
Security Evaluation and Hardening of Free and Open

Source Software (FOSS)

Robert Charpentier†

Mourad Debbabi‡ and TFOSS Research Team‡∗

†Defence Research and Development Canada, Valcartier, Quebec, Canada
‡Computer Security Laboratory, Concordia University, Montreal, Quebec, Canada

Abstract

Recently, Free and Open Source Software (FOSS) emerged as an alternative to Commercial-
O�-The-Shelf (COTS) software. Now, FOSS are perceived as a viable long-term solution that
deserves careful consideration because of its potential for signi�cant cost savings, improved re-
liability, and support advantages over proprietary software. However, the secure integration
of FOSS in IT infrastructures is very challenging and demanding. Methodologies and techni-
cal policies must be adapted to reliably compose large FOSS-based software systems [1]. A
DRDC Valcartier-Concordia University feasibility study completed in March 2004 concluded
that the most promising approach for securing FOSS is to combine advanced design patterns
and Aspect-Oriented Programming (AOP). Following the recommendations of this study a three
years project have been conducted as a collaboration between Concordia University, DRDC Val-
cartier, and Bell Canada. This paper aims at presenting the main contributions of this project. It
consists of a practical framework with the underlying solid semantic foundations for the security
evaluation and hardening of FOSS.

Keywords: Free and Open Source Software, Security Hardening, Static Analysis, Dynamic Anal-
ysis, Aspect Oriented Programming.

1 Introduction

During the past two decades, the software market has been dominated by Commercial-O�-The-Shelf
(COTS) products that o�er a myriad of functionalities at reasonable prices. However, the intrinsic
limitations of COTS software such as security weaknesses, closed source code, expensive upgrades,
and lock-in e�ect have emerged over time. This led to the development of a parallel �economy"
based on Free and Open Source Software (FOSS). The latter refers to software whose source code
is made available for use and modi�cation without the expensive license fees imposed by COTS
software vendors. FOSS is developed either by volunteers, non-pro�t organizations, or by large
computer �rms who want to include �commodity" software to give a competitive advantage to their
hardware products. To date, thousands of FOSS projects are carried out via Internet collaboration.
A plethora of high-quality applications are available for use or modi�cation at no (or small) cost.
Many of these FOSS products are widely available and are considered to be as mature as their COTS
equivalents. FOSS is now perceived as a viable long-term solution that deserves careful consideration

∗The TFOSS research team is comprised of: D. Alhadidi, M. Azzam, N. Belblidia, A. Boukhtouta, A. Hanna, R.
Hadjidj, H. I. Kaitouni, M. A. Laverdière, H.Z. Ling, S. Tlili, X. Yang, Z. Yang

RTO-MP-IST-091 18 - 1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Security Evaluation and Hardening of Free and Open Source Software
(FOSS)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defence R&D Canada,Valcartier, Quebec, Canada,

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
presented at the Information Systems and Technology Panel (IST) Symposium held in Tallinn, Estonia,
22-23 November 2010. U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

because of its potential for signi�cant cost savings, improved reliability, and support advantages over
proprietary software [2].

Technically, the secure integration of FOSS in IT infrastructures is very challenging and demand-
ing. Methodologies and technical policies must be adapted to reliably compose large FOSS-based
software systems [1]. This requirement is exacerbated by the fact that our dependency on soft-
ware will continue to grow in the next decade. Recent studies con�rm that the level of reliability
and security currently o�ered by commercial products is clearly inadequate and that an order of
magnitude increase is needed to cope properly with cyber threats [3]. A DRDC Valcartier (De-
fence R&D Canada Valcartier)-Concordia University feasibility study, completed in March 2004,
addressed these issues and considered the technological options to cope with the security and reli-
ability of complex information systems including FOSS and COTS software [2]. It concluded that
the most promising approach is to combine advanced security design patterns and Aspect-Oriented
Programming (AOP). This facilitates the separation of the de�nition and implementation of quality
and functional speci�cations [4]. Such a �separation of concerns" will ease the development of secure
design patterns to be applied to a wide range of applications. Time and cost investments were also
evaluated for the scienti�c demonstration of these concepts.

Following the recommendations of this study, a three years project has been conducted as a
collaboration between Concordia University, DRDC Valcartier, and Bell Canada. This paper aims
at presenting the main contributions of this project. More precisely, it presents a practical framework
with the underlying solid semantic foundations for the security evaluation and hardening of free and
open source software. The evaluation aims to automatically detect vulnerabilities in FOSS that
will be corrected by the systematic injection of security code thanks to dedicated aspect oriented
technologies. The security code is meant to be derived from security hardening patterns.

The remainder of this paper is organized as follows. Section 2 surveys the related work. In Section
3, we present our �rst contribution involving static analysis and model checking for detecting security
vulnerabilities. Section 4 shows our contribution for security hardening, which is based on aspect
orientation. Finally, Section 5 concludes the paper.

2 Related Work

Security code analysis includes security code inspection, automatic analysis and static analysis
techniques. Security code inspection techniques are borrowed from software engineering practices
[5] and adapted speci�cally for security purposes. Automatic analysis techniques generally scan the
code looking for security sensitive coding patterns that are compiled in checklists. The available
techniques are limited to vulnerable coding patterns such as bu�er over�ows, heap over�ows, integer
over�ows, format string vulnerabilities, SQL injection, cross-site scripting and race conditions [6].
Among the tools that implement these techniques, we can cite: Flaw�nder [7], Coverity [8] and
PolySpace [9]. Static analysis is used to predict security properties of programs without resorting to
their execution. Static analysis techniques include �ow-based analysis [10], type-based analysis [11]
and abstract interpretation [12]. Finally, the evaluation by security testing is based on the design
and execution of test cases in order to identify vulnerabilities in the security features of the software
[13, 14].

For FOSS security hardening, four approaches could be distinguished: analyzing, monitoring,
auditing, and rewriting [15]. Analysis-based techniques range from simple scanning of code in order
to detect malicious code to sophisticated semantics-based analysis of programs. One popular form
of analysis-based techniques is certi�ed compilation, which leverages the information generated by
the compiler in order to endow the code with a security certi�cate. This could take the form of
proofs as in PCC [16], structured annotations as in ECC [17], or typing annotations with typed
assembly languages TAL [18], STAL [19], DTAL [20], Alias Types [21], HBAL [22] and Linearly

Security Evaluation and Hardening
of Free and Open Source Software (FOSS)

18 - 2 RTO-MP-IST-091

Typed Assembly Language [23]. Nevertheless, static analysis is to some extent complex and in
some regards undecidable. Monitoring is based on background daemons watching the execution
of a program to prevent, at run-time, any harmful operation from taking place [24]. The main
drawback of monitoring is the overhead in terms of performance that is induced by the daemons.
With auditing-based approaches, the system activity is recorded in an audit trail. This provides a
sequence of events related to a trace of program execution and allows to track back any harmful
action. If any malicious code causes damage, the audit trail allows to do the recovery and to take
the necessary precautions for the future. As of the rewriting-based approach, the code is modi�ed to
prevent deviation from the security policies in place. A rewriting tool inserts extra code to perform
dynamic checks that ensure that �bad things� cannot happen. Among the research contributions in
rewriting-based security, we can cite [25].

In our project, we used aspect orientation as an enabling technology that allows the systematic
injection of security in FOSS. Aspect Oriented Programming (AOP) [26] promotes the principle of
separation of concerns, thus allowing smooth integration of security hardening mechanisms inside
existing software. The most prominent AOP languages are AspectJ [27] and Hyper/J [28], which
are built on top of Java programming language. A similar work has also been done to provide AOP
frameworks for other languages. For instance, AspectC [29] is an aspect extension of C that is used
to provide separation of concerns in operating systems. Similarly, AspectC++ [30] and AspectC#
[31] are respectively AOP extensions of C++ and C# languages. Some attempts have been made
to use AOP for security. For instance, Cigital Labs conducted a DARPA-funded project [32], where
the AOP paradigm was used to address software security. The main outcomes of this project are a
security dedicated aspect extension of C called CSAW [32] and a weaving tool. De Win [33] explored
the use of AspectJ to integrate security aspects within applications.

3 Static Analysis and Model-Checking for Vulnerability Detection

Our approach brings into a synergy static analysis and model-checking in order to leverage the
advantages and overcome the shortcomings of both techniques. The core idea is to utilize static
analysis for the automation and the optimization of program abstraction processes. Moreover,
programmers take advantage of model-checking techniques to de�ne a wide range of system-speci�c
security properties. As a result, our approach can model-check large software against customized
system-speci�c security properties. Our ultimate goal is to provide a security veri�cation technique
for open source software, thus we base our approach on GCC, which is usually a defacto open-source
compiler. The language-independent and platform-independent GIMPLE representation [34] of GCC
facilitates static analysis by providing easy access to �ow, type, and alias information. Being based
on GIMPLE, our approach can be extended to support other languages such as C, C++, and Java
that GCC accepts as program feeds. For the veri�cation process, we use the Moped model-checker
for pushdown systems [35]. The latter are known to e�ciently model program execution and inter-
procedural behavior. Moped has a procedural input language called Remopla to de�ne programs as
pushdown systems. As such, the program abstraction derived from the GIMPLE representation is
serialized into Remopla representation. In addition, we enrich program abstractions with Remopla
constructs that compute and capture data dependencies between program expressions. Therefore,
we are able to detect insidious errors that involve variable aliasing and function parameter passing.
Security properties and program Remopla model are input to Moped in order to detect security
violations and provide witness paths leading to them.

Moped allows the veri�cation of reachability properties by looking for the reachability of a
speci�c statement in the Remopla code. Though interesting, this capability is not directly su�cient
for verifying security properties. In fact, a security property is the description of a pathological
behavior in the execution of a program. Such a behavior requires in general an elaborated formalism

Security Evaluation and Hardening
of Free and Open Source Software (FOSS)

RTO-MP-IST-091 18 - 3

to be speci�ed and can rarely be stated as the simple reachability of a speci�c statement in the
program. To specify security properties, we use the formalism of security automata. A security
automaton is a simple automaton with two spacial states: start and error, and transitions are
mapped to instructions or statements in the program to verify. The reachability of the error state
in the security automaton when synchronized with the program behaviors is an indication of the
occurrence of the pathology. To overcome the limitation of Moped in this regard, we translate a
security automaton into a Remopla representation then synchronize it with the Remopla model of
the program in question. This comes to synchronizing the pushdown systems of the program and
the security automaton. As such, the problem of verifying a security property is translated into
detecting the reachability of the error state in the synchronized model.

3.1 Design and Implementation

Fig. 1 depicts the architecture of our security veri�cation environment. The security veri�cation of
programs is carried out through di�erent phases including security property speci�cation, static pre-
processing, program model extraction, and property model-checking. In the following paragraphs,
we describe the input, the output, and the tasks of each of these phases.

• Phase1. Security Property Speci�cation:

� Input: Security properties.

� Output: Remopla automata of security properties.

The �rst step of our veri�cation process requires the de�nition of security properties describing
what not to do for the purpose of building secure code. We provide users with a tool in order
to graphically characterize the security rules that a program should obey. Each property
is speci�ed as a �nite state automaton where the nodes represent program states and the
transitions match program actions. Final states of automata are risky states that should never
be reached. To ease the property speci�cation, our tool supports syntactical pattern matching
for program expressions and program statements. The graphically de�ned properties are then
serialized into the Remopla language of Moped model-checker.

• Phase2. Static Analysis for Pre-processing:

� Input: Program GIMPLE representation and security properties.

� Output: Call-graph and alias information.

Given a program and a set of security properties to verify, this process conducts call-graph
analysis and alias analysis of the program. By considering the required properties, this phase
identi�es property-relevant behaviors of the analyzed program and discards those that are
irrelevant. Besides, we resort to alias analysis in order to limit the number of tracked variables.
We only consider variables that are explicitly used in security-relevant operations together
with their aliases. All other variables are discarded from the veri�cation process. The static
pre-processing phase helps generating concise models that reduce the size of state spaces to
explore.

• Phase3. Program Model Extraction:

� Input: Program source code and speci�ed security properties.

� Output: Control-�ow driven Remopla model or data-driven Remopla model.

Security Evaluation and Hardening
of Free and Open Source Software (FOSS)

18 - 4 RTO-MP-IST-091

Security PolicySource Code

GIMPLE

Representation

Security

Automata

Remopla
Model

Yes No

Verified

Property

Error

Trace

Call-graph/alias

information

GCC

Compilation
Property

Translation

Static

Analysis

Model

Contruction

Model

Checking

Figure 1: Security Veri�cation Framework

Both the program and the speci�ed properties are translated into Remopla representation and
then combined together. The combination of program models and security properties serves
the purpose of synchronizing the program behaviors with the security automaton transitions.
In other words, transitions in security automata are triggered when they match the current
program statement. Our veri�cation approach carries out program model extraction in two
di�erent modes: the control-�ow driven mode and the data-driven mode. The control-�ow
mode preserves in the Remopla model the �ow structure of the program, but discards data
dependencies between program expressions. The resulting Remopla model is e�ciently used to
detect temporal security property violations and scales to large programs. On the other hand,
our data-driven model captures data dependencies between program expressions. Hence, it
enhances the precision of our analysis and reduces the number of false positives.

• Phase4. Program Model-Checking:

� Input: Remopla model.

� Output: Detected error traces.

Model-checking is the ultimate step of our process. The generated Remopla model is given
as input to the Moped model-checker for security veri�cation. An error is reported when a
security automaton speci�ed in the model reaches a risky state. The original version of Moped
has a shortcoming in a sense that it stops processing at the �rst encountered error. We have
done a modi�cation to Moped in order to be able to detect more than one error in a run.
Moreover, we have developed an error trace generation functionality that maps error traces
derived from the Remopla model to actual traces from the source code.

Security Evaluation and Hardening
of Free and Open Source Software (FOSS)

RTO-MP-IST-091 18 - 5

3.2 Results and Experiments

This section demonstrates the capability of our security veri�cation framework in detecting real
errors in large C software packages. We show that our approach can be e�ciently used for uncovering
undesirable vulnerabilities in source code. The CERT secure coding website [36] provides a valuable
source of information to learn the best practices of C, C++, and Java programming. It de�nes
a standard that encompasses a set of rules and recommendations for building secure code. Rules
must be followed to prevent security �aws that may be exploitable, whereas recommendations are
guidelines that help improve the system security. The CERT standard also makes another di�erence
between rules and recommendations stating that compliance of a code to rules can be veri�ed
whereas the compliance to recommendations is not always veri�able. To assist programmers with
the veri�cation of their code, we have integrated in our tool a set of secure coding rules de�ned in
the CERT standard. As such, programmers can use our framework to evaluate the security of their
code without the need to have high security expertise. CERT rules can mainly be classi�ed into the
following categories:

• Deprecation rules: These rules are related to the deprecation of legacy functions that are
inherently vulnerable such as gets for user input, tmpnam for temporary �le creation, and
rand for random value generation. The presence of these functions in the code should be
�agged as a vulnerability. For instance, CERT rule MSC30-C states the following �Do not use

the rand () function for generating pseudorandom numbers�.

• Temporal rules : These rules are related to a sequence of program actions that appear in source
code. For instance, the rule MEM3-C from the CERT entails to �Free dynamically allocated

memory exactly once�. Consecutive free operations on a given memory location represents a
security violation. Intuitively, these kind of rules are modeled as �nite state automata where
state transitions correspond to program actions. The �nal state of an automaton is the risky
state that should never be reached.

• Type-based rules: These rules are related to the typing information of program expressions. For
instance, the rule EXP39-C from the CERT states the following �Do not access a variable through
a pointer of an incompatible type�. A type-based analysis can be used to track violations of
these kind of rules.

• Structural rules : These rules are related to the structure of source code such as variable decla-
rations, function inlining, macro invocation, etc. For instance, rule DCL32-C entails to �Guar-

antee that mutually visible identi�ers are unique�. For instance, the �rst characters in variable
identi�ers should be di�erent to prevent confusion and facilitates the code maintenance.

Our approach covers the �rst two categories of coding rules that we can formally model as �nite
state automata. In fact, we cover 31 rules out of 97 rules in the CERT standard. We also cover 21
recommendations that can be veri�ed according to CERT. We conducted experiments that consist
in detecting the de�ned set of CERT coding rules against a set of well-known and widely used open-
source software. We strive to cover di�erent kinds of security coding errors that skilled programmers
can inadvertently produce in their code. The experiments are conducted in the two modes of our
security veri�cation tool: the control-�ow mode that discards data dependencies and the data-driven
mode that establishes data dependencies between program variables.

To illustrate, Fig. 2 gives an example of a security automaton that captures the race condition
errors. This security automaton can be used to check the compliance of source code to the following
CERT rules:

• POS35-C: �Avoid race conditions while checking for the existence of a symbolic link".

Security Evaluation and Hardening
of Free and Open Source Software (FOSS)

18 - 6 RTO-MP-IST-091

• FIO01-C: �Be careful using functions that use �le names for identi�cation".

CHECK = { access, stat, statfs, statvfs, lstat, readlink, tempnam,

tmpnam, tmpnam_r }

USE = { acct, au_to_path, basename, catopen, chdir, chmod, chown,

chroot, copylist, creat, db_initialize, dbm_open, dbminit, dirname, dlopen,

execl, execle, execlp, execv, execve, execvp, fattach, fdetach, fopen,

freopen, ftok, ftw, getattr, krb_recvauth, krb_set_tkt_string, kvm_open,

lchown, link, mkdir, mkdirp, mknod, mount, nftw, nis_getservlist,

nis_mkdir, nis_ping, nis_rmdir, nlist, open, opendir, pathconf, pathfind,

realpath, remove, rename, rmdir, rmdirp, scandir, symlink, system,

t_open, truncate, umount, unlink, utime, utimes, utmpname }

start errorstate1
USE(x)CHECK(x)

Figure 2: Race Condition Automaton (TOCTOU).

The Time-Of-Check-To-Time-Of-Use vulnerabilities (TOCTOU) in �le accesses are a classical
form of race conditions. In fact, there is a time gap between the �le permission check and the actual
access to the �le that can be maliciously exploited to redirect the access operation to another �le.
The automaton in Fig. 2 �ags a check function followed by a subsequent use function as a TOCTOU
error. The analysis results are given in Table 1. The three �rst columns de�ne the package name,
the size of the package, and the program that contains coding errors. The number of reported
errors is given in the fourth column (Reported Errors). After inspection of the reported error traces,
we classify them into three following columns: column (Err) for potential errors, column (FP) for
false positive alerts, and column (DN) for traces that are undecidable with manual inspection. The
checking time of programs is given in the last column.

From Table 1, we demonstrate the e�ciency and the usability of our approach in detecting real
errors in real-software packages. Moreover, our experiment shows that the use of data-driven mode
in our framework enhances the analysis precision.

Table 2 summarizes the error traces our tool detected during the experimentation. The proper-
ties, the number of reported traces, and the corresponding CERT rules are given in the table, and
more details of our experimentation can be found in [37].

4 FOSS Security Hardening

Software security hardening is de�ned in [38] as any process, methodology, product or combination

that is used to add security functionalities, remove vulnerabilities or prevent their exploitation in

existing software. Security hardening practices are usually manually applied by injecting security
code into software [39, 40, 41].

In this section, we address the problems related to the security hardening of FOSS. In this respect,
we propose two aspect-oriented and pattern-based approaches for systematic security hardening.
The �rst one is built on top of existing Aspect-Oriented Programming (AOP) technologies while
the other one is based on a language-independent and tree-based representation generated by the
GNU Compiler Collection (GCC) called GIMPLE. Both approaches are supported by a common
structure, which is based on the full separation between the roles and duties of the security experts
and the developers performing the hardening. Such proposition constitutes a bridge that allows the
security experts to provide the best solutions to particular security problems with the details on
why, how and where to apply them. Moreover, it allows the developers to use these solutions to
harden open source software without the need to have high security expertise.

Security Evaluation and Hardening
of Free and Open Source Software (FOSS)

RTO-MP-IST-091 18 - 7

Table 1: Results of TOCTOU Analysis.

Package LOC Program Reported Errors Err FP DN Model-checking time (Sec)

amanda-2.5.1p2 87K

chunker 1 0 1 0 71.6

chg-scsi 3 2 1 0 119.99

am�ush 1 0 0 1 72.97

amtrmidx 1 1 0 0 70.21

taper 3 2 1 0 84.603

amfetchdump 4 1 0 3 122.95

driver 1 0 1 0 103.16

sendsize 3 3 0 0 22.67

amindexd 1 1 0 0 92.03

at-3.1.10 2.5K
atd 4 3 1 0 1.16

at 4 3 1 0 1.12

bintuils-2.19.1 986K

ranlib 1 1 0 0 2.89

strip-new 1 0 1 0 5.49

readelf 1 1 0 0 0.23

freeradius-server-2.1.3 77K radwho 1 1 0 0 1.29

inn-2.4.6 89K

nnrpd 1 1 0 0 4.11

fastrm 1 1 0 0 0.37

archive 1 0 1 0 0.95

rnews 1 1 0 0 0.57

openSSH-5.0p1 58K

ssh-agent 2 0 0 2 22.46

ssh 1 0 1 0 100.6

sshd 6 3 1 2 486.02

scp 3 2 0 1 87.95

shadow-4.1.2.2 22.7K

usermod 3 1 0 2 9.79

useradd 1 1 0 0 11.45

vipw 2 2 0 0 10.32

newusers 1 1 0 0 9.2

zebra-0.95a 142K ripd 1 1 0 0 0.46

Security Evaluation and Hardening
of Free and Open Source Software (FOSS)

18 - 8 RTO-MP-IST-091

Table 2: Summary of Analysis Results.

Experiment Prop-

erty

Reported Err FP DN CERT Rule

Error

Race Condition 54 33 10 11 POS35-C,

FIO01-C

Temporary File Us-

age

23 23 0 0 FIO43-C

Chroot Jail 2 1 1 0 POS02-C,

FIO16-C

Memory Leak 61 11 13 37 MEM-C

Unchecked Return

value

14 14 0 0 MEM32-C,

EXP34-C

Environment Vari-

able Usage

11 10 1 0 STR31-C,

STR32-C,

ENV31-C

Deprecated Func-

tion

Too

many

- - - FIO33-C,

POS33-C,

MSC30-C

We realize the proposed structure by elaborating a programming independent and aspect-oriented
based language for security hardening called SHL, developing its corresponding parser, compiler and
facilities and integrating all of them into a framework for software security hardening.

In the following, we present the architectures, the design and implementation as well as the
results and experiments of each of the aforementioned two approaches.

4.1 Aspect-Oriented Security Hardening

This approach is based on the Security Hardening Language (SHL) that is de�ned in [42, 43].
We have elaborated an aspect-oriented approach to perform security hardening in a systematic
way. In this approach, security experts provide security solutions using an abstract and a general
aspect-oriented language called SHL that is expressive, human-readable, multi-language support,
and intermediate between English and programming languages. This will relieve developers from
the burden of security issues and let them focus on the main functionalities of programs. The
security solutions are then applied in a systematic way eliminating the need for manual hardening.
The approach provides an abstraction over the actions that are required to improve the security of
programs and adopt an aspect-oriented approach to build and develop the solutions.

4.1.1 Architecture

Fig. 3 presents the architecture of this approach. SHL is built on the top of the current AOP
technologies that are based on the pointcut-advice model. The solutions elaborated in SHL are
expressed by plans and patterns and can be re�ned into a selected AOP language. Security hard-
ening patterns are high-level and well-de�ned solutions to known security problems, together with

Security Evaluation and Hardening
of Free and Open Source Software (FOSS)

RTO-MP-IST-091 18 - 9

Figure 3: Framework Architecture

detailed information on how and where to inject each component of the solution into an applica-
tion. Security hardening plans instantiate security hardening patterns with parameters regarding
platforms, libraries and languages. The combination of hardening plans and patterns constitutes
a bridge that allows security experts to provide the best solutions to particular security problems
and allows developers to use these solutions to harden applications by developing security harden-
ing patterns. The development implies re�nement of solutions into advices using the existing AOP
languages (e.g., AspectJ, AspectC++).

4.1.2 SHL Compiler and Framework Implementation

We implemented the BNF speci�cation of SHL using ANTLR and its associated ANTLRWorks de-
velopment environment. The generated Java code allows to parse hardening plans and patterns and
verify the correctness of their syntax. We built on top of it a compiler that uses the information
provided by the parser to build �rst its data structure, then reacts upon the provided values in order
to run the hardening plan and compile and run the speci�ed pattern and its corresponding aspect.
This compiler is illustrated in the framework architecture of Fig. 3. Moreover, we integrated this
compiler into a development graphical user interface for security hardening. The resulting system
provides the user with graphical facilities to develop, compile, debug and run security hardening
plans and patterns. It allows also to visualize the software to be hardened and all the compilation
and integration activities performed during the hardening. The compilation process is divided into
many phases that are performed consequently and automatically. In the sequel, we present and
explain these phases.

• Plan Compilation: This phase consists of parsing the plan, verifying its syntax correctness and
building the data structure required for the other compilation phases. Any error during the
execution of this phase stops the whole compilation process and provides the developer with
information to correct the bug. This statement also applies on all the other phases.

• Pattern Compilation and Matching: A search engine has been developed to �nd the pattern
that matches the pattern instantiations requested in the hardening plan (i.e., pattern name
and parameters). A naming convention composed of the pattern name and parameters has
been adopted to di�erentiate between the patterns with same name but di�erent parameters.

Security Evaluation and Hardening
of Free and Open Source Software (FOSS)

18 - 10 RTO-MP-IST-091

Once the pattern-matching the criteria is found, another check on the name and parameters
speci�ed inside the pattern is applied in order to ensure that the matching is correct and there
is no error in the naming procedure. This includes automatically parsing and compiling the
pattern contents to check the correctness of its syntax, verify the matching result and build
the data structure required for the running process.

• Aspect Matching: Once the pattern is compiled successfully, a search engine similar to the
aforementioned one is used to �nd the aspect corresponding to the matched pattern. However,
the additional veri�cation performed in pattern matching is not required here because the
aspect will have exactly the same name of the pattern but with di�erent extensions depending
on the selected weaver.

• Plan Running and Weaving: Plan running is the last phase of the compilation process. Once
the corresponding aspect is matched, the execution command is constructed based on the
information provided in the data structure, which is built during the previous compilation
phases. Afterwards, the aspect is woven with the speci�ed application or module and the
resulted hardened software is produced.

• Aspect Generation: Aspect generation is an additional feature launched separately to assist
the developer during the re�nement of a pattern by generating automatically parts of the
corresponding aspect. The generated poincuts and advices are enclosed into an aspect that
has the same name as the pattern concatenated to its parameters. The developer will have to
re�ne the advices' bodies into programming language code (i.e, C++ or Java) and then run
the plan to apply the weaving.

4.2 GIMPLE-based Software Security Hardening

This approach allows applying the security hardening on the GIMPLE representation of software [44].
GIMPLE is an intermediate representation of programs. It is a language-independent and a tree-
based representation generated by the the GNU Compiler Collection (GCC) [45] during compilation.
GCC is a compiler system supporting various programming languages, e.g., C, C++, Objective-C,
Fortran, Java, and Ada. In transforming the source code to GIMPLE, complex expressions are split
into three address codes using temporary variables.

Exploiting the intermediate representation of GIMPLE enables to de�ne language-independent
weaving semantics that facilitates introducing new security-related AOP extensions. The importance
of this stems from the fact that aspect-oriented languages are language dependent. Accordingly,
GIMPLE weaving allows de�ning common weaving semantics and implementation for all program-
ming languages supported by the GCC compiler instead of doing them for each AOP language. For
example, instead of having a speci�c compiler for every aspect-oriented programming language that
tries to match join points in code and then does the weaving, the matching and the weaving are
done on GIMPLE trees without focusing on a speci�c programming language. This approach is also
based on the aforementioned Security Hardening Language (SHL).

Fig. 4 illustrates the architecture of the GIMPLE weaving approach together with the one
presented in Fig. 3. The GIMPLE weaving approach bypasses the re�nement step from patterns
into AOP languages. The hardening tasks speci�ed in patterns are abstract and support multiple
languages, which makes the GIMPLE representation of software a relevant target to apply the
hardening. This is done by passing the SHL patterns and the original software to an extended
version of the GCC compiler, which at the end generates the executable of the trusted software. For
this purpose, an additional pass is added to the GCC compiler in order to interrupt the compilation
once the GIMPLE representation of the code is completed. In parallel, the hardening pattern is
compiled and a GIMPLE tree is built for each behavior using the routines of the GCC compiler that

Security Evaluation and Hardening
of Free and Open Source Software (FOSS)

RTO-MP-IST-091 18 - 11

Security

Hardening

Aspects

Security

Hardening Pattern

Security

Requirements

Security Expert

Software Trusted Software
Weaver

Security APIs

Security

Hardening Plan

SHL

Refining

Developer

Extended GCC /

Gimple Weaving

Interrupt GCC

Compile Pattern

Gimple Weaving
GCC

Compilation

Security

Gimple Trees

Software

Gimple Tree

Figure 4: Approach Architecture

are provided for this purpose. Afterwards, the GIMPLE trees generated from the hardening patterns
are integrated in the GIMPLE tree of the original code with respect to the location(s) speci�ed in
each behavior of the hardening pattern. Finally, the resulted GIMPLE tree is passed again to the
GCC compiler in order to continue the regular compilation process and produce the executable of
the secure software.

4.2.1 Design and Implementation of Gimple Weaving Capabilities into GCC

We implement into the GCC compiler the weaving features that are inspired from the de�ned seman-
tics. This implementation allows weaving patterns into the GIMPLE representation of programs
before generating the corresponding executables. We handle before, after, and replace behaviors.
In addition, we target call, set, get, and withincode locations. The implementation methodology
that is adopted consists of the following steps. First, we generate a con�guration �le from the SHL
�le. This con�guration �le contains all the information needed for the weaving using our extended
GCC. Then, we use the name of this con�guration �le as an option in a speci�c command line of
the extended GCC compiler. This compiler, which has weaving capabilities, is an extension to the
GCC compiler version 4.2.0. Consequently, three input �les are needed by the extended compiler to
perform the weaving: a source code, a con�guration �le, and a library containing the subroutines
to be woven. In addition to the above option, it is required to specify the library that contains
the code to be woven. This is done through GCC's options -l and -L. Then, a GIMPLE tree is
built for the code of each behavior in a pattern. Afterwards, each generated tree is injected in the
program tree depending on the insertion point and the location speci�ed in each behavior. Once this
weaving procedure is done, the GCC compiler takes over and continues the classical compilation of
the modi�ed tree to generate the executable of the hardened program.

Security Evaluation and Hardening
of Free and Open Source Software (FOSS)

18 - 12 RTO-MP-IST-091

4.2.2 Results and Experiments

The main contributions of this approach can be summarized as follows:

• Semantics and algorithms for matching and weaving in GIMPLE are formalized. For this
reason, a syntax for a common aspect-oriented language that is abstract and multi-language
support and a syntax for GIMPLE constructs are de�ned.

• Correctness and completeness of GIMPLE weaving are explored from two di�erent views. In
the �rst approach, we address them according to the provided formal matching and weaving
rules and the de�ned algorithms in this paper. On the other hand, we accommodate in the
second approach Kniesel's discipline to prove that GIMPLE weaving is correct and complete
just in some speci�c cases because of behavior interactions and interferences.

• Implementation strategies of the proposed semantics are introduced. To explore the viability
and the relevance of the de�ned approach, case studies are developed to solve the problems
of unsafe creating of chroot jail, unsafe creating of temporary �les, and using deprecated
functions.

5 Conclusion

In this paper, we presented an innovative framework for security evaluation and hardening of free
and open-source software. For security evaluation, �rst a vulnerability detection approach has been
proposed. This approach brings into a synergy the static analysis and the model-checking in order
to leverage the advantages and overcome the shortcomings of both techniques. We demonstrated
the e�ciency and the usability of our approach in detecting real errors in real-software packages.
Moreover, our experiment shows that the use of data-driven mode in our framework enhances the
analysis precision. It is important to mention that we have also developed a second approach to
detect security vulnerabilities that is based on security testing and code instrumentation. This
approach has not been detailed in this paper for the lack of space. Finally, we have presented a
security hardening approach. This approach is based on the Security Hardening Language (SHL)
that we have de�ned in [42, 43]. The approach aspect oriented and performs security hardening in a
systematic way. In this approach, security experts provide security solutions using an abstract and
a general aspect-oriented language called SHL that is expressive, human-readable, multi-language
support, and intermediate between English and programming languages. The use of this language
relieve developers from the burden of security issues and let them focus on the main functionality
of programs. The approach provides an abstraction over the actions that are required to improve
the security of programs and adopt an aspect-oriented approach to build and develop the solutions.

References

[1] T. Bollinger. Use of Free and Open-Source Software (FOSS) in the U.S. Department of Defense.
Technical Report MP 02W0000101 v1.2.04, MITRE, January 2003.

[2] R. Charpentier and R. Carbone. Free and Open Source Software: Overview and Preliminary
Guidelines for the Government of Canada, March 2004. Defence Research and Development
Canada � Valcartier.

[3] A. Fecteau and J. P. Rodrique. Certifying Critical Software: JACC Market Survey. Technical
report, Geo Alliance International Inc, June 2003.

Security Evaluation and Hardening
of Free and Open Source Software (FOSS)

RTO-MP-IST-091 18 - 13

[4] Mourad Debbabi, Zahia Aidoud, and Ali Faour. On the inference od structured recursive e�ects
with subtyping. Journal of Functional and Logic Programming, 1997(5), 1997.

[5] M. E. Fagan. Design and Code Inspections to Reduce Errors in Program Development. IBM

Systems Journal, 15(3), 1976.

[6] L. Grenier. Practical Code Auditing. OpenBSD Journal, December 2002.

[7] D. A. Wheeler. FlawFinder. http://www.dwheeler.com/flawfinder/, 2001.

[8] Coverity. Coverity Prevent for C and C++. http://www.coverity.com/main.html.

[9] PolySpace. Automatic Detection of Run-Time Errors at Compile Time. http://www.

polyspace.com/.

[10] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Static Analysis for Secrecy and Non-
Interference in Networks of Processes. Lecture Notes in Computer Science, 2127:27�41, 2001.

[11] L. Cardelli, A. Gordon, and G. Ghelli. Secrecy and Group Creation. In Ted Hurley, Mícheál Mac
an Airchinnigh, Michel Schellekens, and Anthony Seda, editors, Electronic Notes in Theoretical

Computer Science, volume 40. Elsevier, 2002.

[12] P. Cousot and R. Cousot. Abstract Interpretation: A Uni�ed Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In Proceedings of Conference

Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, pages 238�252, Los Angeles, California, 1977. ACM Press, New York, NY.

[13] P. Herzog. Open-Source Security Testing Methodology Manual. Institute for Security and Open
Methodologies (ISECOM), August 2003.

[14] J. Wack, M. Tracy, and M. Souppaya. Guideline on Network Security Testing. NIST Special
Publication 800-42, National Institute of Standards and Technology (NIST), October 2003.

[15] G. McGraw and G. Morrisett. Attacking Malicious Code: A Report to the Infosec Research
Council. IEEE Software, 5(17), September/October 2000.

[16] G. Necula. Proof-Carrying Code. In 24th POPL, pages 106�119, Paris, France, January 1997.

[17] D. Kozen. E�cient Code Certi�cation. Technical Report 98-1661, Computer Science Depart-
ment, Cornell University, January 1998.

[18] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed Assembly Language.
ACM Transactions on Programming Languages and Systems, 21(3):528�569, May 1999.

[19] G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-Based Typed Assembly Language. In
tic, volume 1473 of Lecture Notes in Computer Science, pages 28�52, Kyoto, Japan, March
1998. springer.

[20] H. Xi and R. Harper. Dependently Typed Assembly Language. Technical Report OGI-CSE-99-
008, Department of Computer Science and Engineering, Oregon Graduate Institute of Science
and Technology, July 1999.

[21] F. Smith, D. Walker, and G. Morrisett. Alias Types. Lecture Notes in Computer Science,
1782:366+, 2000.

Security Evaluation and Hardening
of Free and Open Source Software (FOSS)

18 - 14 RTO-MP-IST-091

[22] D. Aspinall and A. B. Compagnoni. Heap Bounded Assembly Language. Journal of Automated

Reasoning, 31:261�302, 2003.

[23] J. Cheney and G. Morrisett. A Linearly Typed Assembly Language. Technical Report 2003-
1900, Department of Computer Science, Cornell University, 2003.

[24] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability Classes for Enforcement
Mechanisms. Technical report TR2003-1908, Cornell University, Computing and Information
Science, Ithaca, New York, August 2003.

[25] A. Rudys and D. S. Wallach. Enforcing Java Run-Time Properties Using Bytecode Rewriting.
In Proceedings of the International Symposium on Software Security, Tokyo, Japan, November
2002.

[26] G. Kiczales, J. Lamping, A. Menhdhekar, Ch. Maeda, C. Lopes, J-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Mehmet Ak³it and Satoshi Matsuoka, editors, Proceedings
European Conference on Object-Oriented Programming, volume 1241, pages 220�242. Springer-
Verlag, Berlin, Heidelberg, and New York, 1997.

[27] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An Overview
of AspectJ. In Proceedings of the 2001 European Conference on Object-Oriented Programming

(ECOOP'01), 2001.

[28] P. Tarr and H. Ossher. HyperJ User and Installation Manual, 2000.

[29] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to Improve the Modularity
of Path-Speci�c Customization in Operating System Code. In Proceedings of Foundations of

software Engineering, Vienne, Austria, September 2001.

[30] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++: An Aspect-Oriented Extension
to C++. In Proceedings of the 40th International Conference on Technology of Object-Oriented

Languages and Systems, Sydney, Australia, February 2002.

[31] H. Kim. AspectC#: An AOSD implementation for C#. Technical Report TCD -CS2002-55,
Department of Computer Science, Trinity College, Dublin, 2002.

[32] Cigital Labs. An Aspect-Oriented Security Assurance Solution. Technical Report AFRL-IF-
RS-TR-2003-254, Cigital Labs, Dulles, Virginia, USA, Oct 2003.

[33] B. De Win, F. Piessens, W. Joosen, and T. Verhanneman. On the Importance of the Separation-
of-Concerns Principle in Secure Software Engineering. Workshop on the Application of Engi-
neering Principles to System Security Design, Boston, MA, USA, November 6�8, 2002, Applied
Computer Security Associates (ACSA), 2002.

[34] Diego Novillo. Tree SSA: A New Optimization Infrastructure for GCC. In Proceedings the GCC

Developers Summits3, pages 181�193, May 25-27 2003.

[35] Stefan Kiefer, Stefan Schwoon, and Dejvuth Suwimonteerabuth. Moped - a model-checker for
pushdown systems. (Date of Access: January 20, 2009).

[36] CERT Secure Coding Standard. http://www.securecoding.cert.org, April 2009.

[37] Syrine Tlili, XiaoChun Yang, and Mourad Debbabi. Veri�cation of CERT secure coding rules:
Case studies. In International Symposium on Information Security. Springer Verlag, 2009.

Security Evaluation and Hardening
of Free and Open Source Software (FOSS)

RTO-MP-IST-091 18 - 15

[38] Azzam Mourad, Marc-André Laverdière, and Mourad Debbabi. Security hardening of open
source software. In Proceedings of the 2006 International Conference on Privacy, Security and

Trust (PST 2006). McGraw-Hill/ACM, 2006.

[39] Matt Bishop. How attackers break programs, and how to write more secure programs, 2005.
Available at http://nob.cs.ucdavis.edu/~bishop/secprog/sans2002/index.html (accessed
on 2008/11/11).

[40] Michael Howard and David E. LeBlanc. Writing Secure Code. Microsoft, Redmond, WA, USA,
2002.

[41] Robert C. Seacord. Secure Coding in C and C++. SEI Series. Addison-Wesley, 2005.

[42] Azzam Mourad, Marc-André Laverdière, and Mourad Debbabi. A high-level aspect-oriented
based language for software security hardening. In Proceedings of the International Conference

on Security and Cryptography (Secrypt), Barcelona, Spain, 2007.

[43] Azzam Mourad, Marc-André Laverdiere, and Mourad Debbabi. Towards an aspect oriented
approach for the security hardening of code. In Proceedings of the 21st International Conference

on Advanced Information Networking and Applications Workshops, AINAW '07, pages 595�600.
IEEE, 2007.

[44] GIMPLE-GNU Compiler Collection (GCC) Internals. Available at http://developer.

apple.com/DOCUMENTATION/DeveloperTools/gcc-4.0.1/gccint/GIMPLE.html (accessed on
2009/6/1).

[45] GCC-the GNU Compiler Collection. Available at http://gcc.gnu.org/ (accessed on
2009/6/1).

Security Evaluation and Hardening
of Free and Open Source Software (FOSS)

18 - 16 RTO-MP-IST-091

