thesis works (2008),
LCdr. Ryan Solomon incorporated and then refined the set of models previously developed by
Leong and Wilson' at DRDC Ottawa for the Canadian Coast Guard Ship Teleost and cargo-
container vessel named Bonn Express to study the High Frequency range bistatic RCS values of
complex structures using FEKO commercial electromagnetic simulation software. This report
extends the work in LCdr. Solomon’s thesis to include additional RCS investigations.
Specifically, numerical simulations are provided to investigate the varied changes of the RCS
values due to practical situations in oceanic environments. The varied simulations can be
described as follows:

. RCS simulations of the Teleost vessel for varied pitch and roll positions; and
. RCS simulations of the Bonn Express vessel for varied loading.

In the absence of any information on the possible extent of pitch and roll of the Teleost vessel, we
assume that the bow of the ship can be rotated by up to 15 degrees, and the port side of the ship
can be rotated by up to 10 degrees.

Results:

The effect of vessel pitch was first investigated by rotating the bow of the Teleost model upwards
by 5, 10 and 15 degrees. The effect of ship roll was also investigated by rotating the port side of
the same model upwards by 5 and 10 degrees. In both cases, simulations show that there are
noticeable differences between the monostatic RCS values of the rotated model and the upright
model. In the frequency range of 1-20 MHz over all the aspect angles, a difference of as much as
15 dB could be observed. More detailed analysis of the results has been presented in RadarCon
2009 (S. Podilchak, H. Leong, R. Solomon and Y. Antar, “Radar Cross Section Modeling of
Marine Vessels in Practical Oceanic Environment for High-Frequency Surface-Wave Radar”,
IEEE RadarCon 2009, Pasadena, CA, May 2009).

'H. Leong and H. Wilson., “An Estimation and Verification of Vessel Radar Cross Sections for HFSWR”, IEEE
Antenna and Propagation Magazine, 48, No. 2, pp. 11-16, Apr 2006.
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The model of Bonn Express was then modified to account for different levels of loading and to
include a fore- and after-mast. A better agreement is found between the simulated values using
the modified model and the measured values supplied by DRDC Ottawa, at the radar frequency of
4.1 MHz, when the vessel is modeled as fully loaded.
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Large Vessels Using FEKO (U)
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Introduction

L’un des parameétres clés requis dans la simulation du rendement du radar hautes fréquences a
ondes de surface (HFSWR) est la surface équivalente radar (SER) des cibles d’intérét. RDDC
Ottawa s’est intéress¢ au rendement du radar HFSWR bistatique. Dans le cadre de ses travaux de
thése de maitrise (2008), le capc Ryan Solomon a intégré et raffiné le jeu de modeéles qu’avaient
mis au point Leong et Wilson” & RDDC Ottawa a I’intention du navire de la Garde cotiére
canadienne (NGCC) Teleost et du transporteur de conteneurs de fret Bonn Express en vue de
I’étudie des valeurs SER de radars bistatiques a structure complexe dans la gamme des hautes
fréquences a 1’aide du logiciel commercial de simulation électromagnétique FEKO. Le présent
rapport élargit les travaux de la theése du capc Solomon par I’ajout d’autres études de la SER. Plus
précisément, des simulations numériques sont fournies en vue de 1’étude des diverses
modifications des valeurs de la SER attribuables a des situations pratiques en milieu océanique.
Les diverses simulations peuvent étre décrites comme suit :

» simulations de la SER a bord du Teleost pour I’étude de I’effet de la variation du tangage et du
roulis;

» simulations de la SER a bord du Bonn Express pour I’étude de I’effet de la variation de la
charge.

En Dl’absence de données sur 1’étendue possible du tangage et du roulis du 7eleost, nous
supposons que la proue du navire peut pivoter d’au plus 15 degrés et que le coté babord du navire
peut pivoter d’au plus 10 degrés.

Résultats

On a étudié I'effet du tangage du navire tout d’abord en faisant pivoter la proue du modeéle du
Teleost vers le haut de 5, de 10 et de 15 degrés. On a aussi étudié I’effet du roulis du navire en
faisant pivoter le c6té babord du méme modele vers le haut de 5 etde 10 degrés. Dans les
deux cas, les simulations montrent des différences perceptibles entre les valeurs de la SER de
radar monostatique du mod¢le pivoté et du modele droit. Dans la gamme de fréquences
1-20 MHz a tous les angles d’aspect, une différence d’au plus 15 dB a pu étre observée. Une
analyse plus détaillée des résultats a été présentée lors de la conférence RadarCon 2009, organisée
par '[EEE a Pasadena (CA) en mai 2009 (S. Podilchak, H. Leong, R. Solomon et Y. Antar,

2 H. Leong et H. Wilson, An Estimation and Verification of Vessel Radar Cross Sections for HFSWR (estimation et
vérification des valeurs de la surface équivalente radar dans le cas du radar HFSWR), revue Antenna and Propagation
de 'EEE, 48, n° 2, p. 11-16, avril 2006.
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Radar Cross Section Modeling of Marine Vessels in Practical Oceanic Environment for High-
Frequency Surface-Wave Radar (mod¢lisation de la surface équivalente radar (SER) de radars
hautes fréquences a ondes de surface a bord de navires maritimes en situation pratique en milieu
océanique).

On a alors modifié le modele du Bonn Express pour tenir compte de différents niveaux de charge
et inclure un mat de misaine et un mat arriére. On a constaté une meilleure concordance entre les
données simulées obtenues a 1’aide du modele modifié et les valeurs mesurées fournies par
RDDC Ottawa, a la fréquence radar de 4,1 MHz, lorsque le navire est modélisé comme ayant une
charge complete.
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Radar Cross Section Analysis of Naval Vessels Using
FEKO

This report illustrates recent developments of radar cross section (RCS)
simulations performed by Symon Podilchak, supervised by Hank Leong and Dr.
Yahia M. M. Antar. Modeling, analysis and RCS simulations were conducted
using FEKO and MATLAB.

Previous work was conducted by LCdr. Ryan Solomon during his Master’'s
Thesis, RCS modeling of complex structures in high frequency (HF) surface-
wave radar SWR applications, at the Royal Military College of Canada. This
report extends the work of LCdr. Solomon’s thesis to include additional RCS
investigations. Specifically, numerical simulations are provided to investigate the
varied changes of RCS values due to practical situations in oceanic

environments. The varied simulations can be described as follows:

e RCS simulations of the Teleost vessel for varied pitch and roll positions;

e RCS simulations of the Teleost and Bonn Express vessels for varied
loading.

e Simulations were conducted for bow to stern incident angles (with 5°
increments).

¢ Only the vertical scattered field components were analyzed.

e Simulations were completed from1 -20 MHz (with a 1MHz increment).

e A perfect ground plane (PEC) was used to model the horizontal plane of
the ocean.

¢ Orientations of incident field angles with respect to the standard ship
orientation (port, starboard, bow and stern) are shown in Fig. 1.

e Photographs of the Teleost and Bonn Express vessels are shown in Figs.
2 and 3.

DRDC Ottawa CR 2010-262 1



TOP VIEW OF A SHIP

Port

1800 .
o Starboard
1500 # B \300
1200 [ 50°
90°
Forward Direction
Figure 1: Top view of a standard ship and angles of incident f elds referenced to the

port, starboard, bow and stern.

Figure 2: Photograph of Teleost Vessel for the Canadian Coast Guard.
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Figure 3: Photograph of the Bonn Express Freighter Vessel with Container Loading.

Simulation | - Base Teleost Model

{ Antenna Structures |

A-Frame Mast

Figure 4: Teleost base model simulation with A-frame mast and antenna structures.
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To have confidence in the results presented in this work, simulations were
compared to measured RCS values for the Teleost vessel at 4.1 MHz. Results
are shown in Fig. 5 and a deviation less than 1.25 dB is observed. Since such a
reasonable agreement between measured and simulated values is observed,

additional investigations using similar methodologies may also be valid.
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Figure 5: Comparison of Measured and Simulated RCS Values for Teleost at 4.1 MHz.

It is interesting to note that a null at broadside is observed at 7 MHz as shown
in Fig. 6. This result is expected since the vessels of interest are Rayleigh and
resonant scatters. Specifically, resonant scatterers are generally of the order of
one-half to 10 wavelengths in size. For instance, at 7 MHz, /2 = 21.4 m which is
approximately equal to the height of the modeled A-Frame mast and antenna
structures (24 m). To investigate this effect further, additional simulations were
completed for the Teleost vessel without the antenna structures. The simulated
vessel is shown in Fig. 7 and results are shown in Fig. 9. Then, a third simulation

was conducted without the A-Frame mast and antenna structures. As expected
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the null is not observed due to the reduction of scatter size. The modeled vessel

is shown in Fig. 8 and results are shown in Fig. 10.

In addition, bistatic RCS values were determined for broadside incidence (90°
on the Starboard side of the Teleost. The model shown in Fig. 4 was used for the

simulations. A PEC was used to model the horizontal air-ocean interface.

Frequency [MHz]

180165 150135120105 90 75 60 45 30 15 O
Monostatic Incident Angle [deg ]

Figure 6: Simulated Monostatic RCS returns for the base model shown in Fig. 4.

DRDC Ottawa CR 2010-262 5



AFrame Mast |

Figure 7: Teleost base model simulation without antenna structures.

Removed A-Fme Mast | '
and Antenna Structures | —

Figure 8: Teleost base model simulation without A-Frame and antenna structures.
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Monostatic RCS Values [gin dB m2]

Frequency [MHz]

Monostatic Incident Angle [deg.]

Figure 9: Simulated RCS values of Teleost base model without the antenna
structures (Fig. 7).

Monostatic RCS Values [gin dB m2]

Frequency [MHz]

180165 150135120105 90 75 60 45 30 15 O
Monostatic Incident Angle [deg.]

Figure 10: Simulated RCS values of the Teleost base model without the A-Frame mast
and antenna structures (Fig. 8). As expected, the scatterer has a reduced size eliminating
the resonance effect.

DRDC Ottawa CR 2010-262



Bistatic RCS Values for Broadside (900)
Incidence [gin dB m2]

Frequency [MHz]

165 150 135 120 105 90 75 60 45
Bistatic Angle [deg.]

18

Figure 11: Simulated bistatic RCS values with broadside incidence (90°) for the Teleost
base model with antenna structures and A-Frame Mast (Fig. 4).

Simulation Il - Upward Rotation of Bow

The second set of simulations investigated the effect of rotating the bow of the
Teleost base model upwards (by increments of five degrees) about the origin.
Fig. 12 illustrates such a pitch configuration. Monostatic RCS values are shown
in Fig. 13 for a 5° rotation away from the )/-axis towards the Z* direction. The
difference between (or normalization to) Simulation | and Simulation Il is also
shown in Fig. 14. Specifically, the contour plot was determined by the RCS
values from Simulation Il minus the RCS values from the base model, Simulation
|. Figs. 14 -17 illustrate an analogous difference computation with 10°, 15° and
25° rotations.
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Upward Rotation
of Bow By 5°

Figure 12: Teleost base model with a 5° upward rotation of the bow.

Such comparisons can illustrate the variance in RCS values due to
environmental changes in an oceanic environment. The varied rotations could be
caused from a seawater wave or an unforeseen threat. Thus knowledge of such
variances from a baseline model could be useful if the vessel of interest is under

some unwanted or unknown distress.
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10

10

Frequency [MHz]

180165 150135120105 90 75 60 45 30 15 O
Monostatic Incident Angle [deg.]

Figure 13: RCS values with a 5% rotational lift.

Differance in Monostatic RCS Values from Base Simulation [in dB]
20 _ : .

Frequency [MHz]

P - ; =
[ — ety e

180165 150 135120105 90 70 45 30 15 0
Monostatic Incident Angle [deg.]

Figure 14: Difference from base simulation I (o5e /0pge in dB).
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Differance in Monostatic RCS Values from Base Simulation [in dB]
20 - :

10

Frequency [MHz]

180 165 150 135 120105 90 75 60 45 30 15 0
Monostatic Incident Angle [deg.]

Figure 15: Difference from base simulation I (010 /Tpase in dB).

Differance in Monostatic RCS Values from Base Simulation [in dB]
20 s — -

10

Frequency [MHz]

180165 15135120105 90 75 60 45 0 15 0
Monostatic Incident Angle [deg.]

Figure 16: Difference from base simulation I (015 /Gpase in dB).
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Differance in Monostatic RCS Values from Base Simulation [in dB]
20 7 B

10

12

Frequency [MHz]

5

-10

180165 150135120105 90 75 60 45 30 15 O
Monostatic Incident Angle [deg.]

Figure 17: Difference from base simulation I (05z0 /Ty in dB).

Simulation Ill - Upward Rotation of Port

The third set of simulations investigated the effect of rotating the port side of the

Teleost base model in increments of five degrees about the origin. Fig. 18

illustrates such a pitch configuration.

Upward Rolation
of Port By 5°

Figure 18: Teleost base model with a 5° upward rotation of the port.
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The monostatic RCS values are shown in Fig. 19 for a five degree rotation.
Normalization to the base model is also shown in Figs. 20 and 21 for the 5° and

10° role positions.

-
(]

Frequency [MHz]

180165 150135120105 90 75 60 45 30 15 O
Monostatic Incident Angle [deg.]

Figure 19: RCS values with a 59°¢ rotational lift.
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Differance in Monostatic RCS Values from Base Simulation [in dB]
20 :

10

Frequency [MHz]

18016510135120105 90 75 60 45 30 15 O
Monostatic Incident Angle [deg.]

Figure 20: Difference from base simulation I (050 /0, in dB).

Differance in Monostatic RCS Values from Base Simulation [in dB]
20

10

Frequency [MHz]

180 165 150 135 120105 0 75 6 45 30 15 0
Monostatic Incident Angle [deg.]

Figure 21: Difference from base simulation I (010 /Tpase in dB).
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Simulation IV - Upward Rotation of Starboard

Upward Rolation
of Starboard By 5°

Figure 22: Teleost base model witha 5° upward rotation of the starboard.

The fourth set of simulations investigated the effect of rotating the starboard
side of the Teleost base model in a single increment of five degrees about the
origin (Fig. 22). The monostatic RCS values are shown in Fig. 23. The

normalization to the base simulation results is also shown in Fig. 24.
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Monostatic RCS Values [g in dB m?]
_ T

10

Frequency [MHz]

180165 150135120105 90 75 60 45 30 15 O
Monostatic Incident Angle [deg.]

Figure 23: RCS values with a 5% rotational lift.

Differance in Monostatic RCS Values from Base Simulation [in dB]
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Monostatic Incident Angle [deg.]

Figure 24: Difference from base simulation I (o5e /0pye in dB).
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Simulation V - Increased Teleost Payload

The fifth set of simulations investigated the effect of loading the ship and its
resulting RCS values by moving the base Teleost model below the ground plane
level in sequential increments (2, 3 and 4 m). Essentially, if the ship had
increased weight (by loading) the ship itself would be further immersed in the
water by displacement. Thus by moving the ship in the negative Z* direction by
incremental steps, this effect can be studied. The normalized (to the base
simulation) results are shown in Figs. 25 -27.

Differance in Monostatic RCS Values from Base Simulation [in dB]

18F

10
16

! 5

I -

= 12}

9 0

o 1

=

O

]

L

180165 150 135120105 90 75 60 45 30 15 O
Monostatic Incident Angle [deg.]

Figure 25: Difference from base simulation I (52 pet00 /Tpase in dB).
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18

Differance in Monostatic RCS Values from Base Simulation [in dB]

Frequency [MHz]

180165 150135 120105 90 75 60 45 30 15 O
Monostatic Incident Angle [deg.]

Figure 26: Difference from base simulation I (75 pe1000/Tpase in dB).

Differance in Monostatic RCS Values from Base Simulation [in dEB]
20

10F

Frequency [MHz]

180165 150135120105 90 75 60 45 30 15 O
Monostatic Incident Angle [deg.]

Figure 27: Difference from base simulation I (o4 peio0/Tpase in dB).
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Simulation VI - Reduced Teleost Payload

The sixth set of simulations investigated Teleost payload reductions and its effect
on RCS values. The normalized (to the base simulation) results are shown in
Figs. 28 -30 by increasing the base model above the ground plane in1, 2 and 3 m
increments.

Differance in Monostatic RCS Values from Base Simulation [in dB]

12F

Frequency [MHz]

‘IO 165 150135120105 90 75 60 4
Monostatic Incident Angle [deg.]

Figure 28: Difference from base simulation I (7 4pove / Tpase in dB).
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Differance in Monostatic RCS Values from Base Simulation [in dB]
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Figure 29: Difference from base simulation I (75 4pove / Tpase in dB).

Differance in Monostatic RCS Values from Base Simulation [in dB]
20p ‘ —_— :
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Frequency [MHz]
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Figure 30: Difference from base simulation I (75 4pove / Tpase in dB).
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Simulation VII - Bonn Express Investigations

The sixth set of simulations compared measured and simulated monostatic RCS
returns from the Bonn Express Cargo Freighter. Two simulation models were
developed: the first model did not include details of cargo freight loading while the
second model included the cargo storage compartments and ship displacement
due to loading. The models are shown in Figs. 31 and 32. The monostatic RCS
returns at 4.1 MHz are shown in Figs. 33 and 34. By modeling the freighter
loading, a reasonable agreement between measured and simulated monostatic
returns is achieved. In addition, Figs. 35-36 illustrate the simulated monostatic
RCS return values for the Bonn Express models from 1-7 MHz. Fig. 36 illustrates

the difference in RCS values for these two models.
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Figure 31: Bonn Express cargo freighter base model.
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Antenna
Structures

Figure 32: Bonn Express cargo freighter advanced model with cargo storage compartments
and ship displacement due to loading.
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Figure 33: Comparison of measured and simulated monostatic RCS return values for the
Bonn Express Freighter at 4.1 MHz. All incident angles are shown.
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Figure 34: Comparison of measured and simulated monostatic RCS return values for the
Bonn Express Freighter at 4.1 MHz. Incident angles shown from 60° to 160°.

Monostatic RCS Values [ in dB m]

.
50
6
L 145
w5
BE
= 140
)
2 4
o 135
ja
o
] | 1t {30
2t 25
20

1 1 L 1 1 7. Ty 1
180165 150135120105 90 75 60 45 30 15 O
Monostatic Incident Angle [deg.]

Figure 35: Simulated RCS values for the Bonn Express Freighter from 1 to 7 MHz. The
base model was used (Fig. 31).
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Monostatic RCS Values [ in dB m?]

N

Frequency [MHz]
I

180165 150135120105 90 75 60 45 30 15 O
Monostatic Incident Angle [deg.]

Figure 36: Simulated RCS values for the Bonn Express Freighter from 1 to 7 MHz. The
detailed model that included container loading effects was used (Fig. 32).
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Figure 37: Difference in monostatic RCS values from the two Bonn Express models, Figs.

31 and 32. (O_detailed/gbase in dB)
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Conclusion

This work has presented monostatic and bistatic RCS simulations of the
Teleost and Bonn Express Vessels. A good agreement is achieved between
measured and simulated values at 4.1 MHz. With confidence in these FEKO
models, the effect of pitch, roll and freighter loading was also investigated to

account for such practical situations in oceanic environments.
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Monostatic and bistatic Radar Cross Sections (RCS) of Canadian Coast Guard Ship Teleost and cargo-
container vessel named Bonn Express are simulated using FEKO commercial electromagnetic
simulation software. A good agreem ent is achieved between the simulated values and the measured
values supplied by DRDC Ottawa, at the radar frequency of 4.1 MHz. With confidence in these FEKO
models, the effect of pitch, roll and freighter loading was then investigated to acco unt for such
practical situations in oceanic environments.

La surface équivalente radar (SER) de radars monostatiques et bistatiques a bord du navire de la Garde
cotiere canadienne (NGCC) Teleost et du transporteur de conteneurs de fret Bonn Express a fait 1’objet
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