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Abstract

Recent events, such as the crash of NASA’s Helios aircraft during a test flight,
show that more must be known about the nonlinear control of HALE aircraft. Shearer,
Cesnik and their co-workers have developed a code that is a practical solution to the
coupled nonlinear aeroelasticity and flight dynamics of very flexible aircraft called the
University of Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST). They
are also in the process of developing a model HALE aircraft called X-HALE which will
be used to validate this code experimentally. This research performs flight simulations
with UM/NAST so as to make predictions about X-HALE’s future test flights and
subsequently uncover the strengths and weaknesses of UM/NAST when X-HALE is
finally flown. These simulations include simulations of straight and level flight and
rolling flight. Rolling simulations involve periodic changes in the angle of the ailerons.
Both the 6 meter and the 8 meter models of X-HALE are studied. Two control models

are compared. These include the linear and non-linear models of UM/NAST.
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SIMULATIONS FOR THE TEST FLIGHT OF A HALE AIRCRAFT

I Introduction

High Altitude Long Endurance (HALE) aircraft have great potential as
Intelligence, Surveillance and Reconnaissance (ISR) platforms [35]. Additionally, they
can also be used as network communication nodes for military or civilian purposes, or
perform general atmospheric research [39]. The US Air Force has been developing a
new type of ISR aircraft called “SensorCraft”, which are large HALE aircraft with wings
spans in excess of 60 meters. These highly flexible aircraft ideally have high-aspect—
ratio wings, slender fuselages and high aircraft performance to handle long loiter times
and heavy payloads [22]. SensorCraft generally have high structural performance, high
aerodynamic efficiencies and low structural weight fractions. As a result, they also
generally have low frequency natural structural vibration modes, and geometrically-
nonlinear structural and flight dynamics. The three platform shapes that have been
considered for SensorCraft are wing-body-tail (Figure 1), single-wing (Figure 2) and
joined-wing (Figure 3) configurations [34]. Because very flexible aircraft have very low
frequencies for their natural vibration modes, the structural dynamics and the rigid-body

characteristics of these aircraft are strongly coupled [4].



Figure 1. Wing-Body-Tail Configuration [4]

Figure 2. Single-Wing Configuration [4]

Figure 3. Joined-Wing Configuration [4]



Aurora Flight Sciences, Boeing Co. and Lockheed-Martin Co. have developed
very long duration HALE aircraft concepts for the DARPA’s Vulture Program [40].
However, recent events show that more must be known about the nonlinear control of
HALE aircraft. For example, NASA developed the Helios aircraft (Figure 4) as a

forerunning HALE Remotely Piloted Aircraft (RPA).

Figure 4. Aerovironment’s Helios [4]

During a flight test on 26 June 2003, Helios experienced turbulence on a test
flight at the Navy Pacific Missile Range Facility (PMRF) near Kauai, Hawaii, and
developed high wing dihedral which resulted in an unstable pitching mode. The resulting
high speed caused parts of the aircraft wing and solar cells to rip off. The aircraft then
crashed in to the ocean. One of the primary causes of the accident was that Helios’
engineers did not fully understand the nonlinear flight dynamics of the aircraft [14].

Several codes, such as NATASHA (Nonlinear Aeroelastic Trim and Stability for HALE



aircraft), RCAS (Rotorcraft Comprehensive Analysis System) and ASWING have been
developed for the use of modeling nonlinear aeroelastic and flight dynamics of an aircraft
but none have been completely validated with real flight data from a HALE aircraft [4].
Shearer, Cesnik and their co-workers [4] have developed a Matlab program that is
a practical solution to the coupled nonlinear aeroelasticity and flight dynamics of very
flexible aircraft called the University of Michigan’s Nonlinear Aeroelastic Simulation
Toolbox (UM/NAST). This code serves as a plant representation for HALE aircraft
control design. It focuses on a reduced number of states to represent the complex
nonlinear problem. This code addresses the following issues: nonlinear aeroelastic
modeling, integral wing actuation for generating maneuver loads, flutter boundary
enhancement, gust load alleviation and overall nonlinear vehicle optimization of
unconventional high aspect ratio aircraft. Shearer, Cesnik and their co-workers are also
in the process of developing a scaled test HALE aircraft called X-HALE which will be
used to validate UM/NAST. The goal of this research is to perform flight simulations
with UM/NAST so as to make predictions about X-HALE’s future test flights and
subsequently uncover the strengths and weaknesses of UM/NAST when X-HALE is

finally flown.



1. Theoretical Development

1.1 Previous Research and Motivation

Recent events such as the crash of NASA’s Helios aircraft show that more must
be known about the nonlinear control of HALE aircraft. This is the motivation of this
research. Nonlinear aeroelastic solvers have been under development since the 1990’s;
however, the problem of nonlinear aeroelasticity coupled with nonlinear flight dynamics
is still not completely understood. Several codes, such as UM/NAST, NATASHA,
ASWING and RCAS, have been developed for the use of modeling nonlinear aeroelastic
and flight dynamics of an aircraft but none have been completely validated with real
flight test data from a HALE aircraft; they have been validated in a piecemeal fashion
against beam models such as a simple cantilevered beam model and wind tunnel data.
This is because there currently is no aircraft flight data available for validation [4]. A
history of progress made on the problem of nonlinear aeroelasticity coupled with

nonlinear flight dynamics will be explored.

11.2 The Early Work of VVan Schoor, Von Flotow and Jones

Van Schoor and von Flotow were two of the first to study nonlinear aeroelasticity
for very flexible aircraft in the 1990’s. They demonstrated that when flexible structural
modeling is included the classic rigid-body modes change significantly by using
linearized analysis about nonlinear equilibrium points. Their work confirmed the
importance of taking aircraft structural dynamics, as well as other aeroelastic effects such
as gust response and flutter instability, into account when analyzing the flight dynamics
of very flexible aircraft [36]. Jones and his co-workers [11] have worked on the approach
of designing HALE aircraft. Their work describes some of the challenges with the design
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approach of HALE aircraft and demonstrates that standard aircraft control design
methods are not valid for the high-aspect-ratio and low Reynolds number wings of HALE
aircraft. They concluded that this is because of the lack of data and methods that allow
the prediction of a HALE aircraft’s structure mass, engine performance at high altitudes
and aerodynamic parameters. They explained that the high-aspect-ratio and low
Reynolds number wings of HALE aircraft are associated with nonlinear structural
dynamics and are frequently subject to aeroelastic phenomena such as flutter making

typical design approaches unreliable.

11.3 The Development and Use of ASWING

Drela [6] was the first to begin developing the ASWING code and is currently
working to improve its design. ASWING models an entire flexible aircraft as a structure
of joined nonlinear beams. ASWING uses a compressible vortex type source-lattice with
wind-aligned trailing vorticity. It also uses the full Newton method to solve the nonlinear
equation.

Love et al. [13] used ASWING to model the aeroelastic effects on a swept flying
wing SensorCraft. The aeroelastic analysis focused on body freedom flutter. A Nastran
finite element model of the aircraft was used to provide an initial aeroelastic flutter
analysis. Love explored tradeoffs with wing stiffness, altitude and center of gravity
locations in order to better understand whether passive means can increase flutter speed
to acceptable levels.

Gonzélez [9] modeled the Unmanned Airplane for Ecological Conservation as a
flexible-body using the ASWING code and compared it with results from an analytical-

empirical method and potential flow codes. The goal was to evaluate the aerodynamic



and static stability of the aircraft. The results show that the flexible-body and rigid-body

results show slight differences.

11.4 The Development of UM/NAST

Patil et al. [16] studied the aeroelasticity and flight dynamics of HALE aircraft.
Their work showed that the behavior of HALE aircraft can vary dramatically due to the
flexible nature of the wings. They also showed that modeling a HALE aircraft using a
linear aeroelastic analysis in which the structure is assumed to be rigid can lead to
significant errors. Furthermore, there is a significant difference between rigid body,
linear aeroelastic and nonlinear aeroelastic dynamics when it comes to the short period
and the phugoid modes of very flexible aircraft. The short period and phugoid modes
were acquired by linearizing the nonlinear dynamics about a nonlinear equilibrium.

Cesnik and Brown [3] started the strain-based approach for modeling the
dynamics of highly flexible aircraft. This method is solved in the time domain and was
validated against the Goland wing [2]. Cesnik and Brown [3] modeled a HALE aircraft
using a rigid fuselage and a highly flexible high-aspect-ratio composite wing. They
analyzed the time-marching aeroelastic and aeroservoelastic behavior of HALE aircraft
and cantilevered wings under constrained reference frame motion with imbedded
actuation. They used the finite state two-dimensional strip theory developed by Peters et
al. [19] for unsteady aerodynamics.

By adding a flexible fuselage and developing a split beam formulation, Cesnik
and Su [5] continued the work of Cesnik and Brown. They emphasized roll performance
and nonlinear-flutter during their study. Patil and Hodges [17], Su and Cesnik [31], and

Patil and Taylor [18] all used 1-D beam modeling for slender structures to study the



nonlinear structural flight dynamics of a flying wing type aircraft. They also used the
finite state two-dimensional strip theory developed by Peters et al. [19] for unsteady
aerodynamics just as Cesnik and Brown did [3]. Su and Cesnik also studied how the
wrinkling of the skin of a flying wing type aircraft affected its torsional stiffness. Wang
et al. [37] used the unsteady vortex lattice method and the geometrically exact beam
modeling method to study a flying wing type aircraft.

Palacios and Cesnik [15] developed nonlinear aeroelastic tools. Their high-
fidelity code used 3-D Euler equations to model the air flow. They used a split 1-D and
2-D model to model the 3-D structural deformation. The 1-D model follows traditional
1-D beam bending theory where the cross section of the beam remains undeformed. The
2-D model allows for changes in the cross section of the beam as the beam undergoes
various internal and external loads. Palacios and Cesnik’s high-fidelity code can only
produce results for steady-state solutions because of the large computational size and the
coupled structure of the CFD solution; the code is not suitable to run full aircraft
simulations. Garcia [8] added to Palacios and Cesnik’s code and created a nonlinear
finite element model which includes the full Euler/Navier-Stokes solution. Garcia’s
results are significant because he showed that there are significant differences between
the results of the linear and the nonlinear structural modeling of a swept cantilevered
wing.

Shearer and Cesnik [22] developed a method for the characterization of the
response of a very flexible aircraft that is used in the UM/NAST code. The geometrically
nonlinear structural response of the aircraft was modeled using six-degree of freedom

equations of motion. They used a low-order strain-based nonlinear structural analysis



method and an unsteady finite state potential-flow aerodynamics analysis method to
formulate their aerodynamic model.  Shearer and Cesnik used their modified
Generalized-o Method for integrating the governing equations of a very flexible aircraft.
Su and Cesnik [32] used the UM/NAST code to model the nonlinear aeroelasticity of a
flapping wing Micro Air Vehicle (MAV), however, the code has not been validated by
any experimental means at this time.

Shearer, Cesnik and their co-workers have begun the development of a very
flexible RPV aircraft called X-HALE for this purpose. This aircraft has two
configurations: the 6 meter and 8 meter span configurations. Cesnik et al. [4] have
performed gust and roll simulations for the 8 meter model of X-HALE. Their results
suggest that when a 1-cosine gust is symmetrically applied to the 8 meter model X-HALE
with a maximum gust speed of 4 m/s, while the nominal flight speed is 14 m/s at 30 m
altitude, the aircraft is stable. Also, when a single period of a left-wing-down sinusoidal
aileron input is applied the aircraft is stable for aileron inputs with a 2 degree amplitude,

but not for inputs with a 5 degree amplitude or greater.

1.5 RCAS

Saberi et al. [21] of the Aeroflightdynamics Directorate of the U.S. Army developed
an integrated computational fluid and non-linear structural dynamics software system
called RCAS for comprehensive rotorcraft analysis and simulation. The software uses
computational fluid dynamics, rotorcraft comprehensive analysis and computational
structural dynamics on parallel high performance computer systems. According to
Strawn et al. [30], RCAS was validated with data taken from full-scale helicopters. The

results of the validation showed that the computational fluid approach provides an



accurate model for the non-linear aerodynamics and dynamic forces experienced by a

rotorcraft. No validation has been done using fixed-wing aircraft [4].

1.6 NATASHA

NATASHA is a software system that analyzes the nonlinear aerodynamics and
nonlinear structural dynamics of HALE aircraft. NATASHA is based on geometrically
exact, fully intrinsic beam equations. Sotoudeh and Hodges [26] updated NATASHA so
that it is capable of analyzing joined-wing aircraft configurations. This was done using
fully intrinsic equations and an incremental form of kinematical equations. This updated
version of the NATASHA code was validated using a joined-wing structure. The
program can also now provide trim and stability analyses. Sotoudeh and Hodges [27]
also studied the effects of joint position and sweep angle of the aft wing of a joined-wing
aircraft. Sotoudeh et al. [28] validated NATASHA with a range of results from well
known solutions of beam stability and vibration problems, experimental data from scaled
wind tunnel tests and results from RCAS. NATASHA uses 2-D aerodynamics and the
finite state induced flow model of Peters and Johnson [19] to analyze the nonlinear
aeroelastic characteristics of flying wings. Sotoudeh and Hodges have stated that they
hope that NATASHA's results can be used as benchmarks for their own codes since the

NATASHA model is limited in its capabilities.

1.7 Other Recent Work on Nonlinear Aeroelastic Solvers

Blair and Canfield [1] created a method for estimating the weight of a joined-wing
HALE aircraft. Their method is based on the nonlinear static aeroelastic formulations
and structural constraints of a given joined-wing HALE aircraft. It also incorporates the
structures, aerodynamics and aeroelasticity of the aircraft. The static aerodynamics are

10



modeled using vortex lattice formulations. Recently, Richards, et al. [20] began
designing a scaled joined-wing SensorCraft model for the purpose of validating an
existing analytical nonlinear aeroelastic model which is based on the Matlab Aerospace
Blockset and the Unmanned Dynamics Aerosim v1.2 Blockset. The simulator uses a set
of first order terms and multi-dimensional lookup tables, which allow for the input of
different angles of attack and sideslip angles, to model nonlinear aerodynamics. The
simulator also uses vortex lattice software called AVL and a parametric model based on
the software Phoenix Integration’s Model Center Software (MC). The data is then
outputted into a Matlab m-file. The model can very quickly produce a flight simulation
using the flight simulator FlightGear for visualization. An optional aircraft autopilot was
also integrated into the model using the Micropilot 2128 THWIL system.

Weishaar and Lee [38] studied how the weight and center of gravity of a high-
aspect-ratio joined-wing HALE aircraft affect body-freedom flutter. Additionally, Tang
et al. [33] used the finite state aerodynamic model to experimentally validate linear
structural modeling when nonlinear trailing-edge flap deflections occur. Their results
showed a strong correlation between their model and their experimental results; therefore,
their results validated their model well. Tang and Dowell [34] experimentally validated
an ONERA unsteady aerodynamic model using nonlinear structural modeling. Their
results also validated their model well for cantilevered wings similar to HALE wings
when the wings are exposed to limit-cycle oscillations. Dowell and Tang [7] also created
a review of cantilevered structures with nonlinear aeroelasticity in which they discuss

HALE aircraft.
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1.8 Present Motivation and Problem

While all of the previous research discussed contributes to the problem of nonlinear
aeroelasticity coupled with nonlinear flight dynamics, the problem is still not completely
understood. Several codes have been developed for the use of modeling nonlinear
aeroelastic and flight dynamics of an aircraft but none have been completely validated
with real flight data from a fixed-wing aircraft [4]. This research will continue the work
of Shearer, Cesnik and their co-workers and perform flight simulations with UM/NAST
in order to make predictions about X-HALE’s future test flights. This is all done with the
hope of eventually experimentally validating the UM/NAST code with the X-HALE

aircraft.
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II. Model Development

This research involved running various simulations with UM/NAST in order to
predict the behavior of the X-HALE test vehicle. Initial simulations have been run by
Shearer and are described in [23]. These initial simulations predicted that X-HALE will
show instabilities in flight under certain conditions; further simulations need to be run in
order to explore what other conditions will cause unstable flight. Also, more simulations
are necessary in order to potentially validate the UM/NAST code. These simulations will
include straight and level flight, and rolling flight performed by simulating aileron

deflections.

1.1 The X-HALE Aircraft

Shearer, Cesnik and their co-workers have are developing a very flexible RPV
aircraft called X-HALE, shown in Figure 5, at the University of Michigan in order to
experimentally validate the UM/NAST code. X-HALE can be converted from a 6 meter
test vehicle to an 8 meter test vehicle. This is done by removing two wing segments from
the aircraft. During flight, X-HALE’s middle elevator can rotate 90 degrees to become a
vertical stabilizer. This will be done in order to observe the vertical stabilizer’s effects on

the aircraft’s stability [25].
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Figure 5. X-HALE: 6 Meter Model (Top) and 8 Meter Model (Bottom) [25]

This aircraft will collect data of its geometrically nonlinear aeroelastic response
when it is test flown in the hope of validating the UM/NAST code. The aircraft has rigid
and elastic body instabilities with large deflections during gusts. The airframe will be

designed so that its elastic, inertial and geometric properties correlate well with its
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UM/NAST model [4]. The aircraft can be configured either as a 6 m flight test vehicle
(FTV) or an 8 m aeroelastic test vehicle (ATV) [25].

Both the 6 meter and the 8 meter models include five fuselages, which are each
mounted to a joiner block that connects two wing modules. The wing modules are all 1
meter long. Each fuselage is composed of a fairing pod, a tail boom, and an elevon.
Remote control aircraft propellers attach to the motors for propulsion. Each fairing pod
has a carbon spine which holds an electric motor with two batteries and other components
such as a GPS/INS, a GPS antenna, a transmitter, electronic speed controllers (ESC’s), a
glitch buster, a servo switch controller, an Ethernet hub and landing gear. The first
battery powers the motor and the second powers the electronics contained in the fuselage.
These electronics include a single board computer (SBC), an analog to digital converter
module, and several scientific sensors such as strain gauges, accelerometers, a pitot probe
and a tail potentiometer. These sensors vary in number and type depending on the wing
module and the aircraft configuration [12].

The majority of the X-HALE flight components have been manufactured by the
X-HALE program. Currently, the X-HALE program is integrating these components at
the University of Michigan and is developing software for the networking of the onboard

computers. Table 1 summarizes X-HALE’s characteristics [12].
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Table 1. X-HALE’s Characteristics [12]

Wing Span 6 mor 8 m
Chord 0.2m
Planform Area 12 m’
Aspect Ratio 30 or 40
Length 0.96 m
Propeller Diameter 12 in
Gross Takeoff Weight 11 kgor 12 kg
Power/Weight 30 W/kg
Airspeed 12-18 m/s
Max Range 3 km
Endurance 45 min

I111.2 The Coordinate Systems of UM/NAST

The UM/NAST controller was developed based on the known physics of the
situation that is being modeled; that is, how a very flexible aircraft flies. The controller
uses closed-loop reference tracking of a body fixed reference frame B (Figure 6) at a
point O while also including the properties of nonlinear aeroelasticity. This point O is
typically is not the aircraft’s center of mass but may be at some points in time during a
simulation. The point O is chosen to be at a convenient location on the aircraft so that
both linear and angular velocities can be tracked. Usually, the x-axis is chosen to be out
the right wing and the y-axis is tangent to the undeformed fuselage’s longitudinal axis
and extends in the direction of the front of the aircraft. As a result, the x-y plane of the B
reference frame is parallel to the x-y plane of the inertial frame G when the aircraft is
undeformed. The z-axis extends out the top of the aircraft and is the cross product of the
x-axis and y-axis. The flexible members of the aircraft are modeled as beams that
propagate from the origin O or that are rigidly offset from the point O. In order to

determine the orientation of the B reference frame, one of three methods is used: an Euler
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angle transformation using three nonorthogonal Euler angles, a transformation using a
four-parameter quaternion, or a transformation using a nine-parameter set of the unit

vectors that define the x-, y- and z-axes of the B reference frame [23].

Inertial Frame (G)

Figure 6. Body Fixed Reference Frame B [23]

Here pp is the inertial position of the B reference frame. Also, vz and wp are the
linear and angular velocity variables of the B reference frame and can be represented by

the vector shown in Equation (1.

s={o} (1)

Figure 7 depicts the B reference frame if the aircraft is assumed to be a rigid-body. For

this case, the elastic members are modeled as beams that propagate from the B reference
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frame origin or with rigid offsets from the origin. The position vector p,_ extends from

the body-fixed B reference frame to the center of mass of a rigid fuselage piece. Note
that the origin O of the B reference frame is not the center of mass of the fuselage piece

[23].

Center of Mass
Rigid Fuselage
I)."Cm

B, Body Fixed
Reference Frame

Rigid Fuselage

G, Inertial Reference Frame

Figure 7. The Rigid-body Reference Frame [23]

During a simulation, the B reference frame moves forward with the aircraft,
allowing the movement of the aircraft to be modeled. This is done by deriving and
integrating a set of first-order differential equations. These equations are of the form of
Equation (2) below.

X = f(x,u) 2
These nonlinear differential equations are time-invariant and nonlinear. When the

aircraft is assumed to be a rigid-body, the first-order equations take the form of Equation

).
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Vg = ﬁ:B (vg, wg, $, DB, G0, M, Fext)
Wg = fup (wg, Ig, $, Pp) Mext)
. 3)
(g = f(B (wp, )
Pp = pr (¢,vp)
The forces F,,; and the moments M,,; are state-dependent externally applied.
Additionally, I is the inertia matrix of the aircraft about the origin O of the B reference
frame, ¢ is the quaternion vector containing the four quaternion elements used to find the
orientation of the B reference frame with respect to the inertial reference frame G and g,
represents the gravitational field effects on the aircraft [23].

Figure 8 shows the B reference frame and the coordinates of the flexible aircraft

wing.

Deformed Wing

h': isr)
w g (51)
Wy (5.1)
-

aist)

. Undeformed Wing
w-is0)

L = - w x 5.0)
wy (0 )

a(s.0)

/ Pa (5.1)

Figure 8. The Body Reference Frame B and the Vehicle Coordinates [23]
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Here w represents the local elastic reference frame, p,- is the position of the B reference
frame origin to the local w reference frame, S represents the undeformed beam spatial
dimension, a represents an arbitrary point in the vehicle with respect to the origin of the
inertial frame G and t represents time [23].
The position and the orientation vector h at a point in the flexible body is given in
Equation (4 below.
h=(pr wl wi i @
The vector function h is a function of only €, the column vector of the elastic strain state
and b, displacements and rotations as time integral of 5, the B reference frame linear and
angular velocities. Equation (5 gives expressions that relate h to € and b.
6h = Jp.6€ + Jnp6b
(5)
dh = Jpc0€ + Jppdb
In these equations, ], and Jy,, which are given in Equation (6, are Jacobian matrices

which link the flexible position and orientation vectors and the independent coordinates

of € and .
dh
Jhe = &
(6)
oh
Jup = b

Equation (7 gives the value of h, which further explains the connection between the
vectors € and f3.

h = Jhe€ + Japh = Jne€ + JnpPB (7)

The relative acceleration of h due to the vectors € and its first and second

derivatives with respect to time is given in Equation (8 [23].
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T

1
Do =D + xw, + ywy + zw, = ;C; [jheé +]heg] (8)
Z

111.3 A Study of the Governing Differential Equations of Motion
By assuming that an aircraft is a rigid body when creating a controller, three things are
assumed:
1. The inertia properties of the aircraft are either constant or time-varying.
2. The inertial force caused by a rotating coordinate frame in conjunction with the
relative velocity of the aircraft’s flexible members can be neglected.
3. Any external forces, such as F,,; and M,,;, or moments are founded on a constant
aircraft geometry.
These assumptions are invalid for vey flexible aircraft because of the changing geometry
of the aircraft. Instead, for a flexible aircraft a set of differential equations of motion that
allow for changing aircraft geometry are used. These equations are shown in Equation
(9) and Equation (10).

Mg+ Cq+Kq=R(q,q4,2) )

€ € €
fo) afi)a-fil
®B Wp d)B

In these equations, M represents the mass properties of the aircraft and C represents the
structural damping and the nonlinear terms created by a rotating coordinate frame and its
effects on relative position and velocity, such as vy and wg. Additionally, K represents
the stiffness matrix of the aircraft, and q represents a set of coordinates which contain
both strain €, which is linked with the inertial position pg, and an orientation vector ©p.
The function R(q, g, A) represents forces, such as aerodynamic forces, that are a function
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of finite state flow velocities A. This function is further described in [19]. Because the
variables M, C and R are dependent on each other, the rigid-body and flexible structural
dynamics are also dependent on each other. The program UM/NAST uses a constant
strain-based approach to predict the movement of the aircraft. This approach, which is
further described in [2, 3], allows for nonlinear geometric changes and changes to the

inertia matrix Iz, and the matrices M, C and R [23].

111.3.1 The Equations of Motion

The equations of motion are further derived from Equation (9) and Equation (10)
using unsteady aeroelastic modeling. This is done by applying the principle of virtual
work to the B reference frame while assuming the aircraft wings are flexible beams and
the body of the aircraft is composed of rigid bodies. Equation (11 below is the total
virtual work expression based on both the B reference frame, and the flexible beams and

the rigid bodies of the aircraft.
M M € C C €
SW = [5¢T TT<_ FF FB][_]_[FF FB][]
18T 00"~ [Mye M) 1) ™ |Cae Canl L8

“lizr el (8 +#)

(11)

In this equation, R is the vector described below in Equation (12) where Ry is the force
vector component pertaining to the flexible body degree of freedom and Ry is the force

vector component pertaining to the fixed-body degree of freedom.
_ (Rr
(2]

Equation (13) provides the mass and damping matrices that apply to Equation (11 [23].
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Mg = ]EeMG]he
T
Mg = JheMalhb
_ T
Mgr = JhpMa)ne
Mgg = JnpMcJnb + Mg
Cer = JheMahe + Cg
(13)
Ceg = JneMcHnb + 2JneMcHpp
Cpr = ]ngGjhe
Cee = JnbMcHnb + 2JapMcHypep + Cp
Krr = Kg
Kpp = Kpr = Kpg = 0
Here Mg, C; and K are the generalized flexible-element mass, damping and
stiffness matrices about the G reference frame, while Mg and Cg are the generalized
rigid-element mass and damping matrices associated with the B reference frame rigid-
element portion. Also, Hyp, and Hy4 incorporate the effects of a rotating coordinate
frame. Mg, C; and K are the assembled flexible-element generalized mass, damping

and stiffness matrices. They are of the form of Equation (14.

M(l) 0 0
0o My - o0
Mg = 0 0 0
(14)

Y

0 C
Co = @ 0
0 o0 0 J
0 0 Ceey
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Mg and Cy are the mass and damping matrices associated with the B reference frame

element portion. They are given in Equation (15).

T
mprcm IB
(15)
C. - [ mag m&Bﬁrcml
B= | ~ ~ ~
mpry...®p wglg
Here m represents mass per unit span and p, represents the position vector from the B
reference frame origin to the center of mass. Additionally, (7) is a skew-symmetric
matrix operator on the given matrix and (*) is the transpose of the given matrix’s skew-
symmetric matrix [23].
Equation (16 below can be derived from Equation (11, the total virtual work
expression and the principle of virtual work.
Mpp  Mpp|[€ Crr Crp][€ Krr  Krp|[€] _ (RrF
S| + + = (16)
Mpr  Mppl|B Cgr CpallB Kpr Kppllb Rp
This equation comprises the set of elastic equations of motion and could be written in the
form of Equation (9) where the mass matrix is a function of strain, M = fy,(€), the
damping matrix is a function of strain, strain rate and the B reference frame velocity,
C = f-(€,€ B), the stiffness matrix K is constant and R contains all other nonlinearities.

Equation (17 provides the expanded form of Equation (16 and the complete set of

governing differential equations.
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Mppé = —Mppf — Crp€ — Cppff — Kppe + Ry
Mgpf = —Mgpé — Cggff — Cpp€ + Ry

1_
{=-50¢ (17)

ps = [CB¢ 0]B
/’i.:qu+F2q+F3/1
Here ( is a vector of four quaternion parameters used to determine the orientation of the

B reference frame, (_1( is the finite element discretization of the wp matrix, pp is the time

rate of change of the inertial position vector of the B reference frame, CB¢ is a
transformation matrix between the B reference frame and the inertial G reference frame,
and A is a set of unsteady aerodynamic inflow velocities. F;, F, and F; are differential

equation matrices associated with A [23].

111.3.2 A Retrieval of the Rigid-Body Equations of Motion

It is valuable to identify that the standard rigid-body equations of motion for an
aircraft can be retrieved from the total virtual work expression, Equation (11, by holding

the elastic degrees of freedom constant. This results in the expression for R in Equation
(18).

F M
_ (Re) _ [Krr Bor) 5 |Baste| pase , |Baste| y ase
R={ip} = Ly o + 51 + T R VI b

(18)
F M
N IB;:&F] FPt 4 IB;;;Fl MPt
BPtB BPtB

In this equation, €;,;siq; 1S the initial strain vector and g? is the body-fixed reference

frame B resolved gravity vector. Also, F#5¢, M4St, FPt and MP! are the body-resolved
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distributed and point forces and moments. F%"° and M%°"° are functions of control
surface inputs U and are included in F%¢ and M%t. Any propulsion related forces such
as propeller forces or motor forces are modeled as if they were evenly distributed along
the vehicle and are included in FP® and MPt. The values for the influence matrices are
explained further in [2] and are given in Equation (19).

Bgstp = ]geBF

Basey = JppBr

Bélv.ls‘tp =] geBM

B(l;{S‘tB = ]gﬁBM

(19)
Bjr = Jpe
By, = Jpg
Bpt = Jge
By, = Jog

Here Br and B, are constant matrices characterized by an elastic element’s undeformed
mass [23]. If €;,iri; and MP? are assumed to be zero, and the finite strain formulation
given in [19] for any aerodynamic forces and moments is assumed to be linear in the
discrete trailing edge surface deflections, Equation (18) can be simplified to Equation

(20) [3].

SFaero
R = [Bg]gB + BgstFaeTO + [Bglst]Maero + [Bglst]a—uflap
Ytap (20)

+ [Bg]uthrust
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I11.4 Numerical Integration and the Trim Solution
For both the zero thrust and the thrust required for 1-g level flight cases, trimming
is performed in UM/NAST and is based upon techniques described in [23]. A cost
function given in Equation (21 is used.
Jerim = fT f 1)
Equation (22 gives the zero thrust or gliding cases value for f, the vector used to trim the
aircraft.
f = {pitching moment about the origin of the B frame lift weight} (22)
Equation (23 gives the thrust required for 1-g level flight case value for f. Here the

longitudinal B reference frame linear and angular accelerations are used for f.

f =10z, (23)

UM/NAST minimizes the cost function J over the solution space using the elevator
deflection angle 6., the body angle of attack a and the thrust §;. The local minimum of
the search variable is discovered using a basic numerical Newton-Raphson method,

which is given in Equation (24.

Sft
AS, = —— 24
=5 fi (24)
Here Sy, is given in Equation (25.
Oe
Sk = {0(} (25)
8¢),

The search variable Sj, is recomputed using Equation (26.

Sis1 = S +AS (26)
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Furthermore, f;,; and

af1?!

e
are recomputed at each iteration using Sy,1. This minimization process continues until a
desired tolerance is met. Divergence of the solution is avoided by checking Sy, at each

iteration step and is limited to prescribed bounds. Equation (27 provides the Jacobian

matrix which is computed numerically through finite differences.
5f
Jtrim = g (27)

Figure 9 outlines this entire trimming solution procedure [23].

28



Initial S

Estimate

Y

Compute
o

i

)
Jacobian, Jf

Perturb S

Static Elastic
Solution

Rigid-Body
Accelerations

[
Update S

Compute
r

Converged ?

Figure 9. Trim Solution Flow Chart [23]

I11.5 Solution of the Governing Equations of Motion

A high-frequency dissipative time-stepping approach is used to solve the
governing nonlinear differential equations given in Equation (17. This involves a
modified Newark method, which is further described in [23]. The modified Newark

method was selected because it can integrate large systems of equations, including ones
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with repeated eigenvalues, its ease of use with the equations of motion used, and means
by which its first-order and second-order methods were derived [10].

UM/NAST can produce three different types of solutions: a reduced order
solution, a linear solution and a nonlinear solution. For a reduced order solution, all
elastic degrees of freedom are removed once the vehicle flexes into a steady-state
deflection. For this type of simulation the inertia matrices is fixed but the Jacobian
matrices change at each subiteration. For a linear solution, the elastic degrees of freedom
remain intact and the inertia matrices change at each subiteration, but the Jacobian
matrices obtained from the steady-state solution that UM/NAST computes at the
beginning of each simulation are used; therefore, they are fixed. For a nonlinear solution,
the elastic degrees of freedom remain intact, the inertia matrices change at each
subiteration and the Jacobian matrices are updated at each subiteration, resulting in a full
time-marching simulation based on Equation (17.

A few issues with UMNAST should be noted: UM/NAST begins a simulation by
first going through a routine that determines the steady-state solution. It then continues
into a time-marching simulation. The code is also sensitive to the time step selected, how
long the simulation is run for and how big the tolerance for the R, or the residual, value
is. Additionally, the predictor-corrector method used to find the S values can create a
problem where certain matrices have values that are very large or very small, making it
difficult to invert these matrices. The simulation may fail before it is complete because
the values selected are inappropriate. In general, smaller time steps work better, but often
a smaller time step means the simulation may take longer to finish. A time step that is

too large can also cause the simulation to take a longer amount of time to finish. Also, a
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larger residual value tolerance helps the simulation to finish sooner, although a residual
value that is too large may cause the simulation to diverge from the actual solution. The
longer the simulation time, the more difficult it is for the simulation to complete without
issues. If these values are selected properly, a complete simulation can be accomplished.
The ease at which a simulation will complete depends on the simulation type selected; the
reduced-order type simulation is the least sensitive to selected values and is the most
likely to complete, while the linear type is less likely to complete and the nonlinear type

is the least likely to complete because it is the least sensitive to the selected values.
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V. Results

IV.1 The Assumptions Made

This research performed a set of simulations using the UM/NAST code to predict
the flight behavior of the 6 meter and 8 meter models of X-HALE. The UM/NAST code
was provided by Shearer, Cesnik and their co-workers. In order to model the X-HALE
aircraft using UM/NAST, several assumptions were made. These assumptions involve
how X-HALE is modeled in the UM/NAST code. For example, the NACA 4415 airfoil
used for the main wing segments in these simulations is not identical to the EMX-07
airfoil used for the physical X-HALE aircraft, but it is similar enough to the EMX-07
airfoil for the purposes of this research because it has similar lifting and moment
characteristics. The NACA 0012 airfoil used to model the tail elevons is the actual airfoil
used on the physical X-HALE. The fairing pods are modeled with a NACA 0018 airfoil.
The fairings are also modeled with applied follower concentrated forces to simulate
motor thrust.

Each motor is simulated with a constant force. The tails are modeled as all-
movable horizontal surfaces. All booms, tails and fairings are modeled as rigid members
with inertias placed at points best suitable to model the two physical X-HALE aircrafts.
Furthermore, the outer 1 meter long members are modeled with a dihedral of 10 degrees
just like the physical X-HALE aircrafts. The ailerons are modeled on the outer dihedral
members and occupy 25% of the chord also just like the physical X-HALE aircrafts. The
inertias of the spine and the pod covers are neglected and instead the concentrated inertias
are placed inside the pods. This is done primarily to model the electronic equipment

inside the pods. The masses of aircraft models are programmed to be the estimated
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completed 6 meter and 8 meter X-HALE weights. Figure 10 illustrates the UM/NAST
model of the 8 meter X-HALE [4].

The actual X-HALE aircraft has a center tail and elevon, as seen in Figure 5. The
UM/NAST model does not include a center tail and elevon, as seen in Figure 10.
However, because the tail is in the center and it is a symmetric airfoil, its absence is
unlikely to make a difference in the results of the simulations. Also, the actual X-HALE
can flip the center tail 90 degrees so that it becomes a vertical stabilizer. However, this is

not done in any of the simulations performed for this research.

Figure 10. UM/NAST Model of the 8 Meter X-HALE Aircraft [4]

The X-HALE aircraft is trimmed for equal lift and weight, and also for a zero
pitching moment about its center of gravity at level flight at 30 meters altitude. The
normal flight velocity for the aircraft ranges from 12 to 20 m/s. Figure 11 shows the
deformed shape at the trimmed condition for the 8 meter X-HALE model. The 8 meter
X-HALE trims at 14 m/s and its tip deflection is about 37% its half span [4]. The X-
HALE aircraft’s starting speed is its trim speed, the flights are assumed to be gust free

and the starting altitude is assumed to be 30 meters above sea level.
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Figure 11. Deformed Shape at the Trim Condition for the 8 Meter X-HALE [4]

IV.2 Running the Simulations and Initial Complications

This research was performed by altering pre-existing input files for the
UM/NAST code in order to meet the specified simulation parameters. Initial
complications arose when completing the simulations because the code is sensitive to the
simulation type selected (the reduced-order, linear or nonlinear cases), the time step
selected, how long the simulation flight is and how big the tolerance for the R (the
residual) value is. Many simulations failed before they completed because the values
selected were inappropriate and calculations became very difficult for the computer to
perform.

This research ran two types of simulations: the linear and nonlinear solution
types. Initially the simulations were set for the 6 meter aircraft and a 15 second flight
time involving constant thrust flight with no other inputs such as an aileron or control
surface input. = However, problems occurred completing the simulation after
approximately the 9.6 second point, no matter what time step or maximum residual value

was selected. After repeatedly failing simulations, a linear type simulation with a time
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step of 0.0025 seconds and a maximum residual value of 0.1 completed. The simulation
took approximately a week to complete using 64-bit Matlab on a dual core 2.6 GHz
personal computer. The results of this simulation revealed why the simulations struggled
to complete after approximately 9.6 seconds: the flight of the 6 meter X-HALE model
had become highly unstable at that point in time as seen in Figure 12. No nonlinear type
simulation attempted for the 6 meter X-HALE would run to completion after
approximately the 9.7 second mark because all of these simulations resulted in unstable

flight. This will be further discussed in Section IV .4.1.

Longitudinal Velocity vs. Time, 0 deg Aileron Input, 6 m Linear Case
50 r r

Velocity in Y (Longitudinal) Direction (m/s)

-10 1 1
0 5 10 15
Time Elapsed (sec)

Figure 12. Case 1 Longitudinal Velocity v), versus Time
The simulation flight time was shortened to 10 seconds in order to ensure the 6
meter X-HALE simulations completed. Several more 6 meter X-HALE simulations were
run until a nonlinear simulation involving constant thrust flight with no other inputs, such
as an aileron or control surface input, completed a 10 second flight with a time step of
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0.0001 seconds and a maximum residual value of 10. All other 6 meter X-HALE
simulations and several 8 meter X-HALE simulations were run using this time step and
maximum residual value from this point on so that all the simulations run from this point
onward would have this time step and maximum residual value in common. Next one
linear type simulation involving constant thrust flight with no other inputs was run for the
6 meter X-HALE. After that three linear type simulations involving sinusoidal aileron
inputs on both wings were run for the 6 meter X-HALE.

Next the 8 meter X-HALE simulations were run. First, four 8 meter X-HALE
model linear type simulations with a 10 second flight time and sinusoidal aileron inputs
on both wings were run. Each 10 second flight time simulation took anywhere from three
to five days to complete using 64-bit Matlab on a dual core 2.6 GHz personal computer.
These simulations had the same time step (0.0001 seconds) and maximum residual value
(10) as the 6 meter X-HALE simulations. They ran much smoother than the 6 meter X-
HALE simulations because the aircraft did not become extremely unstable by the end of
the 10 second runs. However, these 10 second simulations did not provide enough data
in order to find what sinusoidal aileron inputs on both wings would make the aircraft
unstable, so thirteen more simulations were run for the 8 meter X-HALE using a 0.001
second time step, a maximum residual value of 10 and a time duration of 15 seconds.
Therefore, the 10 second 8 meter X-HALE simulations are not discussed in this research
because the 15 second simulations provide all of the data needed. The time step was then
increased by an order of magnitude for the latter simulations in order to get the

simulations to run faster. Two of the 15 second simulations failed because the

36



amplitudes of the sinusoidal aileron inputs applied to both wings were too large (20 and
25degrees) and caused the aircraft to become unstable.

In general, smaller time steps worked better for the simulations, but often a
smaller time step meant the simulation took longer to finish. Also, a larger maximum
residual value helped the simulation to finish sooner. However, a maximum residual
value that is too large could cause a simulation to diverge from the actual solution. The
ease at which a simulation would complete also depended on the simulation type
selected; the nonlinear type simulation was more likely to fail than the linear type
simulation was. This research first aimed for a time step of 0.05 seconds and a maximum
residual value of 0.1 for the 6 meter X-HALE simulations, but these values were changed
since the simulations would fail before finishing a 10 second flight with these values. A
time step of 0.0001 and a maximum residual value of 10 were used in order to ensure a
nonlinear type 6 meter simulation finished the 10 second flight. However, a time step
this small caused the simulations to take approximately 3 to 5 days to complete a 6 meter
X-HALE simulation, which was much longer than initially anticipated.

In comparison, the 8 meter X-HALE simulations run with a 15 second time
duration and a time step of 0.001 seconds each took approximately 7 to 10 hours to
complete. These were a mix of linear and nonlinear type simulations. The time step and
time duration were changed for these additional 8 meter model X-HALE simulations to
allow the simulations to provide more data since the flight was longer but also so that the
simulation could run faster. A 10 second 8 meter X-HALE simulation with a time step of

0.0001 seconds took approximately ten times longer than a 10 second simulation with a
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time step 0.001 since this large time step still allowed the simulation to run quite

smoothly.

IV.3 The Chosen Simulations

The 6 meter model of the aircraft was based off the pre-existing input file
6_meter baseline case0.nin which uses a NACA 4415 airfoil. The 8 meter model of the
aircraft was based off the pre-existing input file 8 meter ailerons case0.nin, which also
uses a NACA 4415 airfoil. Examples of these input files can be found in Appendix B
and Appendix C. Of all the simulations run, seventeen were chosen to be discussed in
detail in this research. The first six simulations, Cases 1 through 6, were simulations for
the 6 meter model of X-HALE. The first simulation, Case 1, used a 0.0025 second time
step, a maximum residual value of 0.1 and a 15 second time duration. It had no inputs,
such as an aileron or control surface input, and had a constant thrust. This was a linear
type simulation. The rest of the 6 meter X-HALE simulations used a 0.0001 time step, a
maximum residual value of 10 and a 10 second time duration. Except for one nonlinear
type simulation, they were all linear type simulations which either used no inputs or they
had sinusoidal aileron inputs on both wings. The 8 meter X-HALE simulations had a
time duration of 15 seconds, a time step of 0.001 seconds and a maximum residual value
of 10. These all had sinusoidal aileron inputs on both wings. These were part linear type
and part nonlinear type simulations.

Each of the simulations that used a sinusoidal aileron input on both wings were
given an aileron input with a period of 5 seconds on both the left and right ailerons. The
input started at 0.1 seconds and finished after 10 seconds. The inputs had amplitudes of

2, 5,10, 15, 20 or 25 degrees. The aileron input completes approximately two periods
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before terminating. An example of a sinusoidal aileron input can be seen in Figure 13. A

summary of the simulations discussed in this research is provided in Table 2.

Aileron Input vs. Time, 10 deg Aileron Input, 6 m Linear Case
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Aileron Input (deg)
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Time Elapsed (sec)

Figure 13. Case 6 Aileron Input versus Time
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Table 2. A Summary of Discussed Simulations

Case | Simulation | Input | Duration | Time Max Sinusoidal Aileron Input
Type (sec) Step | Residual Data
(sec) Value | Period | Start/ | Amplitude
(sec) | End (deg)
Time
(sec)
1 6 Meter None 15 0.0025 0.1 N/A N/A N/A
Linear
2 6 Meter None 10 0.0001 10 N/A N/A N/A
Linear
3 6 Meter None 10 0.0001 10 N/A N/A N/A
Nonlinear
4 6 Meter | Aileron 10 0.0001 10 5 0.1/10 2
Linear
5 6 Meter | Aileron 10 0.0001 10 5 0.1/10 5
Linear
6 6 Meter | Aileron 10 0.0001 10 5 0.1/10 10
Linear
7 8 Meter None 15 0.001 10 N/A N/A N/A
Linear
8 8 Meter | Aileron 15 0.001 10 5 0.1/10 2
Linear
9 8 Meter | Aileron 15 0.001 10 5 0.1/10 2
Nonlinear
10 8 Meter | Aileron 15 0.001 10 5 0.1/10 5
Linear
11 8 Meter | Aileron 15 0.001 10 5 0.1/10 5
Nonlinear
12 8 Meter | Aileron 15 0.001 10 5 0.1/10 10
Linear
13 8 Meter | Aileron 15 0.001 10 5 0.1/10 10
Nonlinear
14 8 Meter | Aileron 15 0.001 10 5 0.1/10 15
Linear
15 8 Meter | Aileron 15 0.001 10 5 0.1/10 15
Nonlinear
16 8 Meter | Aileron 15 0.001 10 5 0.1/10 20
Linear
17 8 Meter | Aileron 15 0.001 10 5 0.1/10 25
Linear
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This research was performed to predict the in flight behavior of both the 6 meter
model and the 8 meter models of X-HALE. The two baseline 6 meter model simulations
performed with no inputs were performed using the linear and nonlinear simulation types.
This was done in order to compare the linear and nonlinear simulation types and to gain
knowledge of their differences. This was also done in order to see how well the 6 meter
X-HALE model can fly straight and level. The three sinusoidal aileron input linear type
simulations were performed for the 6 meter model in order further understand the
aircraft’s response to an aileron input. Only the linear type solution was used in order to
better compare the simulations performed while also minimizing the time it took to
compute the solutions. The one 8 meter model linear type simulation was run with no
inputs in order to form an understanding of how well the 8 meter aircraft can fly straight
and level. Finally, the ten 8 meter model sinusoidal aileron input simulations were
performed in order to understand aircraft’s response to an aileron input on both wings.
These simulations were a mix of linear and nonlinear type simulations so that the two
simulation types could be compared.

Again, for a linear solution, the elastic degrees of freedom remain intact and the
inertia matrices change at each subiteration, but the Jacobian matrices obtained from the
steady-state solution computed at the beginning of each simulation are used; therefore,
they are fixed. For a nonlinear solution, the elastic degrees of freedom remain intact, the
inertia matrices change at each subiteration and the Jacobian matrices are updated at each
subiteration, resulting in a full time-marching simulation based on Equation (17.

While the Case 1 simulation has a different time step (0.0025 seconds) and

maximum residual value (0.1) than the other 6 meter X-HALE simulations, it is included
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in the data because it is the only 6 meter X-HALE simulation that runs for 15 seconds;
the other simulations only run for 10 seconds. For the rest of the 6 meter X-HALE
simulations the time step, maximum residual value, and time duration were chosen based
on the limitations of the UM/NAST code and the simulation parameters, as mentioned in
Section IV.1. The time step for these simulations, 0.0001 seconds, was the largest time
step that actually allowed a 6 meter X-HALE nonlinear type simulation to complete a 10
second run. The residual value tolerance of 10 was chosen because a value smaller than
that would cause a simulation to take significantly longer to finish but a value larger than
would potentially cause a nonlinear simulation to fail. The time duration of 10 seconds
was chosen because after approximately the 9.6 second point, a simulation would
struggle to finish, so this time duration value was chosen to make sure simulations could
finish. For the 8 meter X-HALE simulations, the time step was changed to 0.001 and the
time duration was changed to 15 seconds in order to allow for a longer flight but also so
that the simulations could finish more quickly.

For simulations that involved a sinusoidal aileron input on both wings, the period
of the input, 5 seconds, and the start and stop time of the input, 0.1 seconds and 10
seconds, were chosen because this periodic input would be similar to the kind of aileron
input X-HALE would normally receive in flight. Several different sinusoidal aileron
input amplitudes were used: 2, 5, 10, 15, 20 and 25 degrees. These values were chosen in
order to find the maximum aileron input amplitude that could be used without the
aircraft’s flight becoming unstable. These values were also chosen based on the results

of Cesnik et al. [4] who, when performing UM/NAST simulations for the 8-meter X-
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HALE, discovered that a left aileron input (a rolling maneuver) resulted in unstable flight

when a sinusoidal input of 5 degrees or more was used.

IV.4 The Completed Simulations and Their Results

The results of all seventeen chosen simulations are discussed in detail in this
section of the research. The results are broken down into results for the 6 meter aircraft
and the 8 meter aircraft. Six to seven plots per simulation were generated. Some of

them are used in this section and all of them are included in the Appendix.

1V.4.1 The 6 Meter X-HALE Results

All six 6 meter X-HALE simulations had the same primary result; the aircraft
over speeds up to approximately 40 m/s and stalls after approximately 9 seconds in all six
simulations.  After the stall, the aircraft enters highly unstable flight. As stated
previously, 12 to 20 m/s is considered the normal flight speed range for X-HALE [4].
This leads to two possible conclusions: Either UM/NAST did not properly model the
flight of the 6 meter X-HALE or the 6 meter X-HALE is an unstable aircraft and can be
expected to crash soon after takeoft.

Case 1 is a linear type no aileron input simulation run for 15 seconds. The time
step was 0.0025 seconds and the residual tolerance value was 0.1. Again, this was the
first completed simulation and is the case that has a different time step and residual
tolerance value then the other simulations. Figure 14 shows the aircraft’s longitudinal
velocity vy, versus time. Note that the B reference frame is used for all plots. The x-axis
is out the right wing and the y-axis is tangent to the undeformed fuselage’s longitudinal

axis and extends in the direction of the front of the aircraft. As a result, the x-y plane of
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the B reference frame is parallel to the x-y plane of the inertial frame G when the aircraft
is undeformed. The z-axis extends out the top of the aircraft and is the cross product of

the x-axis and y-axis.

Longitudinal Velocity vs. Time, 0 deg Aileron Input, 6 m Linear Case
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Figure 14. Case 1 Longitudinal Velocity v), versus Time

This plot shows that the aircraft begins to over speed at approximately 2.5
seconds when its velocity goes over 20 m/s and stalls at approximately 9 seconds. At this
point the aircraft becomes highly unstable. Figure 15 and Figure 16 show the velocity of
the aircraft in the x and z directions. Figure 17, Figure 18 and Figure 19 show the

angular velocity of the aircraft about the x-, y- and z-axes versus time.

44



Velocity in X (Lateral) Direction (m/s)

Velocity in Z (Vertical) Direction (m/s)

50

40

30

20

10

15

10

w

Lateral Velocity vs. Time, 0 deg Aileron Input, 6 m Linear Case

Time Elapsed (sec)

45

Figure 16. Case 1 Vertical Velocity v, versus Time
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Figure 15. Case 1 Lateral Velocity v, versus Time
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Figure 17. Case 1 Pitch Rate w, versus Time

Roll Rate vs. Time, 0 deg Aileron Input, 6 m Linear Case
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Figure 18. Case 1 Roll Rate w,, versus Time
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Yaw Rate vs. Time, 0 deg Aileron Input, 6 m Linear Case
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Figure 19. Case 1 Yaw Rate w, versus Time

These plots also show that the 6 meter X-HALE becomes highly unstable after
approximately 9 seconds. These angular velocity plots show that the 6 meter X-HALE is
rotationally stable for approximately the first 9 seconds of the simulation. However,
Figure 14 which shows the aircraft’s longitudinal velocity vy, suggests that the aircraft
was unstable from the start of the simulation since the aircraft begins to speed up and
then over speeds at the beginning of the simulation. Note that many of the results of the
simulations run for this research show initial instabilities that quickly dampen out, such
as in Figure 17. This is not due to an actual instability of the aircraft but is due to
numerical errors caused by the UM/NAST program.

Case 2 is another linear type no aileron input simulation, just like Case 1, but is

run for 10 seconds instead of 15 seconds. Also, Cases 2 through 6 have a different time
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step (0.0001 seconds), residual tolerance value (10) and time duration (10 seconds) than
Case 1. Besides the fact that Case 2 is a shorter simulation than Case 1, there are no
apparent differences between the results of the two simulations. Case 3 is a nonlinear
version of Case 2 and its results can be viewed in Figure 20, Figure 21, Figure 22, Figure

23, Figure 24 and Figure 25. The Case 2 simulations can be viewed in the Appendix.

Lateral Velocity vs. Time, 0 deg Aileron Input, 6 m Nonlinear Case
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Figure 20. Case 3 Lateral Velocity v, versus Time
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Figure 22. Case 3 Vertical Velocity v, versus Time
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Yaw Rate vs. Time, 0 deg Aileron Input, 6 m Nonlinear Case
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Figure 25. Case 3 Yaw Rate w, versus Time

These plots show that there is little difference between the linear and nonlinear
simulation types because they are very similar to the results from Case 1 and Case 2.

Case 4, Case 5 and Case 6 are the same linear type 6 meter X-HALE simulation
except for the fact that they have different sinusoidal aileron input amplitudes. The input
amplitudes are 2, 5 and 10 degrees, respectively. These three cases also show that the 6
meter X-HALE aircraft begins to over speed at approximately 2.5 seconds when its
velocity goes over 20 m/s and stalls at approximately 9 seconds. The aileron input for
Case 6 can be seen in Figure 26, while the results for Case 6 can be seen in Figure 27,
Figure 28, Figure 29, Figure 30, Figure 31 and Figure 32. The aileron inputs and the

results for Cases 4 and 5 can be viewed in the Appendix.
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Figure 26. Case 6 Aileron Input versus Time
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Figure 27. Case 6 Lateral Velocity v, versus Time
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Figure 31. Case 6 Roll Rate w,, versus Time
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Yaw Rate vs. Time, 10 deg Aileron Input, 6 m Linear Case
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Figure 32. Case 6 Yaw Rate w, versus Time

It is clear when comparing the figures from Cases 4, 5 and 6 that the sinusoidal
aileron inputs did have an impact on the flight behavior of the aircraft. However, the
aileron inputs did not prevent the aircraft from over speeding and stalling. The results
from Cases 4, 5 and 6 show that the larger the aileron input amplitude is, the more effect
the aileron input has on the flight behavior of the aircraft. The results for Cases 1 through
6 all show that the flight behavior of the 6 meter X-HALE is unstable from the start of the

simulations.

1IV.4.2 The 8 Meter X-HALE Results

Cases 7 through 17 are the 8 meter X-HALE model simulations preformed.
These cases have a 15 second flight time, a 0.0001 second time step and a maximum

residual value of 10. They are a mix of the linear and nonlinear solution types. Case 7 is
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a linear type simulation and has no inputs, while Cases 8 through 17 have sinusoidal
aileron inputs with amplitudes of 2, 5, 10, 15, 20 and 25 degrees. The results for Case 7

can be viewed in Figure 33, Figure 34, Figure 35, Figure 36, Figure 37 and Figure 38.

x 10" Lateral Velocity vs. Time, 0 deg Aileron Input, 8 m Linear Case
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Figure 33. Case 7 Lateral Velocity v, versus Time
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Pitch Rate vs. Time, 0 deg Aileron Input, 8 m Linear Case
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Figure 36. Case 7 Pitch Rate w, versus Time
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Figure 37. Case 7 Roll Rate w,, versus Time
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x 10° Yaw Rate vs. Time, 0 deg Aileron Input, 8 m Linear Case
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Figure 38. Case 7 Yaw Rate w, versus Time

These results show that the 8 meter X-HALE is stable for no aileron inputs.
While the plots of the aircraft’s velocities in the x, y, and z directions show a sinusoidal
pattern, the amplitudes of the peaks and troughs get progressively smaller as the flight
progresses. This suggests that the aircraft is approaching a constant velocity in all three
directions. For the x direction, this value is near zero. For the z direction, this value
appears to be approximately 0.095, which is very close to zero. For the y direction, this
value appears to be approximately 13.8 m/s. Additionally, the plot of the angular
velocity about the x-axis shows a sinusoidal pattern with the amplitude of the peaks and
troughs get progressively smaller as the flight progresses. The plots of the angular
velocities about the y- and z- axes also show sinusoidal patterns but their amplitudes are
near zero. The aircraft appears to be approaching an angular velocity of zero in all three

directions. Combined, this data suggests that the aircraft is stable when no inputs, such as
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an aileron input, are given. Again, many of the results of the simulations run for this
research show initial instabilities that quickly dampen out, such as in Figure 38. This is
not due to an actual instability of the aircraft but is due to numerical errors caused by the
UM/NAST program.

Case 8 is a linear simulation run with a sinusoidal aileron input on both wings
with an amplitude of 2 degrees. The aileron input for Case 8 can be viewed in Figure 39,
and the results for Case 8 can be viewed in Figure 40, Figure 41, Figure 42, Figure 43,

Figure 44 and Figure 45.

Aileron Input vs. Time, 2 deg Aileron Input, 8 m Linear Case
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Figure 39. Case 8 Aileron Input versus Time
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Figure 41. Case 8 Longitudinal Velocity v), versus Time
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Figure 44. Case 8 Roll Rate w,, versus Time
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Figure 45. Case 8 Yaw Rate w, versus Time
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These figures show that the 8 meter X-HALE is stable when a sinusoidal aileron
input is performed on both wings with a 2 degree amplitude. For example, while the plot
for the longitudinal velocity, the velocity in the y direction, shows a sinusoidal pattern,
and the peaks and troughs become smaller after 10 seconds because the aileron input ends
after 10 seconds. Also, the plot of the angular velocity about the x-axis, the pitch rate,
shows peaks and troughs that also become smaller once the aileron input ends. This
suggests that the aircraft is stable with this input. The plot of the velocity in the vertical
direction, the z direction, shows a sinusoidal pattern that terminates very quickly once the
aileron input ends, meaning that the aircraft is stable in the vertical direction. The plot
for the velocity in the x direction, the lateral direction, shows a very small sinusoidal
pattern. However the amplitude of this pattern is very small and shows no signs of
increasing once the aileron input ends. The aircraft also rotates slightly in a sinusoidal
pattern about the y- and z-axes, but this amplitude of these patterns are very small and
show no signs of increasing. Case 9 is the same simulation as Case 8, but it is the
nonlinear case. The plots from the results of Case 9 can be viewed in the Appendix.
There are no significant differences between the results for Cases 8 and 9. The aircratft is
stable for both cases and the two cases’ plots are very similar.

Case 10 is a linear type simulation with a sinusoidal aileron input performed on
both wings with a 5 degree amplitude. Case 11 is a nonlinear version of Case 10. The
aileron input and the results for Cases 10 and 11 can be viewed in the Appendix. There
are no significant differences between the plots for Cases 10 and 11. Both cases suggest
that the 8 meter X-HALE is stable for a sinusoidal aileron input with a 5 degree

amplitude applied to both wings. The results for these cases are very similar to those of
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Cases 8 and 9, which showed that the aircraft is stable for an aileron input of 2 degrees,
except that plots show that the aileron input has a slightly more significant affect on the
flight of the aircratft.

Cases 12 and 13 involve a 10 degree sinusoidal aileron input. The linear case,
Case 12, suggests that the 8 meter X-HALE is stable for a sinusoidal aileron input with a
10 degree amplitude applied to both wings, while the nonlinear case, Case 13, suggests
that the 8 meter X-HALE is unstable for this aileron input. The results for Case 12 are in
Figure 46, Figure 47, Figure 48, Figure 49, Figure 50, Figure 51 and Figure 52, and the
results for case 13 are in Figure 53, Figure 54, Figure 55, Figure 56, Figure 57, Figure 58

and Figure 59.

Aileron Input vs. Time, 10 deg Aileron Input, 8 m Linear Case
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Figure 46. Case 12 Aileron Input versus Time
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Figure 48. Case 12 Longitudinal Velocity v), versus Time
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Figure 49. Case 12 Vertical Velocity v, versus Time
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Figure 50. Case 12 Pitch Rate w,, versus Time
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Figure 51. Case 12 Roll Rate w,, versus Time
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Figure 52. Case 12 Yaw Rate w, versus Time
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Figure 53. Case 13 Aileron Input versus Time
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Figure 54. Case 13 Lateral Velocity v, versus Time
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Figure 55. Case 13 Longitudinal Velocity v), versus Time
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Figure 57. Case 13 Pitch Rate w,, versus Time
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Figure 58. Case 13 Roll Rate w,, versus Time
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x 10" Yaw Rate vs. Time, 10 deg Aileron Input, 8 m Nonlinear Case
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Figure 59. Case 13 Yaw Rate w, versus Time

The results for Case 12, a linear type simulation, show similar results to the cases
for the 2 and 5 degree aileron input simulations; the aircraft shows minimal movement in
the lateral direction, and recovers well from the aileron input in the longitudinal and
vertical directions. Rotationally, the aircraft rotates slightly in a sinusoidal pattern about
the x-axis but begins to recover after the input ends. The aircraft rotates slightly in a
sinusoidal pattern about the y- and z-axes but these movements are very small. These
results show stable flight.

However, the results for Case 13, a nonlinear type simulation and Case 12’s
nonlinear counterpart, suggest that the aircraft is unstable for an aileron input with a 10
degree amplitude. The results for Case 13 are similar to Case 12 except instead of
recovering from the input in the longitudinal direction, the amplitude of the aircraft’s

sinusoidal longitudinal velocity continues to increase over time even though the aileron
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input has terminated. This suggests unstable flight for an aileron input with a 10 degree
amplitude. Therefore, while the linear case suggests stability, the nonlinear case suggests
instability. Because the nonlinear simulation type models the nonlinear aeroelasticity and
flight dynamics of an aircraft better than the linear simulation type does, the nonlinear
simulation probably provides a more accurate depiction of the flight behavior of X-
HALE.

Cases 14 and 15 involve a 15 degree sinusoidal aileron input. The results for
Cases 14 can be viewed in Figure 60, Figure 61, Figure 62, Figure 63, Figure 64, Figure
65 and Figure 66, and the results for Case 15 can be viewed in Figure 67, Figure 68,
Figure 69, Figure 70, Figure 71, Figure 71, Figure 72 and Figure 73. The linear case,
Case 14, suggests that the 8 meter X-HALE is stable for this input, while the nonlinear

case, Case 15, suggests that the 8 meter X-HALE is unstable for this aileron input.

Aileron Input vs. Time, 15 deg Aileron Input, 8 m Linear Case
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Figure 60. Case 14 Aileron Input versus Time
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Figure 61. Case 14 Lateral Velocity v, versus Time
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Figure 62. Case 14 Longitudinal Velocity v), versus Time
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Figure 63. Case 14 Vertical Velocity v, versus Time
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Figure 64. Case 14 Pitch Rate w,, versus Time
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Figure 65. Case 14 Roll Rate w,, versus Time
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Figure 66. Case 14 Yaw Rate w, versus Time
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Figure 69. Case 15 Longitudinal Velocity v), versus Time
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Figure 70. Case 15 Vertical Velocity v, versus Time
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Figure 72. Case 15 Roll Rate w,, versus Time
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Figure 73. Case 15 Yaw Rate w, versus Time

For Case 14, the linear case, the plot for the longitudinal velocity, the velocity in

the y direction, shows a sinusoidal pattern, and the peaks and troughs become smaller

after 10 seconds because the aileron input ends after 10 seconds. Also, the plot of the

angular velocity about the x-axis, the pitch rate, shows a very rough sinusoidal pattern,

with peaks and troughs that also become smaller once the aileron input ends. The plot of

the velocity in the vertical direction, the z direction, shows a sinusoidal pattern that

terminates very quickly once the aileron input ends, meaning that the aircraft is stable in

the vertical direction. The plot for the velocity in the x direction, the lateral direction,

shows a vaguely sinusoidal pattern. However the amplitude of this pattern is very small

and shows no signs of increasing once the aileron input ends. The aircraft also rotates

slightly in vaguely sinusoidal patterns about the y- and z-axes, but this amplitude of these
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patterns are very small. This all suggests that the aircraft is stable for a 15 degree aileron
input.

However, Case 15, the nonlinear 15 degree amplitude aileron input case, suggests
that the aircraft is unstable for this input. The aircraft shows minimal movement in the
lateral direction until approximately 8 seconds, but this motion is still stable. The aircraft
recovers from the aileron input in the vertical direction well. The longitudinal velocity
plot suggests that aircraft does not recover from the aileron input in the longitudinal
direction once the input ends after 10 seconds. This suggests that the aircraft is unstable
for a 15 degree amplitude sinusoidal aileron input applied to both wings. Instead, the
amplitude of the longitudinal velocity’s sinusoidal pattern continues to grow larger.
Rotationally, the aircraft recovers from the aileron input for all three axes. Note that
several plots show some high frequency instabilities after approximately 8 seconds;
however, this is not due to an actual instability of the aircraft but is due to numerical
errors caused by the UM/NAST program.

Case 16 and 17 involve 20 and 25 degree amplitude sinusoidal aileron inputs,
respectively. These are both linear type simulations. Both simulations suggest that the 8
meter X-HALE is unstable with these inputs. The nonlinear type versions of these
simulations were attempted but these simulations failed most likely because the aircraft
flight went extremely unstable. These attempts had the same time step (0.001 seconds),
residual value (10) and time duration (15 seconds) as the other 8 meter X-HALE
simulations. The results of Cases 16 and17 can be viewed in the Appendix.

Case 16’s results show minimal movement in the lateral direction. The aircraft

recovers from the aileron input in the vertical direction, but the longitudinal velocity plot
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suggests that aircraft does not recover from the aileron input in the longitudinal direction
once the input ends after 10 seconds. Instead, the amplitude of the longitudinal velocity’s
sinusoidal pattern continues to grow larger. This suggests that the 8 meter X-HALE will
be unstable for a 20 degree amplitude sinusoidal aileron input applied to both wings when
test flown. The aircraft does show some small rotational movement about the x-axis, but
this lessens once the aileron input ends. The aircraft also shows some rotational
movement about the y- and z-axes; however, this movement is very small.

Case 17’s results show minimal movement in the lateral direction. The aircraft
recovers from the aileron input in the vertical direction, but the longitudinal velocity plot
suggests that aircraft does not recover from the aileron input in the longitudinal direction
once the input ends after 10 seconds. This suggests that the 8 meter X-HALE is unstable
for a 25 degree amplitude sinusoidal aileron input applied to both wings. Instead, the
amplitude of the longitudinal velocity’s sinusoidal pattern continues to grow larger.
Rotationally, the aircraft is stable and is minimally affected by the aileron input. Note
that several plots for Case 17 show some high frequency instabilities after approximately
8 seconds; however, this is not due to an actual instability of the aircraft but is due to

numerical errors caused by the UM/NAST program.
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V. Conclusions and Recommendations

V.1 Conclusions

The results of the six 6 meter X-HALE simulations discussed suggest that the 6
meter X-HALE model is either unstable or that the simulations were set up incorrectly.
Because Shearer, Cesnik and their co-workers designed both the 6 meter and the 8 meter
models of X-HALE to be stable, it is unlikely that the actual 6 meter X-HALE aircraft is
unstable. The most likely cause of the instabilities that the simulations show is that the
trim conditions for the 6 meter simulations were poorly configured. More research must
be done in order to determine the actual cause of the perceived instability of the aircraft.
For now, no conclusion can be drawn about the stability of the aircraft. A summary of

the results of the 6 meter X-HALE simulations discussed is given in Table 3.
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Table 3. A Summary of Discussed 6 Meter X-HALE Simulations

Case | Simulation | Input Duration Sinusoidal Aileron Input Stability
Type (sec)/ Data
Time Step | Period Start/ Amplitude
(sec)/ (sec) End (deg)
Max Time
Residual (sec)
Value
1 6 Meter None 15/ N/A N/A N/A Unstable
Linear 0.0025/
0.1
2 6 Meter None 10/ N/A N/A N/A Unstable
Linear 0.0001/
10
3 6 Meter None 10/ N/A N/A N/A Unstable
Nonlinear 0.0001/
10
4 6 Meter Aileron 10/ 5 0.1/10 2 Unstable
Linear 0.0001/
10
5 6 Meter Aileron 10/ 5 0.1/10 5 Unstable
Linear 0.0001/
10
6 6 Meter Aileron 10/ 5 0.1/10 10 Unstable
Linear 0.0001/
10

The results of the 8 meter X-HALE simulations suggest that 8 meter X-HALE is

stable for sinusoidal aileron inputs performed on both wings with 5 degrees of amplitude

or less, and the aircraft is unstable for amplitudes of 10 degrees or more. The results also

suggest that the aircraft is stable when no inputs are applied. Cesnik et al.’s results when

performing UM/NAST simulations for the 8-meter X-HALE [4] suggest that when a

single period of a left-wing-down sinusoidal aileron input is applied, the aircraft is stable

for aileron inputs with a 2 degree amplitude, but not for inputs with a 5 degree amplitude

or greater. Their results suggest that when a 1-cosine gust is symmetrically applied to the

8 meter X-HALE with a maximum gust speed of 4 m/s, while the nominal flight speed is
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14 m/s at 30 m altitude, the aircraft is stable. This research build’s off of Cesnik et al.’s
results and predicts that, when test flown, the 8 meter X-HALE can be expected to be
stable as long as any sinusoidal aileron inputs commanded on both wings has no more
than 5 degrees of amplitude. A summary of the results of the 8§ meter X-HALE

simulations discussed is given in Table 4.
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Table 4. A Summary of Discussed 8 Meter X-HALE Simulations

Case | Simulation | Input Duration Sinusoidal Aileron Input Stability
Type (sec)/ Data
Time Step | Period Start/ Amplitude
(sec)/ (sec) End (deg)
Max Time
Residual (sec)
Value
7 8 Meter None 15/ N/A N/A N/A Stable
Linear 0.001/
10
8 8 Meter Aileron 15/ 5 0.1/10 2 Stable
Linear 0.001/
10
9 8 Meter Aileron 15/ 5 0.1/10 2 Stable
Nonlinear 0.001/
10
10 8 Meter Aileron 15/ 5 0.1/10 5 Stable
Linear 0.001/
10
11 8 Meter Aileron 15/ 5 0.1/10 5 Stable
Nonlinear 0.001/
10
12 8 Meter Aileron 15/ 5 0.1/10 10 Stable
Linear 0.001/
10
13 8 Meter Aileron 15/ 5 0.1/10 10 Unstable
Nonlinear 0.001/
10
14 8 Meter Aileron 15/ 5 0.1/10 15 Stable
Linear 0.001/
10
15 8 Meter Aileron 15/ 5 0.1/10 15 Unstable
Nonlinear 0.001/
10
16 8 Meter Aileron 15/ 5 0.1/10 20 Unstable
Linear 0.001/
10
17 8 Meter Aileron 15/ 5 0.1/10 25 Unstable
Linear 0.001/
10
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V.2 Recommendations for Future Research

This research provides another step forward in the process of predicting the flight
behavior of the X-HALE aircrafts when they are test flown for the purpose of potentially
validating the UM/NAST code; however, more research is necessary to expand on the
findings of this research. Unfortunately, the 6 meter X-HALE simulations run are
probably not accurate models of the flight of the 6 meter X-HALE. More simulations
should be done for the 6 meter model of X-HALE but this time the trim conditions should
be properly configured. Ideally simulations would be run for at least a 15 second flight
time. Simulations should be run using both the linear and nonlinear solution types.
These simulations should include sinusoidal aileron inputs on both wings with various
amplitudes, gust inputs of various speeds, and no inputs at all. Other simulations that
may be helpful include turning simulations and climb and descent simulations.
Additionally, simulations need to be run in order to predict the effect of flipping X-
HALE’s vertical tail on the 6 meter X-HALE. It is possible that the vertical tail may
provide more stability, especially in the lateral direction. The 8 meter aircraft has more
wing dihedral when the wings are flexed than the 6 meter aircraft because the aircraft is
longer. This provides more lateral stability for the 8 meter aircraft. This may be why the
6 meter X-HALE appears to be less stable than the 8§ meter X-HALE according to the
results of this research.

Thankfully, the 8 meter X-HALE simulations performed in this research are more
helpful. However, this research only performed simulations involving either sinusoidal
aileron inputs on both wings or no inputs. Shearer, Cesnik and their co-workers

performed simulations for the 8 meter X-HALE involving single period, left-wing-down
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sinusoidal aileron inputs, and simulations with a 1-cosine gust symmetrically applied
with a maximum gust speed of 4 m/s. There are plenty more simulations that can be run
for the 8 meter version of X-HALE in order to help predict the aircraft’s flight behavior
such as turning simulations, and climb and descend simulations, and gust inputs of
various speeds. Additionally, it may be helpful to run nonlinear type simulations for
aileron inputs between 5 and 10 degrees of amplitude to pinpoint exactly what sinusoidal
aileron input amplitude causes the aircraft to become unstable. Simulations also need to
be run in order to predict the effect of flipping the 8 meter X-HALE’s vertical tail.

Much of the initial difficulties experienced are due to the fact that the 6 meter
simulations were probably improperly set up. However, future research can benefit from
the findings of this research when it comes to the balance of the time step, the maximum
residual value and the flight time. Future research should set up simulations with a time
step of no more than 0.05 seconds (but at least 0.0001 seconds), a maximum residual
value of no more than 10 (but at least 0.1) and a flight time of at least 15 seconds. A time
step of no more than 0.05 seconds and a maximum residual value of no more than 10 will
help to the simulations complete easily and to provide accurate results. A flight time of
at least 15 seconds will help to ensure that enough information can be drawn from the

results.

V.3 General Remarks

The recent crash of NASA’s Helios aircraft (Figure 4), a forerunning HALE
Remotely Piloted Aircraft (RPA), demonstrates that while previous research has been
done on the problem of nonlinear aeroelasticity coupled with nonlinear flight dynamics,

the problem is still not completely understood. Several codes have been developed for
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the use of modeling nonlinear aeroelastic and flight dynamics of an aircraft, such as
UM/NAST, NATASHA, ASWING and RCAS, but none have been completely validated
with real flight data from a fixed-wing aircraft [4]. The goal of this research was to
perform flight simulations with UM/NAST so as to make predictions about X-HALE’s
future test flights and subsequently uncover the strengths and weaknesses of UM/NAST
when X-HALE is finally flown. Indeed, this research managed to make predictions about
X-HALE’s future test flights and is a step forward in potentially validating UM/NAST.
This research, in conjunction with the UM/NAST code and the test flights of the X-
HALE aircrafts should provide more information on the problem of nonlinear
aeroelasticity coupled with nonlinear flight dynamics. Hopefully this knowledge can be
put to use in the development of HALE aircraft. These HALE aircraft may include ISR
platforms, such as US Air Force SensorCraft, network communication nodes for military

or civilian purposes, or aircraft that will perform general atmospheric research.
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Appendix A. Additional Figures

Case 1: 6 m Linear Type 15 sec Simulation, No Aileron Input

Lateral Velocity vs. Time, 0 deg Aileron Input, 6 m Linear Case
50 T )

40

301

20

10

-
[ =]
T

Velocity in X (Lateral) Direction (m/s)

o
(=]
T

40 . k
0 5 10
Time Elapsed (sec)

Figure 74. Case 1 Lateral Velocity v, versus Time
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Velocity in Y (Longitudinal) Direction (m/s)

Velocity in Z (Vertical) Direction (m/s)
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Figure 75. Case 1 Longitudinal Velocity v), versus Time
Vertical Velocity vs. Time, 0 deg Aileron Input, 6 m Linear Case
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Figure 76. Case 1 Vertical Velocity v, versus Time
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Angular Velocity about the X-Axis (Pitch Rate) (deg/s)

Angular Velocity about the Y-Axis (Roll Rate) (deg/s)

Pitch Rate vs. Time, 0 deg Aileron Input, 6 m Linear Case
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Figure 77. Case 1 Pitch Rate w, versus Time

Roll Rate vs. Time, 0 deg Aileron Input, 6 m Linear Case
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Figure 78. Case 1 Roll Rate w,, versus Time
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Angular Velocity about the Z-Axis (Yaw Rate) (deg/s)
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Case 2: 6 m Linear Type 10 sec Simulation, No Aileron Input

Lateral Velocity vs. Time, 0 deg Aileron Input, 6 m Linear Case
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Figure 80. Case 2 Lateral Velocity v, versus Time
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Figure 81. Case 2 Longitudinal Velocity v), versus Time
Vertical Velocity vs. Time, 0 deg Aileron Input, 6 m Linear Case
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Figure 82. Case 2 Vertical Velocity v, versus Time

95



Angular Velocity about the X-Axis (Pitch Rate) (deg/s)

Angular Velocity about the Y-Axis (Roll Rate) (deg/s)

Pitch Rate vs. Time, 0 deg Aileron Input, 6 m Linear Case
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Figure 83. Case 2 Pitch Rate w, versus Time

Roll Rate vs. Time, 0 deg Aileron Input, 6 m Linear Case
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Figure 84. Case 2 Roll Rate w,, versus Time
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Angular Velocity about the Z-Axis (Yaw Rate) (deg/s)

Yaw Rate vs. Time, 0 deg Aileron Input, 6 m Linear Case
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Figure 85. Case 2 Yaw Rate w, versus Time
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Case 3: 6 m Nonlinear Type 10 sec Simulation, No Aileron Input
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Figure 86. Case 3 Lateral Velocity v, versus Time
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Figure 88. Case 3 Vertical Velocity v, versus Time
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25

15

05

-0.5

Yaw Rate vs. Time, 0 deg Aileron Input, 6 m Nonlinear Case

Time Elapsed (sec)

Figure 91. Case 3 Yaw Rate w, versus Time
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Case 4: 6 m Linear Type 10 sec Simulation, 2 deg Aileron Input

Aileron Input vs. Time, 2 deg Aileron Input, 6 m Linear Case
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Figure 92. Case 4 Aileron Input versus Time
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Velocity in X (Lateral) Direction (m/s)

Velocity in Y (Longitudinal) Direction (m/s)

Lateral Velocity vs. Time, 2 deg Aileron Input, 6 m Linear Case
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Figure 93. Case 4 Lateral Velocity v, versus Time

Longitudinal Velocity vs. Time, 2 deg Aileron Input, 6 m Linear Case
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Figure 94. Case 4 Longitudinal Velocity v), versus Time
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Figure 95. Case 4 Vertical Velocity v, versus Time

Pitch Rate vs. Time, 2 deg Aileron Input, 6 m Linear Case
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Figure 96. Case 4 Pitch Rate w, versus Time
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Angular Velocity about the Y-Axis (Roll Rate) (deg/s)
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Figure 98. Case 4 Yaw Rate w, versus Time
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Case 5: 6 m Linear Type 10 sec Simulation, 5 deg Aileron Input

Aileron Input (deq)

Aileron Input vs. Time, 5 deg Aileron Input, 6 m Linear Case
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Figure 99. Case 5 Aileron Input versus Time
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Lateral Velocity vs. Time, 5 deg Aileron Input, 6 m Linear Case
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Figure 100. Case 5 Lateral Velocity v, versus Time

Longitudinal Velocity vs. Time, 5 deg Aileron Input, 6 m Linear Case
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Figure 101. Case 5 Longitudinal Velocity v), versus Time
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Figure 103. Case 5 Pitch Rate w,, versus Time
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Figure 104. Case 5 Roll Rate w,, versus Time

Yaw Rate vs. Time, 5 deg Aileron Input, 6 m Linear Case
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Figure 105. Case 5 Yaw Rate w, versus Time
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Case 6: 6 m Linear Type 10 sec Simulation, 10 deg Aileron Input

Aileron Input vs. Time, 10 deg Aileron Input, 6 m Linear Case
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Figure 106. Case 6 Aileron Input versus Time
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Figure 107. Case 6 Lateral Velocity v, versus Time

Longitudinal Velocity vs. Time, 10 deg Aileron Input, 6 m Linear Case
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Figure 108. Case 6 Longitudinal Velocity v), versus Time
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Angular Velocity about the X-Axis (Pitch Rate) (deg/s)
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Figure 109. Case 6 Vertical Velocity v, versus Time
Pitch Rate vs. Time, 10 deg Aileron Input, 6 m Linear Case
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Figure 110. Case 6 Pitch Rate w,, versus Time
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Figure 112. Case 6 Yaw Rate w, versus Time
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Figure 111. Case 6 Roll Rate w,, versus Time
Yaw Rate vs. Time, 10 deg Aileron Input, 6 m Linear Case
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Case 7: 8 m Linear Type 15 sec Simulation, No Aileron Input

x 10 Lateral Velocity vs. Time, 0 deg Aileron Input, 8 m Linear Case
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Figure 113. Case 7 Lateral Velocity v, versus Time
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Figure 114. Case 7 Longitudinal Velocity v), versus Time

Vertical Velocity vs. Time, 0 deg Aileron Input, 8 m Linear Case
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Pitch Rate vs. Time, 0 deg Aileron Input, 8 m Linear Case
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Figure 116. Case 7 Pitch Rate w,, versus Time

x 10  Roll Rate vs. Time, 0 deg Aileron Input, 8 m Linear Case
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Figure 117. Case 7 Roll Rate w,, versus Time
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x 10> Yaw Rate vs. Time, 0 deg Aileron Input, 8 m Linear Case
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Figure 118. Case 7 Yaw Rate w, versus Time
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Case 8: 8 m Linear Type 15 sec Simulation, 2 deg Aileron Input

Aileron Input vs. Time, 2 deg Aileron Input, 8 m Linear Case
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Figure 119. Case 8 Aileron Input versus Time
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Figure 120. Case 8 Lateral Velocity v, versus Time

Longitudinal Velocity vs. Time, 2 deg Aileron Input, 8 m Linear Case
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Figure 121. Case 8 Longitudinal Velocity v), versus Time
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Vertical Velocity vs. Time, 2 deg Aileron Input, 8 m Linear Case
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Figure 122. Case 8 Vertical Velocity v, versus Time

Pitch Rate vs. Time, 2 deg Aileron Input, 8 m Linear Case
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Figure 123. Case 8 Pitch Rate w,, versus Time

120

15



x 10"  Roll Rate vs. Time, 2 deg Aileron Input, 8 m Linear Case
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Figure 124. Case 8 Roll Rate w,, versus Time
x 10° Yaw Rate vs. Time, 2 deg Aileron Input, 8 m Linear Case
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Figure 125. Case 8 Yaw Rate w, versus Time
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Case 9: 8 m Nonlinear Type 15 sec Simulation, 2 deg Aileron Input

Aileron Input vs. Time, 2 deg Aileron Input, 8 m Nonlinear Case
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Figure 126. Case 9 Aileron Input versus Time
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Figure 127. Case 9 Lateral Velocity v, versus Time

Longitudinal Velocity vs. Time, 2 deg Aileron Input, 8 m Nonlinear Case
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Figure 128. Case 9 Longitudinal Velocity v), versus Time

123



Velocity in Z (Vertical) Direction (m/s)

Angular Velocity about the X-Axis (Pitch Rate) (deg/s)

0.16

Vertical Velocity vs. Time, 2 deg Aileron Input, 8 m Nonlinear Case

014

0.12

01F

0.08F

0.06

0.04

0.02

A

1

5

10 15
Time Elapsed (sec)

Figure 129. Case 9 Vertical Velocity v, versus Time

Pitch Rate vs. Time, 2 deg Aileron Input, 8 m Nonlinear Case
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Figure 130. Case 9 Pitch Rate w,, versus Time
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x 10 Roll Rate vs. Time, 2 deg Aileron Input, 8 m Nonlinear Case
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Figure 131. Case 9 Roll Rate w,, versus Time

x 10” Yaw Rate vs. Time, 2 deg Aileron Input, 8 m Nonlinear Case
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Figure 132. Case 9 Yaw Rate w, versus Time
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Case 10: 8 m Linear Type 15 sec Simulation, 5 deg Aileron Input

Aileron Input vs. Time, 5 deg Aileron Input, 8 m Linear Case
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Aileron Input (deq)

5 10
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Figure 133. Case 10 Aileron Input versus Time
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Velocity in Y {Longitudinal) Direction (m/s)

x 10” Lateral Velocity vs. Time, 5 deg Aileron Input, 8 m Linear Case
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Figure 134. Case 10 Lateral Velocity v, versus Time

Longitudinal Velocity vs. Time, 5 deg Aileron Input, 8 m Linear Case
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Figure 135. Case 10 Longitudinal Velocity v), versus Time
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Velocity in Z (Vertical) Direction (m/s)

Angular Velocity about the X-Axis (Pitch Rate) (deg/s)

0.25

Vertical Velocity vs. Time, 5 deg Aileron Input, 8 m Linear Case
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Figure 136. Case 10 Vertical Velocity v, versus Time

Pitch Rate vs. Time, 5 deg Aileron Input, 8 m Linear Case
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Figure 137. Case 10 Pitch Rate w, versus Time
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Angular Velocity about the Y-Axis (Roll Rate) (deg/s)

Angular Velocity about the Z-Axis (Yaw Rate) (deg/s)

x 10"  Roll Rate vs. Time, 5 deg Aileron Input, 8 m Linear Case
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Figure 138. Case 10 Roll Rate w,, versus Time

x 107 Yaw Rate vs. Time, 5 deg Aileron Input, 8 m Linear Case
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Figure 139. Case 10 Yaw Rate w, versus Time
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Case 11: 8 m Nonlinear Type 15 sec Simulation, 5 deg Aileron Input

Aileron Input vs. Time, 5 deg Aileron Input, 8 m Nonlinear Case
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Figure 140. Case 11 Aileron Input versus Time
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Velocity in Y {Longitudinal) Direction (m/s)

x 10tateral Velocity vs. Time, 5 deg Aileron Input, 8 m Nonlinear Case
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Figure 141. Case 11 Lateral Velocity v, versus Time

Longitudinal Velocity vs. Time, 5 deg Aileron Input, 8 m Nonlinear Case
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Figure 142. Case 11 Longitudinal Velocity v), versus Time

131



Velocity in Z (Vertical) Direction (m/s)

Angular Velocity about the X-Axis (Pitch Rate) (deg/s)
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Figure 143. Case 11 Vertical Velocity v, versus Time

Pitch Rate vs. Time, 5 deg Aileron Input, 8 m Nonlinear Case
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Figure 144. Case 11 Pitch Rate w, versus Time
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Angular Velocity about the Y-Axis (Roll Rate) (deg/s)

Angular Velocity about the Z-Axis (Yaw Rate) (deg/s)

x 10” Roll Rate vs. Time, 5 deg Aileron Input, 8 m Nonlinear Case
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Figure 145. Case 11 Roll Rate w,, versus Time

x 10” Yaw Rate vs. Time, 5 deg Aileron Input, 8 m Nonlinear Case
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Figure 146. Case 11 Yaw Rate w, versus Time
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Case 12: 8 m Linear Type 15 sec Simulation, 10 deg Aileron Input

Aileron Input vs. Time, 10 deg Aileron Input, 8 m Linear Case
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Figure 147. Case 12 Aileron Input versus Time
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Velocity in Y {Longitudinal) Direction (m/s)

x 10 Lateral Velocity vs. Time, 10 deg Aileron Input, 8 m Linear Case
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Figure 148. Case 12 Lateral Velocity v, versus Time
Longitudinal Velocity vs. Time, 10 deg Aileron Input, 8 m Linear Case
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Figure 149. Case 12 Longitudinal Velocity v), versus Time
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Velocity in Z (Vertical) Direction (m/s)

Angular Velocity about the X-Axis (Pitch Rate) (deg/s)
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Vertical Velocity vs. Time, 10 deg Aileron Input, 8 m Linear Case
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Figure 150. Case 12 Vertical Velocity v, versus Time

Pitch Rate vs. Time, 10 deg Aileron Input, 8 m Linear Case
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Figure 151. Case 12 Pitch Rate w, versus Time
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x 10" Roll Rate vs. Time, 10 deg Aileron Input, 8 m Linear Case
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Figure 152. Case 12 Roll Rate w,, versus Time
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x 10~ Yaw Rate vs. Time, 10 deg Aileron Input, 8 m Linear Case
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Figure 153. Case 12 Yaw Rate w, versus Time
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Case 13: 8 m Nonlinear Type 15 sec Simulation, 10 deg Aileron Input

Aileron Input vs. Time, 10 deg Aileron Input, 8 m Nonlinear Case
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Figure 154. Case 13 Aileron Input versus Time
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Velocity in X (Lateral) Direction (m/s)

Velocity in Y {Longitudinal) Direction (m/s)

x 1¢-ateral Velocity vs. Time, 10 deg Aileron Input, 8 m Nonlinear Case
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Figure 155. Case 13 Lateral Velocity v, versus Time

Longitudinal Velocity vs. Time, 10 deg Aileron Input, 8 m Nonlinear Case
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Figure 156. Case 13 Longitudinal Velocity v), versus Time
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Velocity in Z (Vertical) Direction (m/s)

Angular Velocity about the X-Axis (Pitch Rate) (deg/s)
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Figure 157. Case 13 Vertical Velocity v, versus Time

Pitch Rate vs. Time, 10 deg Aileron Input, 8 m Nonlinear Case
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Figure 158. Case 13 Pitch Rate w, versus Time
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x 10” Roll Rate vs. Time, 10 deg Aileron Input, 8 m Nonlinear Case
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Figure 159. Case 13 Roll Rate w,, versus Time

x 10° Yaw Rate vs. Time, 10 deg Aileron Input, 8 m Nonlinear Case
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Figure 160. Case 13 Yaw Rate w, versus Time
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Case 14: 8 m Linear Type 15 sec Simulation, 15 deg Aileron Input

Aileron Input vs. Time, 15 deg Aileron Input, 8 m Linear Case

15 T \ )

10

(4,

Aileron Input (deg)
(=]

[
L8]

-10

5 10
Time Elapsed (sec)

Figure 161. Case 14 Aileron Input versus Time
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Velocity in X (Lateral) Direction (m/s)

Velocity in Y {Longitudinal) Direction (m/s)

x 10 Lateral Velocity vs. Time, 15 deg Aileron Input, 8 m Linear Case
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Figure 162. Case 14 Lateral Velocity v, versus Time

Longitudinal Velocity vs. Time, 15 deg Aileron Input, 8 m Linear Case
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Figure 163. Case 14 Longitudinal Velocity v), versus Time
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Velocity in Z (Vertical) Direction (m/s)

Angular Velocity about the X-Axis (Pitch Rate) (deg/s)
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Figure 164. Case 14 Vertical Velocity v, versus Time

Pitch Rate vs. Time, 15 deg Aileron Input, 8 m Linear Case
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Figure 165. Case 14 Pitch Rate w, versus Time
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Angular Velocity about the Y-Axis (Roll Rate) {deg/s)

Angular Velocity about the Z-Axis (Yaw Rate) (deg/s)
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x 10" Roll Rate vs. Time, 15 deg Aileron Input, 8 m Linear Case
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Figure 166. Case 14 Roll Rate w,, versus Time

x 10° Yaw Rate vs. Time, 15 deg Aileron Input, 8 m Linear Case
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Figure 167. Case 14 Yaw Rate w, versus Time

145



Case 15: 8 m Nonlinear Type 15 sec Simulation, 15 deg Aileron Input

Aileron Input vs. Time, 15 deg Aileron Input, 8 m Nonlinear Case
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Figure 168. Case 15 Aileron Input versus Time
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Velocity in X (Lateral) Direction (m/s)
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Figure 170. Case 15 Longitudinal Velocity v), versus Time

Lateral Velacity vs. Time, 15 deg Aileron Input, 8 m Nonlinear Case
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Figure 169. Case 15 Lateral Velocity v, versus Time
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Velocity in Z (Vertical) Direction (m/s)

Angular Velocity about the X-Axis (Pitch Rate) (deg/s)
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Vertical Velocity vs. Time, 15 deg Aileron Input, 8 m Nonlinear Case
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Figure 171. Case 1
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5 Vertical Velocity v, versus Time

Pitch Rate vs. Time, 15 deg Aileron Input, 8 m Nonlinear Case
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Figure 172. Case 15 Pitch Rate w, versus Time
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Angular Velocity about the Z-Axis (Yaw Rate) (deg/s)

Angular Velocity about the Y-Axis (Roll Rate) (deg/s)
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Figure 174. Case 15 Yaw Rate w, versus Time
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Figure 173. Case 15 Roll Rate w,, versus Time
Yaw Rate vs. Time, 15 deg Aileron Input, 8 m Nonlinear Case
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Case 16: 8 m Linear Type 15 sec Simulation, 20 deg Aileron Input

Aileron Input vs. Time, 20 deg Aileron Input, 8 m Linear Case
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Figure 175. Case 16 Aileron Input versus Time
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Velocity in X (Lateral) Direction (m/s)

Velocity in Y (Longitudinal) Direction (m/s)

x 10 Lateral Velocity vs. Time, 20 deg Aileron Input, 8 m Linear Case
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Figure 176. Case 16 Lateral Velocity v, versus Time
Longitudinal Velocity vs. Time, 20 deg Aileron Input, 8 m Linear Case
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Figure 177. Case 16 Longitudinal Velocity v), versus Time
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Velocity in Z (Vertical) Direction (m/s)

Angular Velocity about the X-Axis (Pitch Rate) (deg/s)
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Figure 178. Case 16 Vertical Velocity v, versus Time

Pitch Rate vs. Time, 20 deg Aileron Input, 8 m Linear Case
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Figure 179. Case 16 Pitch Rate w, versus Time
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Angular Velocity about the Y-Axis (Roll Rate) (deg/s)

Angular Velocity about the Z-Axis (Yaw Rate) (deg/s)
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Figure 180. Case 16 Roll Rate w,, versus Time

x 10" Yaw Rate vs. Time, 20 deg Aileron Input, 8 m Linear Case
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Figure 181. Case 16 Yaw Rate w, versus Time
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Case 17: 8 m Linear Type 15 sec Simulation, 25 deg Aileron Input

Aileron Input vs. Time, 25 deg Aileron Input, 8 m Linear Case
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Figure 182. Case 17 Aileron Input versus Time
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Velocity in X (Lateral) Direction (m/s)

Lateral Velocity vs. Time, 25 deg Aileron Input, 8 m Linear Case
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Figure 183. Case 17 Lateral Velocity v, versus Time

Longitudinal Velocity vs. Time, 25 deg Aileron Input, 8 m Linear Case
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Figure 184. Case 17 Longitudinal Velocity v), versus Time
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Figure 185. Case 17 Vertical Velocity v, versus Time

Pitch Rate vs. Time, 25 deg Aileron Input, 8 m Linear Case
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Figure 186. Case 17 Pitch Rate w, versus Time
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Angular Velocity about the Y-Axis (Roll Rate) (deg/s)

Angular Velocity about the Z-Axis (Yaw Rate) (deg/s)
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Figure 187. Case 17 Roll Rate w,, versus Time

Yaw Rate vs. Time, 25 deg Aileron Input, 8 m Linear Case
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Figure 188. Case 17 Yaw Rate w, versus Time
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Appendix B. Input File for the 6 Meter, 5 Degree Aileron Input Linear

Case, Case 5

%This is from the input flie 6 _meter_baseline caseO.nin

title=""XHALE Dec2009 TEST"
filename="xHALE dec 2009 test"

Aerodynamics {
drag
drag_derivatives
inflow_forces
inflow_expansion

% stall_model
load factor
pg_correction
nominal_mach
vertical _aero_load
stall_on
stall_model_type
reynolds_number

%or O
%or O
%or O

OR R R

"model_name"*

-3

1
0
0
0
0
1
1

50000
}

Flight Conditions {
altitude
pressure
load_factor
density
velocity
gustx
gusty
gustz

30
1 % gravmult

12

Pilot Input {

Structure {

baoa = 7.828875834563730%7 .828876272969460%7 . 828493098845625
fuel _mass = 0;
keypoints {
0 0 0 %1 Center
1 0 0 %2 kpt 1 on the right
-1 0 0 %3 kpt 1 on the left
2 0 0 %4 kpt-extension on the right
-2 0 0 %5 kpt-extension on the right
3.037 0 0.174 %6 kpt-extension on the right
-3.037 0 0.174 %7 kpt-extension on the right
1 0 -0.184 %8 R1 Pod down
-1 0 -0.184 %9 L1 Pod down
2 0 -0.184 %10 R2 Pod down
-2 0 -0.184 %11l L2 Pod down
1 -0.650 O %12 R1 Tailboom
0.7625 -0.650 O %13 R1 Tail inner tip
1.2375 -0.650 O %14 R1 Tail outer tip
-1 -0.650 O %15 L1 Tailboom
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-0.7625 -0.650
-1.2375 -0.650
2 -0.650
1.7625 -0.650
2.2375 -0.650
-2 -0.650
-1.7625 -0.650
-2.2375 -0.650

%16 L1 Tail inner tip
%17 L1 Tail outer tip
%18 R2 Tailboom

%19 R2 Tail inner tip
%20 R2 Tail outer tip
%21 L2 Tailboom

%22 L2 Tail inner tip
%23 L2 Tail outer tip

[eNoloololoNoNoloNoNe]

0 0 -0.184 %24 Center pod down
2.052 O %25 kpt-extension on the right
-2.052 O %26 kpt-extension on the right

}

members{
% [memb name, (key points ...), propertiy]
PODC 124 fairing_center %1
WR1 1 2 main_wing %2
PODlup 2 8 fairing_up_right%3
BR1 2 12 boom %4
TR1in 12 13 tail_in_right %5
TR1lou 12 14 tail_out_right %6
WR2 2 4 main_wing %7
POD3up 4 10 fairing _up_right%8
BR2 4 18 boom %9
TR2in 18 19 tail_in_right %10
TR2ou 18 20 tail_out_right %11
WR3 425 6 main_wing_dih %12
wL1 1 3 main_wing %13
POD2up 3 9 fairing_up_left %14
BL1 3 15 boom %15
TL1in 15 16 tail_in_left %16
TL1ou 15 17 tail_out left %17
wL2 3 5 main_wing %18
POD4up 5 11 fairing_up_left %19
BL2 521 boom %20
TL2in 21 22 tail_in_left %21
TL2o0u 21 23 tail_out left %22
WL3 526 7 main_wing_dih %23

}

integration direction=111 -1-1111-1-111-11-11-1-1
1-11-1-1
group{
grpl{
1
T
grp2{

~NOONNNDBEANDN

B
NROO®ONOU AW
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grp3{
13 14
13 15
15 16
15 17
13 18
18 19
18 20
20 21
20 22
18 23

}

nter member constraint{

-

member properties {
boom {

type = "fuselage”

diameter = 0.024 0.013

number of elements = 1

rigid_element = 1

crosssection {
reference axis

0.50 % location of ra from LE
% User may choose following
% type of input for varible
% reference axis locations
0.119339623
% (mass units)/(unit span)
center_of _gravity{ % Empty Inputs means cg is
% located at ra

mass_distribution

inertia {
Ixx= 2.914E-09
Ixy= 0
Ixz= 0
lyy= 1.457E-09
lyz= 0
lzz= 1.457E-09

stiffness { % Be Set to rigid. These numbers

are dummy

K1l= 5.390E+07 % extension stiffness [E*A]
Ki12= 0 % extension twist coupling
K13= 0 % extension bend y coupling
K14= 0 % extension bend z coupling
K22= 5_.390E+07 % twist stiffness [G*J]
K23= 0 % twist / bend y coupling
K24= 0 % twist / bend z coupling
K33= 5.390E+07 % bend y stiffness [E*I]
K34= 0 % bend y / bend z coupling
K44= 5.390E+07 % bend z stiffness

}

}
}

main_wing {
type = "wing"”
number of elements = 2
control surface{

160



%

%

values

}
airfoil = NACA4415

aero_coefficient = datatable

EMXO07.dat
0]

airfoilfile
AOA
rigid_element

aerodynamic_spanwise_distribution

fuel _percentage
chord

0.2

crosssection {
reference axis

mass_distribution

center_of gravity{

cgx = 0.0
cgy = 0.00756
cgz = 0.0

}

inertia {

Ixx= 8.089765E-04
Ixy= -0.000000E+00
Ixz= 0.000000E+00
lyy= 1.221712E-05
lyz= -6.493531E-06
1zz= 7.967593E-04

}

stiffness {
K11= 2.140827E+06
K12= 0.000000E+00
K13= 1.544115E+03
K14= -4_.905651E+04
K22= 7.224739E+01
K23= -0.000000E+00
K24= 0.000000E+00
K33= 1.195708E+02
K34= -4.634442E+01
K44= 6.350796E+03

}

main_wing_dih {

type = "wing"”
number of elements = 1 2
control surface{

0.2878 0

0.319

%
%
%

%

%
%
%
%

%
%

%

%

%
%
%
%
%
%
%
%
%
%

=0

Single value is used for
constant chord length
The user may specify

at each Keypoint

location of ra from LE

User may choose following
type of input for varible
reference axis locations

(mass units)/(unit span)
Empty inputs means cg is

@ c/4

located at ra

extension stiffness [E*A]
extension twist coupling
extension bend y coupling
extension bend z coupling
twist stiffness [G*J]
twist / bend y coupling
twist / bend z coupling
bend y stiffness [E*I]
bend y / bend z coupling
bend z stiffness

AiIlIR = trail 0.25 2 3 WR3 % [name, percent of chord,
start element, end element]
AilL = trail 0.25 2 3 WL3 % [name, percent of chord,
start element, end element]

}
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%

%

values

airfoil = NACA4415
aero_coefficient = datatable

airfoilfile
AOA
rigid_element

00O

EMXO07.dat

aerodynamic_spanwise_distribution

fuel percentage

chord 0.2
crosssection {
reference axis = 0.2878 0
mass_distribution = 0.319

center_of gravity{

cgx = 0.0
cgy = 0.00756
cgz = 0.0
}
inertia {
Ixx= 8.089765E-04
Ixy= -0.000000E+00
Ixz= 0.000000E+00
lyy= 1.221712E-05
lyz= -6.493531E-06
lzz= 7.967593E-04
}

stiffness {

K1l= 2.140827E+06
K12= 0.000000E+00
K13= 1.544115E+03
K14= -4_905651E+04
K22= 7.224739E+01
K23= -0.000000E+00
K24= 0.000000E+00
K33= 1.195708E+02
K34= -4.634442E+01
K44= 6.350796E+03

}
}
tail_in_right {
type = "wing"”
number of elements = 1
control surface{

%
%
%

%

%
%
%
%

%

%

%

%
%
%
%
%
%
%
%
%
%

= 40

Single value is used for
constant chord length
The user may specify

at each Keypoint

location of ra from LE

User may choose following
type of input for varible
reference axis locations

(mass units)/(unit span)
Empty inputs means cg is

@ c/4

located at ra

extension stiffness [E*A]
extension twist coupling
extension bend y coupling
extension bend z coupling
twist stiffness [G*J]
twist / bend y coupling
twist / bend z coupling
bend y stiffness [E*I]
bend y / bend z coupling
bend z stiffness

% NM = [lead/trail(location),...

% percentage of chord, ...
% start element, ...

% end element, ...

% memb label]
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ELR1in = trail 0.98 1 1 TR1lin

chord, start element, end element]

ELR2in = trail 0.98 1 1 TR2in

chord, start element, end element]

values

}

airfoil = NACA0012
aero_coefficient = datatable
AoA =0

rigid_element = 1
aerodynamic_spanwise_distribution
fuel _percentage
chord

0.11 %
%
%

%
crosssection {
reference axis = 0.3235 0%
%
%
%
mass_distribution = 0.129 %

center_of _gravity{ %
cgx = 0.0
cgy = 0.008085 %
cgz = 0.0
} %
inertia {
Ixx= 1.597900E-04

Ixy= -0.000000E+00
0.000000E+00
2.914098E-06
lyz= -1.688579E-22

numbers are dummy

lzz= 1.568759E-04
stiffness { %
K1l= 3.214025E+06 %
K12= 0.000000E+00 %
K13= -3.714275E-04 %
K14= -7.441697E+04 %
K22= 2.138858E+01 %
K23= -0.000000E+00 %
K24= 0.000000E+00 %
K33= 9.098072E+01 %
K34= 2.262609E-06 %
K44= 4.274273E+03 %

}
rigid_body{
point_mass

X

% [name, percent of

X

4 [name, percent of

= 40

Single value is used for
constant chord length
The user may specify

at each Keypoint

location of ra from LE
User may choose following
type of input for varible
reference axis locations
(mass units)/(unit span)
Empty inputs means cg is

@ c/4

located at ra

Be Set to rigid. These

extension stiffness [E*A]
extension twist coupling
extension bend y coupling
extension bend z coupling
twist stiffness [G*J]
twist / bend y coupling
twist / bend z coupling
bend y stiffness [E*I]
bend y / bend z coupling
bend z stiffness

1 % changed spelling

nodes =2
center_of gravity = 0.04575 4_.95E-04 -0.0005
mass = 0.04873
inertia{
Ixx = 4.631E-06
Ixy = -3.190E-06
Ixz = -3.057E-07
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}

lyy = 2.282E-05
lyz = 2.644E-08
lzz = 2.651E-05

}

tail_out_right {

type = "wing"
number of elements = 1
control surface{

% NM = [lead/trail(location),...

% percentage of chord, ...
% start element, ...

% end element, ...

% memb label]

ELR1ou = trail 0.98 1 1 TRlou

chord, start element, end element]

ELR2ou = trail 0.98 1 1 TR2ou

chord, start element, end element]

values

}

airfoil = NACA0012
aero_coefficient = datatable
AOA =0

rigid_element = 1

aerodynamic_spanwise_distribution
fuel percentage =
chord

0.11 %
%
%

%
crosssection {

reference axis = 0.3235 0%
%
%
%
mass_distribution = 0.129 %
center_of _gravity{ %
cgx = 0.0
cgy = 0.008085 %
cgz = 0.0
} %
inertia {
Ixx= 1.597900E-04
Ixy= -0.000000E+00
Ixz= 0.000000E+00

2.914098E-06
lyz= -1.688579E-22

numbers are dummy

lzz= 1.568759E-04
stiffness { %
K1l= 3.214025E+06 %
K12= 0.000000OE+00 %
K13= -3.714275E-04 %
K14= -7.441697E+04 %

164

x

% [name, percent of

X

4 [name, percent of

= 40

Single value is used for
constant chord length
The user may specify

at each Keypoint

location of ra from LE
User may choose following
type of input for varible
reference axis locations
(mass units)/(unit span)
Empty inputs means cg is

@ c/4

located at ra

Be Set to rigid. These
extension
extension
extension
extension

stiffness [E*A]
twist coupling
bend y coupling
bend z coupling



K22= 2.138858E+01 %
K23= -0.000000E+00 %
K24= 0.000000E+00 %
K33= 9.098072E+01 %
K34= 2.262609E-06 %
K44= 4.274273E+03 %

}
rigid_body{
point_mass

nodes =1
center_of gravity =
mass = 0.02
inertia{
Ixx = 1.866E-07
Ixy = 1.000E-10
Ixz = 0.000E+00
lyy = 1.341E-06
lyz = 0.000E+00
lzz = 1.311E-06
}

}

}
tail_in_left {

type = "wing"”
number of elements = 1
control surface{

twist stiffness [G*J]
twist / bend y coupling
twist / bend z coupling
bend y stiffness [E*I]
bend y /7 bend z coupling
bend z stiffness

1 % changed spelling

0.0286 0.008395 0.0

% NM = [lead/trail(location), ...

% percentage of chord, ...
% start element, ...

% end element, ...

% memb label]

ELL1in = trail 0.98 1 1 TL1lin

chord, start element, end element]

ELL2in = trail 0.98 1 1 TL2in

chord, start element, end element]

values

}

airfoil = NACA0012
aero_coefficient = datatable
AOA =0

rigid_element = 1

aerodynamic_spanwise_distribution
fuel_percentage =
chord

0.11 %
%
%

%

crosssection {
reference axis 0.3235 0%
%
%
%
mass_distribution = 0.129 %

center_of gravity{ %
cgx = 0.0
cgy = 0.008085 %
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X

4 [name, percent of

X

% [name, percent of

= 40

Single value is used for
constant chord length
The user may specify

at each Keypoint

location of ra from LE
User may choose following
type of input for varible
reference axis locations
(mass units)/(unit span)
Empty inputs means cg is

@ c/4



cgz = 0.0
}
inertia {
Ixx= 1.597900E-04
Ixy= -0.000000E+00
Ixz= 0.000000E+00
lyy= 2.914098E-06
lyz= -1.688579E-22
lzz= 1.568759E-04

stiffness {
numbers are dummy
K1l= 3.214025E+06
K12= 0.000000E+00
K13= -3.714275E-04
K14= -7.441697E+04
K22= 2.138858E+01
K23= -0.000000E+00
K24= 0.000000E+00
K33= 9.098072E+01
K34= 2.262609E-06
K44= 4.274273E+03

}
rigid_body{
point_mass

nodes =
center_of gravity =
mass =
inertia{
Ixx = 4.631E-06
Ixy = -3.190E-06
Ixz = -3.057E-07
lyy = 2.282E-05
lyz = 2.644E-08
lzz = 2.651E-05
}

}
}
tail_out left {
type = "wing"
number of elements = 1
control surface{

%

%

%
%
%
%
%
%
%
%
%
%

located at ra

Be Set to

extension
extension
extension
extension

rigid. These

stiffness [E*A]
twist coupling
bend y coupling
bend z coupling

twist stiffness [G*J]
twist / bend y coupling
twist / bend z coupling
bend y stiffness [E*I]
bend y / bend z coupling
bend z stiffness

1 % changed spelling

2

-0.04575 4_95E-04 -0.0005
0.04873

% NM = [lead/trail(location), ...

% percentage of chord, ...
% start element, ...

% end element, ...

% memb label]

ELL1ou = trail 0.98 1 1 TL1lou % [name, percent of

chord, start element, end element]

ELL20u = trail 0.98 1 1 TL2ou % [name, percent of

chord, start element, end element]

}

airfoil = NACA0012
aero_coefficient = datatable
AOA =0
rigid_element = 1
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aerodynamic_spanwise_distribution

fuel _percentage =

chor

values

d

0.11 %
%
%

%

crosssection {

numbers are dumm

}
+

reference axis = 0.3235 0%
%
%
%
mass_distribution = 0.129 %
center_of _gravity{ %
cgx = 0.0
cgy = 0.008085 %
cgz = 0.0
} %
inertia {
Ixx= 1.597900E-04
Ixy= -0.000000E+00
Ixz= 0.000000E+00
lyy= 2.914098E-06
lyz= -1.688579E-22
Izz= 1.568759E-04
}
stiffness { %
y
K1l= 3.214025E+06 %
K12= 0.000000E+00 %
K13= -3.714275E-04 %
K14= -7.441697E+04 %
K22= 2.138858E+01 %
K23= -0.000000E+00 %
K24= 0.000000E+00 %
K33= 9.098072E+01 %
K34= 2.262609E-06 %
K44= 4_.274273E+03 %

}

rigid_body{

point_mass

nodes =1
center_of _gravity =
mass = 0.02
inertia{
Ixx = 1.866E-07
Ixy = 1.000E-10
Ixz = 0.000E+00
lyy = 1.341E-06
lyz = 0.000E+00
lzz = 1.311E-06
}

fairing_center {

type

vtail
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= 40

Single value is used for
constant chord length
The user may specify

at each Keypoint

location of ra from LE
User may choose following
type of input for varible
reference axis locations
(mass units)/(unit span)
Empty inputs means cg is

@ c/4

located at ra

Be Set to rigid. These

extension
extension

stiffness [E*A]
twist coupling
extension bend y coupling
extension bend z coupling
twist stiffness [G*J]
twist / bend y coupling
twist / bend z coupling
bend y stiffness [E*I]
bend y / bend z coupling
bend z stiffness

1 % changed spelling

-0.0286 0.008395 0.0



%

values

are dummy

number of elements

airfoil

1
NACA0018

aero_coefficient = datatable

airfoilfile

AOA

rigid_element

mh78.dat
0
1

aerodynamic_spanwise_distribution = 40
fuel _percentage =
chord = 0.37 % Single value is used for

% constant chord length
% The user may specify

% at each Keypoint

crosssection {
reference axis= 0.6093 0%0 0%
mass_distribution= 1.0e-8 % (mass units)/(unit span)

inertia {
Ixx= 1.0e-8
Ixy= 0
Ixz= 0
lyy= 1.0e-8
lyz= 0
lzz= 1.0e-8

stiffness { % Be Set to rigid. These numbers
K1l= 5.390E+07 % extension stiffness [E*A]
K12= 0 % extension twist coupling
K13= 0 % extension bend y coupling
K14= 0 % extension bend z coupling
K22= 5.390E+07 % twist stiffness [G*J]
K23= 0 % twist / bend y coupling
K24= 0 % twist / bend z coupling
K33= 5.390E+07 % bend y stiffness [E*I]
K34= 0 % bend y / bend z coupling
K44= 5.390E+07 % bend z stiffness

3
rigid_body{

2 % changed spelling
12

point_mass
nodes
center_of gravity{

cgx{

0% 0.0125 % 0.0125 % center pod battery
0%-0.0031

¥

coy{
-0.0009 % 0.0591 % center pod battery

0.0431

}

cgz{
-0.0689 %-0.0689 % center pod battery
0.0116

mass{
0.3960
1.0248
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%

values

}
inertia{
Ixx{

1.

1.

}

Ixy{
0.

2.
}
Ixz{
0.
2.

}

lyy{
9.
2.

}
lyz{
0.
4.
}
1zz{
1.
2.

}

}

fairing _up_right {
type
number of elements
airfoil
aero_coefficient =
airfoilfile
AOA
rigid_element
aerodynamic_spanwis
fuel _percentage
chord = 0.37

crosssection {

160E-03
476E-02

O00E+00
322E-04

O0O0E+00
267E-05

485E-05
816E-03

OOOE+00
500E-04

098E-03
503E-04

“vtail"
1
NACA0018
datatable
mh78.dat
0

1

e_distribution

%
%
%

%

reference axis= 0.6093 0%0 0%

mass_distributi
inertia {
Ixx= 1.0e-8
Ixy= 0
Ixz= 0
lyy= 1.0e-8
lyz= 0
lzz= 1.0e-8

on= 1.0e-8
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%

= 40

Single value is used for
constant chord length
The user may specify

at each Keypoint

(mass units)/(unit span)



are dummy

stiffnes

K11l=
K12=
K13=
K14=
K22=
K23=
K24=
K33=
K34=
K44=

}

rigid_bo
poin
node
cent

}

mass

¥
i

s { % Be Set to

390E+07 % extension
% extension
% extension
% extension

rigid. These numbers

stiffness [E*A]
twist coupling
bend y coupling
bend z coupling

% twist / bend y coupling

% twist / bend z coupling
390E+07 % bend y stiffness [E*I]

% bend y / bend z coupling
390E+07 % bend z stiffness

5.
0
0
0
5.390E+07 % twist stiffness [G*J]
0
0
5.
0
5.

dy{

t_mass

s

er_of gravity{

cgx{

12

2 % changed spelling

0.0125 % 0.0125 % right pods battery

-0.0062

}
coy{

-0.0009 % 0.0591 % right pods battery

0.0662

}
cgz{

-0.0689 %-0.0689 % right pods battery

0.0066
}

{
0.3960

1.0571

nertia{

Ixx{
1.160E-03
1.134E-02

}

Ixy{
0.000E+00

-1.212E-03
}
Ixz{
0.000E+00
1.055E-05

}

lyy{
9._485E-05
3.209E-03

b
lyz{
0.000E+00
4 _595E-05
b
1zz{
1.098E-03
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8.484E-03

}
}
}
}
}
fairing up left {
type = "vtail”
number of elements = 1
airfoil = NACA0018
aero_coefficient = datatable
% airfoilfile = mh78.dat
AOA =0
rigid_element =1
aerodynamic_spanwise_distribution = 40
fuel percentage =
chord = 0.37 % Single value is used for
% constant chord length
% The user may specify
values
% at each Keypoint
crosssection {
reference axis= 0.6093 0%0 0%
mass_distribution= 1.0e-8 % (mass units)/(unit span)
inertia {
Ixx= 1.0e-8
Ixy= 0
Ixz= 0
lyy= 1.0e-8
lyz= 0
Izz= 1.0e-8
stiffness { % Be Set to rigid. These numbers
are dummy
K11= 5.390E+07 % extension stiffness [E*A]
Ki12= 0 % extension twist coupling
K13= 0 % extension bend y coupling
K14= 0 % extension bend z coupling
K22= 5.390E+07 % twist stiffness [G*J]
K23= 0 % twist / bend y coupling
K24= 0 % twist / bend z coupling
K33= 5.390E+07 % bend y stiffness [E*I]
K34= 0 % bend y / bend z coupling
5.

K44= 390E+07 % bend z stiffness

}
rigid_body{
point_mass
nodes
center_of_gravity{
cogx{
-0.0125 %-0.0125 % left pods battery
0.0062

2 % changed spelling
12

}

cay{
-0.0009 % 0.0591 % left pods battery

0.0662
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cgz{
-0.0689 %-0.0689 % left pods battery

0.0066
}
}
mass{
0.3960
1.0571
}
inertia{
Ixx{
1.160E-03
1.134E-02
}
Ixy{
0.000E+00
-1.212E-03
}
Ixz{
0.000E+00
1.055E-05
}
lyy{
9.485E-05
3.209E-03
}
lyz{
0.000E+00
4 _595E-05
}
1zz{
1.098E-03
8.484E-03
}
}
}
}
motor_fairing {
type = "vtail”
number of elements = 1
airfoil = NACA0018
aero_coefficient = datatable
% airfoilfile = mh78.dat
AOA =0
rigid_element =1

aerodynamic_spanwise_distribution = 40
fuel_percentage =
chord = 0.37 % Single value is used for
% constant chord length
% The user may specify
values
% at each Keypoint
crosssection {
reference axis= 0.6093 0%0 0%
mass_distribution= 1.0e-8 % (mass units)/(unit span)
inertia {
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are dummy

I xXx=
Ixy=
Ixz=
lyy=
lyz=
lzz=

stiffnes

K11=
K12=
K13=
K14=
K22=
K23=
K24=
K33=
K34=
K44=
b
rigid_bo
poin
node
cent

}

mass

3
i

ner

1.0e-8
0
0
1.0e-8
0
1.0e-8

s { %

5.390E+07 %
0] %
0 %
0 %
5.390E+07 %
0] %
0 %
5.390E+07 %
0 %
5.390E+07 %

dy{
t_mass
s
er_of _gravity{
cogx{
0.0 % 0.0
0.0

}

cay{
-0.0109 %

0.0562

}

cgz{
-0.0689 %-
0.0066

}

{
0.3960

0.4000

tia{

Ixx{
1.160E-04
1.134E-03

}

Ixy{
0.000E+00

-1.212E-03
}
Ixz{
0.000E+00
1.055E-05
}
lyy{
9.485E-05
3.209E-03
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Be Set to rigid. These numbers

extension stiffness [E*A]
extension twist coupling
extension bend y coupling
extension bend z coupling
twist stiffness [G*J]
twist / bend y coupling
twist / bend z coupling
bend y stiffness [E*I]
bend y / bend z coupling
bend z stiffness

2 % changed spelling
12

125 % right pods battery

0.0591 % right pods battery

0.0689 % right pods battery



}

lyz{
0.000E+00
4 .595E-05
}
1zz{
1.098E-03
8.484E-03
}
}
}
}
}
}
}
Loads {
frame = body_follower % or body_follower or
inertial
load_vec{

% L) (2) (3) (4) (5 (B) OPTIONAL (7) OPTIONAL (8)1

% (1): load type (force)

% (2): member designation

% (3): location type(keypoint or node)

% (4): location number

% (5): cartesian direction

% (6): time-independent value

% (7): time-independent value (OPTIONAL)

% (8): start time (OPTIONAL)

% (9): stop time (OPTIONAL)

Motl = force PODC node 1 vy
0.987101270333469%0.987101042245488%0.987157990615576% -
0.5*sin(2*pi/0.10*(t-0.01)) 0.01 o0.11

Mot2 = force PODlup node 1
0.987101270333469%0.987101042245488%0.987157990615576% -
0.5*sin(2*pi/0.10*(t-0.01)) 0.01 0.11

Mot3 = force POD2up node 1
0.987101270333469%0.987101042245488%0.987157990615576% -
0.5*sin(2*pi/0.10*(t-0.01)) 0.01 0.11

Mot4 = force POD3up node 1
0.987101270333469%0.987101042245488%0.987157990615576% -
0.5*sin(2*pi/0.10*(t-0.01)) 0.01 0.11

Mot5 = force POD4up node 1
0.987101270333469%0.987101042245488%0.987157990615576% -
0.5*sin(2*pi/0.10*(t-0.01)) 0.01 o0.11

D1 = force PODC node 2 y -0.4408
D2 = force PODlup node 2 vy -0.4408
D3 = force POD2up node 2 y -0.4408
D4 = force POD3up node 2 y -0.15
D5 = force POD4up node 2 y -0.15

% Fexample = force WL1 node 60 z 30*sin(20*t)
% [(D) (@) (3) (4) (5) (6) OPTIONAL (7) OPTIONAL (8)1
% (1): load type (force_dist)
% (2): member designation
% (3): starting element
% (4): ending element
% (5): cartesian direction

174



(6):
(M-
(3):
(9:

% FD1

%
%
%
%
%
%
%
%
%
%
% M1
%
%
%
%
%
%
%
%
%
%

LD
(1):
(2):
(3):
(4):
(3):
(6):
(7):
(8):
-

LD
(1):
(2):
(3):
(4):
(5):
(6):
(7):
(8):
(9):

% MD1
% [load type, member designation, element start, element end,
mode, voltage value, OPTIONAL--> start time, stop time,...] % NEED TO

COMPLETE

% VAl

%

%

LD
(1):
(2):
(3):
(4):
(5):
(6):

time-independent value

time-independent value (OPTIONAL)

start time (OPTIONAL)

stop time (OPTIONAL)

= force_dist MB 120 z 50*sin(40*t)+25
@) (3 (@) (b)) (6) OPTIONAL (7) OPTIONAL (8)]
load type (moment)

member designation

location type(keypoint or node)

location number

cartesian direction

time-independent value

time-independent value (OPTIONAL)

start time (OPTIONAL)

stop time (OPTIONAL)

= moment MB node 60 x 50

) (3 (@) (5) (6) OPTIONAL (7) OPTIONAL (8)]
load type (moment_dist)

member designation

starting element

ending element

cartesian direction

time-independent value

time-independent value (OPTIONAL)

start time (OPTIONAL)

stop time (OPTIONAL)

= moment_dist MB 9 10 z 50

= actuator_volt VAl 110

(2) (3) OPTIONAL (4) OPTIONAL (5)1
load type (control_surf)

control surface designation
time-independent value
time-independent value (OPTIONAL)
start time (OPTIONAL)

stop time (OPTIONAL)

DEFTAIL1= control_surf ELR1lin -7.830535569853027%-
7.830535463594316%-7.830173052395354  %12*sin(2*pi/6.3*t)% 0.01
DEFTAIL2= control_surf ELRlou -7.830535569853027%-
7.830535463594316%-7.830173052395354  %12*sin(2*pi/6.3*t)% 0.01
DEFTAIL3= control_surf ELR2in -7.830535569853027%-
7.830535463594316%-7.830173052395354  %12*sin(2*pi/6.3*t)% 0.01
DEFTAIL4= control_surf ELR2ou -7.830535569853027%-
7.830535463594316%-7.830173052395354  %12*sin(2*pi/6.3*t)% 0.01
DEFTAIL5= control_surf ELLl1lin -7.830535569853027%-
7.830535463594316%-7.830173052395354  %12*sin(2*pi/6.3*t)% 0.01
DEFTAIL6= control_surf ELLlou -7.830535569853027%-
7.830535463594316%-7.830173052395354  %12*sin(2*pi/6.3*t)% 0.01
DEFTAIL7= control_surf ELL2in -7.830535569853027%-
7.830535463594316%-7.830173052395354  %12*sin(2*pi/6.3*t)% 0.01
DEFTAIL8= control_surf ELL20u -7.830535569853027%-
7.830535463594316%-7.830173052395354  %12*sin(2*pi/6.3*t)% 0.01
DEFAIIR= control_surf AilIR 0 -5*sin(2*pi/5*t) 0.1 10
DEFAilIL= control_surf AilL 0 -5*sin(2*pi/5*t) 0.1 10
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}

Simulation {

mode = "new"
type = "dynamic"
% Model Construction Parameters
structural damping = le-4
parameter
structure
first mode damping = -le-4

to

% Steady State Simulation Parameters

sssim{
sim_type = "nonlinear”
"linearized"
relative tolerance = .001
static
numerical damping = .8
parameter
max iterations = 100
iterations
state
}
% Time Simulation Parameters
timesim{
integration_type = "Gen-Alpha™
sim_type =
"reduced_order"
time_duration = 10
time_step = 0.0001
% restart_filename = "wbt_smpl”
rho_inf_ 1 = 0.999
rho_inf 2 = 0.999
time_step_save = 100

start_time_flag
conditions fresh simulations require O

n_sub_add_time step =1
error_states 0 = [
gust_input =0
local_wrinkling =0
ref_val_1 = lelO
ref val 2 = 1lelO
time_sim_tol = lel
no_rigidbody dof =0

}

% Flutter Analysis Parameters

Flutsim{
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%

%

%
%

%

%

%

%

%
%

%
%

%

%

Structural damping
(set to 0 for no

damping)
First mode damping (set

negative value to use the
given alphD)

"nonlinear' or

Relative tolerance for

solution convergence
Numerical damping

for static solution
Maximum number of

allowed in each steady

solution

%" Trapz'% or

“linear” % "nonlinear™ or "linear"™ /

% or time_divisions=4000

0 % put a 1 to start from previous



flight_index = 2 % Flight indices where

vehicle
% stability is calculated
altitude = 30 30
% Altitudes at each index
fuel _mass =00
% Fuel mass
body_angle = -2.681822255727332 -8.483437184110727

% Body angle will come from
trim solution and have same number of inputs as speeds sep by spaces

flap_angle = 2.487111475290816 7.597875750046539
% Flap angle
thrust = 1.043348116498814 1.960989314382431
% Thrust force
U _predict = 12 8 20 % lower, step, and upper
rb_const =0 % Type of rigid body
constraint
% 0z No rb constraint
% 1: Full rb constraint
% 2: only plunging is free
% 3: only pitching is free
% 4: plunging and pitching
free
re_trim =1 % Flag to indicate retrim
% during the speed
increment
load_update_flag = Motl Mot2 Mot3 Mot4 Mot5 DEFTAIL1

DEFTAIL2 DEFTAIL3 DEFTAIL4 DEFTAILS DEFTAIL6 DEFTAIL7 DEFTAILS8
} % Note about flutter analysis:
% altutude and fuel _mass are n by 1 column matrices, where n is
the
% number of index
% body_angle, flap_angle, and thrust are also n by 1 column
matrices
% only when re_trim = O (no retrim is considered). They are
usually
% n by m matrices where m equals the span of speed increment
% Modal Analysis Parameters

modalsim{
config = free % and/or deformed_shape
% Modal analysis using
% different criteria
% free vibration (in
vacuum)
% deformed vibration (under
% prescribed load)
}
% Trim Module Parameters
trimsim{
trim_count =1 % Number of
trim solutions to be performed
altitude = 30 % Altitudes at each index
U_trim = 12% Flight Speed at each index
fuel _mass = 0% Fuel mass at each index
trimoption = 0% O: static trim (use forces) 1: dynamic trim
(use accel.)
tol_trim = 1e-8% Tolerance to converge
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parameters {

baoa 7.828876272969460 0.01

% They overide the values set in the previous
sections (as in Loads Structure)

% Body angle of attack,

initial guess, increment

DEFTAIL1 -7.830535463594316 0.01 % CS name, initial guess,
increment

Motl 0.987101042245488 0.01 % Load name (pt load),
initial guess, increment

Mot2 0.987101042245488 0.01

Mot3 0.987101042245488 0.01

Mot4 0.987101042245488 0.01

Mot5 0.987101042245488 0.01

DEFTAIL2 -7.830535463594316 0.01 % CS name, initial guess,
increment

DEFTAIL3 -7.830535463594316 0.01 % CS name, initial guess,
increment

DEFTAIL4 -7.830535463594316 0.01 % CS name, initial guess,
increment

DEFTAILS5 -7.830535463594316 0.01 % CS name, initial guess,
increment

DEFTAIL6 -7.830535463594316 0.01 % CS name, initial guess,
increment

DEFTAIL7 -7.830535463594316 0.01 % CS name, initial guess,
increment

DEFTAIL8 -7.830535463594316 0.01 % CS name, initial guess,
increment

}

}
}
Screen Output{
refgeom{

undeformed_geometry =0

sketch_plot =0

color_style = “gray"™ % "'spring" or ‘'summer’ or

"autumn™ or "‘winter' or ''gray"

}

sssim{

}

static_deformed
no_force_ lines
text
print_lift_momen
figure_position
figure_color
view
animate_response
movie
iteration_output

timesim{

time_step_output
iteration_output
progress_bar

3
Flutsim{

plot_poles

modalsim {

geometry

t

.05 0.05 0.60 0.60

60 45

PRPOORLRPFRLOO

[y

oRr R
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numberofmodes

displayed on screen

= 10 % Number of modes to be

=1 % Factor to scale the mode

shapes NOTE: No normalization is done with the modes

%
%
%
%
%
%
%
%
%
%
%
%
%
%

scale
P
trimsim{
}

print_to_file{
stiffness_matrix
interial_matrix
trim_input
trim_output
modal_analysis

}

generate_input_treel

generate_input_treeC

response_plot {
keypoint 2 pos z
keypoint 2 vel _z

load plot

File Output{
% Time Simulation File Output Request

timesim{

bframe_flight_path
bframe_flight_velocity

euler_angles

displacement{
WR3 node
WR3 node
WR3 node
WR3 node
WR2 node
WR2 node
WR1 node
WR1 node
WL3 node
WL3 node
WL3 node
WL3 node
WL2 node
WL2 node
WL1 node
WL1 node

PWORPRWFRPRWOWOOFRPWRFRWEFE WO O

}

displacement{
all
}

displacementsort
lLiftdist{

all
}

e

requency

FL1 F1

I n
=

= "node"’ % ""node'™ or ""time"
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Appendix C. Input File for the 8 Meter, No Aileron Input Linear Case,

Case 7

% This is from the input flie 8 meter_ailerons_caseO.nin
title="XHALE_Dec2009_ TEST"
Filename=""xHALE dec_ 2009 test"

Aerodynamics {
drag
drag_derivatives
inflow_forces
inflow_expansion

% stall_model
load_factor
pg_correction
nominal_mach
vertical _aero_load
stall_on
stall_model_type
reynolds_number

1 %or O
1 %or O
0 %or O
6

Flight Conditions {
altitude
pressure
load_ factor
density
velocity
gustx
gusty
gustz

30
1 % gravmult

14

}

Pilot Input {
}

Structure {

baoa = -0.587176915651974%-0.046047309451146%-
0.045987813505220

fuel _mass = 0;

keypoints {

0 0 0] %1 Center

1 0 0 %2 kpt 1 on the right

-1 0 0 %3 kpt 1 on the left

2 0 0 %4 kpt-extension on the right
-2 0 0 %5 kpt-extension on the right
4.037 0 0.174 %6 kpt-extension on the right
-4.037 0 0.174 %7 kpt-extension on the right
1 0 -0.184 %8 R1 Pod down

-1 0 -0.184 %9 L1 Pod down

2 0 -0.184 %10 R2 Pod down

-2 0 -0.184 %11l L2 Pod down
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%12 R1 Tailboom
%13 R1 Tail inner tip
%14 R1 Tail outer tip
%15 L1 Tailboom
%16 L1 Tail inner tip
%17 L1 Tail outer tip
%18 R2 Tailboom
%19 R2 Tail inner tip
%20 R2 Tail outer tip
%21 L2 Tailboom
%22 L2 Tail inner tip
%23 L2 Tail outer tip

1 -0.650
0.7625 -0.650
1.2375 -0.650
-1 -0.650
-0.7625 -0.650
-1.2375 -0.650
2 -0.650
1.7625 -0.650
2.2375 -0.650
-2 -0.650
-1.7625 -0.650
-2.2375 -0.650

[eNeoNoNooloNolololooloNoNoloNoNe]

0 0 -0.184 %24 Center pod down
3 0 %25 kpt-extension on the right
-3 0 %26 kpt-extension on the right
3.052 0 %27 kpt-extension on the right
-3.052 0 %28 kpt-extension on the right
}
members{
% [memb name, (key points ...), propertiy]
PODC 124 fairing_center %1
WR1 1 2 main_wing %2
PODlup 2 8 fairing_up_right%3
BR1 2 12 boom %4
TR1in 12 13 tail_in_right %5
TR1lou 12 14 tail_out right %6
WR2 2 4 main_wing %7
POD3up 4 10 fairing_up_right%8
BR2 4 18 boom %9
TR2in 18 19 tail_in_right %10
TR2ou 18 20 tail_out right %11
WR3 4 25 main_wing %12
WR4 25 27 6 main_wing_dih %13
wL1 1 3 main_wing %14
POD2up 3 9 fairing_up_left %15
BL1 3 15 boom %16
TL1in 15 16 tail_in_left %17
TL1ou 15 17 tail _out left %18
wL2 3 5 main_wing %19
POD4up 5 11 fairing_up_left %20
BL2 521 boom %21
TL2Iin 21 22 tail_in_left %22
TL2ou 21 23 tail _out left %23
WwL3 5 26 main_wing %24
wL4 26 28 7 main_wing_dih %25
}

integration direction=111-1-1111-1-1111-11-11 -1 -
11-11-1-1-1
group{
grpl{
1
3
grp2{

A DNDN
g~ w
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NNOONNN D

=

s
grp3{
14
14
16
16
14
19
19
21
21
19
24

}

=

6
7
8
9
10
11
12
13

15
16
17
18
19
20
21
22
23
24
25

nter member constraint{

member properties {

boom {

are dummy

type = "fuselage™
diameter = 0.024 0.013
number of elements = 1
rigid_element = 1
crosssection {

reference axis =0.50 % location of ra from LE
% User may choose following
% type of input for varible
% reference axis locations
mass_distribution = 0.01%0.119339623
% (mass units)/(unit span)

center_of _gravity{ % Empty inputs means cg is
3} % located at ra
inertia {
Ixx= 2.914E-09
Ixy= 0
Ixz= 0
lyy= 1.457E-09
lyz= 0
lzz= 1.457E-09
stiffness { % Be Set to rigid. These numbers
K1l= 5.390E+07 % extension stiffness [E*A]
Ki12= 0 % extension twist coupling
K13= 0 % extension bend y coupling
K14= 0 % extension bend z coupling
K22= 5.390E+07 % twist stiffness [G*J]
K23= 0 % twist / bend y coupling
K24= 0 % twist / bend z coupling
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%

%

values

K33= 5.390E+07
K34= 0
K44= 5_.390E+07
b
b
¥
main_wing {
type = "wing"

number of elements = 2
control surface{

airfoil = NACA44
aero_coefficient = dat
airfoilfile EMXO7 .

AOA
rigid_element
aerodynamic_spanwise_d
fuel _percentage
chord

5

crosssection {
reference axis

mass_distribution

center_of gravity{

cgx = 0.0
cgy = 0.00756
cgz = 0.0

}

inertia {
Ixx= 8.089765
Ixy= -0.000000
Ixz= 0.000000
lyy= 1.221712
lyz= -6.493531
lzz= 7.967593

}

stiffness {
K1l1= 2.140827
K12= 0.000000
K13= 1.544115
K14= -4.905651
K22= 7.224739
K23= -0.000000
K24= 0.000000
K33= 1.195708
K34= -4.634442
K44= 6.350796

}

% bend y stiffness [E*I]
% bend y / bend z coupling
% bend z stiffness

15
atable
dat

istribution
0.2 %
%
%

%

= 0.2878 0
%
%
%
%

= 0.319
%
%
%
%

E-04

E+00

E+00

E-05

E-06

E-04

E+06 %

E+00 %

E+03 %

E+04 %

E+01 %

E+00 %

E+00 %

E+02 %

E+01 %

E+03 %
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=0

Single value is used for
constant chord length
The user may specify

at each Keypoint

location of ra from LE

User may choose following
type of input for varible
reference axis locations

(mass units)/(unit span)
Empty inputs means cg is

@ c/4

located at ra

extension
extension

stiffness [E*A]
twist coupling
extension bend y coupling
extension bend z coupling
twist stiffness [G*J]
twist / bend y coupling
twist / bend z coupling
bend y stiffness [E*I]
bend y /7 bend z coupling
bend z stiffness



}

main_wing_dih {
type = "wing"
number of elements =
control surface{

12

AiIlIR = trail 0.40 2 3 WR4 % [name, percent of chord,

start element, end element]

AilL = trail 0.40 2 3 WL4 % [name, percent of chord,

start element, end element]

}
airfoil = NACA4415
aero_coefficient = datatable
% airfoilfile = EMXO07.dat
AoA =555
% rigid_element =
aerodynamic_spanwise_distribution
fuel percentage =
chord = 0.2 %
%
%
values
%
crosssection {
reference axis = 0.2878 0

%
%
%
%

mass_distribution = 0.319
%

center_of gravity{ %

cgx = 0.0

cgy = 0.00756 %

cgz = 0.0
} %
inertia {

Ixx= 8.089765E-04

Ixy= -0.000000E+00

Ixz= 0.000000E+00

lyy= 1.221712E-05

lyz= -6.493531E-06

lzz= 7.967593E-04

}

stiffness {
K11= 2.140827E+06 %
K12= 0.000000OE+00 %
K13= 1.544115E+03 %
K14= -4_905651E+04 %
K22= 7.224739E+01 %
K23= -0.000000E+00 %
K24= 0.000000E+00 %
K33= 1.195708E+02 %
K34= -4.634442E+01 %
K44= 6.350796E+03 %

}
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= 40

Single value is used for
constant chord length
The user may specify

at each Keypoint

location of ra from LE

User may choose following
type of input for varible
reference axis locations

(mass units)/(unit span)
Empty inputs means cg is

@ c/4

located at ra

extension
extension

stiffness [E*A]
twist coupling
extension bend y coupling
extension bend z coupling
twist stiffness [G*J]
twist / bend y coupling
twist / bend z coupling
bend y stiffness [E*I]
bend y / bend z coupling
bend z stiffness



tail_in_right {

type = "wing"
number of elements = 1
control surface{

% NM = [lead/trail(location), ...

% percentage of chord,...
% start element, ...

% end element, ...

% memb label]

ELR1in = trail 0.98 1 1 TR1lin

chord, start element, end element]

ELR2in = trail 0.98 1 1 TR2in

chord, start element, end element]

values

}

airfoil = NACA0012
aero_coefficient = datatable
AoA =0

rigid_element = 1

aerodynamic_spanwise_distribution
fuel _percentage =
chord

0.11 %
%
%

%
crosssection {

reference axis = 0.3235 0%
%
%
%
mass_distribution = 0.129 %
center_of gravity{ %
cgx = 0.0
cgy = 0.008085 %
cgz = 0.0
} %
inertia {
Ixx= 1.597900E-04

Ixy= -0.000000E+00
0.000000E+00
lyy= 2.914098E-06
lyz= -1.688579E-22

numbers are dummy

lzz= 1.568759E-04

}

stiffness { %
K11= 3.214025E+06 %
K12= 0.000000E+00 %
K13= -3.714275E-04 %
K14= -7.441697E+04 %
K22= 2.138858E+01 %
K23= -0.000000E+00 %
K24= 0.000000E+00 %
K33= 9.098072E+01 %
K34= 2.262609E-06 %
K44= 4_.274273E+03 %
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=S

4 [name, percent of

x

4 [name, percent of

= 40

Single value is used for
constant chord length
The user may specify

at each Keypoint

location of ra from LE
User may choose following
type of input for varible
reference axis locations
(mass units)/(unit span)
Empty inputs means cg is

@ c/4

located at ra

Be Set to rigid. These

extension stiffness [E*A]
extension twist coupling
extension bend y coupling
extension bend z coupling
twist stiffness [G*J]
twist / bend y coupling
twist / bend z coupling
bend y stiffness [E*I]
bend y /7 bend z coupling
bend z stiffness



rigid_body{
point_mass

1 % changed spelling

nodes =2
center_of _gravity = 0.04575 4_.95E-04 -0.0005
mass = 0.04873
inertia{

Ixx = 4.631E-06

Ixy = -3.190E-06

Ixz = -3.057E-07

lyy = 2.282E-05

lyz = 2.644E-08

lzz = 2.651E-05
}

}

tail_out right {

type = "wing"
number of elements = 1
control surface{

% NM = [lead/trail(location),...

% percentage of chord,...
% start element, ...

% end element, ...

% memb label]

ELR1ou = trail 0.98 1 1 TRlou

chord, start element, end element]

ELR2ou = trail 0.98 1 1 TR2ou

chord, start element, end element]

values

}

airfoil = NACA0012
aero_coefficient = datatable
AoA =0

rigid_element = 1

aerodynamic_spanwise_distribution
fuel _percentage =
chord

0.11 %
%
%

%
crosssection {
reference axis = 0.3235 0%
%
%
%
mass_distribution = 0.129 %

center_of _gravity{ %
cgx = 0.0
cgy = 0.008085 %
cgz = 0.0
} %
inertia {
Ixx= 1.597900E-04

Ixy= -0.000000E+00
0.000000E+00
2.914098E-06

186

X

4 [name, percent of

X

% [name, percent of

= 40

Single value is used for
constant chord length
The user may specify

at each Keypoint

location of ra from LE
User may choose following
type of input for varible
reference axis locations
(mass units)/(unit span)
Empty inputs means cg is

@ c/4

located at ra



lyz= -1.688579E-22

lzz=

stiffness {
numbers are dummy

}

K11l=
K12=
K13=
K14=
K22=
K23=
K24=
K33=
K34=
K44=

rigid_body{

}
}

point_mass
nodes

center_of gravity

mass

inertia{
Ixx
Ixy
Ixz
lyy
lyz
1zz

tail_in_left {
type = "wing"
number of elements
control surface{

% NM = [lead/trail(location),...
percentage of chord, ...
start element, ...
end element, ...
memb label]

%

ELL1in =

1.568759E-04

3.214025E+06
0.000000E+00
-3.714275E-04
-7.441697E+04
2.138858E+01
-0.000000E+00
0.000000E+00
9.098072E+01
2.262609E-06
4_274273E+03

1.866E-07
1.000E-10
0.000E+00
1.341E-06
0.000E+00
1.311E-06

=1

chord, start element, end element]

ELL2in =

chord, start element, end element]

values

}

airfoil

= NACAO0012

aero_coefficient =

AOA

rigid_element =
aerodynamic_span
fuel percentage

chord

Inmin=sro

0

datatable

211
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%

%
%
%
%
%
%
%
%
%
%

Be Set to

extension
extension
extension
extension

rigid. These

stiffness [E*A]
twist coupling
bend y coupling
bend z coupling

twist stiffness [G*J]
twist / bend y coupling
twist / bend z coupling
bend y stiffness [E*I]
bend y / bend z coupling
bend z stiffness

1 % changed spelling

1

0.0286 0.008395 0.0

0.02

trail 0.98 1 1 TL1lin

trail 0.98 1 1 TL2in

ise_distribution

%
%
%

%

x

X

= 40

% [name, percent of

4 [name, percent of

Single value is used for
constant chord length
The user may specify

at each Keypoint



crosssection {
reference axis = 0.3235 0% location of ra from LE
% User may choose following
% type of input for varible
% reference axis locations
mass_distribution = 0.129 % (mass units)/(unit span)

center_of gravity{ % Empty iInputs means cg is
cgx = 0.0
cgy = 0.008085 % @ c/4
cgz = 0.0

} % located at ra

inertia {

Ixx= 1.597900E-04
Ixy= -0.000000E+00
Ixz= 0.000000E+00
lyy= 2.914098E-06
lyz= -1.688579E-22
1zz= 1.568759E-04

}
stiffness { % Be Set to rigid. These
numbers are dummy

Ki1l= 3.214025E+06 % extension stiffness [E*A]
K12= 0.000000E+00 % extension twist coupling
K13= -3.714275E-04 % extension bend y coupling
K14= -7.441697E+04 % extension bend z coupling
K22= 2.138858E+01 % twist stiffness [G*J]
K23= -0.000000E+00 % twist / bend y coupling
K24= 0.000000E+00 % twist / bend z coupling
K33= 9.098072E+01 % bend y stiffness [E*1]
K34= 2.262609E-06 % bend y / bend z coupling
K44= 4_.274273E+03 % bend z stiffness

}
rigid_body{

point_mass 1 % changed spelling

nodes =2
center_of gravity = -0.04575 4_.95E-04 -0.0005
mass = 0.04873
inertia{

Ixx = 4.631E-06

Ixy = -3.190E-06

Ixz = -3.057E-07

lyy = 2.282E-05

lyz = 2.644E-08

lzz = 2.651E-05
}

}
}
tail_out left {
type = "wing"”
number of elements = 1
control surface{
% NM = [lead/trail(location), ...

% percentage of chord, ...
% start element, ...

% end element, ...

% memb label]
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ELL1ou = trail 0.98 1 1 TLlou

chord, start element, end element]

ELL20u = trail 0.98 1 1 TL20u

chord, start element, end element]

values

}

airfoil = NACA0012
aero_coefficient = datatable
AoA =0

rigid_element = 1
aerodynamic_spanwise_distribution
fuel _percentage
chord

0.11 %
%
%

%
crosssection {
reference axis = 0.3235 0%
%
%
%
mass_distribution = 0.129 %

center_of _gravity{ %
cgx = 0.0
cgy = 0.008085 %
cgz = 0.0
} %
inertia {
Ixx= 1.597900E-04

Ixy= -0.000000E+00
0.000000E+00
2.914098E-06
lyz= -1.688579E-22

numbers are dummy

lzz= 1.568759E-04
stiffness { %
K1l= 3.214025E+06 %
K12= 0.000000E+00 %
K13= -3.714275E-04 %
K14= -7.441697E+04 %
K22= 2.138858E+01 %
K23= -0.000000E+00 %
K24= 0.000000E+00 %
K33= 9.098072E+01 %
K34= 2.262609E-06 %
K44= 4.274273E+03 %

}
rigid_body{
point_mass

nodes =1
center_of gravity =
mass = 0.02
inertia{

Ixx = 1.866E-07

Ixy = 1.000E-10

Ixz = 0.000E+00
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X

% [name, percent of

X

4 [name, percent of

= 40

Single value is used for
constant chord length
The user may specify

at each Keypoint

location of ra from LE
User may choose following
type of input for varible
reference axis locations
(mass units)/(unit span)
Empty inputs means cg is

@ c/4

located at ra

Be Set to rigid. These

extension stiffness [E*A]
extension twist coupling
extension bend y coupling
extension bend z coupling
twist stiffness [G*J]
twist / bend y coupling
twist / bend z coupling
bend y stiffness [E*I]
bend y / bend z coupling
bend z stiffness

1 % changed spelling

-0.0286 0.008395 0.0



}

lyy =
lyz =
1zz =
3
3
3
fairing_center {

type

number of elements

airfoil

%

values

are dummy

aero_coefficient =
airfoilfile

AOA

rigid_element

aerodynamic_spanwise

fuel percentage
chord = 0.37

crosssection {

1.341E-06
0.000E+00
1.311E-06

“vtail”

1

NACA0018
atatable

mh78.dat

0

1

(I I I =R | I 1|

distribution

%
%
%

%

reference axis= 0.6093 0%0 0%
mass_distribution= 1.0e-8

inertia {
Ixx= 1.0e-8
Ixy= 0
Ixz= 0
lyy= 1.0e-8
lyz= 0
lzz= 1.0e-8

stiffness {

% Be Set to

%

= 40

Single value is used for
constant chord length
The user may specify

at each Keypoint

(mass units)/(unit span)

rigid. These numbers

K11l=
K12=
K13=
K14=
K22=
K23=
K24=
K33=
K34=
K44=

}

390E+07

5.

0

0

0
5.390E+07
0

0
5.390E+07
0
5.

390E+07

rigid_body{
point_mass

nodes

%
%
%
%
%
%
%
%
%
%

extension
extension
extension
extension

stiffness [E*A]
twist coupling
bend y coupling
bend z coupling

twist stiffness [G*J]
twist / bend y coupling
twist / bend z coupling
bend y stiffness [E*I]
bend y / bend z coupling
bend z stiffness

12

center_of gravity{
cgx{

0% 0.0125 %

0%-0.0031

}
coy{

2 % changed spelling

0.0125 % center pod battery

0.0591 % 0.0591 % center pod battery

0.0431
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%

values

}
cgz{

-0.0689 %-0.0689 % center pod battery

0.

}
}
mass{
0.3960
1.0248
}
inertia{
Ixx{

1.
1.

by
Ixy{

0.
2.

}
Ixz{

0.
2.

}
lyy{

9.
2.

}
lyz{

0.
4.

}
1zz{

1.
2.

}

}

fairing_up_right {
type
number of elements
airfoil
aero_coefficient =
airfoilfile
AOA
rigid_element

aerodynamic_spanwise

fuel _percentage
chord = 0.37

crosssection {

0116

160E-03
476E-02

O0O0E+00
322E-04

OOOE+00
267E-05

485E-05
816E-03

O00E+00
500E-04

098E-03
503E-04

“vtail”
1
NACA0018
datatable
mh78.dat
0

1

distribution

%
%
%

%

reference axis= 0.6093 O0%0 0%
mass_distribution= 1.0e-8
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%

= 40

Single value is used for
constant chord length
The user may specify

at each Keypoint

(mass units)/(unit span)



are dummy

inertia {
IxXx=
Ixy=
Ixz=
lyy=
lyz=
1zz=

stiffness

K11l=
K12=
K13=
K14=
K22=
K23=
K24=
K33=
K34=
K44=

}

1.0e-8
0
0
1.0e-8
0
1.0e-8

{
390E+07

5.

0

0

0
5.390E+07
0]

0
5.390E+07
0
5.

390E+07

%

%
%
%
%
%
%
%
%
%
%

rigid_body{

point_mass

nodes

cent

}

mass

3
i

ner

er_of _gravity{
cgx{

Be Set to

extension
extension
extension
extension

rigid. These numbers

stiffness [E*A]
twist coupling
bend y coupling
bend z coupling

twist stiffness [G*J]
twist / bend y coupling
twist / bend z coupling
bend y stiffness [E*I]
bend y / bend z coupling
bend z stiffness

12

2 % changed spelling

0.0125 % 0.0125 % right pods battery

-0.0062

}
coy{

0.0591 % 0.0591 % left pods battery

0.0662

}
cgz{

-0.0689 %-0.0689 % right pods battery

0.0066
}

{
0.3960

1.0571

tia{

Ixx{
1.160E-03
1.134E-02

}

Ixy{
0.000E+00

-1.212E-03
}
Ixz{
0.000E+00
1.055E-05

}

lyy{
9.485E-05
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3.209E-03

}
lyz{
0.000E+00
4 .595E-05
}
1zz{
1.098E-03
8.484E-03
}
}
}
}
}
fairing_up_left {
type = "vtail”
number of elements = 1
airfoil = NACA0018
aero_coefficient = datatable
% airfoilfile = mh78.dat
AOA =0
rigid_element =1
aerodynamic_spanwise_distribution = 40
fuel _percentage =
chord = 0.37 % Single value is used for
% constant chord length
% The user may specify
values
% at each Keypoint
crosssection {
reference axis= 0.6093 0%0 0%
mass_distribution= 1.0e-8 % (mass units)/(unit span)
inertia {
Ixx= 1.0e-8
Ixy= 0
Ixz= 0
lyy= 1.0e-8
lyz= 0
lzz= 1.0e-8
stiffness { % Be Set to rigid. These numbers
are dummy
K11l= 5.390E+07 % extension stiffness [E*A]
K12= 0 % extension twist coupling
K13= 0 % extension bend y coupling
K14= 0 % extension bend z coupling
K22= 5.390E+07 % twist stiffness [G*J]
K23= 0 % twist / bend y coupling
K24= 0 % twist / bend z coupling
K33= 5.390E+07 % bend y stiffness [E*I]
K34= 0 % bend y / bend z coupling
K44= 5.390E+07 % bend z stiffness
}

rigid_body{
point_mass
nodes

2 % changed spelling
12

center_of gravity{
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-0.0125 %-0.0125 % left pods battery
0.0062

0.0591 % 0.0591 % left pods battery
0.0662

-0.0689 %-0.0689 % left pods battery
0.0066

1.160E-03
1.134E-02

0.000E+00
-1.212E-03

0.000E+00
1.055E-05

9.485E-05
3.209E-03

0.000E+00
4 _595E-05

1.098E-03
8.484E-03

}

Loads {
frame = body_follower % or body_follower or
inertial
load_vec{
% [(D) (@) (3 (4) (5) (6) OPTIONAL (7) OPTIONAL (8)1
% (1): load type (force)
% (2): member designation
% (3): location type(keypoint or node)
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% (4): location number

% (5): cartesian direction

% (6): time-independent value
% (7): time-independent value
% (8): start time (OPTIONAL)
% (9): stop time (OPTIONAL)
Motl = force PODC node

1.381910189857558%1.393017135044694%1 .

%1.179272806499928%2.076274838533569
0.01 0.11
Mot2 = force PODlup node

1.381910189857558%1.393017135044694%1 .

%1.179272806499928%2.076274838533569
0.01 0.11
Mot3 = force POD2up node

1.381910189857558%1 .393017135044694%1 .

%1.179272806499928%2 .076274838533569
0.01 0.11
Mot4 = force POD3up node

1.381910189857558%1 .393017135044694%1 .

%1.179272806499928%2 .076274838533569
0.01 0.11
Mot5 = force POD4up node

1.381910189857558%1.393017135044694%1 .

%1.179272806499928%2.076274838533569

(OPTIONAL)

1
397558812228706
-0.5*sin(2*pi/0.10*(t-0.01))

1
397558812228706
-0.5*sin(2*pi/0.10*(t-0.01))

1
397558812228706
-0.5*sin(2*pi/0.10*(t-0.01))

1
397558812228706
-0.5*sin(2*pi1/0.10*(t-0.01))

1
397558812228706
~0.5*sin(2*pi/0.10*(t-0.01))

0.01 0.11
D1 = force PODC node 2 y -0.4408
D2 = force PODlup node 2 y -0.4408
D3 = force POD2up node 2 y -0.4408
D4 = force POD3up node 2 vy -0.4408
D5 = force POD4up node 2 vy -0.4408
% Fexample = force WL1 node 60 z 30*sin(20*t)

% [(1) (2) (3) (4) (5) (6) OPTIONAL (7) OPTIONAL (8)]

% (1): load type (force_dist)
% (2): member designation
% (3): starting element
% (4): ending element
% (5): cartesian direction
% (6): time-independent value
% (7): time-independent value
% (8): start time (OPTIONAL)
% (9): stop time (OPTIONAL)

% FD1 = force_dist mMB

(OPTIONAL)

120 z 50*sin(40*t)+25

% [(1) (@) (3) (4) (5) (6) OPTIONAL (7) OPTIONAL (8)]

% (1): load type (moment)
% (2): member designation
% (3): location type(keypoint
% (4): location number
% (5): cartesian direction
% (6): time-independent value
% (7): time-independent value
% (8): start time (OPTIONAL)
% (9): stop time (OPTIONAL)

% M1 = moment MB

or node)

(OPTIONAL)

node 60 Xx 50

% [(1) (2) (3) (4) (5) (6) OPTIONAL (7) OPTIONAL (8)]

% (1): load type (moment dist)

% (2): member designation
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% (3): starting element
% (4): ending element
% (5): cartesian direction
% (6): time-independent value
% (7): time-independent value (OPTIONAL)
% (8): start time (OPTIONAL)
% (9): stop time (OPTIONAL)
% MD1 = moment_dist MB 9 10 z 50

% [load type, member designation, element start, element end,
mode, voltage value, OPTIONAL--> start time, stop time,...] % NEED TO

COMPLETE
% VAL = actuator_volt VAl 110

% [(1) (2) (3) OPTIONAL (4) OPTIONAL (5)1

% (1): load type (control_surf)

% (2): control surface designation

% (3): time-independent value

% (4): time-independent value (OPTIONAL)

% (5): start time (OPTIONAL)

% (6): stop time (OPTIONAL)

DEFTAIL1= control_surf ELRlin 0.255459746972205%-
0.797452909688008%-0.798991452122181% 12*sin(2*pi/7.4*t) %-
0.5*sin(2*pi/0.10*(t-0.01)) 0.01 0.11

DEFTAIL2= control_surf ELRlou 0.255459746972205%-
0.797452909688008%-0.798991452122181% 12*sin(2*pi/7.4*t) %-
0.5*sin(2*pi/0.10*(t-0.01)) 0.01 o0.11

DEFTAIL3= control_surf ELR2iIn 0.255459746972205%-
0.797452909688008%-0.798991452122181% 12*sin(2*pi/7.4*t) %-
0.5*sin(2*pi/0.10*(t-0.01)) 0.01 0.11

DEFTAIL4= control_surf ELR2ou 0.255459746972205%-
0.797452909688008%-0.798991452122181% 12*sin(2*pi/7.4*t) %
0.5*sin(2*pi/0.10*(t-0.01)) 0.01 0.11

DEFTAIL5= control_surf ELLlin 0.255459746972205%-
0.797452909688008%-0.798991452122181% -12*sin(2*pi/7.4*t) %-
0.5*sin(2*pi/0.10*(t-0.01)) 0.01 0.11

DEFTAIL6= control_surf ELLlou 0.255459746972205%-
0.797452909688008%-0.798991452122181% -12*sin(2*pi/7.4*t) %-
0.5*sin(2*pi/0.10*(t-0.01)) 0.01 0.11

DEFTAIL7= control_surf ELL2in 0.255459746972205%-
0.797452909688008%-0.798991452122181% -12*sin(2*pi/7.4*t) %-
0.5*sin(2*pi/0.10*(t-0.01)) 0.01 o0.11

DEFTAIL8= control_surf ELL20u 0.255459746972205%-
0.797452909688008%-0.798991452122181% -12*sin(2*pi/7.4*t) %-
0.5*sin(2*pi/0.10*(t-0.01)) 0.01 0.11

DEFAIIR = control_surf AilR 0 %-25*sin(2*pi/5*t)% 0.1
DEFAIIL = control_surf AilL 0 %-25*sin(2*pi/5*t)% 0.1
}
}
Simulation {
mode = "‘new"
type = "dynamic"
% Model Construction Parameters
structural damping = le-4 % Structural damping
parameter
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structure

first mode damping
to

= -le-4 %

% (set to 0 for no

% damping)
First mode damping (set

% negative value to use the
% given alphD)

% Steady State Simulation Parameters

or "linearized"
Relative tolerance for

= "nonlinear” %
= .001 %

% solution convergence
= .8 % Numerical damping

% for static solution
= 100 % Maximum number of

% allowed in each steady

% solution

sssim{
sim_type
relative tolerance
static
numerical damping
parameter
max iterations
iterations
state
)
% Time Simulation Parameters
timesim{
integration_type
sim_type

"reduced_order"
time_duration
time_step

% restart_filename
rho_inf_ 1
rho_inf 2
time_step_save
start_time_flag

conditions fresh simulations
n_sub_add_time_step
error_states O
gust_input
local_wrinkling
ref_val_1
ref val 2
time_sim_tol
no_rigidbody dof

}

= "Gen-Alpha" %" Trapz'% or

= "linear” % "nonlinear'"™ or "linear" /
= 15

= 0.001 % or time_divisions=4000
= "wbt_smpl"” % 2?7?2777

= 0.999

= 0.999

= 100

0 % put a 1 to start from previous
require O

bl

[¢)
=
o

el0

[ T TR TR TR TR TR T
Opppoomk
=

% Flutter Analysis Parameters

Flutsim{
flight_index
vehicle
altitude
fuel _mass

body angle

= 5 % Flight indices where

% stability is calculated
= 30 30 30 30 30

% Altitudes at each index
=00000O0

% Fuel mass

= 2.205322913566195 -0.045987813505220 -

1.443354591065910 -2.368166336699205 -3.011227170417016

% Body angle will come from

trim solution and have same number of inputs as speeds sep by spaces
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flap_angle = -4.489285620262512 -0.798991452122181
1.274654009819700 2.561879489113293 3.425940725693468
% Flap angle
thrust = 1.175649523636680 1.397558812228706
1.640699000413539 1.919182700376490 2.229785787025574
% Thrust force

U predict =12 2 20 % lower, step, and upper
rb_const =0 % Type of rigid body
constraint
% 0z No rb constraint
% 1: Full rb constraint
% 2: only plunging is free
% 3: only pitching is free
% 4: plunging and pitching
free
re_trim =1 % Flag to indicate retrim
% during the speed
increment
load_update_flag = Motl Mot2 Mot3 Mot4 Mot5 DEFTAIL1

DEFTAIL2 DEFTAIL3 DEFTAIL4 DEFTAILS DEFTAIL6 DEFTAIL7 DEFTAILS
} % Note about flutter analysis:
% altutude and fuel _mass are n by 1 column matrices, where n is
the
% number of index
% body_angle, flap_angle, and thrust are also n by 1 column
matrices
% only when re_trim = 0 (no retrim is considered). They are
usually
% n by m matrices where m equals the span of speed increment
% Modal Analysis Parameters

modalsim{
config = free % and/or deformed_shape
% Modal analysis using
% different criteria
% free vibration (in
vacuum)
% deformed vibration (under
% prescribed load)
}
% Trim Module Parameters
trimsim{
trim_count = 1%5 % Number

of trim solutions to be performed

altitude = 30%30 30 30 30 30% Altitudes at each index

U_trim = 14%12 14 16 18 20% Flight Speed at each index

fuel _mass =0%0 000O0 % Fuel mass at each
index

trimoption =0% 000O0 % O0: static trim (use
forces) 1: dynamic trim (use accel.)

tol_trim = le-2%le-2 le-2 le-2 le-2 le-2 % Tolerance to
converge

parameters { % They overide the values set in the previous
sections (as in Loads Structure)

baoa 2 0.1 % Body angle of attack, initial guess,
increment

Motl 4 0.1 % Load name (pt load), initial guess,
increment
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Mot4 -
Mot5 -
DEFTAIL1 2 0.1 % CS name, initial guess, increment
DEFTAIL2 2 0.1 % CS name, initial guess, increment
DEFTAIL3 2 0.1 % CS name, initial guess, increment
DEFTAIL4 2 0.1 % CS name, initial guess, increment
DEFTAILS5 2 0.1 % CS name, initial guess, increment
DEFTAIL6 2 0.1 % CS name, initial guess, increment
DEFTAIL7 2 0.1 % CS name, initial guess, increment
DEFTAIL8 2 0.1 % CS name, initial guess, increment
}
}
}
Screen Output{
refgeom{
undeformed_geometry =1
sketch_plot =1

color_style
"autumn™ or “'winter or ‘gray"

}

sssim{
static_deformed_geometry
no_force_lines
text
print_lift_moment
figure_position
figure_color
view
animate_response
movie
iteration_output

"gray' % ''spring' or “'summer" or

.05 0.05 0.60 0.60

60 45

RPRPOORROR

=

}

timesim{
time_step_output
iteration_output
progress_bar

I
[y

Flutsim{
plot_poles

|
o

modalsim {
numberofmodes = 10 % Number of modes to be
displayed on screen
scale =1 % Factor to scale the mode
shapes NOTE: No normalization is done with the modes
}
trimsim{
}
% print_to file{
% stiffness _matrix
% interial_matrix
% trim_input
% trim_output
% modal_analysis

U

1
1
1
1
T

requency
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%
%
%
%
%
%
%

generate_input_treel

generate_input_treeC

response_plot {
keypoint 2 pos z
keypoint 2 vel_z

}
load plot

File Output{
% Time Simulation File Output Request

timesim{

bframe_flight_path
bframe_flight_velocity

euler_angles

displacement{
WR4 node
WR4 node
WR4 node
WR3 node
WR3 node
WR2 node
WR2 node
WR1 node
WR1 node
WR1 node
WL4 node
WL4 node
WL4 node
WL3 node
WL3 node
WL2 node
WL2 node
WL1 node
WL1 node
WL1 node

PWOWOWOWOORWOHOWOWO WO ©

}

displacement{
all
}

displacementsort
liftdist{

all
}

FL1 F1

Inmn
=

= "node"
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