
AFRL-AFOSR-UK-TR-2011-0027

COMMUNICATION AND DISTRIBUTED CONTROL IN
MULTI-AGENT SYSTEMS

Angelo Cangelosi
Fabio Ruini

 University of Plymouth

 School of Computing Comms Electronics
 Drake Circus

 Plymouth, United Kingdom PL4 8AA

EOARD GRANT 07-3075

August 2011

Final Report for 15 May 2007 to 15 May 2011

Air Force Research Laboratory
Air Force Office of Scientific Research

European Office of Aerospace Research and Development
Unit 4515 Box 14, APO AE 09421

Distribution Statement A: Approved for public release distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

03-08-2011
2. REPORT TYPE

Final Report
3. DATES COVERED (From – To)

15 May 2007 – 15 May 2011
4. TITLE AND SUBTITLE

COMMUNICATION AND DISTRIBUTED CONTROL IN MULTI-
AGENT SYSTEMS

5a. CONTRACT NUMBER

FA8655-07-1-3075
5b. GRANT NUMBER

Grant 07-3075
5c. PROGRAM ELEMENT NUMBER

61102F

6. AUTHOR(S)

Professor Angelo Cangelosi
Fabio Ruini

5d. PROJECT NUMBER

5d. TASK NUMBER

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Plymouth
School of Computing Comms Electronics
Drake Circus
Plymouth, United Kingdom PL4 8AA

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
Unit 4515 BOX 14
APO AE 09421

10. SPONSOR/MONITOR’S ACRONYM(S)

AFRL/AFOSR/RSW (EOARD)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

AFRL-AFOSR-UK-TR-2011-0027

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This project has focused on the design of distributed autonomous controllers for collective behavior of Micro-unmanned Aerial Vehicles (MAVs).
Two alternative approaches to this topic are introduced: one based upon the Evolutionary Robotics (ER) paradigm, the other one upon flocking
principles. Three computer simulators have been developed in order to carry out the required experiments, all of them having their focus on the
modeling of fixed-wing aircraft flight dynamics. The employment of fixed-wing aircraft rather than the omni-directional robots typically employed
in collective robotics significantly increases the complexity of the challenges that an autonomous controller has to face. This is mostly due to
the strict motion constraints associated with fixed-wing platforms that require a high degree of accuracy by the controller. Concerning the ER
approach, the experimental setups elaborated have resulted in controllers evolved in simulation with the following capabilities: (1) navigation
across unknown environments, (2) obstacle avoidance, (3) tracking of a moving target, and (4) execution of cooperative and coordinated
behaviors based on implicit communication strategies. The design methodology based upon flocking principles has involved tests on computer
simulations and subsequent experimentation on real-world robotic platforms. A customized implementation of Reynolds' flocking algorithm has
been developed and successfully validated through flight tests performed with the swinglet MAV. It has been notably demonstrated how the
Evolutionary Robotics approach could be successfully extended to the domain of fixed-wing aerial robotics, which has never received a great
deal of attention in the past. The investigations performed have also shown that complex real physics-based computer simulators are not a
compulsory requirement when approaching the domain of aerial robotics, as long as proper autopilot systems (taking care of the "reality gap"
issue) are used on the real robots.

15. SUBJECT TERMS

EOARD, Multi Agent Systems, Machine Learning, Cognition, Language processing

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18, NUMBER
OF PAGES

63

19a. NAME OF RESPONSIBLE PERSON
JAMES LAWTON Ph. D.
 a. REPORT

UNCLAS
b. ABSTRACT

UNCLAS
c. THIS PAGE

UNCLAS 19b. TELEPHONE NUMBER (Include area code)
+44 (0)1895 616187

 Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

EOARD GRANT 073075

COMMUNICATION AND DISTRIBUTED CONTROL IN MULTI-AGENT SYSTEMS

Principal Investigator: Professor Angelo Cangelosi
PhD Student: Mr Fabio Ruini

Final Report

ABSTRACT

The goal of this project has been to develop new Multi-Agent Systems (MAS) models of
communication in collaborative tasks to investigate the role of explicit communication in distributed
control. This project has focused on the role of explicit symbolic communication between software
agents in distributed control tasks. Compared to centralized control, where a central controller is
responsible for the (pre)planning, task-assignment and supervision of the coordination task, in
distributed control systems intelligent autonomous, or semi-autonomous, agents are capable of sensing,
acting, cognition and communication and together contribute to the task solution. These network-
centric systems only require partial interaction with other agents, and may necessitate simpler
architectures and individual resource requirements as knowledge is distributed in the population. The
significant advantages of this approach are that the system is more robust, adaptive and fault tolerant
since there is no critical reliance on any specific individual, and that decentralization results in
increased reliability, safety and speed of response. In addition, distributed approaches have the benefit
of not requiring the full pre-planning of the cooperative strategy. Adaptive solutions can emerge run-
time through the interaction between autonomous individuals and from the task and environment
requirements which might not be fully accessible (known) at the beginning of the problem.

New studies on the role of explicit communication in MAS have many theoretical and technological
implications. First, agents that are allowed to communicate explicitly during the execution of
collaborative task might benefit from the exchange of information regarding properties of the task
being processed. Such explicit communication systems do not have to be defined a priory by the
human designer, but can autonomously emerge from social interaction between agents. A second
advantage of studying symbolic communication concerns the development of human-centered systems
and hybrid human/agent/robot systems. This will support the reconciliation of human decision making
schemes with machine performance and intelligent agents, keeping the human in the loop. Finally, the
post-hoc analysis of the communication systems developed by the agents (with or without interactions
with human users) can give meaningful insights on the optimal strategies upon which the distributed
control strategy is based. This can be also used for the design and improvement of human-centered
distributed control systems.

Table of Contents

Year 1 Report 1

Year 2 Report 16

Year 3 Report 29

Year 4 Report 37

1

EOARD GRANT 073075

Communication and Distributed Control in Multi-Agent Systems
http://www.tech.plym.ac.uk/soc/research/ABC/plymav/

Principal Investigator: Professor Angelo Cangelosi

PhD Student employed on the project: Mr Fabio Ruini

Second Interim Report (Year 1, Month 12)

Introduction

This report will first provide brief summary of the work carried out during the first six months of
the project, and will then describe in detail the two main experiments carried out during the second
semester. These new experiments respectively employ a target able to move (trying to escape from
the approaching MAVs) and a more “robust” target that requires two sequential hits in order to be
destroyed. The report will also contain sections on the description of some additional studies on the
genetic algorithm parameters, in order to optimize its convergence speed. We will discuss as well
new experiments where we tried to extend the validity of the developed model, applying the same
basic principles on different simulated environments/locations. We will also address some of the
criticisms raised during the presentations of this ongoing work at scientific conferences and
workshops. Finally we will describe the plans for future work that mainly concern the extension of
the previous model to a three-dimensional simulator, that will act as the base platform on which the
future communication-related experiments will be carried out. Full details on the experiments
carried out and the software platform are available in the project website:
http://www.tech.plym.ac.uk/soc/research/ABC/plymav/

Summary of previous work (experiments A and B)

The main goal of this project is to develop embodied neural network controllers for MAV (Micro-
unmanned Aerial Vehicles) swarms employing Evolutionary Robotics methodologies [1]. Each
swarm’s member will have to be able to navigate autonomously through an unknown environment,
relying only on a specified subset of information gathered through its sensors. Communicating with
its teammates in order to perform tasks requiring coordination and cooperation will be studied in the
second part of the project.

The approach we have chosen to follow falls into the so-called “reactive strategies” category as
classified by Richards et al. [2]. The main difference with respect to standard reactive strategy
approach mainly consists in the employment of a neural network controller instead of a properly
defined decision tree. In both cases the training1 of the autonomous controllers is based on
evolutionary algorithm and the use of computer simulator experiments.

With the first experiments carried out in the first semester (see [3][4]) we outlined the general
requirements for a simulator of this kind, and identified the minimal sensors requirements for
allowing MAVs to perform navigation tasks both inside plain (experiment A) and obstacle-full
(experiment B) environments.

1 We are using the term “training” in a general sense, even if it is not the most appropriate to use. We are not
referring in fact to learning algorithms (e.g. back-propagation) for which the term “training” is typically
employed, but to a search of the most appropriate set of connection weights and biases pursued through
evolutionary algorithms.

2

Figure 1 - The simulated environment (based on a map of Canary Wharf, London obtained through Google Earth)

used for experiment B. Its size is 710 x 760 pixels, corresponding to 630 x 675 meters

The experimental conditions are quite simple. A swarm is composed by four MAVs, each endowed
with its own neural network controller, identical to the ones of its teammates. At the beginning of a
test, an “enemy” target is deployed somewhere inside the environment. The test environment
consists of the Canary Warf financial district in London. Starting from the four environment
corners, the MAVs have to fly toward the target attempting to eliminate it. In order to neutralize the
target, one of the MAVs needs to perform a detonation when it is close enough to it (2.2 meters or
less). A test ends when the target has been destroyed or no MAVs are still living. A MAV will die if
it performs a detonation, if it attempts to exit from the environment’s boundaries, if it collides
against a teammate, if it runs out of energy (every movement it does costs a certain amount of
energy), and, in experiment B, if it crashes against a building.

Each MAV is able to perceive the distance between itself and the target, as well as the angle that
separates the two agents (based on the current MAV’s facing direction)2. In experiment B the
MAVs are also endowed with three ultra-sonic sensors, capable to detect the presence of (and the
distance from) an obstacle, which could be the target, a teammate or a building. The neural
network’s output layer consists of two neurons. One output unit controls the MAV’s steering
direction (+/-20 degrees in the time unit); the other output unit is a Boolean neuron that, when it
turns to 1, causes the MAV to carry out the detonation. The fact that we are simulating an aircraft-
like motion implies the constraint, for the MAVs, of being always on movement. The speed is
instead assumed as constant.

The evolution toward a controller able to perform the desired task is made possible by a genetic
algorithm. An initial population of 100 swarms is created with randomly assigned connection
weights and biases. Each swarm is tested four times with the target deployed in randomly chosen
positions. At the end of each generation the 20 individuals that has performed the best scores
according to the fitness formula are selected for reproduction. Each swarm generates 5 copies of its
genome, on which the mutation operator is then applied. The resulting 100 individuals will
constitute the new population at the next generation. The evolutionary process lasts for 2,500
generations and it is repeated 10 times with the results of all the runs averaged in order to obtain
more reliable data.

2 These assumptions are supported by the idea of a satellite system that continuously monitors the target
and broadcast the information about its coordinates to the MAVs. In this way the MAVs - equipped with a
GPS receiver - can easily calculate their distance from the target matching the two data sources received.
Then a simple compass can easily allow the MAVs to determine also the relative direction on which the
target is.

3

The fitness formulas used are the following, respectively for experiments A and B:

where: α is the average distance between the target and the swarm’s member detonated closest to it,
calculated during the four tests; β is the average amount of energy retained by the MAV detonated
closest to the target; σ is the number of tests concluded by the given swarms with the elimination of
the target; Φ is the total number of swarm’s members remained alive after the 4 tests (maximum 3
MAVs * 4 tests = 12). The only difference between the two fitness formulas consists in the part of
the equation involving the Φ parameter. In the second experiments it is multiplied by 10 – twice as
before - in order to facilitate the evolution of the obstacle-avoidance behavior.

Figure 2 - The neural network architectures employed for experiment A (left) and B (right)

The results show how the set up elaborated could lead quite easily to the proper evolution of the
desired behaviours. At the end of the evolution, on average we have the 93.46% of tests
successfully concluded for experiment A and 87.18% for experiment B (see Figure 3).

Figure 3 - Percentage of tests concluded with the elimination of the target for experiment B

4

New experiment C: Task with movable target

In this new experimental scenario, the target is able to detect a MAV approaching it. This new
property of the target was introduced to increase the complexity of the task and tets the robustness
of the model. During each time step, if a MAV is closer than 15 meters to the target, the latter can
detect the aircraft with probability .5. In the event of MAV detection, the target will then move
away from the MAV in order to maximize its distance from the approaching aircraft. The target will
remain in “MAV detected mode”, and will keep moving away during every step, until the aircraft
will die or the distance between the two agents will be over the 38 meters threshold.

Five simulations have been carried out where we varied the escaping speed of the target. Given the
MAVs’ flying speed of 55 km/h, the target speeds in the various simulations respectively
correspond to 27.5 (Simulation C1: target speed = MAV speed/2), 18.33 (Simulation C2: target
speed = MAV speed/3), 13.75 (Simulation C3: target speed = MAV speed/4), 11 (Simulation C4:
target speed = MAV speed/5) and 9.16 (Simulation C5: target speed = MAV speed/6) km/h.

The results are summarized into the following table:

Simulation Av. fitness Max fitness Av. success % Av. distance
from the target

(px)

Min distance
from the target

(px)

C1 138.93 395.18 54.58 92.94 1.34

C2 198.08 409.67 78.28 107 1.09

C3 250.68 411.74 81.89 72.47 0.95

C4 258.72 409.9 83.3 70.03 0.98

C5 242.42 413.05 84.06 95.53 0.81

Table 1 - Summary of the results obtained from the various simulations of experiment C

Observing the outcome of these simulations - particularly with regard to the average fitness - we
can easily identify a kind of threshold. Simulations C3, C4 and C5 seem to perform equally well
according to the various parameters measured. Simulation C2 produces a significantly worse
performance for the average fitness, but performs quite well if we take into account the maximum
fitness and the average percentage of tests concluded successfully. In simulation C1 the
performance is rather poor.
 
Comparing these results with the ones obtained before using a static target, we can notice a general
performance decrement. This was largely expected, since the new task is more difficult than the
previous one. As clearly shown in Figure 4, the difference is mainly concentrated on the average
values, while the maximum ones (i.e., the best individuals/controllers within a certain generation)
tend to reach similar level of performance.

The main conclusion of experiment C is that the previous algorithm setup can evolve MAV
controller able to navigate through unknown environments and autonomously reach and destroy a
target able to move away from them. The only constraint is that the target should not be able to
move faster than one third of the MAVs’ speed. This is quite a reasonable assumption if we suppose
that the target is not a vehicle, but a person. Considering that the moving speed of an average
person moving in crowded environment could approximated be 4-7 km/h while walking, and 15-20

5

km/h while running, we might argue that the evolved controllers are able to accomplish their task
with a good degree of confidence even against a movable target3.

 
Figure 4 ­ Average and maximum fitness compared for simulations B and C3, C4 and C5 (the last three averaged) 

New Experiment D: Cooperative task

The setup labeled as experiment D adds the constraint of requiring two MAVs to detonate at the
same time (i.e., within limited max number of time-steps apart from each other, since the simulation
works in discrete time steps) against the target in order to neutralize it. The target begins each
training epoch with the assigned status of “intact”. When it happens that one of the MAVs detonates
close enough to it (i.e., the same situation that in the previous setups would have provoked the
elimination of the target), the target’s status switches to “damaged”. If a second MAV manages to
detonate close enough to the target while this is still in the “damaged” mode, the target will be
eliminated. Otherwise, after 10 time-steps of “damaged” state, the target will restore its original
“intact” condition.

Figure 5 - The neural network architecture used for experiment D

3 Consider that a typical MAV platform, as could be the Aerovironmentʼs WASP III, is able to reach a speed
of 65 km/h (http://www.avinc.com/downloads/Wasp_III.pdf). One third of this speed roughly corresponds to
21.5 km/h, which is a value comparable to the 15-20 km/h suggested as the maximum speed for an average
person running.

6

In order to make the MAVs able to accomplish this task, we have provided them with the capability
of gathering additional information from the environment. Each member of the swarm is able to
detect both the status of the target (healthy or damaged) and the presence of a teammate within a
certain distance. This information is given in input to the neural controller through two additional
Boolean neurons. These two neurons implement a kind of logic OR. In order to detonate, a MAV
needs to know that there is a teammate close to it, or that the target has recently been damaged (i.e.,
it is currently on the “damaged” status), or that both conditions (closeness and damaged) are true.
Few neurons have been added to the hidden layer as well, in order to make the neural network able
to cope with the increased amount of information collected from the environment.

The fitness formula was also modified in order to let the new desired behavior evolve. We have
now introduced the concepts of “target approached” and “target damaged”. At the end of a test, we
define the target as “approached” if at least one MAV has detonated within a 56 meters range from
it. The target is considered “damaged” instead if at least one MAV has managed to detonate against
it. These modifications tend to recreate what we could call an incremental evolutionary process
(though in a different way from the strategy used by Barlow and colleagues [5]). The MAVs
initially learn how to perform the simplest sub-task (approaching the target) and then progressively
move toward the more complicated sub-tasks (damaging the target and neutralizing the target),
which in turns make the accomplishment of the overall task possible.

Putting all together, the new fitness formula is:

where: ϒ is the number of tests concluded with at least one MAV “approaching” the target; η is the
number of tests concluded with at least one MAV “damaging” the target; λ is the number of tests
concluded successfully and ω = 50 (since this is just a parameter chosen in order to assign a
different specific weight to ϒ, η and λ). Parameters Φ and β have a similar meaning to the one they
had before, as they respectively represent the total number of swarm’s members survived at the end
of the all tests (consider that this number has been extended from 4 to 12) and the average amount
of energy retained by the MAV that had eventually neutralized the target. Also consider that Φ is
still multiplied for 10 as in the previous Simulations, so the balancing of the fitness function has
changed since before.

Figure 6 - Percentage of tests respectively concluded with the neutralization, the damaging and the simple approaching

of the target when it is unable to move

7

Figure 7 - Percentage of tests respectively concluded with the neutralization, the damaging and the simple approaching

of the target when it is able to move, trying to escape from the approaching MAVs

Figures 6 and 7 show the results obtained with this experimental scenario, respectively with a fixed
and a movable target. The simulations carried out using a fixed target produced a surprisingly good
performance. On average, for the individuals belonging to the last generation, more than 70% of
tests are successful, while 90% finishes with the target hit at least once. An example of the evolved
behavior can be observed on Figure 8. It is important to highlight that in these simulations the
MAVs were able to detect the presence of the environment boundaries, and some of them have
clearly evolved a capability to exploit this strategy. They basically keep flying always close to an
obstacle (which could be both a building, or one of the environment boundaries, until they get close
to the target. Then they change their route trying to approach the target more accurately.

The performance of the swarms dramatically decreases when the target is moving, hence suggesting
the need for the introduction of a form of communication within the MAVs that would positively
affect the likelihood of successfully perform the task. In this experimental setup, only 50% of tests
ends with the neutralization of the target, even if the percentages of tests concluded both with the
approaching and with the damaging of the target are comparable with the ones obtained in case of a
non-movable target.

New Experiment E: Optimization of the genetic algorithm

In order to improve the convergence speed of the evolutionary algorithm and to explore the solution
space in a more efficient way, a new experiment has been carried out implementing three genetic
operators different than before:

• the selection operator. As before, the best swarm of every generation is copied to the following
one without any modifications (elitism), but then 94 pairs of parents are chosen for reproduction via
a fitness-proportionate selection implemented through a “roulette wheel” sampling4 [6];

• the crossover operator, which has been introduced in the form described by Montana and Davis
[7]. Each of the selected pairs of parents generates a single child. In this way 94 new children are
created. The crossover works in the following way: for each non-input neuron of the offspring, one

4 In order to calculate the areas of the rouletteʼs slices, the expected value for each individual has been
measured as the ratio between its fitness and the average fitness of the entire population.

8

of the two parent is selected randomly and the child then inherits from the chosen parent the input
connection weights to that neuron and the neuron’s bias as well;

• the mutation operator, which affects all the 94 offsprings generated through crossover. For each
neural network, 3 non-input neurons are selected randomly. The biases and all the incoming
connection weights of the selected neurons are then subjected to a random mutation, adding to them
a random value ranging between -0.5 and +0.5.

The remaining 5 individuals are created with randomly assigned connection weights and biases, in
order to preserve the algorithm from the risk of a premature convergence.

Figure 8 - Example of the flying paths followed by the MAVs when they have to neutralize

a target unable to move, performing a cooperative action

The results obtained by this simulation, detailed on the second row of Table 2, look really poor if
compared with those from experiment D5. The situation slightly improves if we scale the fitness
values used to calculate the roulette’s slices through the “sigma-scaling” method [6]. The results
obtained (third row of Table 2) remain anyway worse than the ones obtained in experiment D.

Simulation Av. fitness Max fitness Av. success %

D - non
movable target

1023.8 1285.8 71.82

E - not scaled
values

771.3 1133.7 47.47

E - scaled
values

856.59 1253.9 56.69

Table 2 - Summary of the results obtained from the simulations of experiment E,
and comparison with outcome of experiment D (with a target unable to move)

5 Please consider that in this experiment the target is not able to move.

9

Some explorative analyses have also been conducted using a binary genome, instead of that with
real values. Employing both Boolean and Gray Code encodings, with single and multi-points
crossovers and different mutation rates, the results indicate a significant limit for the network to
reach a weight set appropriate for the task, and therefore these conditions have been ignored.

Additional experiment (MSc Project): Generalization of the basic model to new environments

Thanks to the collaboration of two MSc students at the University of Plymouth, Franck Zetule and
Francois Gautier, we have had the chance to carry out some additional tests while working at the
same time on the experimental setups outlined in the previous sections. The two students were
supervised by A. cangelosi and F. Ruini.

Zetule [8] replicated both experiments A and B, using a different simulated environment than the
original one. His scenario represents “La Defense” area in Paris (Figure 10). Compared to the
environment that we have previously seen on Figure 1, the one elaborated by Zetule is characterized
by a smaller size (600 x 600 pixels vs 710 x 760 pixels) and fewer obstacles (tall buildings) present.

Figure 10 - The simulated environment used by Zetule [8] in order to replicate experiment B

Keeping the same settings as described in [3], the evolutionary process has demonstrated to run
smoothly for experiment A. Figure 11 reports some of the results from Zetule’s experiments.

In order to replicate experiment B, Zetule has then applied some minor modifications to the original
fitness formula with the purpose of coping with the smaller environment (which in turns provoke a
change in the balancing of the function, since one of its parameters is measured in pixels).

The fitness formula that Zetule used can be formalized as follows:

It differs from the original one for the smaller denominator applied to parameter β (10 instead than
50) and particularly for the introduction of the ν parameter, which represents the average difference
between the distance of the MAVs from the target at the beginning and at the end of a test. The
outcome of the experiment B replica is resumed in Figure 12.

10

Gautier [9], in another MSc project, was able to easily replicate experiment A on an environment
with different shape and size, the National Library building complex in Paris (786 x 545 pixels).
Gautier introduced a change to the original fitness formula, in his case multiplying parameter α per
1.5 in order to amplify its relative weight (operation which is compulsory given the fact that the
simulated environment used is smaller than the one for which the fitness formula was originally
optimized). The results of his simulation can be seen in Figure 13.

Figure 11 - Percentage of tests concluded successfully for the experiment A replicated by Zetule [8]

Figure 12 - Percentage of tests concluded successfully for the experiment B replicated by Zetule [8]

11

Figure 13 - Percentage of tests concluded successfully for the experiment A replicated by Gautier [9]

These MSc projects demonstrate that it is feasible to adapt the basic fitness formula described at the
beginning of this report to any kinds of environment, with the only requirement of varying the α
parameter depending on the environment size. Based on the data available, the value of this
parameter might be calculated as the ratio between the area of the original environment and the one
of the new environment6.

Additional experiment (MSc Project): Multi-threading comparison

Starting from the assumption that most of the modern computers are usually endowed with more
than one processor (and sometimes few cores for each processor), Gautier [9] also investigated the
potential performances improvement offered by the application of multi-threading programming
methodologies to our basic model.

Specifically, he has contrasted the performances scored by three different algorithms which can be
briefly illustrated as follows:

• single-thread: all the swarms belonging to a certain generation are tested sequentially, using a
single thread;
• multi-threads: within each generation, an amount of threads equal to the number of swarms which
constitute the population is created. The various threads are assigned to the different processors -
whenever they become available - and then elaborated;
• adaptive-threads: an amount of threads equal to the number of processors available on the
machine is created at the beginning of the simulation. The swarms belonging to a certain generation
are then associated to the different threads that will be immediately put on execution.

The multi-threading approaches have proven to outperform the single-threading methods, as
expected. An interesting finding is that the use of different operating systems leads to different
results. Particularly the experiments carried out on Microsoft Windows (both Vista and XP) have
demonstrated that the so-called “adaptive-threads approach” generates better results than the “multi-
threads approach”. The opposite applies for the experiments carried out on Linux (Ubuntu). The
results are resumed on Table 3.

6 In this case, the value of the ratio is (760*710) / (786*545) = 1.26, which is a number close to the 1.5 used
by Gautier and that has proven to be working.

12

Threading

management
algorithm /

Operating system

Single thread

Multi-threads

Adaptive-threads

Windows XP 1 1.5 1.61

Windows Vista 1 1.37 1.53

Ubuntu Linux 1 1.68 1.37

Table 3 – Summary of the results obtained from the simulations carried out by Gautier [8] and aimed at investigating
the advantages related to the adoption of multi-threading programming methodologies. The values reported are the

ratios between the time required to carry out a simulation using a single-thread and the one required employing one of
the others methods instead. Values greater than one represent a greater speed

Conclusions

Most funding is currently targeted at studying MAVs mainly from an ISTAR7 perspective (see for
example [10] and [11]). Our work focuses on the use for different kinds of tasks, in particular for
providing MAVs with a strike capability in different scenarios. We can imagine at least two
possible conditions in which MAVs could be employed as effective offensive instruments:

1) the first is related to counter-terrorism operations within urban environments. One of the most
feared menaces by the Western countries’ governments is a non-conventional attack coming from a
terrorist group. As we have seen during the last years, particularly into the Middle East, the so-
called “kamikaze strategy” is frequently employed, due to its simplicity both from an organizational
and an economical perspective. One of the problems when facing menaces of this kind, is related to
the fact that even if the attacker is identified it might become difficult to make him inoffensive.
Using snipers would be possible, but could be difficult to deploy many of them along the strategical
points of a crowded city, passing at the same time unnoticed (which is a compulsory requirement,
since the attacker could suddenly change his strategy finding himself discovered). Needless to say,
the “direct approach”, involving the usage of a security task-force for approaching and neutralizing
the target, is a highly risky operation. MAVs could be exploited as a valid alternative, or as an
additional tool to existing approaches. Electrical propelled flying robots are in fact able to flight
silently8 and out from the typical line of sight of a person, allowing them to remain unnoticed while
reaching their target. They would then be able to neutralize the attacker performing both a lethal (if
equipped with a small amount of explosive able to generate a low-potential and very accurate
detonation) or a non-lethal (using some chemical elements able to block the device starter, or
employing devices like flashbang grenades in order to facilitate the intervention of a security task-
force) action.

2) the second is related to an offensive operation into a warfare environment. Given their small size
and portability, MAVs can be easily fit into soldiers’ backpacks. This could allow special units,
composed of just few soldiers, to carry with them a very flexible and powerful weapon. Once
launched, each MAV (equipped as in the previous case with explosive devices) could in fact
become part of a larger swarm and then cooperatively attack a target which would be instead
impossible to offend by the soldiers’ through their traditional weapons (e.g., gun, rifles, grenades,

7 ISTAR: Intelligence, Surveillance, Target Acquisition and Reconnaissance.
8 Of course the propellers produce a certain amount of noise, but it typically results impossible to be heard in
a crowded place (and particularly if the MAV is flying at a sufficient height). Consider also that MAVs could
easily switch their propellers while approaching the attacker from above.

13

etc.). The outcomes obtained by a MAV swarm acting in this way could be for some extents similar
to the ones obtained through a low-potential missile. Despite the less damaging potential, the
advantages are surely enormous. The first advantage is portability. It is simply not possible for
small units to carry with them a “real” missile. Second advantage is flexibility. Units situated in
different places could participate to the action just launching their MAVs at the same time, and then
let them to join together and perform the attack against the target.

The research we have carried out up to date demonstrated how a MAV swarm could effectively
navigate through unknown environments and reach a certain position into the space. The latest
experiments elaborated have also shown that in principle these MAVs could be able to reach a
certain level of coordination among them, in order to perform tasks requiring cooperation. Future
experiments on the role of communication between MAVs will further investigate the role of
coordination to improve performance in complex tasks such as those with moving targets.

Further discussions

Before concluding this report, we would like to spend few words about some interesting criticisms
raised during the presentation of the ongoing works at some international conferences and
workshops.

First of all, many people, particularly military personnel, expressed skepticism about the idea of
armed aircraft flying absolutely autonomously on the skies of a western city. This is in fact a
serious issue (not only due to the strictly policies applied by the air traffic control authorities) since
the risk associated in letting potential dangerous robots flying without any control along a city
where many civilians are present is high indeed. Even if the computer simulations used for the
training of the robots would demonstrate a 100% accuracy of the controllers driving these aircraft,
we would surely find more than one criticism coming from the people that would be considered
responsible in the event of an accident. The problem relies for some extent on the methodology
adopted, based on neural networks which basically are considered kinds of “black-boxes” on which
no control is possible. In order to address this problem, anyway, it might be possible to remove
from the MAVs the possibility of autonomously deciding when to carry out a detonation. This
function could be “hardwired” instead, with a simple mechanism that automatically ignites the
detonation when a certain set of conditions is non-ambiguously satisfied. This modification will
make the MAVs not more dangerous than the manned military aircraft continuously flying over the
skies of the entire world.

Another criticism frequently raised against this work is related to the lack of realism which affects
the simulator we have developed. This issue has been highlighted several times, therefore it needs
herein addressed. What we would like to do in our work is to demonstrate a principle, i.e. to
demonstrate that neural networks could be successfully used as controllers for swarms of MAVs.
The simulator we have developed serves exclusively this purpose. It does not aim to evolve neural
network controllers immediately transferable to real aircraft. To some extents, we are assuming that
the hardware platform we are simulating is able to perform the operations we ask it to do. For
instance, when a MAV is on a certain position and we want it to move 50 centimeters forward along
its facing direction, we assume the hardware is capable to guarantee the execution of this
movement. As we will see in more details into the next paragraph, we are now working on a three-
dimensional version of the simulator that can better capture some of these dynamics. Even if the
implementation of such a modification could lead to a scenario which someone might consider
more realistic than the previous one, our principal interest consists in looking for the possible
evolution of new kinds of strategies - different than the ones emerged before, due to the more
complex environment. From a technical point of view, moving from a 2D to a 3D simulator could
be seen as the simple addition of a degree of freedom to the former model. Talking about realism,

14

we also need to take into account the fact that, differently from the most of experiments carried out
on the evolutionary robotics field - which typically involve extremely simple wheeled robots (e.g.,
Khepera, e-puck, etc.) - the added value for reproducing a real physics environment in our work
appears to be marginal. A certain degree of approximation, in fact, is always required when
building a simulator (as it happens by definition for every kind of model). The point is how to find
the correct balance of the trade-off between accurateness and simplicity of the simulator/model.
This balance could be quite easy to identify when the simulated objects are wheeled robots, since
the movement of a body on a plain surface is affected by few and well known forces (this is
demonstrated by the enormous number of software able to correctly cope with this task, reviewed
for example in [12]). The issues are different if we consider flight motion, where the amount of
physics variables involved is extremely more complex than for wheeled/ground motion. As a first
step, we have decided that the new 3D simulator will not be based on physics engines simulators,
such as Open Dynamics Engine (ode.org), to keep the level of complexity manageable. Simulations
will still guarantee that the MAV movement will be “realistic”, even if not perfectly accurate from a
physics point of view. This will allow us to focus on a first instance on the study of the coordination
and communication strategies. Further extensions of this work with experiment on real MAVs will
include the use of more realistic physics engine platforms.

Current and future developments

The next step of the project will be mainly focused on the development of a 3D simulator. This
simulator will be used, first of all, to replicate all the results obtained so far in a simpler 2D
scenario. Subsequently the 3D simulator will constitute the base platform on which the
communication-related experiments will be carried out.

Figure 14 - Screenshot took from an alpha version of the new simulator. The environment which is possible to see is a

3D model of Canary Wharf, London, extrapolated from Google Earth and then re-elaborated through Blender

Amongst the various solutions evaluated for the design of the 3D MAV simulator, the choice about
the 3D engine to employ has fallen on Irrlicht9. This is an open-source and multi-platform library -

9 http://irrlicht.sourceforge.net/

15

easy to be included into any standard C++ application - which offers the best trade-off between
easiness of use and richness of functions. In Figure 14 is possible to see a screenshot took from a
very preliminary version of the simulator for the Canary Wharf district.

Given the added computational complexity of the 3D simulator, and following the introductory
investigations on multi-threading programming by Gautier [9], we will focus also on the
computational efficiency issue. New experiments will also benefit also from the P-ARTS: Plymouth
Advanced Robot Training Suite project, a new simulation facility (based on the Apple’s Xgrid
technology) recently awarded to the University of Plymouth by Apple Inc, as part of the ARTS
programme (Apple Research & Technology Support).

Essential bibliography

[1] Nolfi, S., and Floreano, D. (2000) “Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-
Organizing Machines” (MIT Press)

[2] Richards, M.D., Whitley, D., and Beveridge, J.R. (2005) “Evolving Cooperative Strategies for UAV Teams” (in
Proceedings of GECCO 2005: Genetic and Evolutionary Computation Conference, ACM Press)

[3] Ruini, F., and Cangelosi, A. (2008), “Distributed Control in Multi-Agent Systems: a Preliminary Model of
Autonomous MAV Swarms” (in Proceedings of FUSION 2008: 11th International Conference on Information Fusion)

[4] Ruini, F., and Cangelosi, A. (2008) “Evolutionary Algorithm based Neural Network Controllers: an Application to
MAV Swarms” (in Proceedings of WIVACE 2008: Italian Workshop on Artifical Life and Evolutionary Computation)

[5] Barlow, G.J., Oh, C.K., and Grant, E. (2004) “Incremental Evolution of Autonomous Controllers for Unmanned
Aerial Vehicles using Multi-objective Genetic Programming” (in Proceedings of the 2004 IEEE Conference on
Cybernetics and Intelligent Systems)

[6] Mitchell, M. (1998) “An Introduction to Genetic Algorithms” (MIT Press)

[7] Montana, D.J., and Davis, L. (1989) “Training Feedforward Neural Network Using Genetic Algorithms” (in
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence)

[8] Zetule, F. (2008) “Multi-Agent Systems in Search and Destroy Scenario Evolved Using Genetic Algorithsm:
Research on Selection Algorithms” (University of Plymouth, final project for the MSc on Interactive Intelligent
Systems, supervised by Professor Angelo Cangelosi)

[9] Gautier, F. (2008) “Evolving Neural Network using Genetic Algorithm in a Prey-Predator Scenario: Optimization
by Threads” (University of Plymouth, final project for the MSc on Interactive Intelligent Systems, supervised by
Professor Angelo Cangelosi)

[10] House of Commons, Defence Committe (2008) “The contribution of Unmanned Aerial Vehicles to ISTAR
capability” (Thirteenth Report of Session 2007-08, http://www.parliament.uk/defcom)

[11] Sullivan, J.M. (2006) “Evolution or Revolution? The Rise of UAVs” (IEEE Technology and Society Magazine,
Vol. 25-3)

[12] Craighead, J., Murphy, R., Burke, J., and Goldiez, B. (2007) “A Survey of Commercial & Open Source Unmanned
Vehicle Simulator” (in Proceedings of the 2007 IEEE International Conference on Robotics and Automation)

EOARD GRANT 073075

COMMUNICATION AND DISTRIBUTED CONTROL IN MULTI-AGENT SYSTEMS

Principal Investigator: Professor Angelo Cangelosi
PhD Student: Mr Fabio Ruini

Year 2, interim report at month 24

ABSTRACT

This report illustrates the latest developments in the context of our research,
which is focused on the design of autonomous controllers for MAV teams. Work
in year 2 focused on extending the previously developed 2D computer model to a
more realistic 3D model of the UAVs and their flying environment. This new
software simulator is being used for replicating and validating all the
experiments carried out in the last months. In year 3 new and more complex
experimental setups will be designed as well to complete the investigation of
communication strategies in the UAV swarm.

DELIVERABLES (PUBLICATIONS)
Ruini F., Cangelosi A. (2009). Extending the evolutionary robotics approach to

flying machines: an application to MAV teams. Neural Networks, 22, 812-
821 (journal publication)

Ruini F., Cangelosi A., Zetule F. (2009). Individual and cooperative tasks
performed by autonomous MAV teams driven by embodied neural
networks controllers. Proceedinsg of IJCNN-09 International Joint
Conference on Neural Networks, Atlanta, June 2009.

WORK IN PROGRESS ON THE 3D SIMULATOR

Moving to a 3D model implies providing the agents with two degrees of freedom
(DOFs) more than what they had available in the 2D simulator (in the previous
scenario, the MAVs were only allowed to rotate their body clockwise or counter-
clockwise, essentially relying on a single DOF). If we consider an orthogonal
reference system, built around the centre of mass of the simulated aircraft and
moving with them, we can identify three class of rotations allowed to the MAVs:
yaw, pitch, and roll. In more details: yaw is a rotation of the aircraft around his
vertical axis; pitch and roll refers to the rotations around the wing-to-wing and
the front-to-rear axis respectively (see Figure 1).

Each MAV’s controller is implemented through a feed-forward neural network.
The information the network receives in input is: (1) the distance from the
target; (2) the horizontal angle between the target and the MAV, considered in
relation to the heading of the latter; (3) the difference in altitude between the
target and the aircraft; the current absolute MAV’s (4) roll and (5) pitch angles.
The output layer is made of continuous neurons incrementally modifying the
MAV’s rotation around the three axis. An additional Boolean output neuron
implements the ‘final action’ the aircraft have to perform once reached the
target.

The evolution toward neural networks exhibiting the desired behaviour is
accomplished thorugh the use of a genetic algorithm. A starting population
consisting in 100 controllers is created assigning to each one random synaptic
weights and biases in the [-10.0; +10.0] range. Each controller is univocally
assigned to an entire MAVs team. All the MAVs belonging to the same team are
therefore driven by the same neural network. Teams are made of 4 MAVs each
and are tested for 12 epochs, with the target deployed in as many different
positions. The aircraft start a test epoch distributed next to the four environment
corners, having a certain reserve of energy (which decreases over time,
provoking the crash of the MAV in case it runs out). The reference environment
is a 3D area, sized 1,500x,1000x600 Irrlicht’s GUs1, free of any obstructions. Once
all the teams of the current generation have been tested for their ability to reach
the target, their performances are evaluated according to a specific fitness
function. The best 10 are then selected for reproduction. Each of them generates
9 copies of his genome, that are affected by random mutation: all the connection
weights and biases have a 0.15 probability of being modified by meaning of
random mutation in the [-0.2; +0.2] range. Elitism operator is also used in order
to preserve the best controller in any given generation. 9 new controllers, with
randomly assigned connection weights and biases, are created at each new
generation. The entire process is iterated for 10,000 generations and repeated
20 times in order to limit as much as possible the effects due to randomness.

Many different neural network architectures have been tested (see the resume in
Table I). Those are various feed-forward network’s topologies, relying or not on
a hidden layer, and receiving in input continuous or discretised values. Also

1 Irrlicht is the name of the 3D engine used for writing the simulator. GU simply stands for Graphical Units.

Figure 1 – The degrees of freedom (DOFs)
typically associated to a fixed-wings aircraft

architectures differ from each other according to how the roll is implemented (it
can be absent, generated as a side effect of yaw, or independent) and for the
presence of short-term memories, implemented as Elman or Jordan networks.

Table I. Neural network architectures used in the 3D simulator

NN

arch.
Input Hidden

layer
Roll Memory

1 D No No No
2 C No No No
3 D No With yaw No
4 C No With yaw No
5 D No Independent No
6 C No Independent No
7 D Yes With yaw No
8 C Yes With yaw No
9 D Yes Independent No

10 C Yes Independent No
11 D No With yaw Jordan
12 C No With yaw Jordan
13 D Yes With yaw Elman
14 C Yes With yaw Elman
15 D No Independent Jordan
16 C No Independent Jordan
17 D Yes Independent Elman
18 C Yes Independent Elman

PRELIMINARY RESULTS

The results obtained using the new simulator are resumed in Table II.

Table II. Results obtained using the 3D simulator

NN
arch.

Average
fitness

Maximum
fitness

Success rate

1 126.5897 461.002 75.49
2 168.2282 454.7155 76.65
3 -130.3004 345.6638 43.63
4 -35.2221 407.9116 54.93
5 53.7617 406.5243 60.26
6 5.4618 391.213 57.49
7 -82.8986 360.323 47.54
8 49.8237 438.7521 63.96
9 119.3603 444.415 67.55

10 53.28 420.1875 60.28
11 -221.9481 232.8541 20.86
12 -160.9756 256.3188 24.72
13 -258.8055 113.8254 12.95
14 -265.2192 130.6172 15.5
15 -42.8824 311.3557 35.81
16 -18.4841 346.6911 45.3
17 -92.2134 291.5339 33.46
18 -85.5089 296.8809 34.21

As it was expected, architectures 1 and 2 are those that have scored the best
absolute results. Anyway it is important to bear on mind that these two are just
benchmark simulations. Since roll is not implemented, they tend to generate
MAV’s movements that are not ‘realistic’2. One interesting aspect emerged is that
the controllers seem working better when they can independently manage the
roll, rather than when it is bound to yaw (notwithstanding directly operating this
component increases the level of complexity of the neural network and the size
of the solution space). Multi-layer networks have generally lead to better
performances than those scored by networks where input and output layers are
directly connected. The introduction of recurrences (memory), a part from
having slowed down the evolutionary process, has not lead to an improvement in
terms of performance. More ambiguous is the role played by sensorial input
discretisation. In certain cases it has triggered better results than the use of
continuous input; in other cases it has lead to a performance decrease.

MULTI-THREADING

The increased level of complexity involved in using a 3D simulator has
stimulated an investigation on the effects generated by the employment of multi-
threading programming procedures. The source code of the evolutionary engine
(which has been disincorporated from the graphical part in order to reduce the
computational load required by the evolution) has been modified accordingly to
exploit all the computational power available on the computer system used. The
multi-threading portion of the algorithm simply provides to distribute the
various MAV teams to be tested on the cores available at any given moment.

The benefits coming from this modification, even if positive, have been lesser
than our expectations. Switching from the use of 1 to 8 cores, we were expecting
a corresponding code execution speed boost in terms of at least +600% (a value
slightly smaller than the theoretical maximum +700%, which can not be reached
because of the inevitable overheads). In reality the performed analysis have
shown how the performance increment takes place only with a reduced
magnitude. 10 experiments have been carried out, where 50 generations have
been evolved using neural network architecture 9, using both single and multi-
threading. In the first case, completing the evolution has required 150,354.8
msec on average; 27.765.1 msec in the latter. The velocity increment obtained is
surely significant (+441.52%), but far from the theoretical +700% obtainable.

CONCLUSIONS

In this report we have analysed the recent work that have been done in order to
extend the pre-developed 2D simulator in a new 3D model. The experience of the
authors in testing multi-threading programming methodologies has been
described as well.

2 At the actual stage, the 3D simulator does not rely on any physics engine. Nonetheless the desired outcome is to make the

MAVs exhibiting movements that are not in contrast with the major laws of physics.

The realism level of the previous model has been incremented. The modifications
made constitute a further step toward the possible transfer of controllers
developed in simulations to real robotics platforms. Despite a general decrease
of the MAVs performances in carrying out tasks that were easily performed in
the previous 2D simulator, the evolutionary process has lead anyway to positive
results for the new model also. The performance decrease was an expected
result, since adding new degrees of freedom to the simulator significantly
augments the size of the solutions space that the evolutionary algorithm has to
explore while looking for a proper configuration of synaptic weights and biases.

The results coming from the investigation about multi-threading are not solid
and generalisable enough in order to extract definitive conclusions from them.
They can be considered findings, suggesting that switching to parallel
programming methodologies must be carefully planned, since it does not
necessarily lead to the expected improvements in terms of simulations’
execution speed. In the specific case, given the relative quickness in evaluating a
single MAV team, a possible solution for optimizing the execution speed of the
code while using multi-threading methodologies might be redistribute on any
available core a larger number of teams. In this way, the impact of the overhead
should be reduced. A part from replicating the experiments carried out on the 2D
simulator and introducing new more interactive experimental setups, future
work will also focus on clarify results.

Abstract— The work presented here focuses on the use of
embodied neural network controllers for MAV (Micro-
unmanned Aerial Vehicles) teams. The computer model we
have built aims to demonstrate how autonomous controllers for
groups of flying robots can be successfully developed through
simulations based on multi-agent systems and evolutionary
robotics methodologies. We first introduce the field of
autonomous flying robots, reviewing the most relevant
contributes on this research field and highlighting the elements
of novelty contained in our approach. We then describe the
simulation model we have elaborated and the results obtained
in different experimental scenarios. In all experiments, MAV
teams made by four agents have to navigate autonomously
through an unknown environment, reach a certain target and
finally neutralize it through a self-detonation. The different
setups comprise an environment with various obstacles
(skyscrapers) and a fixed target, one with a moving target, and
one where the target (fixed or moving) needs to be attacked
cooperatively in order to be neutralized. The results obtained
show how the evolved controllers are able to perform the
various tasks with an accuracy level between 72% and 94%
when the target has to be approached individually. The
performance slightly decreases only when the target is both
able to move and can only be neutralized through a
coordinated operation. The paper ends with a discussion on the
possible applications of autonomous MAV teams to real life
scenarios.

I. INTRODUCTION AND RELATED WORK
uring the last decade several studies have been carried
out on both wheeled and underwater autonomous
vehicles driven by embodied neural network controllers

(e.g. [1] and [2]). At the same time, the application of same
principles to flying robots has not yet been thoroughly
investigated. With the only notable exception of the systems
developed by Floreano [3], Holland [4] and Buskey [5] it
seems that current approaches on the development of
autonomous controllers for aircraft mainly rely on
techniques other than neural networks. Examples of these
methodologies are behaviour-based robotics [6], genetic
programming [7][8], evolution-based path planning [9],
modeling field theory [10], and graph search methods [11].

In this study we use a multi-agent system (MAS) based on
evolutionary robotics methodologies [12] to develop
controller for MAVs for autonomous navigation, including

Manuscript received December 15, 2008. Effort sponsored by the Air Force
Office of Scientific Research, Air Force Material Command, USAF, under
grant number FA8655-07-1-3075.

All authors are with the Adaptive Behaviour and Cognition Research
Group, School of Computing, Communications and Electronics, University
of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK (phone: +44 (0)1752
586289; e-mail: fabio.ruini@plymouth.ac.uk).

obstacle-avoidance and target reaching, in unknown
environments. We are interested in investigating how local
interactions between many autonomous and independent
MAVs could in turn lead to an observable (and therefore
exploitable) higher level collective behaviour. Derived from
complex systems sciences, our idea is that continuous low-
level interactions between identical individuals, each of
them owning just a minimal knowledge of the surrounding
environment, could lead to the deployment of MAV teams
where each aircraft acts independently from the others, still
being able to take part in a bigger task. The combined use of
evolutionary robotics and multi-agent systems will make
possible to obtain collective behaviours without the need of
designing a top-down cooperative strategy.

Distributed control, intended as the process of
coordinating the movements of a number of agents in order
to make them performing a collective task without using a
central controller, is generally considered a notably
interesting problem from both a technological and scientific
perspective [1][13]. Good examples of the complexity
involved in designing effective cooperative strategies for
teams composed of many unmanned vehicles can be seen in
the works made by Hussain [14] and Gaudiano [15]. In order
to reduce this complexity, many studies regarding the
behaviour of groups of Unmanned Aerial Vehicles (UAVs)
have concentrated on flocking and swarming behaviour
(e.g., [16] and [17]). We are not interested in replicating
such a phenomenon. Instead, the approach we have chosen
for studying the emergence of cooperation is based on the
so-called “reactive strategies” [7].

The reactive strategy approach has several advantages
with respect to those belonging to the other main category of
“deliberative approach”. Deliberative approach strategies
focus on developing a specific flight path for each aircraft
belonging to a team to follow (see for example [18]).
Generating fixed routes in advance implies that a very good
knowledge of the reference environment is available to the
central controller (whether it is a human or a computer
system). UAVs relying on such a kind of controller system
could be therefore considered autonomous, in the sense that
they will be able to autonomously follow a pre-planned
flight path. But they would not have the ability of taking
autonomous decisions, resulting therefore in a lack of
intelligence (autonomy). This does not represent an issue for
domains like civilian aviation, where all the needed
information are immediately available. The lack of
flexibility related to the “deliberative” approach becomes
problematic instead if we try to apply the same principles to
dynamic or unknown scenarios. These drawbacks have tried
to been solved incorporating in deliberative approaches

Individual and Cooperative Tasks performed by Autonomous
MAV Teams driven by Embodied Neural Network Controllers

Fabio Ruini, Angelo Cangelosi, Franck Zetule

D

some elements of adaptive replanning. The implementation
of this kind of improvement requires equipping the aircraft
with a set of sensors that makes them able to fetch
previously unknown, non-accessible and/or non-existent
information from the environment. The main idea in
adaptive replanning is that a centralized controller generates
a specific flight path for each UAV to follow based on the
currently available information. UAVs strictly follow those
paths until they detect some new elements through their
sensors (e.g. an unknown enemy or an unexpected
obstacles). When it does happens, the sensor information
gathered is sent back to the controller, which may then
decide to generate new flight paths for the entire team (or
just part of it) and transmit them to the UAVs. A good
example of adaptive replanning could be seen looking at the
“UAV manager” concept elaborated by Rathinam et al. [19].
Despite the fact that adaptive replanning approach looks
promising, many issues remain to be addressed in
deliberative strategies. For example to decide when a
replanning is required, and the amount of time needed to
calculate and broadcast the new flight paths to the various
UAVs are two non-trivial elements to consider. Scherer and
colleagues [20] have recently identified a possible solution
using two separated but interacting controllers that
respectively act on a global and on a local level (“plan
globally and react locally”). Even in this case, a good level
of knowledge about the environment is still required.

Generally speaking, we might argue that it is the need for
a central controller to be highly problematic. As highlighted
for example by Wu and colleagues [21], distributed control
is generally preferable since its non-critical reliance on any
specific element can in turn guarantee increased reliability,
safety and speed of response to the entire system. In addition
to this we believe that a distributed control system has as
well a better potential to produce adaptive and flexible
solutions for the tasks we are interested in studying.

The main difference between the approach followed by us
and a standard reactive strategy methodology as described in
[7] mainly consists in the employment of a neural network
controller instead of a properly defined decision tree. In both
cases the controllers are subjected to an evolutionary process
and therefore the use of computer simulators for the training
phase results compulsory (unless we take into account some
unusual alternatives, like a cable-array robot [22]).

The basic principle followed by us is to some extents
similar to the ones proposed in [4] and [5] for the
autonomous control of unmanned helicopters. The controller
we use is an embodied neural network which outputs affect
the aircraft’s spatial orientation and its moving direction
consequently. However our approach introduces at least
three elements of novelty. The first is that we are focused on
replicating the simplified dynamics of airplane-like UAVs
instead than helicopters. Even employing a streamlined
model as the one described herein, when compared to
aircraft helicopters result much more flexible in adjusting
their movements during the flight. If for example an
unexpected obstacle arises, a helicopter could easily hover
overhead, perform a 180 degrees yaw and then look for a
different path to follow. When it comes to aircraft this kind

of behaviour is not possible, so the on-line adjustments to
the current route need to be extremely accurate. The only
work to our knowledge where neural networks are applied to
the control of non-helicopters or blimps aerial vehicles is the
one made by Floreano and colleagues [3]. Furthermore,
another major novelty consists in our decision of
implementing a basic obstacle-avoidance mechanism, which
represents an additional challenge to be addressed by the
controller. Traditionally, obstacle-avoidance behaviour has
not been taken into account in studies regarding UAV path
planning (problem that affects also Floreano’s investigation).
As pointed out by Rathbun [9] this is mainly due to the fact
that UAVs have usually been restricted to operate in areas
that do not contain any other vehicles outside the control of
the authority in charge of it. Rathbun’s work - where an
evolution-based path-planner results able to deal with
movable and non-accurately estimated obstacles - constitutes
one of the few meaningful exceptions to this trend. Finally,
the controller we use is made of a single feed-forward neural
network and not of different modules joined together, each
of these dedicated to manage different sub-tasks as in [4]
and [5]. The entire controller acts therefore as a single entity.

II. DESCRIPTION OF THE MODEL
As introduced in the previous paragraph, our approach
requires the employment of a computer simulator for the
evolution of UAVs’ autonomous controllers. With the
preliminary experiments carried out we have outlined the
general specifics for a simulator of this kind. We have at the
same time identified the minimal sensors requirements for
allowing UAVs to perform navigation and search tasks both
inside plain and obstacle-full environments (see [23]).

The structure of the simulator is quite simple. A team is
composed by four MAVs1, each endowed with its own
neural network controller, identical to the ones of its
teammates. At the beginning of a test, an “enemy” target is
deployed somewhere inside the environment. The simulated
scenario consists of a 2-D representation of Canary Wharf
financial district in London. Starting from the four area’s
corners and facing the center of the environment, the MAVs
have to fly toward the target attempting to eliminate it. In
order to neutralize the target, one of the MAVs needs to
perform a self-detonation when it is close enough to it (2.2
meters or less). A test ends when the target has been
destroyed or no MAVs are still living. A MAV will die if it
performs a detonation, if it attempts to exit from the
environment’s boundaries, if it collides against a teammate,
if it runs out of energy, or if it crashes against a building.

Automatic target acquisition (ATR) is not provided by the
MAVs. In this way they do not need to execute such an
intensive computational task (even if the job could be
effectively tackled cooperatively, as demonstrated for
example by Dasgupta [24]). Our hypothesis consists on the
presence of a satellite system that constantly monitors the
target and broadcasts real-time information about its position
to all the team members. In this way the MAVs - equipped

1 Even if a proper classification is still lacking, a MAV can be roughly
defined as a small-size UAV

with a GPS receiver - could easily calculate their distance
from the target matching the two data sources gathered.
Then a simple compass can as well easily allow the MAVs
to determine the relative direction on which the target is. In
our simulator each MAV is in fact fed with information
about the distance between itself and the target, as well as
the angle that separates the two agents based on the current
MAV’s heading. This information is received by the neural
network by means of four input neurons: one encoding the
distance (using discrete values), the others three the angle
(using a Boolean representation of eight possible sub-
spaces). The MAVs are also endowed with three ultra-sonic
sensors, capable to detect the presence of an obstacle, which
could be the target, a teammate or a building. This
information is encoded using three continuous neurons, each
of them activated with a value representing the distance from
the current sensor and the closest obstacle perceived by it (if
any within a certain range). The input neurons are connected
to the neural network’s hidden layer, made of 15 continuous
neurons. The neural network’s output layer consists of just
two neurons. One output unit controls the MAV’s steering
direction (+/-20 degrees in the time unit); the other one is a
Boolean neuron that, when it turns to 1, causes the MAV to
carry out the detonation.

Fig. 1. Graphical representation of the neural network controller employed.

The fact that we are simulating an airplane-like motion
implies the constraint, for the MAVs, of being always on
movement. The speed is instead assumed as constant.

The evolution toward a controller able to perform the
desired task is made possible by a genetic algorithm. An
initial population of 100 teams is created with randomly
assigned connection weights and biases ranging from -1.0
and +1.0. Each MAVs team is tested four times with the
target deployed in randomly chosen positions (twice the
target will be inside an “enclosed area” at the center of the
environment, surrounded by buildings and with narrow
entrances, twice it will be put outside this area). At the end
of each generation the 20 individuals that has performed the
best scores according to the fitness formula are selected for
reproduction. Each team generates 5 copies of its genome,
on which the mutation operator is then applied. Each gene of
the copied genome is modified, with probability 0.25, of a
random amount between -0.5 and +0.5. The only exception
is for the best individual of the current generation, which
generates a copy of its genome without any modifications
(elitism). The resulting 100 individuals will constitute the

new population at the next generation. The evolutionary
process lasts for 2,500 generations and it is repeated 10
times with the results coming from all the different runs
averaged in order to obtain more reliable data.

Fig. 2. The 2-D simulated environment used in our model. The obstacles,
corresponding to the tallest buildings present in Canary Wharf area, have

been highlighted.

The results coming from our preliminary analysis [23]

show how the elaborated set up could lead quite easily to the
proper evolution of the desired behaviour. At the end of the
evolution, on average we have the 93.46% of tests
successfully concluded into plain environments and 87.18%
when obstacles are present.

III. EXPERIMENTS

A. Movable target
In this experimental scenario, the target is able to detect a

MAV approaching it. This new property of the target has
been introduced to increase the complexity of the task and
test the robustness of the model. During each time step, if a
MAV is closer than 15 meters to the target, the latter can
detect the aircraft with probability 0.5. In the event of
detection, the target will then move away from the aircraft in
order to maximize the distance from it. The target will
remain in “MAV detected mode”, and will keep moving
away during every step, until the aircraft will die or the
distance between the two agents will be over the 38 meters
threshold.

The fitness formula used is the following:

 (1)

where: α is the average distance (in pixels) between the

target and the team member detonated closest to it,
calculated basing on the various tests; β is the average
amount of energy retained by the MAV detonated closest to

the target2; σ is the number of tests concluded by the given
team with the elimination of the target; Φ is the total number
of MAVs remained alive after the four tests (maximum 12).
It is interesting to consider how the fitness formula we have
decided to use does not require taking into account any
information about the environment3, like waypoints
disseminated in specific places (as did for example in [4]
and [20]). Navigation and obstacle-avoidance abilities
emerge run-time as sub-tasks necessary for the completion
of the main task, which is to neutralize the target.

Five simulations have been carried out where we vary the
escaping speed of the target. Given the MAVs’ flying speed
of 55 km/h, the target speeds in the various simulations
respectively correspond to 27.5 (Simulation A1: target speed
= MAV speed/2), 18.33 (Simulation A2: target speed =
MAV speed/3), 13.75 (Simulation A3: target speed = MAV
speed/4), 11 (Simulation A4: target speed = MAV speed/5)
and 9.16 (Simulation A5: target speed = MAV speed/6)
km/h. The results obtained are summarized into Table I.

TABLE I

RESULTS FOR SIMULATIONS A
Sim Av.

fitness
Max

fitness
Av.

success
%

Av. dist
from the

target (px)

Min. dist
from the

target (px)
A1 138.93 395.18 54.48 92.94 1.34
A2 198.08 409.67 78.28 107 1.09
A3 250.68 411.74 81.89 72.47 0.95
A4 258.72 409.9 83.3 70.03 0.98
A5 242.42 413.05 84.06 95.53 0.81

Observing the outcome of these simulations - particularly

with regard to the average fitness - we can easily identify a
kind of threshold. Simulations A3, A4 and A5 seem to
perform equally well according to the various parameters
measured. Simulation A2 produces a significantly worse
performance for the average fitness, but could be considered
performing reasonably well if we take into account both the
maximum fitness and the average percentage of tests
concluded successfully. In simulation A1 the success rate of
the MAVs drops instead.

Comparing these results with the ones obtained using a
static target, we can notice a general performance
decrement. As clearly shown in Fig. 3, the difference is
mainly concentrated on the average values, while the
maximum ones (i.e., the best individuals/controllers within a
certain generation) tend to reach similar level of
performance. The main conclusion draw from this
experiment is that the algorithm setup can evolve MAV
controllers able to navigate through unknown environments
and autonomously reach and destroy a target, not only when
the latter is fixed on a certain position, but also if it is able to
move away from them. The only constraint is that, in order
to keep a reasonable success rate, the target should not be
able to move faster than one third of the MAVs’ speed. This

2 The MAVs start with 5,000 energy units. They spend 2.14 energy units per
time, step, moving 2.24 meters far.
3 For the sake of accuracy the size of the environment is used in order to
scale some of the input values provided to the neural networks. Anyway, it
has been proved that the neural network is able to evolve for carrying out
the desired task even using non-scaled input values.

is quite a reasonable assumption if we suppose that the target
is not a vehicle, but a person instead. Considering that the
moving speed of an average person moving in crowded
environment could be approximated to 4-7 km/h while
walking, and 15-20 km/h while running, we might argue that
the evolved controllers are able to accomplish their task with
a good degree of confidence even against a movable target4.

Fig. 3. Average and maximum fitness for simulations A3, A4 and A5

compared to the preliminary results obtained with a fixed target.

B. Cooperative task
The setup labeled as experiment B adds the constraint of

requiring two MAVs to detonate against the target at the
same time (i.e., within a limited maximum number of time-
steps apart from each other, since the simulation works in
discrete time steps) in order to neutralize it. The target
begins each training epoch with the assigned status of
“intact”. When it happens that one of the MAVs detonates
close enough to it (i.e., the same situation that in the
previous setups would have provoked the elimination of the
target), the target’s status switches to “damaged”. If a second
MAV manages to detonate close enough to the target while
this is still in the “damaged” mode, the target will be
eliminated. Otherwise, after 10 time-steps of “damaged”
state, the target will restore its original “intact” condition
and the simulation will goes on as usual till the
neutralization of the target or the failure of the MAV team.

In order to make the MAVs able to accomplish this task,
we have provided them with the capability of gathering new
pieces of information from the environment. Each member
of the team is now able to detect both the status of the target
(“intact” rather than “damaged”) and the presence of a
teammate within a certain distance. This information is
given in input to the neural controller through two additional
Boolean neurons. These two neurons implement a kind of
logic OR. A part of being in the proximity of the target, in

4 Consider that a typical MAV platform, as could be the Aerovironment’s
WASP III, is able to reach a speed of 65 km/h (for full specifications look
at: http://www.avinc.com/downloads/Wasp_III.pdf). One third of this speed
roughly corresponds to 21.5 km/h, which is a value comparable to the 15-20
km/h suggested as the maximum speed reachable by an average person
running.

order to decide the proper moment in which to detonate a
MAV needs in fact to know that there is a teammate close to
it, or that the target has recently been damaged (i.e., it is
currently on the “damaged” status), or that both conditions
(closeness and damaged) are true. Three neurons have been
added to the hidden layer as well, in order to make the neural
network able to cope with the increased amount of
information collected from the environment.

Fig. 4. The neural network architecture used for experiment B.

The fitness formula has been also modified in order to let

the new desired behavior to evolve. We have now
introduced the concepts of “target approached” and “target
damaged”. At the end of a test, we define the target as
“approached” if at least one MAV has detonated within a 56
meters range from it. The target is considered “damaged”
instead if at least one MAV has managed to hit it. These
modifications tend to recreate what we could call an
incremental evolutionary process (though if pursued in a
different way than what has been done for example by
Barlow and colleagues [8]). The MAVs initially learn how
to perform the simplest sub-tasks (avoiding obstacles and
approaching the target) and then progressively move toward
the more complicated sub-tasks (damaging and neutralizing
the target respectively), which in turns make the
accomplishment of the overall task possible.

Putting all together, the new fitness formula is:

 (2)

where: ϒ is the number of tests concluded with at least

one MAV “approaching” the target; η is the number of tests
concluded with at least one MAV “damaging” the target; λ
is the number of tests concluded successfully and ω = 50 (ω
is just a parameter arbitrary chosen in order to assign
different specific weights to ϒ, η and λ). Parameters Φ and β
have a similar meaning to the ones they have in (1), as they
respectively represent the total number of ΜΑVs survived at
the end of the all tests and the average amount of energy
retained by the MAV that had eventually neutralized the
target. Consider that now every team is tested 12 times and
the evolutionary process lasts for 5,000 generations.

Fig. 5. Percentages of tests respectively concluded with the approaching, the

damaging and the neutralization of the target when it is fixed and it has to
be attacked cooperatively.

Fig. 5 and 6 show the results obtained with this

experimental setup, respectively with a fixed and a movable
target. The simulations carried out using a fixed target have
produced a surprisingly good performance. On average, for
the individuals belonging to the last generation, more than
70% of tests are successful, while 90% finishes with the
target hit at least once. An example of the evolved behavior
can be observed on Fig. 7.

Fig. 6. Percentages of tests respectively concluded with the approaching, the
damaging and the neutralization of the target when it is able to move and it

has to be attacked cooperatively.

The performance of the teams dramatically decreases
when the target is moving, hence suggesting the need for the
introduction of a form of communication within the MAVs
that would positively affect the likelihood of successfully
complete the task. In this experimental setup, only 50% of
tests ends with the neutralization of the target, even if the
percentages of tests concluded both with the approaching
and with the damaging of the target are comparable with the
ones obtained in case of a non-movable target. Furthermore,
we have to consider that we are illustrating average results
referred to an entire population. It means that, inside this

population, the likelihood of having MAVs team particularly
good in performing the desired task is extremely high.

Fig. 7. Flight paths followed by the members of a team belonging to the last

generation in order to reach the target and attack it cooperatively.

C. Workarounds on the genetic algorithm
In order to improve the convergence speed of the

evolutionary algorithm and to explore the solution space in a
more efficient way, a new experiment has been carried out
implementing three genetic operators different than before:
1) Selection operator. As before, the best team of every

generation is copied to the following one without any
modifications, but then 94 pairs of parents are chosen for
reproduction via a fitness-proportionate selection
implemented as a “roulette wheel” sampling5 [25].

2) Crossover operator, which has been introduced in the
form described in [26]. Each of the selected pairs of
parents generates a single offspring. In this way 94 new
individuals are created. Crossover works in the following
way: for each non-input neuron of the offspring, one of
the two parents is selected randomly; the child inherits
from the chosen parent the input connection weights to
that neuron as well as the neuron’s bias.

3) Mutation operator, which affects all the 94 offspring
generated through crossover. For each neural network, 3
non-input neurons are selected randomly. The biases and
all the incoming connection weights of the selected
neurons are then subjected to a random mutation, adding
to them a random value ranging between -0.5 and +0.5.

The remaining 5 individuals are created with randomly
assigned connection weights and biases, in order to preserve
the algorithm from the risk of premature convergence.

The results obtained by this new setup, detailed on the
second row of Table 2, have highlighted a strong
performance decreasing if compared with those coming from
experiment B. The situation slightly improves if we scale the
fitness values used to calculate the roulette’s slices through

5 In order to calculate the areas of the roulette’s slices, the expected value
for each individual has been measured as the ratio between its fitness and
the average fitness of the entire population.

the “sigma-scaling” method [25]. The results obtained in that
(third row of Table II) remain anyway worse than the ones
generated by experiment B.

TABLE II
COMPARISON BETWEEN SIMULATIONS B AND C

Sim Av. fitness Max fitness Av. succ. %
B – non movable target 1023.8 1285.8 71.82
C – non scaled values 771.3 1133.7 47.47

C – scaled values 856.59 1253.9 56.69

Some explorative analyses have also been conducted
using a binary genome, instead of that with real values.
Employing both Boolean and Gray Code encodings, with
single and multi-points crossovers and different mutation
rates, the results indicate a significant difficulty for the
network to reach a weight set appropriate for the task, and
therefore these conditions have been ignored.

D. Generalization of the model
For the purpose of analyzing how the elaborated model

could be generalized to different simulated environment, we
have carried out few experiments varying the reference
scenario. Measured in pixels, the original environment was
sized 710x760. We have then created a new experimental
setup - 600x600 large - with few obstacles present inside it.

Fig. 8. The 2-D simulated environment used for the generalization
experiments, with new obstacles layout (Paris, La Défense District).

The new environment (see Fig. 8) is smaller than the

previous one and, summed to the presence of buildings and
of a narrower enclosed area where the target is deployed, has
provoked some troubles to the genetic algorithm in order to
identify a proper set of connection weights and biases. In
order to obtain a proper evolution, we have been required to
modify the fitness formula in the following way:

 (3)

This formula differs from the original one for the smaller

denominator applied to parameter β (10 instead than 50) and
particularly for the introduction of the ν parameter, which
represents the average difference between the distance of the

MAVs from the target at the beginning and at the end of a
test. After 2,000 generations, the percentage of succeeded
tests for this experimental setup has reached the 85% level.

Even if not conclusive, this further investigation has
highlighted that it might be feasible to adapt the basic model
described in this paper to any kinds of environments. It is
not guaranteed that the original fitness formula could fit well
to differently shaped and sized scenarios. The modifications
made on this case have been marginal, but further studies are
required in order to identify a general rule to follow when
applying our model to different simulated environments.

IV. DISCUSSION AND CONCLUSION
Most researches are currently targeted at studying MAVs

mainly from an ISTAR (Intelligence, Surveillance, Target
Acquisition, Reconnaissance) perspective (see for example
[27] and [28]). Our work focuses instead on the usage of
MAVs for different kinds of tasks, requiring them having a
strike capability available. We can imagine at least two
possible scenarios in which MAVs provided with strike
capability could be effectively employed.

The first scenario is related to counter-terrorism
operations within urban environments. One of the most
feared menaces by Western countries’ governments is a non-
conventional attack coming from a terrorist group. As we
have seen during last years, particularly into the Middle
East, the so-called “kamikaze strategy” is frequently
employed, due to its effectiveness and simplicity both from
an organizational and an economical perspective. One of the
problems when facing menaces of this type is related to the
fact that - even if the attacker is identified in advance - it
might be difficult to make him inoffensive. Needless to say,
the “direct approach”, involving the usage of a security task
force for approaching and neutralizing the target, is in fact a
highly risky operation. MAVs could be exploited as a valid
alternative to humans, or as an additional tool to existing
approaches. Electrical propelled flying robots are in fact able
to flight silently6 and out from the typical line of sight of a
person, allowing them to remain unnoticed while reaching
their target. They would then be able to neutralize the
attacker performing both a lethal (if equipped with a small
amount of explosive) or a non-lethal (using some chemical
elements able to block the device starter, or employing
devices like flashbang grenades in order to facilitate the
intervention of a land-based security task-force) action.

The second scenario is related to an offensive operation
into a warfare environment. Given their small size and
portability, MAVs can be easily fit into soldiers’ backpacks.
This could allow special units, composed of just few
soldiers, to carry with them a very flexible and powerful
weapon. Once launched, each MAV could in fact become
part of a larger swarm and then cooperatively attack a target
which would be instead impossible to offend by the soldiers
through their traditional portable weapons. The outcomes

6 Of course the propellers produce a certain amount of noise, but it typically
results impossible to be heard in a crowded place (and particularly if the
MAV is flying at a sufficient height). Consider also that MAVs could easily
switch their propellers off while approaching the attacker from above.

obtained by a MAV team acting in this way could be just
slightly minor than the ones obtainable through the
employment of a low-potential missile. Despite the less
damaging potential, the advantages, namely portability and
flexibility, are surely enormous.

The research we have carried out up to date has
demonstrated how a MAV team could effectively navigate
through unknown environments and reach a certain position
into the space. Particularly interesting is the fact that the
neural networks employed in our simulations are very
simple and they do not rely on any kind of short or long-
term memories (thus confirming as well as extending the
validity of what Buskey et al. have already found [29]). This
would allow real MAVs to easily execute particular
operations like the ones described above. The latest
experiments elaborated have also shown that these MAVs
could be able as well to reach a certain level of coordination
among them, in order to perform tasks requiring
cooperation. Future experiments will be mainly focused on
the role played by explicit communication between MAVs.
The purpose of introducing communication consists in
investigating how its presence could lead to a better level of
coordination between the agents and in turn allowing the
teams to increase their effectiveness in performing complex
tasks. The approach toward the evolution of a language will
be based upon symbol grounding theory as introduced by
Harnad [30] and then extended by Cangelosi et al. [31][32].

One potential criticism of the work we have done is
related to the lack of realism which affects the simulator
developed. Our aim was to demonstrate a principle through a
computer simulation model, i.e. to demonstrate that neural
networks could be successfully used as distributed
controllers for teams of MAVs. The simulator we have
developed serves primarily this purpose. It does not aim to
evolve neural network controllers immediately transferable
to real aircraft. To some extents, we are assuming that the
hardware platform we are simulating is able to perform the
operations we ask it to do. For instance, when a MAV is on a
certain position and we want it to move 50 centimeters
forward along its heading direction, we assume the hardware
as capable to guarantee the execution of this movement. We
are currently working on a 3-D version of the simulator that
can better capture some of the real flight dynamics. Even if
implementing such a modification could lead to a scenario
with a higher degree of realism than the previous one, our
principal interest consists in looking for the possible
evolution of new kinds of strategies, different than the ones
emerged before due to the more complex environment. From
a technical point of view, moving from a 2-D to a 3-D
simulator could be seen as the simple addition of a degree of
freedom to the former model. A certain degree of
approximation, in fact, is always required when building a
simulator (as it happens by definition for every kind of
model). The point is how to find the correct trade-off
between accurateness and simplicity of the simulator/model.
This balance could be quite easy to identify when the
simulated objects are wheeled robots, since the movement of
a body on a plain surface is affected by few and easily
replicable forces (this is demonstrated by the enormous

number of software applications able to correctly cope with
this task [33]). The issues are different if we consider flight
motion, where the amount of physics variables involved is
extremely bigger than for wheeled/ground motion. As a first
step, to keep the level of complexity manageable, we have
decided that the new 3-D simulator will not be based on any
physics engine. Simulations will still guarantee that the
MAV movements will be “realistic”, even if not perfectly
accurate from a physics point of view. This will allow us to
focus on a first instance on the study of coordination and
communication strategies. Further extensions of this work
with experiments on real MAVs will include the use of more
realistic physics engine platforms.

Finally, we would like to consider the inclusion of other
techniques for the MAV controllers. Modeling field theory
[10][34] has been recently proposed as a learning technique
for multi-agent simulation systems. One of the advantages of
this approach is that of overcoming computational
complexity and allowing better scaling up of the model
capabilities, e.g. in terms of population size and internal
representations. Future studies will explore the combination
of modeling field theory within the agent control systems.

ACKNOWLEDGMENT
The authors would like to thank Francois Gautier for the

work carried out related to some generalization experiments.

DISCLAIMER
The views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily representing
the official policies and endorsements, either expressed or implied,
of the Air Force Office of Scientific Research or the U.S.
Government.

The U.S. Government is authorized to reproduce and distribute
reprints for Government purpose notwithstanding any copyright
notation thereon.

REFERENCES
[1] G. Baldassarre, D. Parisi, and S. Nolfi, “Distributed coordination of

simulated robots based on self-organization,” in Artificial Life, Vol.
12(3), pp. 289-311, 2006.

[2] V. Kodogiannis, “Neuro-control of unmanned underwater vehicles,”
in Int. Journal of Systems Science, Vol. 37(3), pp. 149-162, 2006.

[3] S. Hauert, J.C. Zufferey, and D. Floreano, “Evolved swarming
without positioning information: an application in aerial
communication relay,” in Autonomous Robots (in press).

[4] R. De Nardi, O. Holland, J. Woods, and A. Clark, “SwarMAV: a
swarm of miniature aerial vehicles,” in Proc. 21st Int. UAV Systems
Conf., 2006.

[5] G. Buskey, J. Roberts, P. Corke, P. Ridley, and G. Wyeth, “Sensing
and control for a small-size helicopter,” in Experimental Robotics
VIII, Springer Berlin, pp. 476-486, 2003.

[6] M. Dong, and Z. Sun, “A behavior-based architecture for unmanned
aerial vehicles,” in Proc. IEEE Int. Sym. on Intelligent Control, 2004.

[7] M.D. Richards, D. Whitley, and J.R. Beveridge, “Evolving
cooperative strategies for UAV teams,” in Proc. Genetic and
Evolutionary Computation Conf. (GECCO 2005), 2005.

[8] G.J. Barlow, C.K. Oh, and E. Grant, “Incremental evolution of
autonomous controllers for unmanned aerial vehicles using multi-
objective genetic programming,” in Proc. IEEE Int. Conf. on Robotics
and Automation, 2005.

[9] D. Rathbun, S. Kragelund, A. Pongpunwattana, and B. Capozzi, “An
evolution based path planning algorithm for autonomous motion of a

UAV through uncertain environments,” in Proc. 21st Digital Avionics
System Conf., 2002.

[10] R. Deming, L. Perlovsky, and R. Brockett, “Sensor fusion for swarms
of unmanned aerial vehicles using modeling field theory,” in Proc.
Int. Conf. on Integration of Intensive Multi-Agent Systems: Modeling,
Evolution, and Engineering (KIMAS 2005), 2005.

[11] Y. Qu, Q. Pan, and J. Yan, “Flight path planning of UAV based on
heuristically search and genetic algorithms,” in Proc. 31st IEEE
Industrial Electronics Society Conf. (IECON 2005), 2005.

[12] S. Nolfi, and D. Floreano, Evolutionary robotics, MIT Press, 2000.
[13] G. Nitschke, “Emergence of cooperation: state of the art,” in Artificial

Life, Vol. 11(3), pp. 367-396, 2005.
[14] T. Hussain, D. Montana, and G. Vidaver, “Evolution-based

deliberative planning for cooperative unmanned ground vehicles in a
dynamic environment,” in Proc. Genetic and Evolutionary
Computation Conf. (GECCO 2004), 2004.

[15] P. Gaudiano, E. Bonabeau, and B. Shargel, “Evolving behaviors for a
swarm of unmanned air vehicles,” in Proc. IEEE Swarm Intelligence
Symposium (SIS 2005), 2005.

[16] R.J. Bamberger Jr., D.P. Watson, D.H. Scheidt, and K.L. Moore,
“Flight demonstrations of unmanned aerial vehicle swarming
concepts,” in John Hopkins APL Tech. Digest, 27(1), 41-55, 2006.

[17] J.J. Corner, and G.B. Lamont, “Parallel simulation of UAV swarm
scenario,” in Proc. Winter Simulation Conference (WSC 2004), 2004.

[18] V. Ablavsky, D. Stouch, and M. Snorrason, “Search path optimization
for UAVs using stochastic sampling with abstract pattern
descriptors,” in Proc. AIAA Guidance Navigation and Control
Conference, 2003.

[19] S. Rathinam, M. Zennaro, T. Mak, and R. Sengupta, “An architecture
for UAV team control,” in Proc. 5th IFAC symposium on intelligent
autonomous vehicles (IAV 2004), 2004.

[20] S. Scherer, S. Singh, L. Chamberlain, and M. Elgersma, “Flying fast
and low among obstacles: methodology and experiments,” in The Int.
Journal of Robotics Research, Vol. 27(5), pp. 549-574, 2008.

[21] A.S. Wu, A.C. Schultz, and A. Agah, “Evolving control for
distributed micro air vehicles,” Proc. IEEE Conf. on Computational
Intelligence in Robotics and Autonomation Engineers, 1999.

[22] K. Usher, G. Winstanley, P. Corke, D. Stauffacher, and R. Carnie,
“Air vehicle simulator: an application for a cable array robot,” in
Proc. Int. Conf. on Robotics and Automation (ICRA 2005), 2005.

[23] F. Ruini, and A. Cangelosi, “Distributed control in multi-agent
systems: a preliminary model of autonomous MAV swarms,” in Proc.
11th Int. Conf. on Information Fusion (FUSION 2008), 2008.

[24] P. Dasgupta, “A multiagent swarming system for distributed target
recognition using unmanned aerial vehicles,” in IEEE Trans. on
Systems, Man, and Cybernetics, Vol. 38(3), pp. 549-563, 2008.

[25] M. Mitchell, An introduction to genetic algorithms, MIT Press, 1998.
[26] D. Montana, and L. Davis, “Training feedforward neural networks

using genetic algorithms,” in Proc. 11th Int. Joint Conf. on Artificial
Intelligence, 1989.

[27] House of Commons, Defence Committee (2008), The contribution of
unmanned aerial vehicles to ISTAR capability. Available:
http://www.parliament.uk/defcom

[28] J.M. Sullivan, “Revolution or Evolution? The rise of the UAVs,” in
IEEE Technology and Society Magazine, Vol. 25(3), pp. 43-49, 2006.

[29] G. Buskey, G. Wyeth, and J. Roberts, “Autonomous helicopter hover
using an artificial neural network,” in Proc. 2001 Int. Conf. on
Robotics & Automation, 2001.

[30] S. Harnad, “The Symbol Grounding problem,” in Physica D, Vol. 42,
pp. 335-346, 1990.

[31] A. Cangelosi, A. Smith, and K. Smith (editors), The Evolution of
Language, World Scientific, 2006.

[32] A. Cangelosi, V. Tikhanoff, J.F. Fontanari, and E. Hourdakis,
“Integrating language and cognition: A cognitive robotics approach,”
in IEEE Computational Intelligence Mag., Vol. 2(3), pp. 65-70, 2007.

[33] J. Craighead, R. Murphy, J. Burke, and B. Goldiez, “A survey of
commercial & open source unmanned vehicle simulators,” in Proc.
IEEE Int. Conf. on Robotics and Automation, 2007.

[34] L. Perlovsky, Neural Networks and Intellect: Using Model-Based
Concepts, Oxford University Press, 2001.

Mr Fabio Ruini, Prof Angelo Cangelosi

University of Plymouth, UK

Centre for Robotics and Neural Systems

EOARD INTERIM REPORT for grant FA8655-07-1-3075

ABSTRACT

This report illustrates the latest developments in the context of our research, which is

focused on the design of autonomous controllers for MAV teams. Recent work has

been aimed to improve the new 3D computer simulator used for the evolutionary

design of the aircraft’s controllers. A new paradigm, namely incremental evolution,

has been introduced with the purpose of smoothing the evolutionary process (and,

together with the multi-threading introduced before, reducing the time required by

simulations as well). The controllers are first evolved for a simple task (target

reaching within a three-dimensional obstacle-free environment), then the same

controllers are evolved further for more sophisticated scenarios (individual reaching

of a non-cooperative target, and collective reaching of a stationary target). The results

presented here come from ongoing experiments. Once these investigations will be

completed, the project will move to its final stages, focused in creating a new

experimental setup replicating an urban-like environment and testing/validating some

of the controllers designed on simulations on a physical robotics platform.

NEW EXPERIMENTAL SETUPS

Since the previous report, the 3D computer model developed (see a Screenshot in

Figure 1) has been improved from a technical point of view and experiments on

various setups have been carried out. This has lead to a new publication (Ruini &

Cangelosi, in press) accepted for the 2010 edition of the International Joint

Conference on Neural Networks (IJCNN). A more updated article, including a

detailed discussion of the latest results introduced herein, is currently in preparation

and will be submitted to TAROS’2010 (11
th

 Conference Towards Autonomous

Robotic Systems).

On top of the basic test scenario (individual reaching of a stationary target; an

example of this behaviour can be seen in Figure 2), the two new experimental setups

elaborated respectively involve the reaching of a non-cooperative target (i.e., a target

attempting to escape, at different speeds, from an approaching MAV), and the

coordinated approaching of a stationary target (i.e., two MAVs have to coordinate

among themselves and reach the target area at the same time).

In the first case, the controllers have easily proven to be capable of performing the

desired task. As expected, their success rate inversely correlates with the moving

speed of the target: the faster the target, the lesser the success rate. The results

obtained in the 3D scenario are pretty similar to those previously extrapolated using

the 2D model (Ruini et al. 2009) (Ruini & Cangelosi, 2009). For targets moving at

one fifth, one fourth and one third of MAVs’ speed, the best success rate obtained

(regardless the neural architecture used for designing the controller) is about 90%. A

target moving at half the MAVs’ speed results instead much more difficult to be

approached and the success rate consequently drops into the 55.0-60.0% range. An

example of non-cooperative target reaching behaviour is shown in Figure 3.

Figure 1 - Screenshot of the 3D simulator. View from the camera installed on one of the MAVs involved in

the task

Figure 2 - Flight paths followed by a team of 4 MAVs sharing the same controller, within the basic scenario.

Each MAV acts independently from the others

Regarding the setup focused on coordinated behaviour, the results generated by the

evolved controllers have been generally worse than what we were expecting. Only in

the simplest cases (MAVs uniquely allowed to yaw, thus flying always at the same

altitude and parallel to the ground) the evolutionary process has lead to convincing

and robust solutions. The evolved behaviour consists in the first MAV approaching

the target and, rather than activating the Boolean output of his neural network

controller (operation that the MAVs have to perform within all the experimental

setups in order to successfully perform the task they are involved in), engaging in a

circular flying trajectory, waiting for at least a second MAV to arrive. When another

teammate has arrived, both of them further approach the target in order to conclude

the operation.

Figure 3 - Flight paths followed by a team of 4 MAVs sharing the same controller, within the second

experimental setup (non-cooperative target reaching), for a target moving at one third of the MAVs’ speed

This kind of behaviour is well exemplified by Figure 4, took from the 2D simulator.

Figure 4 – Flight paths followed by a team of 4 MAVs sharing the same controller, within an experimental

setup tested on the 2D simulator (coordinated target approaching and obstacle avoidance)

INCREMENTAL EVOLUTION

Incremental evolution (Petrovic, 1999) (Christensen & Dorigo, 2006) has proven to

be a very successful methodology for improving the performances obtained by the

evolutionary controllers. A basic experimental setup has been designed (as reported

above) with a single MAV flying around an obstacle-free environment in order to

reach a specific stationary target area. Then, the controllers evolved within this

context have been subjected to a further evolutionary process - 5,000 generations long

- where the MAVs were asked to perform the same task as before, this time against a

non-cooperative (moving) target.

In setup B we previously identified a threshold in the target’s speed. The performance

of the controllers, if the target speed was exceeding that threshold (equal to half the

MAV’s speed), dropped significantly. Using incremental evolution this threshold has

disappeared (or, at least, it is save to say that its effect has smoothened). This can be

easily seen looking for example at the comparison between the results scored using

controller architecture 11 (one of the most complex employed, since it involves a

scenario where the MAVs are free to yaw, pitch, and roll) with and without

incremental evolution, resumed in Table I.

Table I - Comparison between simulations with and without incremental evolution, for the experimental

setup involving the reaching of a non-cooperative target moving at half the MAVs' speed

NN arch. Av. fitness Max. fitness Av. succ. rate (%) Max. succ. rate (%)

11 – non inc. 659.6893 1150.5 0.2243 0.5985

11 – inc. 554.3824 1167.4 0.3026 0.8108

The same methodology is currently being tested for the coordinated behaviour

scenario. Since the neural network architecture used for this setup is different than

those employed when the MAVs have to individually approach either a stationary or

moving target, incremental evolution is implemented in a slightly more sophisticated

way. In the coordinated behaviour scenario, the controllers rely on two additional

input units. This affects, in turns, the number of connections present into the network

(how strong this effect is depends both upon the presence of a hidden layer, and on

the number of output units used). In our approach we simply add the new units and

connections on top of an architecture evolved in the basic scenario (individual

reaching of a stationary target) and set the connection weights to 0. Then we start a

new evolutionary process, longer than the previous one (15,000 generations rather

than 5,000), to allow the network to identify a new balance.

The preliminary results obtained so far are encouraging and seem supporting our

hypothesis that this approach would prove successful to evolve cooperative

behaviours within the 3D experimental setup. Further investigations will be carried

out during the coming weeks in order to confirm this impression.

FUTURE WORK

The last part of the research will involve testing and validating on a real robotics

platform the controllers designed in simulations. The work will be carried out - since

May until September 2010 - at the Laboratory of Intelligent Systems (LIS) of the

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, with the support of

Prof Dario Floreano, Dr Jean-Christophe Zufferey, and Ms Sabine Hauert.

The robotic aircraft used will be the senseFly’s swinglet
1
. Weighted about 400g and

supporting up to 150g of additional payload, the swinglet is a flying-wing (80cm

wingspan) MAV built out of expanded polypropylene (EPP), with an electric motor

mounted at the back and two control surfaces serving as elevons (combining ailerons

and elevator). In the configuration in use at the EPFL (Hauert et al., in press), the

swinglet carries onboard a Toradex Colibri PXA270 CPU board
2
 running Linux

operating system. The board is connected to a Netgear WNDA3100 USB Wi-Fi

dongle
3
, which make the MAV capable of communicating over the standard 802.11n

protocol, and to an autopilot built around a dsPic33 micro-controller
4
 (Leven et al.,

2009). In addition to providing an interface for receiving commands issued by the

computer board, the autopilot takes care of controlling altitude, airspeed and turn rate

of the MAV. This setup will allow us to work adopting the same methodologies

already developed in the 2D simulator (Ruini et al., 2009) (Ruini & Cangelosi, 2009).

Figure 5 - senseFly's swinglet

Due to the impossibility, for technical reasons, of testing obstacle-avoidance

behaviours using the test bed platform provided
5
, the work will focus on two

alternative topics: 1) formation flight, and 2) target reaching behaviour.

Formation flight is a well-known strategy (Lissaman & Shollenberger, 1970)

(Weimerskirch et al., 2001) used by birds in order to save energy during movement.

Recently, many attempts have been carried out to implement the same kind of

behaviour within autonomous aircraft (NASA’s AFF project
6
) (Naffin & Sukhatme,

1
 http://www.sensefly.com/products/swinglet/

2
 http://www.toradex.com/En/Products/Colibri_Modules/Colibri_PXA270

3
 http://www.netgear.com/Products/Adapters/RangeMaxWirelessNAdapters/WNDA3100.aspx

4
 http://www.microcontroller.com/news/microchip_dsPIC33.asp

5
 The minimum flight altitude provided by the onboard autopilot is about 50 meters. At that altitude is

just impossible to deploy artificial obstacles the MAVs should attempt to avoid.
6
 http://www.nasa.gov/centers/dryden/history/pastprojects/AFF/index.html

2002) or spaceships (Aung et al., 2003) (Tillerson et al., 2003). The approach we will

be following aims to reproduce a Reynolds-like behaviour (Reynolds, 1987) on a

swinglet team. According to this framework, each member of a swarm adjusts his

position at any given time according to three rules: a) collision avoidance, b) velocity

matching, and c) flock centering. The task is complicated by the fact that, in

agreement with the recent line of research pursued at the EPFL, this work will assume

that no GPS information is available to the MAVs. For this reason the aircraft will

have to rely on alternative methods in order to detect their positions relatively to the

other members of the swarm they are part of. Looking more in details at each of the

main components of Reynolds’ behaviour, the following considerations can be made:

a) without the possibility of relying on GPS information, collision avoidance

could be implemented either installing some sensors on the MAVs (potential

candidates are IR distance sensors
7
, and ultrasonic range sensors

8
), or with an

alternative approach. Options could be either "pinging" (i.e., sending special

TCP/IP-like packets) other MAVs and use the success rate/time of response as

an estimation of the distance, or measuring the strength of the connections

between the various aircraft (maybe creating a Wi-Fi link among all of them

and measuring the strength of the wireless signal). The latter approach could

also be seen as a roughly replication of the olfactory system used by animals

(despite generally it does not apply to birds).

b) the presence of an onboard autopilot makes possible to instruct all the

MAVs to fly at a specific and constant speed during their entire flight. In this

way, the issue of velocity matching could be easily tackled. Of course, robots

interacting in a real physical environment, will be subjected to different forces

(i.e., wind, air resistance, etc.) affecting their speed. The speed control system

must therefore incorporate some “reactive” strategy. Furthermore, according

to Reynolds' definition, "velocity" also includes heading. Within the setup

discussed herein the MAVs could simply share with each other this

information (gathered by their embodied sensors). In this case the flock might

require a "leader" to determine the overall direction the group has to follow.

3) concerning flock centering, in his paper Reynolds defines this principle as

follows:

"Flock centering makes a boid want to be near the center of the flock.

Because each boid has a localized perception of the world. "center of

the flock" actually means the center of the nearby flockmates. Flock

centering causes the boid to fly in a direction that moves it closer to

the centroid of the nearby boids. if a boid is deep inside a flock, the

population density in its neighborhood is roughly homogeneous; the

boid density is approximately the same in all directions. In this case,

the centroid of the neighborhood boids is approximately at the center

of the neighborhood, so the flock centering urge is small. But if a boid

is on the boundary of the flock, its neighboring boids are on one side.

The centroid of the neighborhood boids is displaced from the center of

7
 For example: http://www.trossenrobotics.com/sharp-ir-distance-sensor-gp2y0a02yk.aspx

8
 For example: http://www.trossenrobotics.com/parallax-ping-ultrasonic-range-sensor.aspx

the neighborhood toward the body of the flock. Here the flock

centering urge is stronger and the flight path will be deflected

somewhat toward the local flock center."

The lack of GPS information makes the implementation of this point the most

interesting part from a scientific point of view. A map of the geographical

displacement of the entire swarm could be built dynamically by the MAVs

relying on the estimated distances elaborated according to the principles

outlined in 2). Further thinking and investigations are nonetheless required in

order to address this issue.

The second point, target reaching behaviour, will involve a MAV stationary on the

ground - acting as a target - and a MAV team flying over the area in which the target

is deployed attempting to localise it. The target will act as a transmitting station,

broadcasting a signal the other MAVs are able to perceive. A certain amount of

aircraft will take off from the same position and then will distribute themselves

among a certain area. The MAVs will independently look for the target, trying to get

as close as possible to it. When one of the searchers has arrived close enough, it will

communicate with the teammates (the establishment of a common communication

protocol to be used will be left to an evolutionary process) in order to make all of

them converging to the proper area.

REFERENCES

Aung, M., Purcell, G.H., Young, L.E., Amaro, L.R., Srinivasan, J., Ciminera, M.A.,

and Chong, Y.J., Autonomous Formation-Flying Sensor for the StarLight Mission

(IPN Progress Report 45-152)

Christensen, A.L., and Dorigo, M., Incremental Evolution of Robot Controllers for a

Highly Integrated Task (From Animals to Animats 9: Proceedings of the 9
th

International Conference on Simulation of Adaptive Behaviour, pp. 473-483, 2006)

Hauert, S., Leven, S., Zufferey, J.-C., and Floreano, D., Communication-based

Leashing of Real Flying Robots (Proceedings of ICRA 2010, IEEE International

Conference on Robotics and Automation, in press)

Leven, S., Zufferey, J.-C., and Floreano, D., A Minimalist Control Strategy for Small

UAVs (Proceedings of IROS 2009, IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 2873-2878, 2009)

Lissaman, P.B.S., and Shollenberger, C.A., Formation Flight of Birds (Science,

22(168), no. 3934, pp. 1003–1005, 1970)

Naffin, D.J., and Sukhatme, G.S., A Test Bed for Autonomous Formation Flying

(Institute for Robotics and Intelligent Systems Technical Report IRIS-02-412, 2002)

Petrovic, P., Overview of Incremental Approaches to Evolutionary Robotics

(Proceedings of the Norwegian Conference on Computer Science, pp. 151-162, 1999)

Reynolds, C.W., Flocks, Herds, and Schools: A Distributed Behavioral Model

(Computer Graphics, 21(4), pp. 25-34, 1987)

Ruini, F., and Cangelosi, A., An Evolutionary Robotics 3D model for autonomous

MAVs navigation, target tracking and group coordination (Proceedings of IJCNN

2010, International Joint Conference on Neural Networks, in press)

Ruini, F., and Cangelosi, A., Extending the Evolutionary Robotics Approach to

Flying Machines: an Application to MAV Teams” (Neural Networks, no. 22, pp. 812-

821, 2009)

Ruini, F., Cangelosi, A., and Zetule, F., Individual and Cooperative Tasks performed

by Autonomous MAV Teams driven by Embodied Neural Network Controller

(Proceedings of IJCNN 2009, International Joint Conference on Neural Networks, pp.

2717-2724, 2009)

Tillerson, M., Breger, L., and How, J.P., Distributed Coordination and Control of

Formation Flying Spacecraft (Proceedings of IEEE American Control Conference, pp.

1740-1745, 2003)

Weimerskirch, H., Martin, J. Clerquin, Y., Alexandre, P., and Jiraskova, S., Energy

saving in flight formation (Nature, 413, pp. 697-698, 2001)

Flocking behaviours in Micro-unmanned Aerial
Vehicles: towards experiments on real robots

Fabio Ruini1* and Angelo Cangelosi1

1Centre for Robotics and Neural Systems, School of Computing and
Mathematics, University of Plymouth, UK

15 May 2011

Abstract

This report illustrates the research efforts covered by the EOARD grant
that have been conducted over the last few months. Rather than concentrat-
ing on computer simulations exclusively - as done for the work carried out
previously - the authors have now directed their main research focus toward
the usage of real robotics Micro-unmanned Aerial Vehicle (MAVs). The
testbed platforms used as reference is the swinglet, a lightweight mono/fixed-
wing robotic aircraft produced by the Swiss company senseFlyTM.

The report will first illustrate the most relevant technical details about
the MAV used, then will provide an overview of the computer model elab-
orated for designing and testing autonomous controllers for the swinglet.
The algorithms developed on the software simulator implement both indi-
vidual/collective navigation (using approximated areas of attraction or ge-
ographically accurate waypoints) and flocking (speed adjustment, heading
alignment, Reynolds’ boids-like) functionalities.

The work described in this report has also been made possible thanks to a
collaboration with the Laboratory of Intelligent Systems (LIS) at the École
Polytechnique Fédérale de Lausanne (EPFL), Switzerland. The authors
would like to thank again anyone involved in this joint effort.

∗To whom correspondence should be addressed. Email: fabio.ruini@plymouth.ac.uk.

1 Robotics platform used: senseFly’s swinglet

The research presented herein has been carried out using a customised version
of the swinglet1 (see Figure 1), a 420g light 80cm wing-span mono/fixed-wing
MAV produced by senseFlyTM2, generally used for aerial photography/surveillance
and scientific investigations on outdoor flying robots [1]. Its main structure is
made of expanded polypropylene, and it mounts an electric propeller fuelled by a
polymer lithium battery guaranteeing up to 60 minutes of autonomy (enough to
approximately cover a 40km distance). According to the specifications provided by
the manufacturer, the swinglet flies at a speed included between 10 and 15m/sec,
has a maximum turnrate of 45◦/sec (guaranteed by the use of two elevons3, one
on each side of the aircraft) and can proficiently cope with wind currents as strong
as 25km/h.

Figure 1: senseFly’s swinglet Micro-unmanned Aerial Vehicles

The configuration we have access to comprises of a GPS receiver (namely a u-
bloxTMLEA-5H GPS module4), a rate gyroscope (Analog DevicesTMADXRS6105)
used to measure the absolute yaw rate of the MAV, and two pressure sensors (im-
plemented as pitot tubes and belonging to the FreescaleTMMPX series6). In order
to exchange data with a ground-based station the swinglet is also equipped with a
DigiTMXBee-PRO PKG-U7, a radio transmitter providing a 1.6km wide commu-
nication range. Standard R/C equipment is used for actuators, motor controller
and battery.

1http://www.sensefly.com/products/swinglet/
2senseFly (http://www.sensefly.com) is an EPFL spin-off company.
3Elevons are combined ailerons/elevators.
4http://www.u-blox.com/en/lea-5h.html
5http://www.analog.com/static/imported-files/data_sheets/ADXRS610.pdf
6http://www.freescale.com/webapp/sps/site/taxonomy.jsp?nodeId=01126990368716
7http://ftp1.digi.com/support/documentation/90000831_A.pdf

2

A complete autopilot system has been built by Leven et al. [2] and installed on
the aircraft through a dsPic33 micro-controller8 (see Figure 2(a)). The approach
followed by the designers of this system is different than those usually undertaken
for implementing autopilots. Leven’s technique can be considered ’minimalist’
since it only relies on two pressure sensors and a single axis rate gyro, rather
than on a complete IMU (Inertial Measurement Unit9) or an AHRS (Attitude and
Heading Reference Systems10) as it is common habit among the experts of the field
(see for example [3] and [4]).

The autopilot has direct reading access to all the sensors mounted on the air-
craft and it can control both the propeller thrust and the servomotors that in
turn lower/raise the elevons. In addition to flight stabilisation the system can
therefore perform control of airspeed, altitude and heading turnrate. Some basic
autonomous navigation functions, such as waypoint-based ones, are already im-
plemented within the system. Furthermore the autopilot provides an automatic
landing function based on GPS, which - either on request or in case of a soft-
ware/hardware failure - forces the MAV to fly toward a pre-specified landing spot,
then makes it glide around it progressively reducing its altitude and the thrust of
the propeller until the aircraft gets in touch with the ground.

A flexible payload bay situated on the top surface of the aircraft - next to the
battery compartment - allows the swinglet to transport up to 150g of additional
payload. In the available configuration the payload consists of both the above
mentioned autopilot system, and a ToradexTMColibri PXA270 CPU board11 run-
ning a minimal Linux distribution. To the board is connected an off-the-shelf
USB Wi-Fi dongle (a dual band Wireless-N NetgearTMWNDA310012) which can
be used for communication between the MAVs. The dongle has a 500m line-of-
sight communication range, although its firmware has been modified in order to
allow the experimenter to restrict this range as desired [5]. The onboard com-
puter is directly connected to the autopilot (see Figure 2(b)), to which it can issue
commands (namely desired turnrate, speed and altitude) via a software controller
running on the CPU board.

Thanks to the XBee radio link, the MAV behaviour can be monitored by a

8http://www.microchip.com/ParamChartSearch/chart.aspx?mid=14&lang=

en&branchID=8183
9An IMU is an electronic device that measures and reports on a craft’s velocity, orientation,

and gravitational forces, using a combination of accelerometers and gyroscopes (from: http:

//en.wikipedia.org/wiki/Inertial_measurement_unit).
10An AHRS consists of sensors on three axes that provide heading, attitude and yaw infor-

mation for aircraft. They are designed to replace traditional mechanical gyroscopic flight instru-
ments and provide superior reliability and accuracy (from: http://en.wikipedia.org/wiki/

Attitude_and_Heading_Reference_Systems).
11http://www.toradex.com/Products/Colibri/Modules/Colibri_PXA270_312MHz
12http://www.netgear.co.uk/wnda3100.php

3

(a) (b)

Figure 2: (a) the dsPic33 micro-controller upon which the autopilot has been built;
(b) overall view of all the equipment hosted inside the payload bay; from left to
right: the USB Wi-Fi dongle, the Linux board, and the micro-controller/autopilot

standard computer located on the ground and running a dedicated software called
e-mo-tion (see a screenshot in Figure 3) developed by Beyeler et al [6]. The
computer simply needs to be plugged to a proper XBeeTMdevice13 capable of ex-
changing data with the radio unit installed on the aircraft in order to be used
as ground station. e-mo-tion allows the user to switch the control of the aircraft
between the auto-pilot14, the software controller running on the Linux board and
a standard radio transmitter (in case of necessity the swinglet can be remotely
controlled, which is obviously an extremely useful property to rely on during test-
ing). Another interesting feature offered by the software running on the ground
station is the possibility of logging all the flight data, thus relieving the controller
operating on the Linux board from this task. In this way the code running on the
onboard computer will be lighter (also possibly less bug-prone), and the user will
not incur in the risk of filling the flash memory on the embedded computer, thus
potentially avoiding unexpected crashes.

2 Software simulator

The software simulator used for the preliminary testing of the controllers described
herein (see Figure 4) is a modified version of the one described in [7, 8]. As before
the simulator implements an incremental geometric flight model in discrete time-
steps [9]. The parameters of the model have been tuned in order to replicate in the

13Each XBeeTMunit used on the ground-based station can connect up to a maximum of 3
MAVs.

14Through e-mo-tion is also possible to interact with the autopilot, for example deploying
specific waypoints MAV will have to follow, or forcing a landing procedure.

4

Figure 3: Screenshot of the e-mo-tion main interface during a flight involving
several MAVs

most accurate way possible the constraints of the senseFlyTM’s swinglet platform,
specifically in terms of speed range and turn rate per second.

The autonomous controllers driving the aircraft operate on two variables: air-
speed (which can be increased or decreased) and turn-rate (which can be modified
instructing the MAV to perform a yaw turn, i.e. a rotation around its vertical body
axis). The reason for reducing the controller to operate on these two dimensions
only relies on the autopilot system described within the previous section. As noted
before, the autopilot provides both flight stabilisation and altitude control (other
than being able to modify speed and turnrate), meaning that the autonomous
controller can assume the MAV being always parallel to the ground and flying
at the desired altitude, thus ignoring aspects as current pitch and roll angles. In
this way the MAVs can be considered to some extent sorts of ”2D flying robots”,
since their behaviour will only depend on rotations around one single axis, as it is
generally the case for ground-based vehicles.

The virtual reference environment implemented in this version of the simulator
consists of a three-dimensional parallelepiped measuring 800x300x800GUs (where
the height is represented as the X axis; see Figure 5, which also highlights the
coordinate systems used by Irrlicht and therefore in the rest of this report)15.

The MAVs - having a size of 4.35x1.797x4.82GUs - can fly across the environ-
ment at a speed included between 10 and 15GU/time-step. At any time-step the

15We use the term GU to indicate ’Graphical Unit’, i.e. the basic measure unit employed
by Irrlicht graphics engine. Efforts have been spent to obtain the following two relationships:
1GU≈1m, 1time-step≈0.1sec. Differently than the previous simulators, in this version the envi-
ronment boundaries can be stepped over with no consequences for the MAVs.

5

Figure 4: Screenshot of the software flocking simulator

MAVs first perform a turn-rate (if so decided by the controller, in which case the
rotation must be included within a [−4.5◦; 4.5◦] range) then they are all moved in
sequence.

Each aircraft moves along its current heading (after the yaw preliminary rota-
tion) redeploying itself at a distance calculated according to Equation 1 (where i
is used as a general index for indicating a non-specific MAV).

distance =
MAVi.speed+X ∼ (0, 0.25)

10
GUs (1)

The new coordinates are calculated as in Equation 2 (please consider that
the addition and the multiplication operations have to be interpreted as vector
addition and scalar multiplication respectively).

~MAV t+1
i = ~MAV t

i + distance ∗ ~transformationV ector (2)

transformationVector is a three-dimensional vector, for which the X, Y, and Z
elements are defined as specified in Equation 316:

X = cos(MAVi.x̂) ∗ sin(MAVi.ŷ) ∗ cos(MAVi.ẑ) + sin(MAVi.x̂) ∗ sin(MAVi.ẑ)

Y = cos(MAVi.x̂) ∗ sin(MAVi.ŷ) ∗ sin(MAVi.ẑ)− sin(MAVi.x̂) ∗ cos(MAVi.ẑ) (3)

16These operations are performed within the software by the dedicated Irrlicht functions setRo-
tationDegrees(), setRotationRadians(), and transformVect().

6

−400

−200

0

200

400

−400

−200

0

200

400

0

50

100

150

200

250

300

Y

Reference environment

Z
X

Figure 5: Simulation reference environment

Z = cos(MAVi.x̂) ∗ cos(MAVi.ŷ)

A certain amount of noise - distributed according to a Gaussian distribution
with mean 0 and standard deviation 0.25 (what in Equation 1, as well as in the
next paragraphs, is defined as X ∼ (0, 0.25)) - is added to both any yaw ma-
noeuvre and forward movement performed by the MAVs simulated through this
computer model. The reason for introducing noise consists in adding some degrees
of uncertainty to the simulated flight dynamics, thus increasing the realism of the
model and the robustness of the controllers tested in it [10].

The simulator allows the user to set several parameters before running an
experiment17:

• number of MAVs : from a minimum of 1 up to a maximum of 12;

• initial MAVs team formation: horizontally aligned (2D), queued (2D), V-
formation (2D), intervallic launch (2D), random (2D), horizontally aligned
(3D), queued (3D), V-formation (3D), intervallic launch (3D), random (3D);

• navigation task : none, fly around the centre of the environment (leader only),
fly around the centre of the environment (entire team), waypoint navigation
(leader only), waypoint navigation (entire team), follow the leader (who flies
around the centre of the environment), follow the leader (who flies between
two waypoints);

• flocking algorithm: none, speed adjustment, heading alignment (to the leader’s
heading), heading alignment (to the average neighbours’ heading), heading

17Some of these parameters, as the navigation task and the flocking algorithm used, can also
be modified in real time while a simulation is running.

7

alignment (to the leader’s heading) + speed adjustment, heading alignment
(to the average neighbours’ heading) + speed adjustment, Reynolds’ boids.

2.1 Initial formation

The initial formation parameter permits to select the way in which the MAVs will
start each test. The two main categories the user can choose from are 2D and 3D.
The former means that the aircraft will all be flying at the same altitude, while
the latter deploys the MAVs at different altitudes.

(a) (b)

(c) (d)

Figure 6: Different initial MAV teams formations: (a) 4 MAVs horizontally aligned;
(b) 4 MAVs queued; (c) 6 MAVs reproducing a V-formation; (d) 10 MAVs ran-
domly distributed

When horizontal alignment or queueing are selected (respectively shown in
Figure 6(a) and 6(b)), the MAVs are respectively deployed side by side or forming
a queue, standing in both cases at 10GUs (d) distance far from each other18. V-

18In case of a 3D initial formation the distances are calculated considering the MAVs all being
at the same altitude.

8

formation and random deployment are implemented according to Algorithms 1
and 2 (where: h indicates the desired altitude; N stands for the number of MAVs
within the team; areMAVsTooClose() is a function that checks whether in the
group there are two or more MAVs too close to each other, i.e. within a distance
< d between them; randFloat() is a function returning an uniformly distributed
random float value included between the lower and upper boundaries specified in
input)19.

Algorithm 1 V-formation MAVs deployment (3D)

d = 10;
MAV1.x = 0;MAV1.y = h;MAV1.z = 0;
for i=2:N do
MAVi.y = h+ randF loat(−5.0, 5.0);
x = d ∗ i; z = d ∗ i;
if i%2 = 0 then
MAVi.x = MAV1.x− x;
MAVi.z = MAV1.z − z;

else
MAVi.x = MAV1.x+ x;
MAVi.z = MAV1.z + z;

end if
end for

Algorithm 2 Random MAVs deployment (3D)

d = 10; d2 = N ÷ 2.5;
while areMAVsTooClose() do

for i=1:N do
MAVi.x = randF loat(−d ∗ d2, d ∗ d2);
MAVi.y = h+ randF loat(−5.0, 5.0);
MAVi.z = randF loat(−d ∗ d2, d ∗ d2);

end for
end while

The two methods defined as ’intervallic’ launches indicate that the MAVs are
sequentially deployed into the reference environment according to their ID20. In

19Algorithms 1 and 2 refer to the 3D scenarios. The altitude (y axis) is simply set equal to h
in case a 2D deployment method is selected.

20When the MAV objects are generated by the software, each of them receives an ID number
starting from 1 and increasing sequentially. The upper boundary of the IDs range is N, which
correspond to the number of MAVs used.

9

the 2D scenario the aircraft just appear at the centre of the environment with
a certain time delay between each of them. Instead - in the 3D scenario - the
MAVs take off in series from the ground, then follow a fixed path which brings
them at the desired altitude through progressive modifications of their pitch rate
(see Figure 7). In both cases, the interval between each ”launch” amounts to 500
time-steps.

−400 −300 −200 −100 0 100 200 300 400

−400

−200

0

200

400

0

50

100

150

200

250

300

350

400

Z

Takeoff and navigation between two waypoints

X

Y

Flight path

Figure 7: Flight path followed by a single MAV taking off from the ground and
then navigating between two waypoints

2.2 Navigation algorithm

Concerning navigation, the MAVs - as mentioned before - can be driven by three
different categories of algorithms: a) fly being attracted to the centre of the en-
vironment, b) navigate back and forth between different (fixed) waypoints, or c)
follow a ’leader’ teammate.

To implement the attraction toward the centre of the environment the simple
formula expressed in Equation 4 - which return a steering request - has been
used. The numerator of this formula computes the distance from the centre of
the environment for the i -th MAV (in two-dimensions only, which is the reason
for omitting the MAVi.y

2 term). The denominator simply provides to calculate
the diagonal length for the base of the reference environment, then divides the
obtained value by 2. Gaussian noise is added to the resulting steering request.

steeringRequest =

√
MAVi.x2 +MAVi.z2

(
√

8002 + 8002)/2
+X ∼ (0, 0.25) (4)

Figure 8 shows, in two-dimensions, the flight paths that 4 aircraft have followed
during a simulation they started deployed according to a random 2D formation.

10

The MAVs have flown for about 10,000 time-steps while being attracted toward
the centre of the environment.

−400 −300 −200 −100 0 100 200 300 400
−400

−300

−200

−100

0

100

200

300

400

Flight paths followed by the entire flock during the experiment

X

Z

Flight path for MAV #01

Flight path for MAV #02

Flight path for MAV #03

Flight path for MAV #04

Figure 8: Two-dimensional flight paths followed by a team of 4 MAVs attracted
to the centre of the reference environment. Their paths describe a series of circles
- moving counterclockwise - passing through the central point

Waypoint navigation simply consists in the MAV flying between two fixed
points in the space. The two waypoints used are respectively located at coordinates
(−165.0, h, 165.0) and (165.0, h,−165.0), thus 300GUs far from each other21 (h,
within this context, represents the altitude of the all MAVs or the altitude of
the MAV with the lowest ID for 2D and 3D starting formations respectively). The
steering request generated by the controller at any time-step is calculated according
to Equation 5. In this equation the ∆α symbol indicates the angle between the
current waypoint and the heading of the MAV (assuming the aircraft being parallel
to the ground, i.e. with a roll/bank angle equal to 0◦); its value falls within the
[−180.0◦, 180.0◦] range ([−180.0◦, 0.0◦] when on the relative ”left” of the MAV,
[0.0◦, 180.0◦] when on its relative ”right”). Again, normally distributed noise is
added to the value generated by the equation to allow for some uncertainty in
the outcome of the executed manoeuvre. A waypoint is considered reached when
one of the MAVs gets closer than 30GUs to it. The two waypoints, as well as the

21The Euclidean distance between two points a and b both laying inside the same three dimen-
sional space can be calculated according to the following equation, where (xa, ya, za) are the co-
ordinates of point a, and (xb, yb, zb) those of point b: d =

√
(xa − xb)2 + (ya − yb)2 + (za − zb)2.

11

trajectory followed during a test by a MAV navigating between them (inclusive of
the take off phase), can be seen in Figure 7.

steeringRequest =
∆α

40
+X ∼ (0, 0.25) (5)

The simulator allows to make all of the MAVs fly between waypoints/around
the centre of the environment, or just one of them (the ”leader”) obeying to such
a navigation task. If the latter feature has been activated, the non-leader MAVs
will have two options available (depending on the choice made by the user): not
doing anything (i.e., flying on a straight line), or fly following the leader. When an
algorithm (whether a navigation or, as we will see in the next section, a flocking
one) which involves a leader is selected, the designed one to assume that role is
the MAV with the lowest assigned ID.

Leader-following behaviour and waypoint navigation have been implemented
in a very similar way. When one of the two navigation algorithms belonging to
the leader-following category is selected, the leader either navigates attracted to
the centre of the environment or flies back and forth the two fixed waypoints.
The followers are driven by steering requests generated through Equation 5, with
the only difference consisting in the calculation of the ∆α parameter which now
represents the angle between the follower’s heading and the position of the leader,
rather than the angular difference between the heading direction of the follower
and the current waypoint.

A few more notes must be added before closing this section:

• for 3D intervallic launches the navigation algorithm only kicks off once the
MAV has reached the desired altitude;

• common across all the navigation algorithms is the fact that the MAVs start
every simulation flying at a speed equal to 12GU/time-step.

2.3 Flocking algorithms

The software simulator permits to do not assign any navigation task to the aircraft.
In this case all the MAVs will simply go straight, unless a flocking algorithm which
from time to time force them to steer has been selected. Flocking algorithms are
so labeled because they aim to make the MAV team behave like a flock. Various
alternative strategies have been tested to obtain this outcome and a description of
how they work is provided within the current section.

From a technical point of view, the flocking algorithms that generate a steering
requests22 make the MAV perform, at any time-step, a yaw rotation which is the

22Only one of them, namely Speed adjustment, does not generate any steering request at all.

12

sum (intended as sum of circular quantities) of two independent steering requests:
one coming from the navigation algorithm (if enabled), the other one from the
flocking rule.

The first option available to the MAVs is speed adjustment. According to this
algorithm, which only works when waypoint navigation is used23, the designated
leader continuously broadcasts information about its actual coordinates and those
of the waypoint he is currently aiming to. The other MAVs receive this information
in real time24 and elaborate it according to Algorithm 3 (where: distance() is a
function which returns the distance between the two points specified as input
parameters, flockingDistance is the desired distance at which the followers should
stay far from the leader, MAV0 is the flock leader, and waypointj is the waypoint
toward which the leader and/or all the MAVs is/are currently flying). As the
algorithm shows, a 2GUs tolerance has been added to the calculus of the desired
flocking distance.

Algorithm 3 Speed adjustments for the i -th non-leader MAV

flockingDistance = 10;
if distance(MAVi, waypoint) > distance(MAV0, waypoint) then

if distance(MAVi,MAV0) > (flockingDistance+ 2) then
MAVi.speed+ +;

else if distance(MAVi,MAV0) < (flockingDistance− 2) then
MAVi.speed−−;

end if
else
MAVi.speed−−;

end if

This simple code allows the MAVs to infer their relative position compared to
the leader (i.e., whether they are in front of or behind it, ”understood” exploiting
the knowledge about the current waypoint coordinates) and then adjust their speed
accordingly (increasing it if behind the leader and farther than the desired flocking
distance, decreasing it if in front of the leader or too close to it). The intensity
of the speed adjustment corresponds to a random float value drawn from a flat
distribution ranging between 0 and 0.5.

23This algorithm could potentially work with ”attraction to the centre” as navigation task,
but this functionality has not been implemented in the simulator.

24Please consider that within the simulator all the MAVs have instantaneous access to all the
information they need. As we will see in next sections, this is not true for real robots since all
the required information must be exchanged between the robots, thus leading to some delay in
communication and to the necessity of staying within a limited distance range.

13

An additional flocking algorithm implemented in the simulator is heading align-
ment. As the name suggests, this algorithm provides to modify the heading of each
MAV in order to match it with a reference one. Working as references can be ei-
ther the leader’s heading (as usual, considered as ’leader’ is the MAV associated
with the lowest ID, independently from the navigation algorithm in use25) or the
average heading for all the MAVs within the neighbourhood.

Once the ∆α between the current heading and the desired one has been cal-
culated, the amount of steering to perform is elaborated according to Equation 5.
In algorithmic terms the entire procedure can be represented by the pseudocode
in Algorithm 4, where: calculateDeltaHeadingFromTo() is a function which return
the angle between the heading of the object received in input (first parameter),
and a different object for whom the coordinates are received by the function as
second parameter; calculateAverageNeighboursHeading() is a function calculating
the average neighbours’ heading for the MAV specified in input.

Algorithm 4 Heading alignment for the i -th MAV
∆α = 0;
if flockingAlgorithm = alignToTheLeader then

if i 6= 0 then
∆α = calculateDeltaHeadingFromTo(MAVi,MAV0);

end if
else if flockingAlgorithm = alignToTheNeighboursHeading then
avgHeading = calculateAverageNeighboursHeading(MAVi);
∆α = calculateDeltaHeadingFromTo(MAVi, avgHeading);

end if
performY aw(MAVi,∆α÷ 40 +X ∼ (0, 0.25));

The simulator also allows to use mixed flocking algorithms in which speed
matching and heading alignment (i.e., Algorithm 3 and 4) are used together.
Futrhermore the user can decide to employ the Reynolds’ flocking algorithm for
boids. What this algorithm is and how does it work will be explained in details in
the next two sections.

Please consider that also all of the flocking algorithms generate an output
steering manoeuvre which is affected by Guassian distributed noise.

2.3.1 Reynolds’ flocking algorithm for boids

With the term Reynolds’ algorithm we refer to the core of the software Craig
Reynolds originally designed to implement automatic flocking behaviour among

25In case this flocking algorithm is selected it will not have any impact on the leader, since it
is not supposed to perform any steering manoeuvre in order to match its own heading.

14

computer animated agents (or boids, i.e. birds-like objects, according to his def-
inition). His work - originally thought in order to help the workers in computer
graphics involved in designing the motion of large groups of entities - eventually
led in 1987 to a seminal publication introduced at the annual edition of the SIG-
GRAPH26 conference [9]. The work presented by Reynolds received a great deal of
attention quickly becoming extremely popular within the computer science field27.

What is remarkable in Reynolds’ work consists in the assumption upon which
his model is based. Rather than elaborating complex rules to govern the behaviour
of a flock considered as a whole, he proposed an approach based on every single
individual obeying to a limited set of pretty simple rules. Other than simple these
rules are also local, in the sense that every boid is only aware of its local neigh-
bourhood (i.e., the behaviour exhibited by the boids closer to it than a certain
threshold) and does not have access to global information about the entire flock
at all. This mechanism has proven to be working. Large groups of boids driven by
Reynolds’ algorithm are capable of showing a coherent flocking behaviour, as well
as higher level properties such as collective obstacle avoidance28. Further improve-
ments that have been made over the years on top of the original algorithm allow
for a flock to be directed (even if that would mean losing one of the characteristic
traits of the model, which is the absence of global information29) [12], to replicate
leader-following dynamics [13], etc.. Modified versions of the algorithm have also
been applied countless time to reproduce for example the motion of animals as in
schooling [14] or herding [15].

Before discussing the technical details about the flocking algorithm it is worth
to consider how, at the time he wrote his software, Reynolds was not interested
in replicating real animal behaviour in computer animations, so he never claimed
that his model faithfully recreates conducts that can be observed in nature. Fur-

26SIGGRAPH (International Conference and Exhibition on Computer Graphics and Interac-
tive Techniques, http://www.siggraph.org) is a traditional conference dedicated to the com-
puter graphics community that in 2011 will be held for the 38th time.

27Scientists from apparently unrelated fields, as complexity science, also looked with interest
at Reynolds’ model, seeing in it an excellent demonstration of a complex collective behaviour
emerging from the low-level interactions of a multitude of agents, each of them being aware of
(as well as influencing) a narrow neighbourhood only. This is a classical example of what Murray
has defined as the molecular view of complexity [11].

28To have an example of Reynolds-based flocking behaviour the reader can watch either a
video about the basic behaviour elaborated by the author (http://www.youtube.com/watch?
v=2aXMo3MFNsA) and one in which the boids: a) are attracted by a point moving across the
space; b) at the same time need to avoid a fixed obstacle (http://www.youtube.com/watch?v=
GUkjC-69vaw).

29Although it might be argued that not all of the boids need to be aware of this information.
The modified algorithm would preserve Reynolds’ assumption if only the boids in front of the
group would be able to perceive the point of attraction and steer toward it, thus back-propagating
a steering manoeuvre to the entire flock.

15

thermore, another assumption he implicitly made about all the members of a flock
being peers (i.e., no hierarchical structures existing within the group) is not neces-
sarily true (and it has recently been challenged by Biro and colleagues [16, 17, 18]
in their studies focusing on homing pigeons).

The set of rules governing the flocking behaviour can be summarised (in order
of decreasing importance) as:

1. collision avoidance: avoid collisions with nearby flockmates;

2. velocity matching : attempt to match velocity with nearby flockmates;

3. flock centering : attempt to stay close to nearby flockmates.

To fully understand how these three rules work, it is fundamental to remember
that Reynolds defined ”velocity” as ”a vector quantity, referring to the combination
of heading and sepeed”. Rule number #2, velocity matching, therefore refers to
both speed adjustment (match the speed of the boids inside the neighbourhood)
and heading alignment. To clear up potential misunderstandings, in a later paper
[12] Reynolds renamed the velocity matching rule as alignment. Collision avoidance
and flock centering are instead two complementary rules that respectively provide
to keep the boids at a ’safe distance’ between each other, but not too far away
(i.e., close enough to be consider a homogeneous group to the eyes of an external
observer).

Every rule generates an independent request for a steering manoeuvre to be
executed by the boid under examination. The entire model relies on vector ge-
ometry, implying that the steering requests generated by the different rules are
expressed in terms of independent geometric vectors. But, considering that a boid
can only perform one steering manoeuvre per time, how is it supposed to behave
when facing rules that attempt to steer it toward opposite directions? To solve
this potential source of troubles, Reynolds first assigned different weights to the
three rules, thus attributing a different relative importance to each of them. Not
only the vectors generated by the different rules are attenuated by a certain fac-
tor30, but a ”governing element”, named accumulator, was also introduced. The
working principle of the accumulator is pretty easy to understand. As Reynolds
explained [9]:

The acceleration [steering] requests are considered in priority order
and added into an accumulator. The magnitude of each request is mea-
sured and added into another accumulator. This process continues until
the sum of the accumulated magnitudes gets larger than the maximum

30The weights associated to the rules are fractional values included between 0 and 1.

16

(a) (b)

(c)

Figure 9: Graphics representation of the three rules elaborated by Reynolds: (a)
separation; (b) alignment/velocity matching; (c) cohesion

acceleration [steering] value, which is a parameter of each boid. The
last acceleration request is trimmed back to compensate for the excess
of accumulated magnitude.

Despite the entire procedure appears to be quite straightforward, Reynolds’
original paper lacks in terms of technical details. Making tough to replicate its
work in a faithful way.

2.3.2 Customised (Parker’s-based) implementation of Reynolds’ algo-
rithm

As aforementioned there are some degrees of uncertainty about how Reynolds
originally implemented his model. His original paper, although well written and
capable of stimulating endless discussions, is quite minimalist in terms of technical
details. It provides an overview of the general principles followed in order to achieve
the flocking behaviour, but does not go particularly far in describing how exactly
the entire procedure should be implemented in terms of computer code. For this
reason, over the years many researchers have proposed their own implementations
of Reynolds’ algorithm. The approach we have decide to take inspiration from is

17

the one recently elaborated by Conrad Parker31.
Parker’s pseudocode for the separation and cohesion rules is shown in Algo-

rithms 5 and 6 respectively. Consider that bj represents the j -th boid belonging
to the flock and N can be interpreted whether as the total amount of boids or just
as the subset of those within j ’s neighbourhood.

Algorithm 5 Parker’s pseudocode for flocking: cohesion rule
vector pcj;
for b = 1 : N do

if b 6= bj then
pcj = pcj + b.position;

end if
end for
pcj = pcj/(N − 1);
return (pcj − bj.position)/100;

Algorithm 6 Parker’s pseudocode for flocking: separation rule
vector c = 0;
for b = 1 : N do

if b 6= bj then
if |b.position− bj.position| < 100 then
c = c− (b.position− bj.position)

end if
end if

end for
return c;

We have decided to do without one of the three original Reynolds’ rules (namely,
speed matching), thus just relying on two of them. The reason for that is in us-
ing a point of attraction (waypoints, in our case) valid for all the MAVs, which
would make redundant (whether not counterproductive) the employment of an
alignment/velocity matching rule. Notwithstanding how many rules are employed,
Algorithm 7 shows how all of these can be assembled together in order to generate
a single steering manoeuvre and the consequent movement of boid b to the desired
location. In that algorithm m1,m2,m3, ... represent the weight factors applied to
the vectors v1, v2, v3, ... generated by rules 1, 2, 3, ... respectively. As can be seen

31The pseudo-code written by Parker, as well as a detailed explanation about the various
assumptions he made in writing it, can be found online at the URL: http://www.kfish.org/
boids/pseudocode.html.

18

Parker has not implemented any sort of accumulator, just relying on a weighted
sum of all the vectors created by the individual flocking rules.

Algorithm 7 Parker’s pseudocode for flocking: assembling the rules together
vector v1, v2, v3, ...;
int m1,m2,m3, ...;
boid b;
for b = 1 : N do

...
v1 = m1 ∗ rule1(b);
v2 = m2 ∗ rule2(b);
v3 = m3 ∗ rule3(b);
...
b.velocity = b.velocity + v1 + v2 + v3 + ...;
b.position = b.position+ b.velocity;

end for

Algorithms 8 and 9 are simple translations of the algorithms detailed above
with a syntax coherent to the one used in previous sections. flockingDistance is
a variable indicating the desired minimum distance between two members of the
flock, and calculateDistance() is a function returning the distance between the two
objects specified in input. The aircraft for which the rules are computed is always
assumed to be MAV i.

Because of the autopilot system described in Section 1 we only consider two
dimensions (X and Y) while extrapolating the vectors from the flocking rules,
assuming as a constant value the altitude at which the MAVs fly.

Algorithm 8 Parker’s-inspired pseudocode for flocking: cohesion rule
resV ector.x = 0, resV ector.y = 0;
for j=1:N do

if j 6= i then
~ruleV ector = ~ruleV ector + ~MAVj;

end if
end for

~ruleV ector = ~ruleV ector ÷ (N − 1);

Assembling the rules together has been done through the pseudocode shown in
Algorithm 10, for which the parameters were fixed at the end of a trial-and-error
procedure. calculateCohesionVector(id) and calculateSeparationVector(id) are two
functions returning the vectors for the id -th MAV generated by the cohesion and
the separation rules respectively (Algorithms 8 and 9). These two vectors are

19

Algorithm 9 Parker’s-inspired pseudocode for flocking: separation rule

ruleV ector.x = 0, ruleV ector.y = 0;
for j=1:N do

if j 6= i then
if calculateDistance(MAVi,MAVj) < flockingDistance then

~ruleV ector = ~ruleV ector − ~MAVi − ~MAVj;
end if

end if
end for

summed to the one representing the current position of MAVid in order to ob-
tain a vector which identifies the desired position toward which the MAV should
aim. Since the modelled aircraft is a fixed wing one (and cannot therefore move
to the destination point ignoring its current orientation), out of this data it must
be extrapolated the delta angle (∆α) between the current heading and the desired
vector. ∆α is first divided by 40 - as for Equation 5 - then Gaussian distributed
noise is added. On top of that, the resulting value (which is the amount of yaw
steering the MAV has to perform) is further divided by 3 because of the obser-
vations extrapolated by our experiments, that seem suggesting how the flocking
behaviour becomes more efficient when the steering value is supplementary atten-
uated.

Algorithm 10 Parker’s-inspired pseudocode for flocking: assembling the rules
together

~v1 = 1
1
∗ calculateCohesionV ector(MAVi);

~v2 = 1
50
∗ calculateSeparationV ector(MAVi);
~resultingV ector = ~MAVid + ~v1 + ~v2

∆α = calculateDeltaHeadingToResultingV ector(MAVi);
performY aw(MAVi, (∆α÷ 40 +X ∼ (0, 0.25))÷ 3));

3 Conclusions and future work

This report has illustrated the work that has been carried out over the last few
months. A software simulator specifically targeted to the senseFlyTM’s swinglet
has been developed and few navigation and flocking algorithms have been tested.
Thus extensive simulations have not been carried out yet, the preliminary experi-
ments done using the computer model have shown the feasibility of the algorithms
designed.

20

The next and final step of this research, scheduled for the immediate future,
will first involve the definition of metrics useful to evaluate the flocking behaviours.
Then the porting and testing of the above algorithms to the real robots will take
place.

21

References

[1] S. Leven, J.-C. Zufferey, and D. Floreano, “A simple and robust fixed-wing
platform for outdoor flying robot experiments,” Proceedings of the Interna-
tional Symposium on Flying Insects and Robots, pp. 69–70, 2007.

[2] S. Leven, J.-C. Zufferey, and D. Floreano, “A minimalist control strategy for
small uavs,” Proceedings of IROS 2009, the IEEE/RSJ International Confer-
ence on Intelligent RObots and Systems, pp. 2873–2878, 2009.

[3] J.-H. Kim, S. Wishart, and S. Sukkarieh, “Real-time navigation, guidance,
and control of a uav using low-cost sensors,” Proceedings of FSR 2003, the
International Conference on Field and Service Robotics, pp. 95–100, 2003.

[4] D. Kingston and R. Beard, “Real-time attitude and position estimation for
small uavs using low-cost sensors,” Proceedings of the AIAA 3rd Unmanned
Unlimited Systems Conference and Workshop, 2004.

[5] S. Hauert, S. Leven, J.-C. Zufferey, and D. Floreano, “Communication-based
swarming for flying robots,” Proceedings of the Workshop on Network Science
and Systems Issues in Multi-Robot Autonomy, IEEE International Conference
on Robotics and Automation (ICRA 2010), 2010.

[6] A. Beyeler, S. Magnenat, and A. Habersaat, “Ishtar: a flexible and lightweight
software for remote data access,” Proceedings of EMAV08, the 2008 European
Micro Air Vehicle Conference, 2008.

[7] F. Ruini and A. Cangelosi, “An evolutionary robotics 3d model for au-
tonomous mavs navigation, target tracking and group coordination,” Pro-
ceedings of IJCNN 2010, International Joint Conference on Neural Networks,
pp. 760–767, 2010.

[8] F. Ruini and A. Cangelosi, “An incremental approach to the evolutionary de-
sign of autonomous controllers for micro-unmanned aerial vehicles,” Proceed-
ings of TAROS 2010, 11th Conference Towards Autonomous Robotic Systems,
pp. 239–246, 2010.

[9] C. Reynolds, “Flocks, herds, and schools: A distributed behavioral model,”
Proceedings of ACM SIGGRAPH ’87, vol. 21, no. 4, pp. 25–34, 1987.

[10] A. Koestler and T. Braunl, “Mobile robot simulation with realistic error mod-
els,” Proceedings of the 2nd International Conference on Autonomous Robots
and Agents, pp. 46–51, 2004.

22

[11] P. Murray, “So what’s new about complexity?,” Syst. Res., vol. 20, no. 5,
pp. 409–417, 2003.

[12] C. Reynolds, “Steering behaviors for autonomous characters,” Proceedings of
the Game Developers Conference, pp. 763–782, 1999.

[13] C. Hartman and B. Benes, “Autonomous boids,” Computer Animation and
Virtual Worlds, vol. 17, pp. 199–206, 2006.

[14] H. Kunz and C. Hemelrjik, “Artificial fish schools: Collective effects of school
size, body size and body form,” Artificial Life, vol. 9, pp. 237–253, Jul 2003.

[15] J. Hodgins and D. Brogan, “Robot herds: Group behaviors for systems with
significant dynamics,” Proceedings of ALIFE IV, the 4th International Work-
shop on the Synthesis and Simulation of Living Systems, pp. 319–324, 1994.

[16] M. Nagy, Z. Akos, D. Biro, and T. Vicsek, “Hierarchical group dynamics in
pigeon flocks,” Nature, vol. 464, no. 7290, pp. 890–893, 2010.

[17] D. Biro, D. Sumpter, J. Meade, and T. Guilford, “From compromise to lead-
ership in pigeon homing,” Current Biology, no. 16, pp. 2123–2128, 2006.

[18] R. Freeman and D. Biro, “Modelling group navigation: Dominance and
democracy in homing pigeons,” The Journal of Navigation, no. 62, pp. 33–40,
2009.

23

	Final-Report.pdf
	Final Report	
	Year 1	
	Year 2

	Year 3
	Year 4

	Cover-page.pdf
	EOARD GRANT 073075
	COMMUNICATION AND DISTRIBUTED CONTROL IN MULTI-AGENT SYSTEMS
	Principal Investigator: Professor Angelo Cangelosi
	PhD Student: Mr Fabio Ruini
	Final Report
	ABSTRACT

