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AFIT/GAE/ENY/11-J02 
 

Abstract 

 

Recent events, such as the crash of NASA’s Helios aircraft during a test flight, 

show that more must be known about the nonlinear control of HALE aircraft.  Shearer, 

Cesnik and their co-workers have developed a code that is a practical solution to the 

coupled nonlinear aeroelasticity and flight dynamics of very flexible aircraft called the 

University of Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST).  They 

are also in the process of developing a model HALE aircraft called X-HALE which will 

be used to validate this code experimentally.  This research performs flight simulations 

with UM/NAST so as to make predictions about X-HALE’s future test flights and 

subsequently uncover the strengths and weaknesses of UM/NAST when X-HALE is 

finally flown.  These simulations include simulations of straight and level flight and 

rolling flight.  Rolling simulations involve periodic changes in the angle of the ailerons.  

Both the 6 meter and the 8 meter models of X-HALE are studied.  Two control models 

are compared.  These include the linear and non-linear models of UM/NAST. 
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1 

SIMULATIONS FOR THE TEST FLIGHT OF A HALE AIRCRAFT 

 

I. Introduction 

High Altitude Long Endurance (HALE) aircraft have great potential as 

Intelligence, Surveillance and Reconnaissance (ISR) platforms [35].  Additionally, they 

can also be used as network communication nodes for military or civilian purposes, or 

perform general atmospheric research [39].  The US Air Force has been developing a 

new type of ISR aircraft called “SensorCraft”, which are large HALE aircraft with wings 

spans in excess of 60 meters.  These highly flexible aircraft ideally have high-aspect–

ratio wings, slender fuselages and high aircraft performance to handle long loiter times 

and heavy payloads [22].  SensorCraft generally have high structural performance, high 

aerodynamic efficiencies and low structural weight fractions.  As a result, they also 

generally have low frequency natural structural vibration modes, and geometrically-

nonlinear structural and flight dynamics.  The three platform shapes that have been 

considered for SensorCraft are wing-body-tail (Figure 1), single-wing (Figure 2) and 

joined-wing (Figure 3) configurations [34].  Because very flexible aircraft have very low 

frequencies for their natural vibration modes, the structural dynamics and the rigid-body 

characteristics of these aircraft are strongly coupled [4]. 
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aircraft), RCAS (Rotorcraft Comprehensive Analysis System) and ASWING have been 

developed for the use of modeling nonlinear aeroelastic and flight dynamics of an aircraft 

but none have been completely validated with real flight data from a HALE aircraft [4]. 

Shearer, Cesnik and their co-workers [4] have developed a Matlab program that is 

a practical solution to the coupled nonlinear aeroelasticity and flight dynamics of very 

flexible aircraft called the University of Michigan’s Nonlinear Aeroelastic Simulation 

Toolbox (UM/NAST).  This code serves as a plant representation for HALE aircraft 

control design.  It focuses on a reduced number of states to represent the complex 

nonlinear problem.  This code addresses the following issues:  nonlinear aeroelastic 

modeling, integral wing actuation for generating maneuver loads, flutter boundary 

enhancement, gust load alleviation and overall nonlinear vehicle optimization of 

unconventional high aspect ratio aircraft.  Shearer, Cesnik and their co-workers are also 

in the process of developing a scaled test HALE aircraft called X-HALE which will be 

used to validate UM/NAST.  The goal of this research is to perform flight simulations 

with UM/NAST so as to make predictions about X-HALE’s future test flights and 

subsequently uncover the strengths and weaknesses of UM/NAST when X-HALE is 

finally flown.  
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II. Theoretical Development 

II.1 Previous Research and Motivation 

Recent events such as the crash of NASA’s Helios aircraft show that more must 

be known about the nonlinear control of HALE aircraft.  This is the motivation of this 

research.  Nonlinear aeroelastic solvers have been under development since the 1990’s; 

however, the problem of nonlinear aeroelasticity coupled with nonlinear flight dynamics 

is still not completely understood.  Several codes, such as UM/NAST, NATASHA, 

ASWING and RCAS, have been developed for the use of modeling nonlinear aeroelastic 

and flight dynamics of an aircraft but none have been completely validated with real 

flight test data from a HALE aircraft; they have been validated in a piecemeal fashion 

against beam models such as a simple cantilevered beam model and wind tunnel data.  

This is because there currently is no aircraft flight data available for validation [4].  A 

history of progress made on the problem of nonlinear aeroelasticity coupled with 

nonlinear flight dynamics will be explored. 

II.2 The Early Work of Van Schoor, Von Flotow and Jones 

Van Schoor and von Flotow were two of the first to study nonlinear aeroelasticity 

for very flexible aircraft in the 1990’s.  They demonstrated that when flexible structural 

modeling is included the classic rigid-body modes change significantly by using 

linearized analysis about nonlinear equilibrium points.  Their work confirmed the 

importance of taking aircraft structural dynamics, as well as other aeroelastic effects such 

as gust response and flutter instability, into account when analyzing the flight dynamics 

of very flexible aircraft [36].  Jones and his co-workers [11] have worked on the approach 

of designing HALE aircraft.  Their work describes some of the challenges with the design 
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approach of HALE aircraft and demonstrates that standard aircraft control design 

methods are not valid for the high-aspect-ratio and low Reynolds number wings of HALE 

aircraft.  They concluded that this is because of the lack of data and methods that allow 

the prediction of a HALE aircraft’s structure mass, engine performance at high altitudes 

and aerodynamic parameters.  They explained that the high-aspect-ratio and low 

Reynolds number wings of HALE aircraft are associated with nonlinear structural 

dynamics and are frequently subject to aeroelastic phenomena such as flutter making 

typical design approaches unreliable. 

II.3 The Development and Use of ASWING 

Drela [6] was the first to begin developing the ASWING code and is currently 

working to improve its design.  ASWING models an entire flexible aircraft as a structure 

of joined nonlinear beams.  ASWING uses a compressible vortex type source-lattice with 

wind-aligned trailing vorticity.  It also uses the full Newton method to solve the nonlinear 

equation.   

Love et al. [13] used ASWING to model the aeroelastic effects on a swept flying 

wing SensorCraft.  The aeroelastic analysis focused on body freedom flutter.  A Nastran 

finite element model of the aircraft was used to provide an initial aeroelastic flutter 

analysis.  Love explored tradeoffs with wing stiffness, altitude and center of gravity 

locations in order to better understand whether passive means can increase flutter speed 

to acceptable levels. 

González [9] modeled the Unmanned Airplane for Ecological Conservation as a 

flexible-body using the ASWING code and compared it with results from an analytical-

empirical method and potential flow codes.  The goal was to evaluate the aerodynamic 
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and static stability of the aircraft.  The results show that the flexible-body and rigid-body 

results show slight differences. 

II.4 The Development of UM/NAST 

Patil et al. [16] studied the aeroelasticity and flight dynamics of HALE aircraft.  

Their work showed that the behavior of HALE aircraft can vary dramatically due to the 

flexible nature of the wings.  They also showed that modeling a HALE aircraft using a 

linear aeroelastic analysis in which the structure is assumed to be rigid can lead to 

significant errors.  Furthermore, there is a significant difference between rigid body, 

linear aeroelastic and nonlinear aeroelastic dynamics when it comes to the short period 

and the phugoid modes of very flexible aircraft.  The short period and phugoid modes 

were acquired by linearizing the nonlinear dynamics about a nonlinear equilibrium. 

Cesnik and Brown [3] started the strain-based approach for modeling the 

dynamics of highly flexible aircraft.  This method is solved in the time domain and was 

validated against the Goland wing [2].  Cesnik and Brown [3] modeled a HALE aircraft 

using a rigid fuselage and a highly flexible high-aspect-ratio composite wing.  They 

analyzed the time-marching aeroelastic and aeroservoelastic behavior of HALE aircraft 

and cantilevered wings under constrained reference frame motion with imbedded 

actuation.  They used the finite state two-dimensional strip theory developed by Peters et 

al. [19] for unsteady aerodynamics. 

By adding a flexible fuselage and developing a split beam formulation, Cesnik 

and Su [5] continued the work of Cesnik and Brown.  They emphasized roll performance 

and nonlinear-flutter during their study.  Patil and Hodges [17], Su and Cesnik [31], and 

Patil and Taylor [18] all used 1-D beam modeling for slender structures to study the 
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nonlinear structural flight dynamics of a flying wing type aircraft.  They also used the 

finite state two-dimensional strip theory developed by Peters et al. [19] for unsteady 

aerodynamics just as Cesnik and Brown did [3].  Su and Cesnik also studied how the 

wrinkling of the skin of a flying wing type aircraft affected its torsional stiffness.  Wang 

et al. [37] used the unsteady vortex lattice method and the geometrically exact beam 

modeling method to study a flying wing type aircraft. 

Palacios and Cesnik [15] developed nonlinear aeroelastic tools.  Their high-

fidelity code used 3-D Euler equations to model the air flow.  They used a split 1-D and 

2-D model to model the 3-D structural deformation.  The 1-D model follows traditional 

1-D beam bending theory where the cross section of the beam remains undeformed.  The 

2-D model allows for changes in the cross section of the beam as the beam undergoes 

various internal and external loads.  Palacios and Cesnik’s high-fidelity code can only 

produce results for steady-state solutions because of the large computational size and the 

coupled structure of the CFD solution; the code is not suitable to run full aircraft 

simulations.  Garcia [8] added to Palacios and Cesnik’s code and created a nonlinear 

finite element model which includes the full Euler/Navier-Stokes solution.  Garcia’s 

results are significant because he showed that there are significant differences between 

the results of the linear and the nonlinear structural modeling of a swept cantilevered 

wing. 

Shearer and Cesnik [22] developed a method for the characterization of the 

response of a very flexible aircraft that is used in the UM/NAST code.  The geometrically 

nonlinear structural response of the aircraft was modeled using six-degree of freedom 

equations of motion.  They used a low-order strain-based nonlinear structural analysis 
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method and an unsteady finite state potential-flow aerodynamics analysis method to 

formulate their aerodynamic model.  Shearer and Cesnik used their modified 

Generalized-α Method for integrating the governing equations of a very flexible aircraft.   

Su and Cesnik [32] used the UM/NAST code to model the nonlinear aeroelasticity of a 

flapping wing Micro Air Vehicle (MAV), however, the code has not been validated by 

any experimental means at this time. 

Shearer, Cesnik and their co-workers have begun the development of a very 

flexible RPV aircraft called X-HALE for this purpose.  This aircraft has two 

configurations: the 6 meter and 8 meter span configurations.  Cesnik et al. [4] have 

performed gust and roll simulations for the 8 meter model of X-HALE.  Their results 

suggest that when a 1-cosine gust is symmetrically applied to the 8 meter model X-HALE 

with a maximum gust speed of 4 m/s, while the nominal flight speed is 14 m/s at 30 m 

altitude, the aircraft is stable.  Also, when a single period of a left-wing-down sinusoidal 

aileron input is applied the aircraft is stable for aileron inputs with a 2 degree amplitude, 

but not for inputs with a 5 degree amplitude or greater. 

II.5 RCAS 

Saberi et al. [21] of the Aeroflightdynamics Directorate of the U.S. Army developed 

an integrated computational fluid and non-linear structural dynamics software system 

called RCAS for comprehensive rotorcraft analysis and simulation.  The software uses 

computational fluid dynamics, rotorcraft comprehensive analysis and computational 

structural dynamics on parallel high performance computer systems.  According to 

Strawn et al. [30], RCAS was validated with data taken from full-scale helicopters.  The 

results of the validation showed that the computational fluid approach provides an 
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accurate model for the non-linear aerodynamics and dynamic forces experienced by a 

rotorcraft.  No validation has been done using fixed-wing aircraft [4]. 

II.6 NATASHA 

NATASHA is a software system that analyzes the nonlinear aerodynamics and 

nonlinear structural dynamics of HALE aircraft.  NATASHA is based on geometrically 

exact, fully intrinsic beam equations.  Sotoudeh and Hodges [26] updated NATASHA so 

that it is capable of analyzing joined-wing aircraft configurations.  This was done using 

fully intrinsic equations and an incremental form of kinematical equations.  This updated 

version of the NATASHA code was validated using a joined-wing structure.  The 

program can also now provide trim and stability analyses.  Sotoudeh and Hodges [27] 

also studied the effects of joint position and sweep angle of the aft wing of a joined-wing 

aircraft.  Sotoudeh et al. [28] validated NATASHA with a range of results from well 

known solutions of beam stability and vibration problems, experimental data from scaled 

wind tunnel tests and results from RCAS.  NATASHA uses 2-D aerodynamics and the 

finite state induced flow model of Peters and Johnson [19] to analyze the nonlinear 

aeroelastic characteristics of flying wings.  Sotoudeh and Hodges have stated that they 

hope that NATASHA’s results can be used as benchmarks for their own codes since the 

NATASHA model is limited in its capabilities. 

II.7  Other Recent Work on Nonlinear Aeroelastic Solvers 

Blair and Canfield [1] created a method for estimating the weight of a joined-wing 

HALE aircraft.  Their method is based on the nonlinear static aeroelastic formulations 

and structural constraints of a given joined-wing HALE aircraft.  It also incorporates the 

structures, aerodynamics and aeroelasticity of the aircraft.  The static aerodynamics are 
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modeled using vortex lattice formulations.  Recently, Richards, et al. [20] began 

designing a scaled joined-wing SensorCraft model for the purpose of validating an 

existing analytical nonlinear aeroelastic model which is based on the Matlab Aerospace 

Blockset and the Unmanned Dynamics Aerosim v1.2 Blockset.  The simulator uses a set 

of first order terms and multi-dimensional lookup tables, which allow for the input of 

different angles of attack and sideslip angles, to model nonlinear aerodynamics.  The 

simulator also uses vortex lattice software called AVL and a parametric model based on 

the software Phoenix Integration’s Model Center Software (MC).  The data is then 

outputted into a Matlab m-file.  The model can very quickly produce a flight simulation 

using the flight simulator FlightGear for visualization.  An optional aircraft autopilot was 

also integrated into the model using the Micropilot 2128 THWIL system. 

Weishaar and Lee [38] studied how the weight and center of gravity of a high-

aspect-ratio joined-wing HALE aircraft affect body-freedom flutter.  Additionally, Tang 

et al. [33] used the finite state aerodynamic model to experimentally validate linear 

structural modeling when nonlinear trailing-edge flap deflections occur.  Their results 

showed a strong correlation between their model and their experimental results; therefore, 

their results validated their model well.   Tang and Dowell [34] experimentally validated 

an ONERA unsteady aerodynamic model using nonlinear structural modeling.  Their 

results also validated their model well for cantilevered wings similar to HALE wings 

when the wings are exposed to limit-cycle oscillations.  Dowell and Tang [7] also created 

a review of cantilevered structures with nonlinear aeroelasticity in which they discuss 

HALE aircraft. 
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II.8  Present Motivation and Problem 

While all of the previous research discussed contributes to the problem of nonlinear 

aeroelasticity coupled with nonlinear flight dynamics, the problem is still not completely 

understood.  Several codes have been developed for the use of modeling nonlinear 

aeroelastic and flight dynamics of an aircraft but none have been completely validated 

with real flight data from a fixed-wing aircraft [4].  This research will continue the work 

of Shearer, Cesnik and their co-workers and perform flight simulations with UM/NAST 

in order to make predictions about X-HALE’s future test flights.  This is all done with the 

hope of eventually experimentally validating the UM/NAST code with the X-HALE 

aircraft.  
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III. Model Development 

This research involved running various simulations with UM/NAST in order to 

predict the behavior of the X-HALE test vehicle.  Initial simulations have been run by 

Shearer and are described in [23].  These initial simulations predicted that X-HALE will 

show instabilities in flight under certain conditions; further simulations need to be run in 

order to explore what other conditions will cause unstable flight.  Also, more simulations 

are necessary in order to potentially validate the UM/NAST code.  These simulations will 

include straight and level flight, and rolling flight performed by simulating aileron 

deflections. 

III.1 The X-HALE Aircraft 

Shearer, Cesnik and their co-workers have are developing a very flexible RPV 

aircraft called X-HALE, shown in Figure 5, at the University of Michigan in order to 

experimentally validate the UM/NAST code.  X-HALE can be converted from a 6 meter 

test vehicle to an 8 meter test vehicle.  This is done by removing two wing segments from 

the aircraft.  During flight, X-HALE’s middle elevator can rotate 90 degrees to become a 

vertical stabilizer.  This will be done in order to observe the vertical stabilizer’s effects on 

the aircraft’s stability [25]. 
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UM/NAST model [4].  The aircraft can be configured either as a 6 m flight test vehicle 

(FTV) or an 8 m aeroelastic test vehicle (ATV) [25].  

Both the 6 meter and the 8 meter models include five fuselages, which are each 

mounted to a joiner block that connects two wing modules.  The wing modules are all 1 

meter long.  Each fuselage is composed of a fairing pod, a tail boom, and an elevon.  

Remote control aircraft propellers attach to the motors for propulsion.  Each fairing pod 

has a carbon spine which holds an electric motor with two batteries and other components 

such as a GPS/INS, a GPS antenna, a transmitter, electronic speed controllers (ESC’s), a 

glitch buster, a servo switch controller, an Ethernet hub and landing gear.  The first 

battery powers the motor and the second powers the electronics contained in the fuselage.  

These electronics include a single board computer (SBC), an analog to digital converter 

module, and several scientific sensors such as strain gauges, accelerometers, a pitot probe 

and a tail potentiometer.  These sensors vary in number and type depending on the wing 

module and the aircraft configuration [12].   

The majority of the X-HALE flight components have been manufactured by the 

X-HALE program.  Currently, the X-HALE program is integrating these components at 

the University of Michigan and is developing software for the networking of the onboard 

computers.  Table 1 summarizes X-HALE’s characteristics [12]. 
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Table 1.  X-HALE’s Characteristics [12] 

Wing Span 6 m or 8 m 

Chord 0.2 m 

Planform Area 1.2 m2 

Aspect Ratio 30 or 40 

Length  0.96 m 

Propeller Diameter 12 in 

Gross Takeoff Weight  11 kg or 12 kg 

Power/Weight 30 W/kg 

Airspeed 12-18 m/s 

Max Range 3 km 

Endurance 45 min 
 

III.2 The Coordinate Systems of UM/NAST 

The UM/NAST controller was developed based on the known physics of the 

situation that is being modeled; that is, how a very flexible aircraft flies.  The controller 

uses closed-loop reference tracking of a body fixed reference frame B (Figure 6) at a 

point O while also including the properties of nonlinear aeroelasticity.  This point O is 

typically is not the aircraft’s center of mass but may be at some points in time during a 

simulation.  The point O is chosen to be at a convenient location on the aircraft so that 

both linear and angular velocities can be tracked.  Usually, the x-axis is chosen to be out 

the right wing and the y-axis is tangent to the undeformed fuselage’s longitudinal axis 

and extends in the direction of the front of the aircraft.  As a result, the x-y plane of the B 

reference frame is parallel to the x-y plane of the inertial frame G when the aircraft is 

undeformed.  The z-axis extends out the top of the aircraft and is the cross product of the 

x-axis and y-axis.  The flexible members of the aircraft are modeled as beams that 

propagate from the origin O or that are rigidly offset from the point O.  In order to 

determine the orientation of the B reference frame, one of three methods is used: an Euler 
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 Here w represents the local elastic reference frame, ݌௥ is the position of the B reference 

frame origin to the local w reference frame, s represents the undeformed beam spatial 

dimension, a represents an arbitrary point in the vehicle with respect to the origin of the 

inertial frame G and t represents time [23]. 

The position and the orientation vector h at a point in the flexible body is given in 

Equation (4 below. 

 ݄ ൌ ൛்݌ ௫்ݓ ௬்ݓ ௭்ൟݓ
்
 (4)

The vector function h is a function of only ϵ, the column vector of the elastic strain state 

and b, displacements and rotations as time integral of ߚ, the B reference frame linear and 

angular velocities.  Equation (5 gives expressions that relate h to ϵ and b. 

݄ߜ  ൌ ߳ߜ௛ఢܬ ൅  ܾߜ௛௕ܬ

݄݀ ൌ ߳ߜ௛ఢܬ ൅  ௛௕ܾ݀ܬ
(5)

In these equations, J୦஫ and J୦ୠ, which are given in Equation (6, are Jacobian matrices 

which link the flexible position and orientation vectors and the independent coordinates 

of ߳ and ߚ. 

 
௛ఢܬ ൌ

߲݄
߲߳

 

௛௕ܬ ൌ
߲݄
߲ܾ

 

(6)

Equation (7 gives the value of ሶ݄ , which further explains the connection between the 

vectors ߳ and ߚ. 

 ሶ݄ ൌ ௛ఢ߳ሶܬ ൅ ௛௕ܬ ሶܾ ൌ ௛ఢ߳ሶܬ ൅ (7) ߚ௛௕ܬ

The relative acceleration of h due to the vectors ߳ and its first and second 

derivatives with respect to time is given in Equation (8  [23]. 
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ሷ௔݌ ൌ ሷ݌ ൅ ሷݓݔ ௫ ൅ ሷݓݕ ௬ ൅ ሷݓݖ ௭ ൌ ቐ

1
ݔ
ݕ
ݖ

ቑ

்

ሶ௛ఢ߳ሶܬൣ ൅ ௛ఢ߳ሷ൧ (8)ܬ

III.3 A Study of the Governing Differential Equations of Motion 

By assuming that an aircraft is a rigid body when creating a controller, three things are 

assumed: 

1. The inertia properties of the aircraft are either constant or time-varying. 

2. The inertial force caused by a rotating coordinate frame in conjunction with the 

relative velocity of the aircraft’s flexible members can be neglected. 

3. Any external forces, such as ܨ௘௫௧ and ܯ௘௫௧, or moments are founded on a constant 

aircraft geometry. 

These assumptions are invalid for vey flexible aircraft because of the changing geometry 

of the aircraft.   Instead, for a flexible aircraft a set of differential equations of motion that 

allow for changing aircraft geometry are used.  These equations are shown in Equation 

(9) and Equation (10). 

ሷݍܯ  ൅ ሶݍܥ ൅ ݍܭ ൌ ܴሺݍ, ሶ,ݍ ሻ (9)ߣ

 
ݍ ൌ ൝

߳
஻݌
Θ஻
ൡ ሶݍ ൌ ൝

߳ሶ
஻ݒ
߱஻

ൡ ሷݍ ൌ ൝
߳ሷ
ሶ஻ݒ
ሶ߱ ஻
ൡ (10)

In these equations, ܯ represents the mass properties of the aircraft and ܥ represents the 

structural damping and the nonlinear terms created by a rotating coordinate frame and its 

effects on relative position and velocity, such as ݒ஻ and ߱஻.  Additionally, ܭ represents 

the stiffness matrix of the aircraft, and ݍ represents a set of coordinates which contain 

both strain ߳, which is linked with the inertial position ݌஻, and an orientation vector Θ஻.  

The function ܴሺݍ, ሶ,ݍ  ሻ represents forces, such as aerodynamic forces, that are a functionߣ
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of finite state flow velocities ߣ.  This function is further described in [19].  Because the 

variables ܥ ,ܯ and ܴ are dependent on each other, the rigid-body and flexible structural 

dynamics are also dependent on each other.  The program UM/NAST uses a constant 

strain-based approach to predict the movement of the aircraft.  This approach, which is 

further described in [2, 3], allows for nonlinear geometric changes and changes to the 

inertia matrix ܫ஻, and the matrices ܥ ,ܯ and ܴ [23]. 

III.3.1 The Equations of Motion 

The equations of motion are further derived from Equation (9) and Equation (10) 

using unsteady aeroelastic modeling.  This is done by applying the principle of virtual 

work to the B reference frame while assuming the aircraft wings are flexible beams and 

the body of the aircraft is composed of rigid bodies.  Equation (11 below is the total 

virtual work expression based on both the B reference frame, and the flexible beams and 

the rigid bodies of the aircraft.   

ܹߜ  ൌ ሾ்߳ߜ ሿ்்ܾߜ ൬െ ൤
ிிܯ ி஻ܯ
஻ிܯ ஻஻ܯ

൨ ൤
߳ሷ
ሶߚ ൨ െ ൤

ிிܥ ி஻ܥ
஻ிܥ ஻஻ܥ

൨ ൤
߳ሶ
൨ߚ

െ ൤
ிிܭ ி஻ܭ
஻ிܭ ஻஻ܭ

൨ ቂ
߳
ܾቃ ൅ ܴ൰ 

(11)

In this equation, R is the vector described below in Equation (12) where ܴி is the force 

vector component pertaining to the flexible body degree of freedom and ܴ஻ is the force 

vector component pertaining to the fixed-body degree of freedom. 

 ܴ ൌ ൜
ܴி
ܴ஻
ൠ (12)

Equation (13) provides the mass and damping matrices that apply to Equation (11 [23]. 
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 M୊୊ ൌ J୦஫
୘ MୋJ୦஫ 

M୊୆ ൌ J୦஫
୘ MୋJ୦ୠ 

M୆୊ ൌ J୦ୠ
୘ MୋJ୦஫ 

M୆୆ ൌ J୦ୠ
୘ MୋJ୦ୠ ൅  ୆ܯ

C୊୊ ൌ J୦஫
୘ MୋJሶ୦஫ ൅ Cୋ 

C୊୆ ൌ J୦஫
୘ MୋH୦ୠ ൅ 2J୦஫

୘ MୋH୦஫ሶୠሶ  

C୆୊ ൌ J୦ୠ
୘ MୋJሶ୦஫ 

C୆୆ ൌ J୦ୠ
୘ MୋH୦ୠ ൅ 2J୦ୠ

୘ MୋH୦஫ሶஒሶ ൅ C୆ 

K୊୊ ൌ Kୋ 

K୊୆ ൌ K୆୊ ൌ K୆୆ ൌ 0 

(13)

Here Mୋ, Cୋ and Kୋ are the generalized flexible-element mass, damping and 

stiffness matrices about the G reference frame, while ܯ୆ and C୆ are the generalized 

rigid-element mass and damping matrices associated with the B reference frame rigid-

element portion.  Also, H୦ୠ and H୦஫ሶஒሶ  incorporate the effects of a rotating coordinate 

frame.  Mୋ, Cୋ and Kୋ are the assembled flexible-element generalized mass, damping 

and stiffness matrices.  They are of the form of Equation (14. 

 

Mୋ ൌ

ۏ
ێ
ێ
ۍ
ሺଵሻܯ 0
0 ሺଶሻܯ

⋯ 0
⋯ 0

0						 0
0						 0

⋱ 0
⋯ ےሺ௘ሻܯ

ۑ
ۑ
ې
 

Cୋ ൌ

ۏ
ێ
ێ
ۍ
ሺଵሻܥ 0
0 ሺଶሻܥ

⋯ 	0	
⋯ 			0			

0						 0
0 0

⋱ 0
⋯ ሺ௘ሻܥ ے

ۑ
ۑ
ې
 

(14)
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 ஻ are the mass and damping matrices associated with the B reference frameܥ ஻ andܯ

element portion.  They are given in Equation (15). 

 
஻ܯ ൌ ቈ

݉ ෤෨௥೎೘݌݉
෤௥೎೘݌݉ ஻ܫ

቉ 

஻ܥ ൌ ቈ
݉ ෥߱஻ ݉ ෥߱஻݌෤෨௥೎೘

෤௥೎೘݌݉ ෥߱஻ ෥߱஻ܫ஻
቉ 

(15)

Here m represents mass per unit span and ݌௥೎೘ represents the position vector from the B 

reference frame origin to the center of mass.  Additionally, ሺ⋅̃ሻ is a skew-symmetric 

matrix operator on the given matrix and ሺ⋅̃ሚሻ is the transpose of the given matrix’s skew-

symmetric matrix [23]. 

Equation (16 below can be derived from Equation (11, the total virtual work 

expression and the principle of virtual work.   

 ൤
ிிܯ ி஻ܯ
஻ிܯ ஻஻ܯ

൨ ൤
߳ሷ
ሶߚ ൨ ൅ ൤

ிிܥ ி஻ܥ
஻ிܥ ஻஻ܥ

൨ ൤
߳ሶ
൨ߚ ൅ ൤

ிிܭ ி஻ܭ
஻ிܭ ஻஻ܭ

൨ ቂ
߳
ܾቃ ൌ ൜

ܴி
ܴ஻
ൠ (16)

This equation comprises the set of elastic equations of motion and could be written in the 

form of Equation (9) where the mass matrix is a function of strain, ܯ ൌ ெ݂ሺ߳ሻ, the 

damping matrix is a function of strain, strain rate and the B reference frame velocity, 

ܥ ൌ ஼݂ሺ߳, ߳ሶ,   .ሻ, the stiffness matrix K is constant and R contains all other nonlinearitiesߚ

Equation (17 provides the expanded form of Equation (16 and the complete set of 

governing differential equations. 
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ிி߳ሷܯ  ൌ െܯி஻ߚሶ െ ிி߳ሶܥ െ ߚி஻ܥ െ ிி߳ܭ ൅ ܴி 

ሶߚ஻஻ܯ ൌ െܯ஻ி߳ሷ െ ߚ஻஻ܥ െ ஻ி߳ሶܥ ൅ ܴ஻ 

ሶߞ ൌ െ
1
2
Ωഥ஖ߞ 

ሶ஻݌ ൌ ሾܥ஻ீ 0ሿߚ 

ሶߣ ൌ ሷݍଵܨ ൅ ሶݍଶܨ ൅  ߣଷܨ

(17)

Here ߞ is a vector of four quaternion parameters used to determine the orientation of the 

B reference frame, Ωഥ஖ is the finite element discretization of the ߱஻ matrix, ݌ሶ஻ is the time 

rate of change of the inertial position vector of the B reference frame, ܥ஻ீ is a 

transformation matrix between the B reference frame and the inertial G reference frame, 

and ߣ is a set of unsteady aerodynamic inflow velocities.  ܨଵ, ܨଶ and ܨଷ are differential 

equation matrices associated with [23] ߣ. 

III.3.2 A Retrieval of the Rigid-Body Equations of Motion 

It is valuable to identify that the standard rigid-body equations of motion for an 

aircraft can be retrieved from the total virtual work expression, Equation (11, by holding 

the elastic degrees of freedom constant.  This results in the expression for R in Equation 

(18). 

 
ܴ ൌ ൜

ܴி
ܴ஻
ൠ ൌ ൤

ிிܭ
஻ிܭ

൨ ߳௜௡௜௧௜௔௟ ൅ ൤
௚ிܤ
௚஻ܤ

൨ ݃஻ ൅ ቈ
ௗ௦௧ಷܤ
ி

ௗ௦௧ಳܤ
ி ቉ ௗ௦௧ܨ ൅ ቈ

ௗ௦௧ಷܤ
ெ

ௗ௦௧ಳܤ
ெ ቉ܯௗ௦௧

൅ ቈ
௣௧ಷܤ
ி

௣௧ಳܤ
ி ቉ ௣௧ܨ ൅ ቈ

௣௧ಷܤ
ெ

௣௧ಳܤ
ெ ቉ܯ௣௧ 

(18)

In this equation, ߳௜௡௜௧௜௔௟ is the initial strain vector and ݃஻ is the body-fixed reference 

frame B resolved gravity vector.  Also, ܨௗ௦௧, ܯௗ௦௧, ܨ௣௧ and ܯ௣௧ are the body-resolved 



 

26 

distributed and point forces and moments.  ܨ௔௘௥௢ and ܯ௔௘௥௢ are functions of control 

surface inputs u and are included in ܨௗ௦௧ and ܯௗ௦௧.  Any propulsion related forces such 

as propeller forces or motor forces are modeled as if they were evenly distributed along 

the vehicle and are included in ܨ௣௧ and ܯ௣௧.  The values for the influence matrices are 

explained further in [2] and are given in Equation (19). 

ௗ௦௧ಷܤ 
ி ൌ ௣ఢ்ܬ  ிܤ

ௗ௦௧ಳܤ
ி ൌ ௣ఉܬ

்  ிܤ

ௗ௦௧ಷܤ
ெ ൌ ఏఢܬ

்  ெܤ

ௗ௦௧ಳܤ
ெ ൌ ఏఉܬ

்  ெܤ

௣ಷܤ
ி ൌ ௣ఢ்ܬ  

௣ಳܤ
ி ൌ ௣ఉܬ

்  

௣ಷܤ
ெ ൌ ఏఢܬ

்  

௣ಳܤ
ெ ൌ ఏఉܬ

்  

(19)

Here ܤி and ܤெ are constant matrices characterized by an elastic element’s undeformed 

mass [23].  If ߳௜௡௜௧௜௔௟ and ܯ௣௧ are assumed to be zero, and the finite strain formulation 

given in [19] for any aerodynamic forces and moments is assumed to be linear in the 

discrete trailing edge surface deflections, Equation (18) can be simplified to Equation 

(20) [3]. 

 
ܴ ൌ ௚൧݃஻ܤൣ ൅ ௗ௦௧ܤ

ி ௔௘௥௢ܨ ൅ ሾܤௗ௦௧
ெ ሿܯ௔௘௥௢ ൅ ሾܤௗ௦௧

ெ ሿ
௔௘௥௢ܨߜ

௙௟௔௣ݑߜ
௙௟௔௣ݑ

൅  ௧௛௥௨௦௧ݑ௣ி൧ܤൣ

(20)
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III.4 Numerical Integration and the Trim Solution 

For both the zero thrust and the thrust required for 1-g level flight cases, trimming 

is performed in UM/NAST and is based upon techniques described in [23].  A cost 

function given in Equation (21 is used. 

௧௥௜௠ܬ  ൌ ்݂ ⋅ ݂ (21)

Equation (22 gives the zero thrust or gliding cases value for f, the vector used to trim the 

aircraft.	

 ݂ ൌ ሼpitching	moment about the origin of the ܤ frame lift	weightሽ (22)

Equation (23 gives the thrust required for 1-g level flight case value for f.  Here the 

longitudinal B reference frame linear and angular accelerations are used for f.	

 
݂ ൌ ቐ

ሶ߭஻೤
ሶ߭஻೥
ሶ߭௫

ቑ (23)

UM/NAST minimizes the cost function J over the solution space using the elevator 

deflection angle ߜ௘, the body angle of attack ߙ and the thrust ߜ௧.  The local minimum of 

the search variable is discovered using a basic numerical Newton-Raphson method, 

which is given in Equation (24. 

 
Δܵ௞ ൌ െ

݂ߜ
௞ܵߜ

ିଵ

௞݂ (24)

Here ܵ௞ is given in Equation (25. 

 
ܵ௞ ൌ ൝

௘ߜ
ߙ
௧ߜ
ൡ

௞

 (25)

The search variable ܵ௞ is recomputed using Equation (26. 

 ܵ௞ାଵ ൌ ܵ௞ ൅ Δܵ (26)
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Furthermore, ௞݂ାଵ and 

൤
߲݂
߲ܵ
൨
௞ାଵ

ିଵ

 

are recomputed at each iteration using ܵ௞ାଵ.  This minimization process continues until a 

desired tolerance is met.  Divergence of the solution is avoided by checking ܵ௞ାଵ at each 

iteration step and is limited to prescribed bounds.  Equation (27 provides the Jacobian 

matrix which is computed numerically through finite differences. 

 
௧௥௜௠ܬ ൌ

݂ߜ
ܵߜ

 (27)

Figure 9 outlines this entire trimming solution procedure [23].  
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with repeated eigenvalues, its ease of use with the equations of motion used, and means 

by which its first-order and second-order methods were derived [10]. 

UM/NAST can produce three different types of solutions:  a reduced order 

solution, a linear solution and a nonlinear solution.  For a reduced order solution, all 

elastic degrees of freedom are removed once the vehicle flexes into a steady-state 

deflection.  For this type of simulation the inertia matrices is fixed but the Jacobian 

matrices change at each subiteration.  For a linear solution, the elastic degrees of freedom 

remain intact and the inertia matrices change at each subiteration, but the Jacobian 

matrices obtained from the steady-state solution that UM/NAST computes at the 

beginning of each simulation are used; therefore, they are fixed.  For a nonlinear solution, 

the elastic degrees of freedom remain intact, the inertia matrices change at each 

subiteration and the Jacobian matrices are updated at each subiteration, resulting in a full 

time-marching simulation based on Equation (17. 

A few issues with UMNAST should be noted: UM/NAST begins a simulation by 

first going through a routine that determines the steady-state solution.  It then continues 

into a time-marching simulation.  The code is also sensitive to the time step selected, how 

long the simulation is run for and how big the tolerance for the R, or the residual, value 

is.  Additionally, the predictor-corrector method used to find the S values can create a 

problem where certain matrices have values that are very large or very small, making it 

difficult to invert these matrices.  The simulation may fail before it is complete because 

the values selected are inappropriate.  In general, smaller time steps work better, but often 

a smaller time step means the simulation may take longer to finish.  A time step that is 

too large can also cause the simulation to take a longer amount of time to finish.  Also, a 
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larger residual value tolerance helps the simulation to finish sooner, although a residual 

value that is too large may cause the simulation to diverge from the actual solution.  The 

longer the simulation time, the more difficult it is for the simulation to complete without 

issues.  If these values are selected properly, a complete simulation can be accomplished.  

The ease at which a simulation will complete depends on the simulation type selected; the 

reduced-order type simulation is the least sensitive to selected values and is the most 

likely to complete, while the linear type is less likely to complete and the nonlinear type 

is the least likely to complete because it is the least sensitive to the selected values.   
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IV.  Results 

IV.1 The Assumptions Made 

This research performed a set of simulations using the UM/NAST code to predict 

the flight behavior of the 6 meter and 8 meter models of X-HALE.  The UM/NAST code 

was provided by Shearer, Cesnik and their co-workers.  In order to model the X-HALE 

aircraft using UM/NAST, several assumptions were made.  These assumptions involve 

how X-HALE is modeled in the UM/NAST code.  For example, the NACA 4415 airfoil 

used for the main wing segments in these simulations is not identical to the EMX-07 

airfoil used for the physical X-HALE aircraft, but it is similar enough to the EMX-07 

airfoil for the purposes of this research because it has similar lifting and moment 

characteristics.  The NACA 0012 airfoil used to model the tail elevons is the actual airfoil 

used on the physical X-HALE.  The fairing pods are modeled with a NACA 0018 airfoil.  

The fairings are also modeled with applied follower concentrated forces to simulate 

motor thrust. 

Each motor is simulated with a constant force.  The tails are modeled as all-

movable horizontal surfaces.  All booms, tails and fairings are modeled as rigid members 

with inertias placed at points best suitable to model the two physical X-HALE aircrafts.  

Furthermore, the outer 1 meter long members are modeled with a dihedral of 10 degrees 

just like the physical X-HALE aircrafts.  The ailerons are modeled on the outer dihedral 

members and occupy 25% of the chord also just like the physical X-HALE aircrafts.  The 

inertias of the spine and the pod covers are neglected and instead the concentrated inertias 

are placed inside the pods.  This is done primarily to model the electronic equipment 

inside the pods.  The masses of aircraft models are programmed to be the estimated 
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0.0001 seconds and a maximum residual value of 10.  All other 6 meter X-HALE 

simulations and several 8 meter X-HALE simulations were run using this time step and 

maximum residual value from this point on so that all the simulations run from this point 

onward would have this time step and maximum residual value in common.  Next one 

linear type simulation involving constant thrust flight with no other inputs was run for the 

6 meter X-HALE.  After that three linear type simulations involving sinusoidal aileron 

inputs on both wings were run for the 6 meter X-HALE.   

Next the 8 meter X-HALE simulations were run.  First, four 8 meter X-HALE 

model linear type simulations with a 10 second flight time and sinusoidal aileron inputs 

on both wings were run.  Each 10 second flight time simulation took anywhere from three 

to five days to complete using 64-bit Matlab on a dual core 2.6 GHz personal computer.  

These simulations had the same time step (0.0001 seconds) and maximum residual value 

(10) as the 6 meter X-HALE simulations.  They ran much smoother than the 6 meter X-

HALE simulations because the aircraft did not become extremely unstable by the end of 

the 10 second runs.  However, these 10 second simulations did not provide enough data 

in order to find what sinusoidal aileron inputs on both wings would make the aircraft 

unstable, so thirteen more simulations were run for the 8 meter X-HALE using a 0.001 

second time step, a maximum residual value of 10 and a time duration of 15 seconds.  

Therefore, the 10 second 8 meter X-HALE simulations are not discussed in this research 

because the 15 second simulations provide all of the data needed.  The time step was then 

increased by an order of magnitude for the latter simulations in order to get the 

simulations to run faster.  Two of the 15 second simulations failed because the 
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amplitudes of the sinusoidal aileron inputs applied to both wings were too large (20 and 

25degrees) and caused the aircraft to become unstable. 

In general, smaller time steps worked better for the simulations, but often a 

smaller time step meant the simulation took longer to finish.  Also, a larger maximum 

residual value helped the simulation to finish sooner.  However, a maximum residual 

value that is too large could cause a simulation to diverge from the actual solution.  The 

ease at which a simulation would complete also depended on the simulation type 

selected; the nonlinear type simulation was more likely to fail than the linear type 

simulation was.  This research first aimed for a time step of 0.05 seconds and a maximum 

residual value of 0.1 for the 6 meter X-HALE simulations, but these values were changed 

since the simulations would fail before finishing a 10 second flight with these values.  A 

time step of 0.0001 and a maximum residual value of 10 were used in order to ensure a 

nonlinear type 6 meter simulation finished the 10 second flight.  However, a time step 

this small caused the simulations to take approximately 3 to 5 days to complete a 6 meter 

X-HALE simulation, which was much longer than initially anticipated. 

In comparison, the 8 meter X-HALE simulations run with a 15 second time 

duration and a time step of 0.001 seconds each took approximately 7 to 10 hours to 

complete.  These were a mix of linear and nonlinear type simulations.  The time step and 

time duration were changed for these additional 8 meter model X-HALE simulations to 

allow the simulations to provide more data since the flight was longer but also so that the 

simulation could run faster.  A 10 second 8 meter X-HALE simulation with a time step of 

0.0001 seconds took approximately ten times longer than a 10 second simulation with a 
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time step 0.001 since this large time step still allowed the simulation to run quite 

smoothly.   

IV.3 The Chosen Simulations 

The 6 meter model of the aircraft was based off the pre-existing input file 

6_meter_baseline_case0.nin which uses a NACA 4415 airfoil.  The 8 meter model of the 

aircraft was based off the pre-existing input file 8_meter_ailerons_case0.nin, which also 

uses a NACA 4415 airfoil.  Examples of these input files can be found in Appendix B 

and Appendix C.  Of all the simulations run, seventeen were chosen to be discussed in 

detail in this research.  The first six simulations, Cases 1 through 6, were simulations for 

the 6 meter model of X-HALE.  The first simulation, Case 1, used a 0.0025 second time 

step, a maximum residual value of 0.1 and a 15 second time duration.  It had no inputs, 

such as an aileron or control surface input, and had a constant thrust.  This was a linear 

type simulation.  The rest of the 6 meter X-HALE simulations used a 0.0001 time step, a 

maximum residual value of 10 and a 10 second time duration.  Except for one nonlinear 

type simulation, they were all linear type simulations which either used no inputs or they 

had sinusoidal aileron inputs on both wings.  The 8 meter X-HALE simulations had a 

time duration of 15 seconds, a time step of 0.001 seconds and a maximum residual value 

of 10.  These all had sinusoidal aileron inputs on both wings.  These were part linear type 

and part nonlinear type simulations. 

Each of the simulations that used a sinusoidal aileron input on both wings were 

given an aileron input with a period of 5 seconds on both the left and right ailerons.  The 

input started at 0.1 seconds and finished after 10 seconds.  The inputs had amplitudes of 

2, 5, 10, 15, 20 or 25 degrees.  The aileron input completes approximately two periods 
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Table 2.  A Summary of Discussed Simulations 

Case Simulation 
Type 

Input Duration 
(sec) 

Time 
Step 
(sec) 

Max 
Residual 

Value 

Sinusoidal Aileron Input 
Data 

Period 
(sec) 

Start/ 
End 
Time 
(sec) 

Amplitude 
(deg) 

1 6 Meter 
Linear 

None 15 0.0025 0.1 N/A N/A N/A 

2 6 Meter 
Linear 

None 10 0.0001 10 N/A N/A N/A 

3 6 Meter 
Nonlinear 

None 10 0.0001 10 N/A N/A N/A 

4 6 Meter 
Linear 

Aileron 10 0.0001 10 5 0.1/10 2 

5 6 Meter 
Linear 

Aileron 10 0.0001 10 5 0.1/10 5 

6 6 Meter 
Linear 

Aileron 10 0.0001 10 5 0.1/10 10 

7 8 Meter 
Linear 

None 15 0.001 10 N/A N/A N/A 

8 8 Meter 
Linear 

Aileron 15 0.001 10 5 0.1/10 2 

9 8 Meter 
Nonlinear 

Aileron 15 0.001 10 5 0.1/10 2 

10 8 Meter 
Linear 

Aileron 15 0.001 10 5 0.1/10 5 

11 8 Meter 
Nonlinear 

Aileron 15 0.001 10 5 0.1/10 5 

12 8 Meter 
Linear 

Aileron 15 0.001 10 5 0.1/10 10 

13 8 Meter 
Nonlinear 

Aileron 15 0.001 10 5 0.1/10 10 

14 8 Meter 
Linear 

Aileron 15 0.001 10 5 0.1/10 15 

15 8 Meter 
Nonlinear 

Aileron 15 0.001 10 5 0.1/10 15 

16 8 Meter 
Linear 

Aileron 15 0.001 10 5 0.1/10 20 

17 8 Meter 
Linear 

Aileron 15 0.001 10 5 0.1/10 25 
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This research was performed to predict the in flight behavior of both the 6 meter 

model and the 8 meter models of X-HALE.  The two baseline 6 meter model simulations 

performed with no inputs were performed using the linear and nonlinear simulation types.  

This was done in order to compare the linear and nonlinear simulation types and to gain 

knowledge of their differences.  This was also done in order to see how well the 6 meter 

X-HALE model can fly straight and level.  The three sinusoidal aileron input linear type 

simulations were performed for the 6 meter model in order further understand the 

aircraft’s response to an aileron input.  Only the linear type solution was used in order to 

better compare the simulations performed while also minimizing the time it took to 

compute the solutions.  The one 8 meter model linear type simulation was run with no 

inputs in order to form an understanding of how well the 8 meter aircraft can fly straight 

and level.  Finally, the ten 8 meter model sinusoidal aileron input simulations were 

performed in order to understand aircraft’s response to an aileron input on both wings.  

These simulations were a mix of linear and nonlinear type simulations so that the two 

simulation types could be compared.   

Again, for a linear solution, the elastic degrees of freedom remain intact and the 

inertia matrices change at each subiteration, but the Jacobian matrices obtained from the 

steady-state solution computed at the beginning of each simulation are used; therefore, 

they are fixed.  For a nonlinear solution, the elastic degrees of freedom remain intact, the 

inertia matrices change at each subiteration and the Jacobian matrices are updated at each 

subiteration, resulting in a full time-marching simulation based on Equation (17.   

While the Case 1 simulation has a different time step (0.0025 seconds) and 

maximum residual value (0.1) than the other 6 meter X-HALE simulations, it is included 
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in the data because it is the only 6 meter X-HALE simulation that runs for 15 seconds; 

the other simulations only run for 10 seconds.  For the rest of the 6 meter X-HALE 

simulations the time step, maximum residual value, and time duration were chosen based 

on the limitations of the UM/NAST code and the simulation parameters, as mentioned in 

Section IV.1.  The time step for these simulations, 0.0001 seconds, was the largest time 

step that actually allowed a 6 meter X-HALE nonlinear type simulation to complete a 10 

second run.  The residual value tolerance of 10 was chosen because a value smaller than 

that would cause a simulation to take significantly longer to finish but a value larger than 

would potentially cause a nonlinear simulation to fail.  The time duration of 10 seconds 

was chosen because after approximately the 9.6 second point, a simulation would 

struggle to finish, so this time duration value was chosen to make sure simulations could 

finish.  For the 8 meter X-HALE simulations, the time step was changed to 0.001 and the 

time duration was changed to 15 seconds in order to allow for a longer flight but also so 

that the simulations could finish more quickly. 

For simulations that involved a sinusoidal aileron input on both wings, the period 

of the input, 5 seconds, and the start and stop time of the input, 0.1 seconds and 10 

seconds, were chosen because this periodic input would be similar to the kind of aileron 

input X-HALE would normally receive in flight.  Several different sinusoidal aileron 

input amplitudes were used: 2, 5, 10, 15, 20 and 25 degrees.  These values were chosen in 

order to find the maximum aileron input amplitude that could be used without the 

aircraft’s flight becoming unstable.  These values were also chosen based on the results 

of Cesnik et al. [4] who, when performing UM/NAST simulations for the 8-meter X-
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HALE, discovered that a left aileron input (a rolling maneuver) resulted in unstable flight 

when a sinusoidal input of 5 degrees or more was used.   

IV.4 The Completed Simulations and Their Results 

The results of all seventeen chosen simulations are discussed in detail in this 

section of the research.  The results are broken down into results for the 6 meter aircraft 

and the 8 meter aircraft.  Six to seven plots per simulation were generated.   Some of 

them are used in this section and all of them are included in the Appendix. 

IV.4.1 The 6 Meter X-HALE Results 

All six 6 meter X-HALE simulations had the same primary result; the aircraft 

over speeds up to approximately 40 m/s and stalls after approximately 9 seconds in all six 

simulations.  After the stall, the aircraft enters highly unstable flight.  As stated 

previously, 12 to 20 m/s is considered the normal flight speed range for X-HALE [4].  

This leads to two possible conclusions: Either UM/NAST did not properly model the 

flight of the 6 meter X-HALE or the 6 meter X-HALE is an unstable aircraft and can be 

expected to crash soon after takeoff. 

Case 1 is a linear type no aileron input simulation run for 15 seconds.  The time 

step was 0.0025 seconds and the residual tolerance value was 0.1.  Again, this was the 

first completed simulation and is the case that has a different time step and residual 

tolerance value then the other simulations.  Figure 14 shows the aircraft’s longitudinal 

velocity ݒ௬ versus time.  Note that the B reference frame is used for all plots.  The x-axis 

is out the right wing and the y-axis is tangent to the undeformed fuselage’s longitudinal 

axis and extends in the direction of the front of the aircraft.  As a result, the x-y plane of 
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These figures show that the 8 meter X-HALE is stable when a sinusoidal aileron 

input is performed on both wings with a 2 degree amplitude.  For example, while the plot 

for the longitudinal velocity, the velocity in the y direction, shows a sinusoidal pattern, 

and the peaks and troughs become smaller after 10 seconds because the aileron input ends 

after 10 seconds.  Also, the plot of the angular velocity about the x-axis, the pitch rate, 

shows peaks and troughs that also become smaller once the aileron input ends.  This 

suggests that the aircraft is stable with this input.  The plot of the velocity in the vertical 

direction, the z direction, shows a sinusoidal pattern that terminates very quickly once the 

aileron input ends, meaning that the aircraft is stable in the vertical direction.  The plot 

for the velocity in the x direction, the lateral direction, shows a very small sinusoidal 

pattern.  However the amplitude of this pattern is very small and shows no signs of 

increasing once the aileron input ends.  The aircraft also rotates slightly in a sinusoidal 

pattern about the y- and z-axes, but this amplitude of these patterns are very small and 

show no signs of increasing.  Case 9 is the same simulation as Case 8, but it is the 

nonlinear case.  The plots from the results of Case 9 can be viewed in the Appendix.  

There are no significant differences between the results for Cases 8 and 9.  The aircraft is 

stable for both cases and the two cases’ plots are very similar. 

Case 10 is a linear type simulation with a sinusoidal aileron input performed on 

both wings with a 5 degree amplitude.  Case 11 is a nonlinear version of Case 10.  The 

aileron input and the results for Cases 10 and 11 can be viewed in the Appendix.  There 

are no significant differences between the plots for Cases 10 and 11.  Both cases suggest 

that the 8 meter X-HALE is stable for a sinusoidal aileron input with a 5 degree 

amplitude applied to both wings.  The results for these cases are very similar to those of 



Cases

excep

flight

Case 

10 de

that t

Figur

result

and F

s 8 and 9, w

pt that plots 

t of the aircr

Cases 12 

12, suggest

egree amplit

the 8 meter X

re 46, Figure

ts for case 1

Figure 59. 

which showe

show that th

raft.   

and 13 invo

s that the 8 m

tude applied

X-HALE is u

e 47, Figure

3 are in Figu

Figure 4

d that the ai

he aileron in

olve a 10 d

meter X-HA

d to both win

unstable for 

e 48, Figure 

ure 53, Figu

46.  Case 12

65 

ircraft is stab

nput has a sl

egree sinuso

ALE is stable

ngs, while th

this aileron 

49, Figure 5

ure 54, Figur

2 Aileron Inp

ble for an ai

lightly more

oidal aileron

e for a sinus

he nonlinear

input.  The 

50, Figure 5

re 55, Figure

put versus T

ileron input 

e significant 

n input.  Th

oidal aileron

r case, Case

results for C

51 and Figur

e 56, Figure 

ime 

of 2 degree

affect on th

e linear case

n input with 

e 13, suggest

Case 12 are i

re 52, and th

57, Figure 5

 

 

s, 

he 

e, 

a 

ts 

in 

he 

58 



F

Figure 47.

Figure 48.  C

  Case 12 La

Case 12 Long

66 

ateral Veloci

gitudinal Vel

ity ݒ௫ versus

locity ݒ௬ ver

s Time 

rsus Time 

 

 

 



Figure 49. 

Figure 5

 Case 12 Ve

50.  Case 12

67 

ertical Veloc

2 Pitch Rate ߱

city ݒ௭ versu

߱௫ versus T

us Time 

Time 

 

 

 



Figure 

Figure 

51.  Case 12

52.  Case 12

68 

2 Roll Rate ߱

2 Yaw Rate ߱

߱௬ versus Ti

߱௭ versus Ti

ime 

ime 

 

 

 



Figure 

Figure 54.

53.  Case 13

  Case 13 La

69 

3 Aileron Inp

ateral Veloci

put versus T

ity ݒ௫ versus

ime 

s Time 

 

 

 



FFigure 55.  C

Figure 56. 

Case 13 Long

 Case 13 Ve

70 

gitudinal Vel

ertical Veloc

locity ݒ௬ ver

city ݒ௭ versu

rsus Time 

us Time 

 

 

 



Figure 5

Figure 

57.  Case 13

58.  Case 13

71 

 Pitch Rate ߱

3 Roll Rate ߱

߱௫ versus T

߱௬ versus Ti

Time 

ime 

 

 

 



for th

the la

vertic

the x

sinus

result

nonli

degre

recov

sinus

The result

he 2 and 5 de

ateral direct

cal direction

x-axis but be

oidal pattern

ts show stab

However,

inear counter

ee amplitude

vering from 

oidal longitu

Figure 

ts for Case 1

egree aileron

tion, and rec

ns.  Rotation

egins to reco

n about the 

le flight.  

, the results

rpart, sugge

e.  The resu

the input in

udinal veloc

59.  Case 13

12, a linear t

n input simu

covers well 

ally, the airc

over after th

y- and z-ax

s for Case 1

st that the a

ults for Cas

n the longitu

city continue

72 

3 Yaw Rate ߱

type simulat

ulations; the 

from the a

craft rotates 

he input end

xes but these

13, a nonlin

aircraft is un

se 13 are si

udinal direc

es to increas

߱௭ versus Ti

tion, show si

aircraft show

aileron input

slightly in a

ds.  The airc

e movement

near type si

nstable for an

imilar to Ca

ction, the am

se over time

ime 

imilar result

ws minimal 

t in the long

a sinusoidal 

craft rotates

ts are very s

imulation an

n aileron inp

ase 12 exce

mplitude of 

e even thoug

 

ts to the case

movement i

gitudinal an

pattern abou

s slightly in 

small.  Thes

nd Case 12

put with a 1

ept instead o

the aircraft

gh the ailero

 

es 

in 

nd 

ut 

a 

se 

’s 

10 

of 

’s 

on 



input

ampl

instab

flight

simul

HAL

Cases

65 an

Figur

Case 

case, 

t has termina

itude.  There

bility.  Becau

t dynamics o

lation proba

E. 

Cases 14 

s 14 can be 

nd Figure 66

re 69, Figur

14, suggest

Case 15, su

ated.  This s

efore, while 

use the nonl

of an aircra

ably provide

and 15 inv

viewed in F

6, and the r

e 70, Figure

ts that the 8 

ggests that t

Figure 

suggests unst

the linear ca

linear simula

ft better tha

es a more a

volve a 15 d

Figure 60, Fi

results for C

e 71, Figure

meter X-HA

the 8 meter X

60.  Case 14

73 

table flight f

ase suggests

ation type m

an the linear

accurate dep

degree sinus

igure 61, Fig

Case 15 can 

e 71, Figure 

ALE is stab

X-HALE is u

4 Aileron Inp

for an ailero

 stability, th

models the no

r simulation 

piction of th

soidal ailero

gure 62, Figu

be viewed 

72 and Fig

ble for this in

unstable for 

put versus T

on input with

he nonlinear 

onlinear aero

type does, 

he flight be

n input.  Th

ure 63, Figu

in Figure 6

gure 73.  Th

nput, while 

this aileron 

ime 

h a 10 degre

case suggest

oelasticity an

the nonlinea

ehavior of X

he results fo

ure 64, Figur

7, Figure 68

e linear case

the nonlinea

input. 

 

 

ee 

ts 

nd 

ar 

X-

or 

re 

8, 

e, 

ar 



F

Figure 61.

Figure 62.  C

  Case 14 La

Case 14 Long

74 

ateral Veloci

gitudinal Vel

ity ݒ௫ versus

locity ݒ௬ ver

s Time 

rsus Time 

 

 

 



Figure 63. 

Figure 6

 Case 14 Ve

64.  Case 14

75 

ertical Veloc

4 Pitch Rate ߱

city ݒ௭ versu

߱௫ versus T

us Time 

Time 

 

 

 



Figure 

Figure 

65.  Case 14

66.  Case 14

76 

4 Roll Rate ߱

4 Yaw Rate ߱

߱௬ versus Ti

߱௭ versus Ti

ime 

ime 

 

 

 



Figure 

Figure 68.

67.  Case 15

  Case 15 La

77 

5 Aileron Inp

ateral Veloci

put versus T

ity ݒ௫ versus

ime 

s Time 

 

 

 



FFigure 69.  C

Figure 70. 

Case 15 Long

 Case 15 Ve

78 

gitudinal Vel

ertical Veloc

locity ݒ௬ ver

city ݒ௭ versu

rsus Time 

us Time 

 

 

 



Figure 7

Figure 

71.  Case 15

72.  Case 15

79 

5 Pitch Rate ߱

5 Roll Rate ߱

߱௫ versus T

߱௬ versus Ti

Time 

ime 

 

 

 



the y

after 

angul

with 

the v

termi

the v

show

and s

slight

For Case 

y direction, s

10 seconds 

lar velocity 

peaks and tr

velocity in t

inates very q

vertical direc

ws a vaguely 

shows no sig

tly in vaguel

Figure 

14, the linea

shows a sinu

because the

about the x

roughs that a

the vertical 

quickly once

ction.  The p

sinusoidal p

gns of incre

ly sinusoidal

73.  Case 15

ar case, the 

usoidal patt

e aileron inp

-axis, the pi

also become

direction, th

e the aileron 

plot for the 

pattern.  How

easing once t

l patterns ab

80 

5 Yaw Rate ߱

plot for the 

ern, and the

put ends afte

itch rate, sho

 smaller onc

he z directi

input ends, 

velocity in 

wever the am

the aileron i

bout the y- an

߱௭ versus Ti

longitudinal

e peaks and 

er 10 second

ows a very 

ce the aileron

ion, shows 

meaning th

the x direct

mplitude of 

input ends. 

nd z-axes, bu

ime 

l velocity, th

troughs bec

ds.  Also, th

rough sinus

n input ends

a sinusoidal

hat the aircra

tion, the late

this pattern 

 The aircraf

ut this ampl

 

he velocity i

come smalle

he plot of th

soidal pattern

s.  The plot o

l pattern tha

aft is stable i

eral direction

is very sma

ft also rotate

itude of thes

 

in 

er 

he 

n, 

of 

at 

in 

n, 

all 

es 

se 



 

81 

patterns are very small.  This all suggests that the aircraft is stable for a 15 degree aileron 

input. 

However, Case 15, the nonlinear 15 degree amplitude aileron input case, suggests 

that the aircraft is unstable for this input.  The aircraft shows minimal movement in the 

lateral direction until approximately 8 seconds, but this motion is still stable.  The aircraft 

recovers from the aileron input in the vertical direction well.  The longitudinal velocity 

plot suggests that aircraft does not recover from the aileron input in the longitudinal 

direction once the input ends after 10 seconds.  This suggests that the aircraft is unstable 

for a 15 degree amplitude sinusoidal aileron input applied to both wings.  Instead, the 

amplitude of the longitudinal velocity’s sinusoidal pattern continues to grow larger.  

Rotationally, the aircraft recovers from the aileron input for all three axes.  Note that 

several plots show some high frequency instabilities after approximately 8 seconds; 

however, this is not due to an actual instability of the aircraft but is due to numerical 

errors caused by the UM/NAST program.   

Case 16 and 17 involve 20 and 25 degree amplitude sinusoidal aileron inputs, 

respectively.  These are both linear type simulations.  Both simulations suggest that the 8 

meter X-HALE is unstable with these inputs.  The nonlinear type versions of these 

simulations were attempted but these simulations failed most likely because the aircraft 

flight went extremely unstable.  These attempts had the same time step (0.001 seconds), 

residual value (10) and time duration (15 seconds) as the other 8 meter X-HALE 

simulations.  The results of Cases 16 and17 can be viewed in the Appendix. 

Case 16’s results show minimal movement in the lateral direction.  The aircraft 

recovers from the aileron input in the vertical direction, but the longitudinal velocity plot 
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suggests that aircraft does not recover from the aileron input in the longitudinal direction 

once the input ends after 10 seconds.  Instead, the amplitude of the longitudinal velocity’s 

sinusoidal pattern continues to grow larger.  This suggests that the 8 meter X-HALE will 

be unstable for a 20 degree amplitude sinusoidal aileron input applied to both wings when 

test flown.  The aircraft does show some small rotational movement about the x-axis, but 

this lessens once the aileron input ends.  The aircraft also shows some rotational 

movement about the y- and z-axes; however, this movement is very small. 

Case 17’s results show minimal movement in the lateral direction.  The aircraft 

recovers from the aileron input in the vertical direction, but the longitudinal velocity plot 

suggests that aircraft does not recover from the aileron input in the longitudinal direction 

once the input ends after 10 seconds.  This suggests that the 8 meter X-HALE is unstable 

for a 25 degree amplitude sinusoidal aileron input applied to both wings.  Instead, the 

amplitude of the longitudinal velocity’s sinusoidal pattern continues to grow larger.  

Rotationally, the aircraft is stable and is minimally affected by the aileron input.  Note 

that several plots for Case 17 show some high frequency instabilities after approximately 

8 seconds; however, this is not due to an actual instability of the aircraft but is due to 

numerical errors caused by the UM/NAST program. 
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V. Conclusions and Recommendations 

V.1 Conclusions 

The results of the six 6 meter X-HALE simulations discussed suggest that the 6 

meter X-HALE model is either unstable or that the simulations were set up incorrectly.  

Because Shearer, Cesnik and their co-workers designed both the 6 meter and the 8 meter 

models of X-HALE to be stable, it is unlikely that the actual 6 meter X-HALE aircraft is 

unstable.  The most likely cause of the instabilities that the simulations show is that the 

trim conditions for the 6 meter simulations were poorly configured.  More research must 

be done in order to determine the actual cause of the perceived instability of the aircraft.  

For now, no conclusion can be drawn about the stability of the aircraft.  A summary of 

the results of the 6 meter X-HALE simulations discussed is given in Table 3. 
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Table 3.  A Summary of Discussed 6 Meter X-HALE Simulations 

Case Simulation 
Type 

Input Duration 
(sec)/ 

Time Step 
(sec)/ 
Max 

Residual 
Value 

Sinusoidal Aileron Input 
Data 

Stability 

Period 
(sec) 

Start/ 
End 
Time 
(sec) 

Amplitude 
(deg) 

1 6 Meter 
Linear 

None 15/ 
0.0025/ 

0.1 

N/A N/A N/A Unstable

2 6 Meter 
Linear 

None 10/ 
0.0001/ 

10 

N/A N/A N/A Unstable

3 6 Meter 
Nonlinear 

None 10/ 
0.0001/ 

10 

N/A N/A N/A Unstable

4 6 Meter 
Linear 

Aileron 10/ 
0.0001/ 

10 

5 0.1/10 2 Unstable

5 6 Meter 
Linear 

Aileron 10/ 
0.0001/ 

10 

5 0.1/10 5 Unstable

6 6 Meter 
Linear 

Aileron 10/ 
0.0001/ 

10 

5 0.1/10 10 Unstable

 

The results of the 8  meter X-HALE  simulations  suggest that 8 meter X-HALE is 

stable for sinusoidal aileron inputs performed on both wings with 5 degrees of amplitude 

or less, and the aircraft is unstable for amplitudes of 10 degrees or more.  The results also 

suggest that the aircraft is stable when no inputs are applied.  Cesnik et al.’s results when 

performing UM/NAST simulations for the 8-meter X-HALE [4] suggest that when a 

single period of a left-wing-down sinusoidal aileron input is applied, the aircraft is stable 

for aileron inputs with a 2 degree amplitude, but not for inputs with a 5 degree amplitude 

or greater.  Their results suggest that when a 1-cosine gust is symmetrically applied to the 

8 meter X-HALE with a maximum gust speed of 4 m/s, while the nominal flight speed is 
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14 m/s at 30 m altitude, the aircraft is stable.  This research build’s off of Cesnik et al.’s 

results and predicts that, when test flown, the 8 meter X-HALE can be expected to be 

stable as long as any sinusoidal aileron inputs commanded on both wings has no more 

than 5 degrees of amplitude.  A summary of the results of the 8 meter X-HALE 

simulations discussed is given in Table 4. 
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Table 4.  A Summary of Discussed 8 Meter X-HALE Simulations 

Case Simulation 
Type 

Input Duration 
(sec)/ 

Time Step 
(sec)/ 
Max 

Residual 
Value 

Sinusoidal Aileron Input 
Data 

Stability 

Period 
(sec) 

Start/ 
End 
Time 
(sec) 

Amplitude 
(deg) 

7 8 Meter 
Linear 

None 15/ 
0.001/ 

10 

N/A N/A N/A Stable 

8 8 Meter 
Linear 

Aileron 15/ 
0.001/ 

10 

5 0.1/10 2 Stable 

9 8 Meter 
Nonlinear 

Aileron 15/ 
0.001/ 

10 

5 0.1/10 2 Stable 

10 8 Meter 
Linear 

Aileron 15/ 
0.001/ 

10 

5 0.1/10 5 Stable 

11 8 Meter 
Nonlinear 

Aileron 15/ 
0.001/ 

10 

5 0.1/10 5 Stable 

12 8 Meter 
Linear 

Aileron 15/ 
0.001/ 

10 

5 0.1/10 10 Stable 

13 8 Meter 
Nonlinear 

Aileron 15/ 
0.001/ 

10 

5 0.1/10 10 Unstable

14 8 Meter 
Linear 

Aileron 15/ 
0.001/ 

10 

5 0.1/10 15 Stable 

15 8 Meter 
Nonlinear 

Aileron 15/ 
0.001/ 

10 

5 0.1/10 15 Unstable

16 8 Meter 
Linear 

Aileron 15/ 
0.001/ 

10 

5 0.1/10 20 Unstable

17 8 Meter 
Linear 

Aileron 15/ 
0.001/ 

10 

5 0.1/10 25 Unstable
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V.2 Recommendations for Future Research 

This research provides another step forward in the process of predicting the flight 

behavior of the X-HALE aircrafts when they are test flown for the purpose of potentially 

validating the UM/NAST code; however, more research is necessary to expand on the 

findings of this research.  Unfortunately, the 6 meter X-HALE simulations run are 

probably not accurate models of the flight of the 6 meter X-HALE.  More simulations 

should be done for the 6 meter model of X-HALE but this time the trim conditions should 

be properly configured.  Ideally simulations would be run for at least a 15 second flight 

time.  Simulations should be run using both the linear and nonlinear solution types.  

These simulations should include sinusoidal aileron inputs on both wings with various 

amplitudes, gust inputs of various speeds, and no inputs at all.  Other simulations that 

may be helpful include turning simulations and climb and descent simulations.  

Additionally, simulations need to be run in order to predict the effect of flipping X-

HALE’s vertical tail on the 6 meter X-HALE.  It is possible that the vertical tail may 

provide more stability, especially in the lateral direction.  The 8 meter aircraft has more 

wing dihedral when the wings are flexed than the 6 meter aircraft because the aircraft is 

longer.  This provides more lateral stability for the 8 meter aircraft.  This may be why the 

6 meter X-HALE appears to be less stable than the 8 meter X-HALE according to the 

results of this research. 

Thankfully, the 8 meter X-HALE simulations performed in this research are more 

helpful.  However, this research only performed simulations involving either sinusoidal 

aileron inputs on both wings or no inputs.  Shearer, Cesnik and their co-workers 

performed simulations for the 8 meter X-HALE involving single period, left-wing-down 
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sinusoidal aileron inputs, and simulations with a 1-cosine gust symmetrically applied 

with a maximum gust speed of 4 m/s.  There are plenty more simulations that can be run 

for the 8 meter version of X-HALE in order to help predict the aircraft’s flight behavior 

such as turning simulations, and climb and descend simulations, and gust inputs of 

various speeds.  Additionally, it may be helpful to run nonlinear type simulations for 

aileron inputs between 5 and 10 degrees of amplitude to pinpoint exactly what sinusoidal 

aileron input amplitude causes the aircraft to become unstable.  Simulations also need to 

be run in order to predict the effect of flipping the 8 meter X-HALE’s vertical tail. 

Much of the initial difficulties experienced are due to the fact that the 6 meter 

simulations were probably improperly set up.  However, future research can benefit from 

the findings of this research when it comes to the balance of the time step, the maximum 

residual value and the flight time.  Future research should set up simulations with a time 

step of no more than 0.05 seconds (but at least 0.0001 seconds), a maximum residual 

value of no more than 10 (but at least 0.1) and a flight time of at least 15 seconds.  A time 

step of no more than 0.05 seconds and a maximum residual value of no more than 10 will 

help to the simulations complete easily and to provide accurate results.  A flight time of 

at least 15 seconds will help to ensure that enough information can be drawn from the 

results. 

V.3 General Remarks 

The recent crash of NASA’s Helios aircraft (Figure 4), a forerunning HALE 

Remotely Piloted Aircraft (RPA), demonstrates that while previous research has been 

done on the problem of nonlinear aeroelasticity coupled with nonlinear flight dynamics, 

the problem is still not completely understood.  Several codes have been developed for 
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the use of modeling nonlinear aeroelastic and flight dynamics of an aircraft, such as 

UM/NAST, NATASHA, ASWING and RCAS, but none have been completely validated 

with real flight data from a fixed-wing aircraft [4].  The goal of this research was to 

perform flight simulations with UM/NAST so as to make predictions about X-HALE’s 

future test flights and subsequently uncover the strengths and weaknesses of UM/NAST 

when X-HALE is finally flown.  Indeed, this research managed to make predictions about 

X-HALE’s future test flights and is a step forward in potentially validating UM/NAST. 

This research, in conjunction with the UM/NAST code and the test flights of the X-

HALE aircrafts should provide more information on the problem of nonlinear 

aeroelasticity coupled with nonlinear flight dynamics.  Hopefully this knowledge can be 

put to use in the development of HALE aircraft.  These HALE aircraft may include ISR 

platforms, such as US Air Force SensorCraft, network communication nodes for military 

or civilian purposes, or aircraft that will perform general atmospheric research.   
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Appendix B.  Input File for the 6 Meter, 5 Degree Aileron Input Linear 

Case, Case 5 

%This is from the input flie 6_meter_baseline_case0.nin 
 
title="XHALE_Dec2009_TEST" 
filename="xHALE_dec_2009_test" 
   
Aerodynamics { 
    drag                     = 1            %or 0 
    drag_derivatives         = 1            %or 0 
    inflow_forces            = 1            %or 0 
    inflow_expansion         = 6 
%   stall_model              = "model_name" 
    load_factor              = 1 
    pg_correction            = 0 
    nominal_mach             = 0.3 
    vertical_aero_load       = 0 
    stall_on                 = 0 
    stall_model_type         = 1 
    reynolds_number          = 150000 
} 
   
Flight Conditions { 
    altitude                 = 30 
    pressure                 =  
    load_factor              = 1            % gravmult 
    density                  =  
    velocity                 = 12 
    gustx                    =  
    gusty                    =  
    gustz                    =  
} 
 Pilot Input { 
} 
 Structure { 
    baoa      = 7.828875834563730%7.828876272969460%7.828493098845625 
    fuel_mass = 0; 
    keypoints {          
         0       0      0        %1  Center 
         1       0      0        %2  kpt 1 on the right 
        -1       0      0        %3  kpt 1 on the left 
         2       0      0        %4  kpt-extension on the right 
        -2       0      0        %5  kpt-extension on the right 
         3.037   0      0.174    %6  kpt-extension on the right 
        -3.037   0      0.174    %7  kpt-extension on the right 
         1       0     -0.184    %8  R1 Pod down 
        -1       0     -0.184    %9  L1 Pod down 
         2       0     -0.184    %10 R2 Pod down 
        -2       0     -0.184    %11 L2 Pod down 
         1      -0.650  0        %12 R1 Tailboom 
         0.7625 -0.650  0        %13 R1 Tail inner tip 
         1.2375 -0.650  0        %14 R1 Tail outer tip 
        -1      -0.650  0        %15 L1 Tailboom 
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        -0.7625 -0.650  0        %16 L1 Tail inner tip 
        -1.2375 -0.650  0        %17 L1 Tail outer tip 
         2      -0.650  0        %18 R2 Tailboom 
         1.7625 -0.650  0        %19 R2 Tail inner tip 
         2.2375 -0.650  0        %20 R2 Tail outer tip 
        -2      -0.650  0        %21 L2 Tailboom 
        -1.7625 -0.650  0        %22 L2 Tail inner tip 
        -2.2375 -0.650  0        %23 L2 Tail outer tip 
         0       0     -0.184    %24 Center pod down 
         2.052   0      0        %25 kpt-extension on the right 
        -2.052   0      0        %26 kpt-extension on the right 
    } 
    members{ 
        % [memb name, (key points ...), propertiy] 
        PODC    1 24             fairing_center  %1 
        WR1     1  2             main_wing       %2 
        POD1up  2  8             fairing_up_right%3 
        BR1     2 12             boom            %4 
        TR1in  12 13             tail_in_right   %5 
        TR1ou  12 14             tail_out_right  %6 
        WR2     2  4             main_wing       %7 
        POD3up  4 10             fairing_up_right%8 
        BR2     4 18             boom            %9 
        TR2in  18 19             tail_in_right   %10 
        TR2ou  18 20             tail_out_right  %11 
        WR3     4 25  6          main_wing_dih   %12 
        WL1     1  3             main_wing       %13 
        POD2up  3  9             fairing_up_left %14 
        BL1     3 15             boom            %15 
        TL1in  15 16             tail_in_left    %16 
        TL1ou  15 17             tail_out_left   %17 
        WL2     3  5             main_wing       %18 
        POD4up  5 11             fairing_up_left %19 
        BL2     5 21             boom            %20 
        TL2in  21 22             tail_in_left    %21 
        TL2ou  21 23             tail_out_left   %22 
        WL3     5 26  7          main_wing_dih   %23     
    } 
  
    integration_direction= 1 1 1 -1 -1 1 1 1 -1 -1 1 1 -1 1 -1 1 -1 -1 
1 -1 1 -1 -1 
    group{ 
    grp1{ 
         1 
        } 
    grp2{ 
         2  3 
         2  4 
         4  5 
         4  6 
         2  7 
         7  8 
         7  9 
         9 10  
         9 11 
         7 12 
        } 
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    grp3{ 
        13 14 
        13 15 
        15 16 
        15 17 
        13 18 
        18 19 
        18 20 
        20 21 
        20 22  
        18 23 
        } 
    } 
    inter member constraint{ 
    } 
    member properties { 
        boom { 
            type = "fuselage" 
            diameter = 0.024 0.013 
            number of elements = 1 
            rigid_element = 1 
            crosssection { 
                reference axis    = 0.5 0   % location of ra from LE 
                                            % User may choose following 
                                            % type of input for varible 
                                            % reference axis locations 
                mass_distribution = 0.119339623 
                                            % (mass units)/(unit span)  
                center_of_gravity{          % Empty inputs means cg is 
                }                           % located at ra 
                inertia { 
                    Ixx= 2.914E-09 
                    Ixy= 0    
                    Ixz= 0    
                    Iyy= 1.457E-09 
                    Iyz= 0    
                    Izz= 1.457E-09 
                } 
                stiffness {         % Be Set to rigid. These numbers 
are dummy 
                    K11= 5.390E+07  % extension stiffness [E*A] 
                    K12= 0          % extension twist coupling 
                    K13= 0          % extension bend y coupling 
                    K14= 0          % extension bend z coupling 
                    K22= 5.390E+07  % twist stiffness [G*J] 
                    K23= 0          % twist / bend y coupling 
                    K24= 0          % twist / bend z coupling 
                    K33= 5.390E+07  % bend y stiffness [E*I] 
                    K34= 0          % bend y / bend z coupling 
                    K44= 5.390E+07  % bend z stiffness 
                } 
            } 
        } 
        main_wing { 
            type = "wing" 
            number of elements = 2 
            control surface{ 
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            } 
            airfoil       = NACA4415 
            aero_coefficient = datatable 
%           airfoilfile   = EMX07.dat 
            AoA           = 0 
%           rigid_element = 
            aerodynamic_spanwise_distribution = 0 
            fuel_percentage     =  
            chord               = 0.2       % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 
            crosssection { 
                reference axis    = 0.2878 0 
                                            % location of ra from LE 
                                            % User may choose following 
                                            % type of input for varible 
                                            % reference axis locations 
                mass_distribution = 0.319 
                                            % (mass units)/(unit span)  
                center_of_gravity{          % Empty inputs means cg is 
                    cgx =  0.0 
                    cgy =  0.00756          % @ c/4 
                    cgz =  0.0 
                }                           % located at ra 
                inertia { 
                    Ixx=  8.089765E-04 
                    Ixy= -0.000000E+00 
                    Ixz=  0.000000E+00 
                    Iyy=  1.221712E-05 
                    Iyz= -6.493531E-06 
                    Izz=  7.967593E-04 
                } 
                stiffness { 
                    K11=  2.140827E+06      % extension stiffness [E*A] 
                    K12=  0.000000E+00      % extension twist coupling 
                    K13=  1.544115E+03      % extension bend y coupling 
                    K14= -4.905651E+04      % extension bend z coupling 
                    K22=  7.224739E+01      % twist stiffness [G*J] 
                    K23= -0.000000E+00      % twist / bend y coupling 
                    K24=  0.000000E+00      % twist / bend z coupling 
                    K33=  1.195708E+02      % bend y stiffness [E*I] 
                    K34= -4.634442E+01      % bend y / bend z coupling 
                    K44=  6.350796E+03      % bend z stiffness 
                } 
            } 
        } 
        main_wing_dih { 
            type = "wing" 
            number of elements = 1 2 
            control surface{ 
                AilR = trail 0.25 2 3 WR3 % [name, percent of chord, 
start element, end element] 
                AilL = trail 0.25 2 3 WL3 % [name, percent of chord, 
start element, end element] 
            } 
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            airfoil       = NACA4415 
            aero_coefficient = datatable 
%           airfoilfile   = EMX07.dat 
            AoA           = 0 0 0 
%           rigid_element = 
            aerodynamic_spanwise_distribution = 40 
            fuel_percentage     =  
            chord               = 0.2       % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 
            crosssection { 
                reference axis    = 0.2878 0 
                                            % location of ra from LE 
                                            % User may choose following 
                                            % type of input for varible 
                                            % reference axis locations 
                mass_distribution = 0.319 
                                            % (mass units)/(unit span)  
                center_of_gravity{          % Empty inputs means cg is 
                    cgx =  0.0 
                    cgy =  0.00756          % @ c/4 
                    cgz =  0.0 
                }                           % located at ra 
                inertia { 
                    Ixx=  8.089765E-04 
                    Ixy= -0.000000E+00 
                    Ixz=  0.000000E+00 
                    Iyy=  1.221712E-05 
                    Iyz= -6.493531E-06 
                    Izz=  7.967593E-04 
                } 
                stiffness { 
                    K11=  2.140827E+06      % extension stiffness [E*A] 
                    K12=  0.000000E+00      % extension twist coupling 
                    K13=  1.544115E+03      % extension bend y coupling 
                    K14= -4.905651E+04      % extension bend z coupling 
                    K22=  7.224739E+01      % twist stiffness [G*J] 
                    K23= -0.000000E+00      % twist / bend y coupling 
                    K24=  0.000000E+00      % twist / bend z coupling 
                    K33=  1.195708E+02      % bend y stiffness [E*I] 
                    K34= -4.634442E+01      % bend y / bend z coupling 
                    K44=  6.350796E+03      % bend z stiffness 
                } 
            } 
        } 
        tail_in_right { 
            type = "wing" 
            number of elements = 1 
            control surface{ 
                % NM = [lead/trail(location),... 
                %       percentage of chord,... 
                %       start element,... 
                %       end element,... 
                %       memb label] 
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                ELR1in = trail 0.98 1 1 TR1in % [name, percent of 
chord, start element, end element] 
                ELR2in = trail 0.98 1 1 TR2in % [name, percent of 
chord, start element, end element] 
            } 
            airfoil       = NACA0012 
            aero_coefficient = datatable 
            AoA           = 0 
            rigid_element = 1 
            aerodynamic_spanwise_distribution = 40 
            fuel_percentage =  
            chord           = 0.11          % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 
            crosssection { 
                reference axis    = 0.3235 0% location of ra from LE 
                                            % User may choose following 
                                            % type of input for varible 
                                            % reference axis locations 
                mass_distribution = 0.129   % (mass units)/(unit span)  
                center_of_gravity{          % Empty inputs means cg is 
                    cgx =  0.0 
                    cgy =  0.008085         % @ c/4 
                    cgz =  0.0 
                }                           % located at ra 
                inertia { 
                    Ixx=  1.597900E-04 
                    Ixy= -0.000000E+00 
                    Ixz=  0.000000E+00 
                    Iyy=  2.914098E-06 
                    Iyz= -1.688579E-22 
                    Izz=  1.568759E-04 
                } 
                stiffness {                 % Be Set to rigid. These 
numbers are dummy 
                    K11=  3.214025E+06      % extension stiffness [E*A] 
                    K12=  0.000000E+00      % extension twist coupling 
                    K13= -3.714275E-04      % extension bend y coupling 
                    K14= -7.441697E+04      % extension bend z coupling 
                    K22=  2.138858E+01      % twist stiffness [G*J] 
                    K23= -0.000000E+00      % twist / bend y coupling 
                    K24=  0.000000E+00      % twist / bend z coupling 
                    K33=  9.098072E+01      % bend y stiffness [E*I] 
                    K34=  2.262609E-06      % bend y / bend z coupling 
                    K44=  4.274273E+03      % bend z stiffness 
                } 
                rigid_body{ 
                    point_mass        = 1 % changed spelling 
                    nodes             = 2 
                    center_of_gravity =  0.04575 4.95E-04 -0.0005 
                    mass              = 0.04873 
                    inertia{ 
                        Ixx =  4.631E-06 
                        Ixy = -3.190E-06 
                        Ixz = -3.057E-07 
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                        Iyy =  2.282E-05 
                        Iyz =  2.644E-08 
                        Izz =  2.651E-05 
                    } 
                } 
            } 
        } 
        tail_out_right { 
            type = "wing" 
            number of elements = 1 
            control surface{ 
                % NM = [lead/trail(location),... 
                %       percentage of chord,... 
                %       start element,... 
                %       end element,... 
                %       memb label] 
                ELR1ou = trail 0.98 1 1 TR1ou % [name, percent of 
chord, start element, end element] 
                ELR2ou = trail 0.98 1 1 TR2ou % [name, percent of 
chord, start element, end element] 
            } 
            airfoil       = NACA0012 
            aero_coefficient = datatable 
            AoA           = 0 
            rigid_element = 1 
            aerodynamic_spanwise_distribution = 40 
            fuel_percentage =  
            chord           = 0.11          % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 
            crosssection { 
                reference axis    = 0.3235 0% location of ra from LE 
                                            % User may choose following 
                                            % type of input for varible 
                                            % reference axis locations 
                mass_distribution = 0.129   % (mass units)/(unit span)  
                center_of_gravity{          % Empty inputs means cg is 
                    cgx =  0.0 
                    cgy =  0.008085         % @ c/4 
                    cgz =  0.0 
                }                           % located at ra 
                inertia { 
                    Ixx=  1.597900E-04 
                    Ixy= -0.000000E+00 
                    Ixz=  0.000000E+00 
                    Iyy=  2.914098E-06 
                    Iyz= -1.688579E-22 
                    Izz=  1.568759E-04 
                } 
                stiffness {                 % Be Set to rigid. These 
numbers are dummy 
                    K11=  3.214025E+06      % extension stiffness [E*A] 
                    K12=  0.000000E+00      % extension twist coupling 
                    K13= -3.714275E-04      % extension bend y coupling 
                    K14= -7.441697E+04      % extension bend z coupling 
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                    K22=  2.138858E+01      % twist stiffness [G*J] 
                    K23= -0.000000E+00      % twist / bend y coupling 
                    K24=  0.000000E+00      % twist / bend z coupling 
                    K33=  9.098072E+01      % bend y stiffness [E*I] 
                    K34=  2.262609E-06      % bend y / bend z coupling 
                    K44=  4.274273E+03      % bend z stiffness 
                } 
                rigid_body{ 
                    point_mass        = 1 % changed spelling 
                    nodes             = 1 
                    center_of_gravity =  0.0286 0.008395 0.0 
                    mass              = 0.02 
                    inertia{ 
                        Ixx =  1.866E-07 
                        Ixy =  1.000E-10 
                        Ixz =  0.000E+00 
                        Iyy =  1.341E-06 
                        Iyz =  0.000E+00 
                        Izz =  1.311E-06 
                    } 
                } 
            } 
        } 
        tail_in_left { 
            type = "wing" 
            number of elements = 1 
            control surface{ 
                % NM = [lead/trail(location),... 
                %       percentage of chord,... 
                %       start element,... 
                %       end element,... 
                %       memb label] 
                ELL1in = trail 0.98 1 1 TL1in % [name, percent of 
chord, start element, end element] 
                ELL2in = trail 0.98 1 1 TL2in % [name, percent of 
chord, start element, end element] 
            } 
            airfoil       = NACA0012 
            aero_coefficient = datatable 
            AoA           = 0 
            rigid_element = 1 
            aerodynamic_spanwise_distribution = 40 
            fuel_percentage =  
            chord           = 0.11          % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 
            crosssection { 
                reference axis    = 0.3235 0% location of ra from LE 
                                            % User may choose following 
                                            % type of input for varible 
                                            % reference axis locations 
                mass_distribution = 0.129   % (mass units)/(unit span)  
                center_of_gravity{          % Empty inputs means cg is 
                    cgx =  0.0 
                    cgy =  0.008085         % @ c/4 
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                    cgz =  0.0 
                }                           % located at ra 
                inertia { 
                    Ixx=  1.597900E-04 
                    Ixy= -0.000000E+00 
                    Ixz=  0.000000E+00 
                    Iyy=  2.914098E-06 
                    Iyz= -1.688579E-22 
                    Izz=  1.568759E-04 
                } 
                stiffness {                 % Be Set to rigid. These 
numbers are dummy 
                    K11=  3.214025E+06      % extension stiffness [E*A] 
                    K12=  0.000000E+00      % extension twist coupling 
                    K13= -3.714275E-04      % extension bend y coupling 
                    K14= -7.441697E+04      % extension bend z coupling 
                    K22=  2.138858E+01      % twist stiffness [G*J] 
                    K23= -0.000000E+00      % twist / bend y coupling 
                    K24=  0.000000E+00      % twist / bend z coupling 
                    K33=  9.098072E+01      % bend y stiffness [E*I] 
                    K34=  2.262609E-06      % bend y / bend z coupling 
                    K44=  4.274273E+03      % bend z stiffness 
                } 
                rigid_body{ 
                    point_mass        = 1 % changed spelling 
                    nodes             = 2 
                    center_of_gravity = -0.04575 4.95E-04 -0.0005 
                    mass              = 0.04873 
                    inertia{ 
                        Ixx =  4.631E-06 
                        Ixy = -3.190E-06 
                        Ixz = -3.057E-07 
                        Iyy =  2.282E-05 
                        Iyz =  2.644E-08 
                        Izz =  2.651E-05 
                    } 
                } 
            } 
        } 
        tail_out_left { 
            type = "wing" 
            number of elements = 1 
            control surface{ 
                % NM = [lead/trail(location),... 
                %       percentage of chord,... 
                %       start element,... 
                %       end element,... 
                %       memb label] 
                ELL1ou = trail 0.98 1 1 TL1ou % [name, percent of 
chord, start element, end element] 
                ELL2ou = trail 0.98 1 1 TL2ou % [name, percent of 
chord, start element, end element] 
            } 
            airfoil       = NACA0012 
            aero_coefficient = datatable 
            AoA           = 0 
            rigid_element = 1 



 

167 

            aerodynamic_spanwise_distribution = 40 
            fuel_percentage =  
            chord           = 0.11          % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 
            crosssection { 
                reference axis    = 0.3235 0% location of ra from LE 
                                            % User may choose following 
                                            % type of input for varible 
                                            % reference axis locations 
                mass_distribution = 0.129   % (mass units)/(unit span)  
                center_of_gravity{          % Empty inputs means cg is 
                    cgx =  0.0 
                    cgy =  0.008085         % @ c/4 
                    cgz =  0.0 
                }                           % located at ra 
                inertia { 
                    Ixx=  1.597900E-04 
                    Ixy= -0.000000E+00 
                    Ixz=  0.000000E+00 
                    Iyy=  2.914098E-06 
                    Iyz= -1.688579E-22 
                    Izz=  1.568759E-04 
                } 
                stiffness {                 % Be Set to rigid. These 
numbers are dummy 
                    K11=  3.214025E+06      % extension stiffness [E*A] 
                    K12=  0.000000E+00      % extension twist coupling 
                    K13= -3.714275E-04      % extension bend y coupling 
                    K14= -7.441697E+04      % extension bend z coupling 
                    K22=  2.138858E+01      % twist stiffness [G*J] 
                    K23= -0.000000E+00      % twist / bend y coupling 
                    K24=  0.000000E+00      % twist / bend z coupling 
                    K33=  9.098072E+01      % bend y stiffness [E*I] 
                    K34=  2.262609E-06      % bend y / bend z coupling 
                    K44=  4.274273E+03      % bend z stiffness 
                } 
                rigid_body{ 
                    point_mass        = 1 % changed spelling 
                    nodes             = 1 
                    center_of_gravity = -0.0286 0.008395 0.0 
                    mass              = 0.02 
                    inertia{ 
                        Ixx =  1.866E-07 
                        Ixy =  1.000E-10 
                        Ixz =  0.000E+00 
                        Iyy =  1.341E-06 
                        Iyz =  0.000E+00 
                        Izz =  1.311E-06 
                    } 
                } 
            } 
        } 
        fairing_center { 
            type               = "vtail" 
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            number of elements = 1 
            airfoil            = NACA0018 
            aero_coefficient = datatable 
%           airfoilfile        = mh78.dat 
            AoA                = 0 
            rigid_element      = 1 
            aerodynamic_spanwise_distribution = 40 
            fuel_percentage    =  
            chord = 0.37                    % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 
            crosssection { 
                reference axis= 0.6093 0%0 0% 
                mass_distribution= 1.0e-8   % (mass units)/(unit span) 
                inertia { 
                    Ixx= 1.0e-8 
                    Ixy= 0    
                    Ixz= 0    
                    Iyy= 1.0e-8 
                    Iyz= 0    
                    Izz= 1.0e-8 
                } 
                stiffness {         % Be Set to rigid. These numbers 
are dummy 
                    K11= 5.390E+07  % extension stiffness [E*A] 
                    K12= 0          % extension twist coupling 
                    K13= 0          % extension bend y coupling 
                    K14= 0          % extension bend z coupling 
                    K22= 5.390E+07  % twist stiffness [G*J] 
                    K23= 0          % twist / bend y coupling 
                    K24= 0          % twist / bend z coupling 
                    K33= 5.390E+07  % bend y stiffness [E*I] 
                    K34= 0          % bend y / bend z coupling 
                    K44= 5.390E+07  % bend z stiffness 
                } 
                rigid_body{ 
                    point_mass        = 2 % changed spelling 
                    nodes             = 1 2 
                    center_of_gravity{ 
                        cgx{ 
                             0% 0.0125 % 0.0125 % center pod battery 
                             0%-0.0031 
                        } 
                        cgy{ 
                            -0.0009 % 0.0591 % center pod battery 
                             0.0431 
                        } 
                        cgz{ 
                            -0.0689 %-0.0689 % center pod battery 
                             0.0116 
                        } 
                    } 
                    mass{ 
                        0.3960 
                        1.0248 
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                    } 
                    inertia{ 
                        Ixx{ 
                             1.160E-03 
                             1.476E-02 
                        } 
                        Ixy{ 
                             0.000E+00 
                             2.322E-04 
                        } 
                        Ixz{ 
                             0.000E+00 
                             2.267E-05 
                        } 
                        Iyy{ 
                             9.485E-05 
                             2.816E-03 
                        } 
                        Iyz{ 
                             0.000E+00 
                             4.500E-04 
                        } 
                        Izz{ 
                             1.098E-03 
                             2.503E-04 
                        } 
                    } 
                } 
            } 
        } 
        fairing_up_right { 
            type               = "vtail" 
            number of elements = 1 
            airfoil            = NACA0018 
            aero_coefficient = datatable 
%           airfoilfile        = mh78.dat 
            AoA                = 0 
            rigid_element      = 1 
            aerodynamic_spanwise_distribution = 40 
            fuel_percentage    =  
            chord = 0.37                    % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 
            crosssection { 
                reference axis= 0.6093 0%0 0% 
                mass_distribution= 1.0e-8   % (mass units)/(unit span) 
                inertia { 
                    Ixx= 1.0e-8 
                    Ixy= 0    
                    Ixz= 0    
                    Iyy= 1.0e-8 
                    Iyz= 0    
                    Izz= 1.0e-8 
                } 
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                stiffness {         % Be Set to rigid. These numbers 
are dummy 
                    K11= 5.390E+07  % extension stiffness [E*A] 
                    K12= 0          % extension twist coupling 
                    K13= 0          % extension bend y coupling 
                    K14= 0          % extension bend z coupling 
                    K22= 5.390E+07  % twist stiffness [G*J] 
                    K23= 0          % twist / bend y coupling 
                    K24= 0          % twist / bend z coupling 
                    K33= 5.390E+07  % bend y stiffness [E*I] 
                    K34= 0          % bend y / bend z coupling 
                    K44= 5.390E+07  % bend z stiffness 
                } 
                rigid_body{ 
                    point_mass        = 2 % changed spelling 
                    nodes             = 1 2 
                    center_of_gravity{ 
                        cgx{ 
                             0.0125 % 0.0125 % right pods battery 
                            -0.0062 
                        } 
                        cgy{ 
                            -0.0009 % 0.0591 % right pods battery 
                             0.0662 
                        } 
                        cgz{ 
                            -0.0689 %-0.0689 % right pods battery 
                             0.0066 
                        } 
                    } 
                    mass{ 
                        0.3960 
                        1.0571 
                    } 
                    inertia{ 
                        Ixx{ 
                             1.160E-03 
                             1.134E-02 
                        } 
                        Ixy{ 
                             0.000E+00 
                            -1.212E-03 
                        } 
                        Ixz{ 
                             0.000E+00 
                             1.055E-05 
                        } 
                        Iyy{ 
                             9.485E-05 
                             3.209E-03 
                        } 
                        Iyz{ 
                             0.000E+00 
                             4.595E-05 
                        } 
                        Izz{ 
                             1.098E-03 
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                             8.484E-03 
                        } 
                    } 
                } 
            } 
        } 
        fairing_up_left { 
            type               = "vtail" 
            number of elements = 1 
            airfoil            = NACA0018 
            aero_coefficient = datatable 
%           airfoilfile        = mh78.dat 
            AoA                = 0 
            rigid_element      = 1 
            aerodynamic_spanwise_distribution = 40 
            fuel_percentage    =  
            chord = 0.37                    % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 
            crosssection { 
                reference axis= 0.6093 0%0 0% 
                mass_distribution= 1.0e-8   % (mass units)/(unit span) 
                inertia { 
                    Ixx= 1.0e-8 
                    Ixy= 0    
                    Ixz= 0    
                    Iyy= 1.0e-8 
                    Iyz= 0    
                    Izz= 1.0e-8 
                } 
                stiffness {         % Be Set to rigid. These numbers 
are dummy 
                    K11= 5.390E+07  % extension stiffness [E*A] 
                    K12= 0          % extension twist coupling 
                    K13= 0          % extension bend y coupling 
                    K14= 0          % extension bend z coupling 
                    K22= 5.390E+07  % twist stiffness [G*J] 
                    K23= 0          % twist / bend y coupling 
                    K24= 0          % twist / bend z coupling 
                    K33= 5.390E+07  % bend y stiffness [E*I] 
                    K34= 0          % bend y / bend z coupling 
                    K44= 5.390E+07  % bend z stiffness 
                } 
                rigid_body{ 
                    point_mass        = 2 % changed spelling 
                    nodes             = 1 2 
                    center_of_gravity{ 
                        cgx{ 
                            -0.0125 %-0.0125 % left pods battery 
                             0.0062 
                        } 
                        cgy{ 
                            -0.0009 % 0.0591 % left pods battery 
                             0.0662 
                        } 
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                        cgz{ 
                            -0.0689 %-0.0689 % left pods battery 
                             0.0066 
                        } 
                    } 
                    mass{ 
                        0.3960 
                        1.0571 
                    } 
                    inertia{ 
                        Ixx{ 
                             1.160E-03 
                             1.134E-02 
                        } 
                        Ixy{ 
                             0.000E+00 
                            -1.212E-03 
                        } 
                        Ixz{ 
                             0.000E+00 
                             1.055E-05 
                        } 
                        Iyy{ 
                             9.485E-05 
                             3.209E-03 
                        } 
                        Iyz{ 
                             0.000E+00 
                             4.595E-05 
                        } 
                        Izz{ 
                             1.098E-03 
                             8.484E-03 
                        } 
                    } 
                } 
            } 
        } 
        motor_fairing { 
            type               = "vtail" 
            number of elements = 1 
            airfoil            = NACA0018 
            aero_coefficient = datatable 
%           airfoilfile        = mh78.dat 
            AoA                = 0 
            rigid_element      = 1 
            aerodynamic_spanwise_distribution = 40 
            fuel_percentage    =  
            chord = 0.37                    % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 
            crosssection { 
                reference axis= 0.6093 0%0 0% 
                mass_distribution= 1.0e-8   % (mass units)/(unit span) 
                inertia { 
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                    Ixx= 1.0e-8 
                    Ixy= 0    
                    Ixz= 0    
                    Iyy= 1.0e-8 
                    Iyz= 0    
                    Izz= 1.0e-8 
                } 
                stiffness {         % Be Set to rigid. These numbers 
are dummy 
                    K11= 5.390E+07  % extension stiffness [E*A] 
                    K12= 0          % extension twist coupling 
                    K13= 0          % extension bend y coupling 
                    K14= 0          % extension bend z coupling 
                    K22= 5.390E+07  % twist stiffness [G*J] 
                    K23= 0          % twist / bend y coupling 
                    K24= 0          % twist / bend z coupling 
                    K33= 5.390E+07  % bend y stiffness [E*I] 
                    K34= 0          % bend y / bend z coupling 
                    K44= 5.390E+07  % bend z stiffness 
                } 
                rigid_body{ 
                    point_mass        = 2 % changed spelling 
                    nodes             = 1 2 
                    center_of_gravity{ 
                        cgx{ 
                             0.0 % 0.0125 % right pods battery 
                             0.0 
                        } 
                        cgy{ 
                            -0.0109 % 0.0591 % right pods battery 
                             0.0562 
                        } 
                        cgz{ 
                            -0.0689 %-0.0689 % right pods battery 
                             0.0066 
                        } 
                    } 
                    mass{ 
                        0.3960 
                        0.4000 
                    } 
                    inertia{ 
                        Ixx{ 
                             1.160E-04 
                             1.134E-03 
                        } 
                        Ixy{ 
                             0.000E+00 
                            -1.212E-03 
                        } 
                        Ixz{ 
                             0.000E+00 
                             1.055E-05 
                        } 
                        Iyy{ 
                             9.485E-05 
                             3.209E-03 
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                        } 
                        Iyz{ 
                             0.000E+00 
                             4.595E-05 
                        } 
                        Izz{ 
                             1.098E-03 
                             8.484E-03 
                        } 
                    } 
                } 
            } 
        } 
    } 
} 
  
Loads { 
    frame = body_follower                         % or body_follower or 
inertial 
    load_vec{ 
        % [(1) (2) (3) (4) (5) (6) OPTIONAL (7) OPTIONAL (8)] 
        % (1): load type (force) 
        % (2): member designation 
        % (3): location type(keypoint or node) 
        % (4): location number 
        % (5): cartesian direction 
        % (6): time-independent value 
        % (7): time-independent value (OPTIONAL) 
        % (8): start time (OPTIONAL) 
        % (9): stop time (OPTIONAL) 
        Mot1    = force  PODC    node  1  y  
0.987101270333469%0.987101042245488%0.987157990615576%  -
0.5*sin(2*pi/0.10*(t-0.01))  0.01  0.11 
        Mot2    = force  POD1up  node  1  y  
0.987101270333469%0.987101042245488%0.987157990615576%  -
0.5*sin(2*pi/0.10*(t-0.01))  0.01  0.11 
        Mot3    = force  POD2up  node  1  y  
0.987101270333469%0.987101042245488%0.987157990615576%  -
0.5*sin(2*pi/0.10*(t-0.01))  0.01  0.11 
        Mot4    = force  POD3up  node  1  y  
0.987101270333469%0.987101042245488%0.987157990615576%  -
0.5*sin(2*pi/0.10*(t-0.01))  0.01  0.11 
        Mot5    = force  POD4up  node  1  y  
0.987101270333469%0.987101042245488%0.987157990615576%  -
0.5*sin(2*pi/0.10*(t-0.01))  0.01  0.11 
        D1      = force  PODC    node  2  y  -0.4408 
        D2      = force  POD1up  node  2  y  -0.4408 
        D3      = force  POD2up  node  2  y  -0.4408 
        D4      = force  POD3up  node  2  y  -0.15 
        D5      = force  POD4up  node  2  y  -0.15 
    % Fexample     = force         WL1 node         60  z  30*sin(20*t) 
        % [(1) (2) (3) (4) (5) (6) OPTIONAL (7) OPTIONAL (8)] 
        % (1): load type (force_dist) 
        % (2): member designation 
        % (3): starting element 
        % (4): ending element 
        % (5): cartesian direction 
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        % (6): time-independent value 
        % (7): time-independent value (OPTIONAL) 
        % (8): start time (OPTIONAL) 
        % (9): stop time (OPTIONAL) 
      % FD1    = force_dist    MB        1 20 z   50*sin(40*t)+25 
        % [(1) (2) (3) (4) (5) (6) OPTIONAL (7) OPTIONAL (8)] 
        % (1): load type (moment) 
        % (2): member designation 
        % (3): location type(keypoint or node) 
        % (4): location number 
        % (5): cartesian direction 
        % (6): time-independent value 
        % (7): time-independent value (OPTIONAL) 
        % (8): start time (OPTIONAL) 
        % (9): stop time (OPTIONAL) 
      % M1     = moment        MB     node 60 x   50 
        % [(1) (2) (3) (4) (5) (6) OPTIONAL (7) OPTIONAL (8)] 
        % (1): load type (moment_dist) 
        % (2): member designation 
        % (3): starting element 
        % (4): ending element 
        % (5): cartesian direction 
        % (6): time-independent value 
        % (7): time-independent value (OPTIONAL) 
        % (8): start time (OPTIONAL) 
        % (9): stop time (OPTIONAL) 
      % MD1    = moment_dist   MB        9 10 z   50 
        % [load type, member designation, element start, element end, 
mode, voltage value, OPTIONAL--> start time, stop time,...] % NEED TO 
COMPLETE 
      % VA1    = actuator_volt VA1       1 10 
        % [(1) (2) (3) OPTIONAL (4) OPTIONAL (5)] 
        % (1): load type (control_surf) 
        % (2): control surface designation 
        % (3): time-independent value 
        % (4): time-independent value (OPTIONAL) 
        % (5): start time (OPTIONAL) 
        % (6): stop time (OPTIONAL) 
        DEFTAIL1= control_surf  ELR1in  -7.830535569853027%-
7.830535463594316%-7.830173052395354   %12*sin(2*pi/6.3*t)%  0.01  0.11 
        DEFTAIL2= control_surf  ELR1ou  -7.830535569853027%-
7.830535463594316%-7.830173052395354   %12*sin(2*pi/6.3*t)%  0.01  0.11 
        DEFTAIL3= control_surf  ELR2in  -7.830535569853027%-
7.830535463594316%-7.830173052395354   %12*sin(2*pi/6.3*t)%  0.01  0.11 
        DEFTAIL4= control_surf  ELR2ou  -7.830535569853027%-
7.830535463594316%-7.830173052395354   %12*sin(2*pi/6.3*t)%  0.01  0.11 
        DEFTAIL5= control_surf  ELL1in  -7.830535569853027%-
7.830535463594316%-7.830173052395354   %12*sin(2*pi/6.3*t)%  0.01  0.11 
        DEFTAIL6= control_surf  ELL1ou  -7.830535569853027%-
7.830535463594316%-7.830173052395354   %12*sin(2*pi/6.3*t)%  0.01  0.11 
        DEFTAIL7= control_surf  ELL2in  -7.830535569853027%-
7.830535463594316%-7.830173052395354   %12*sin(2*pi/6.3*t)%  0.01  0.11 
        DEFTAIL8= control_surf  ELL2ou  -7.830535569853027%-
7.830535463594316%-7.830173052395354   %12*sin(2*pi/6.3*t)%  0.01  0.11 
        DEFAilR= control_surf  AilR  0  -5*sin(2*pi/5*t)  0.1  10 
        DEFAilL= control_surf  AilL  0  -5*sin(2*pi/5*t)  0.1  10 
    } 
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} 
  
Simulation { 
    mode = "new" 
    type = "dynamic" 
     
    % Model Construction Parameters 
    structural damping   = 1e-4             % Structural damping 
parameter 
                                            % (set to 0 for no 
structure 
                                            % damping) 
    first mode damping   = -1e-4            % First mode damping (set 
to 
                                            % negative value to use the 
                                            % given alphD) 
    % Steady State Simulation Parameters 
    sssim{ 
        sim_type             = "nonlinear"  % "nonlinear" or 
"linearized" 
        relative tolerance   = .001         % Relative tolerance for 
static 
                                            % solution convergence 
        numerical damping    = .8           % Numerical damping 
parameter 
                                            % for static solution 
        max iterations       = 100          % Maximum number of 
iterations 
                                            % allowed in each steady 
state 
                                            % solution 
    } 
    % Time Simulation Parameters 
    timesim{ 
        integration_type     = "Gen-Alpha"      %"Trapz"% or  
        sim_type             = "linear"  % "nonlinear" or "linear" / 
"reduced_order" 
        time_duration        = 10 
        time_step            = 0.0001         % or time_divisions=4000 
%       restart_filename     = "wbt_smpl"   % ?????? 
        rho_inf_1            = 0.999 
        rho_inf_2            = 0.999 
        time_step_save       = 100 
        start_time_flag      = 0 % put a 1 to start from previous 
conditions fresh simulations require 0 
        n_sub_add_time_step  = 1 
        error_states_0       = [] 
        gust_input           = 0 
        local_wrinkling      = 0 
        ref_val_1            = 1e10 
        ref_val_2            = 1e10 
        time_sim_tol         = 1e1 
        no_rigidbody_dof     = 0 
    } 
    % Flutter Analysis Parameters 
    flutsim{ 
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        flight_index         =  2           % Flight indices where 
vehicle 
                                            % stability is calculated 
        altitude             = 30 30 
                                            % Altitudes at each index 
        fuel_mass            = 0 0 
                                            % Fuel mass 
        body_angle           =   -2.681822255727332 -8.483437184110727 
                                            % Body angle will come from 
trim solution and have same number of inputs as speeds sep by spaces 
        flap_angle           =  2.487111475290816 7.597875750046539 
                                            % Flap angle 
        thrust               =   1.043348116498814 1.960989314382431 
                                            % Thrust force 
        U_predict            = 12 8 20       % lower, step, and upper 
        rb_const             = 0            % Type of rigid body 
constraint 
                                            % 0: No rb constraint 
                                            % 1: Full rb constraint 
                                            % 2: only plunging is free 
                                            % 3: only pitching is free 
                                            % 4: plunging and pitching 
free 
        re_trim              = 1            % Flag to indicate retrim 
                                            % during the speed 
increment  
        load_update_flag     = Mot1 Mot2 Mot3 Mot4 Mot5 DEFTAIL1 
DEFTAIL2 DEFTAIL3 DEFTAIL4 DEFTAIL5 DEFTAIL6 DEFTAIL7 DEFTAIL8  
    } % Note about flutter analysis: 
      % altutude and fuel_mass are n by 1 column matrices, where n is 
the 
      % number of index 
      % body_angle, flap_angle, and thrust are also n by 1 column 
matrices 
      % only when re_trim = 0 (no retrim is considered). They are 
usually 
      % n by m matrices where m equals the span of speed increment 
    % Modal Analysis Parameters 
    modalsim{ 
        config       = free                 % and/or deformed_shape 
                                            % Modal analysis using 
                                            % different criteria 
                                            % free vibration (in 
vacuum) 
                                            % deformed vibration (under 
                                            % prescribed load) 
    } 
    % Trim Module Parameters 
    trimsim{ 
        trim_count   = 1                                   % Number of 
trim solutions to be performed 
        altitude     = 30 % Altitudes at each index 
        U_trim       = 12% Flight Speed at each index 
        fuel_mass    = 0% Fuel mass at each index 
        trimoption   = 0% 0: static trim (use forces) 1: dynamic trim 
(use accel.) 
        tol_trim     = 1e-8% Tolerance to converge 



 

178 

        parameters {    % They overide the values set in the previous 
sections (as in Loads Structure) 
        baoa    7.828876272969460 0.01    % Body angle of attack, 
initial guess, increment 
        DEFTAIL1 -7.830535463594316 0.01     % CS name, initial guess, 
increment 
        Mot1    0.987101042245488 0.01     % Load name (pt load),  
initial guess, increment 
        Mot2    0.987101042245488 0.01 
        Mot3    0.987101042245488 0.01 
        Mot4    0.987101042245488 0.01 
        Mot5    0.987101042245488 0.01 
        DEFTAIL2 -7.830535463594316 0.01     % CS name, initial guess, 
increment 
        DEFTAIL3 -7.830535463594316 0.01     % CS name, initial guess, 
increment 
        DEFTAIL4 -7.830535463594316 0.01     % CS name, initial guess, 
increment 
        DEFTAIL5 -7.830535463594316 0.01     % CS name, initial guess, 
increment 
        DEFTAIL6 -7.830535463594316 0.01     % CS name, initial guess, 
increment 
        DEFTAIL7 -7.830535463594316 0.01     % CS name, initial guess, 
increment 
        DEFTAIL8 -7.830535463594316 0.01     % CS name, initial guess, 
increment 
        }                  
    } 
} 
Screen Output{ 
    refgeom{ 
        undeformed_geometry      = 0 
        sketch_plot              = 0 
        color_style              = "gray" % "spring" or "summer" or 
"autumn" or "winter" or "gray" 
    } 
    sssim{ 
        static_deformed_geometry = 0 
        no_force_lines           = 0 
        text                     = 1 
        print_lift_moment        = 1 
        figure_position          = 0.05 0.05 0.60 0.60 
        figure_color             = 0 
        view                     = 160 45 
        animate_response         = 1 
        movie                    =  
        iteration_output         = 1 
    } 
    timesim{ 
        time_step_output         = 1 
        iteration_output         = 1 
        progress_bar             = 0 
    } 
    flutsim{ 
        plot_poles               = 1 
    } 
    modalsim { 
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        numberofmodes            = 10       % Number of modes to be 
displayed on screen 
        scale                    = 1      % Factor to scale the mode 
shapes NOTE: No normalization is done with the modes 
    } 
    trimsim{ 
    } 
%   print_to_file{ 
%       stiffness_matrix     = 1 
%       interial_matrix      = 1 
%       trim_input           = 1 
%       trim_output          = 1 
%       modal_analysis       = frequency 
%   } 
%   generate_input_treeI     = 1 
%   generate_input_treeC     = 1 
%   response_plot { 
%       keypoint 2 pos_z 
%       keypoint 2 vel_z 
%   } 
%   load_plot                = FL1 F1 
} 
  
  
File Output{ 
    % Time Simulation File Output Request 
    timesim{ 
        bframe_flight_path       = 1 
        bframe_flight_velocity   = 1 
        euler_angles             = 1 
        displacement{ 
            WR3 node 9 
            WR3 node 6 
            WR3 node 3 
            WR3 node 1 
            WR2 node 3 
            WR2 node 1 
            WR1 node 3 
            WR1 node 1 
            WL3 node 9 
            WL3 node 6 
            WL3 node 3 
            WL3 node 1 
            WL2 node 3 
            WL2 node 1 
            WL1 node 3 
            WL1 node 1 
         } 
%       displacement{ 
%           all 
%       } 
        displacementsort         = "node"   % "node" or "time" 
%       liftdist{ 
%           all 
%       } 
    } 
} 
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Appendix C.  Input File for the 8 Meter, No Aileron Input Linear Case, 

Case 7 

% This is from the input flie 8_meter_ailerons_case0.nin  
title="XHALE_Dec2009_TEST" 
filename="xHALE_dec_2009_test" 
   
Aerodynamics { 
    drag                     = 1            %or 0 
    drag_derivatives         = 1            %or 0 
    inflow_forces            = 0            %or 0 
    inflow_expansion         = 6 
%   stall_model              = "model_name" 
    load_factor              = 1 
    pg_correction            = 0 
    nominal_mach             = 0.3 
    vertical_aero_load       = 0 
    stall_on                 = 0 
    stall_model_type         = 1 
    reynolds_number          = 150000 
} 
  
  
Flight Conditions { 
    altitude                 = 30 
    pressure                 =  
    load_factor              = 1            % gravmult 
    density                  =  
    velocity                 = 14 
    gustx                    =  
    gusty                    =  
    gustz                    =  
} 
  
Pilot Input { 
} 
  
Structure { 
    baoa      = -0.587176915651974%-0.046047309451146%-
0.045987813505220 
    fuel_mass = 0; 
    keypoints {          
         0       0      0        %1  Center 
         1       0      0        %2  kpt 1 on the right 
        -1       0      0        %3  kpt 1 on the left 
         2       0      0        %4  kpt-extension on the right 
        -2       0      0        %5  kpt-extension on the right 
         4.037   0      0.174    %6  kpt-extension on the right 
        -4.037   0      0.174    %7  kpt-extension on the right 
         1       0     -0.184    %8  R1 Pod down 
        -1       0     -0.184    %9  L1 Pod down 
         2       0     -0.184    %10 R2 Pod down 
        -2       0     -0.184    %11 L2 Pod down 
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         1      -0.650  0        %12 R1 Tailboom 
         0.7625 -0.650  0        %13 R1 Tail inner tip 
         1.2375 -0.650  0        %14 R1 Tail outer tip 
        -1      -0.650  0        %15 L1 Tailboom 
        -0.7625 -0.650  0        %16 L1 Tail inner tip 
        -1.2375 -0.650  0        %17 L1 Tail outer tip 
         2      -0.650  0        %18 R2 Tailboom 
         1.7625 -0.650  0        %19 R2 Tail inner tip 
         2.2375 -0.650  0        %20 R2 Tail outer tip 
        -2      -0.650  0        %21 L2 Tailboom 
        -1.7625 -0.650  0        %22 L2 Tail inner tip 
        -2.2375 -0.650  0        %23 L2 Tail outer tip 
         0       0     -0.184    %24 Center pod down 
         3       0      0        %25 kpt-extension on the right 
        -3       0      0        %26 kpt-extension on the right 
         3.052   0      0        %27 kpt-extension on the right 
        -3.052   0      0        %28 kpt-extension on the right 
    } 
    members{ 
        % [memb name, (key points ...), propertiy] 
        PODC    1 24             fairing_center  %1 
        WR1     1  2             main_wing       %2 
        POD1up  2  8             fairing_up_right%3 
        BR1     2 12             boom            %4 
        TR1in  12 13             tail_in_right   %5 
        TR1ou  12 14             tail_out_right  %6 
        WR2     2  4             main_wing       %7 
        POD3up  4 10             fairing_up_right%8 
        BR2     4 18             boom            %9 
        TR2in  18 19             tail_in_right   %10 
        TR2ou  18 20             tail_out_right  %11 
        WR3     4 25             main_wing       %12 
        WR4    25 27  6          main_wing_dih   %13 
        WL1     1  3             main_wing       %14 
        POD2up  3  9             fairing_up_left %15 
        BL1     3 15             boom            %16 
        TL1in  15 16             tail_in_left    %17 
        TL1ou  15 17             tail_out_left   %18 
        WL2     3  5             main_wing       %19 
        POD4up  5 11             fairing_up_left %20 
        BL2     5 21             boom            %21 
        TL2in  21 22             tail_in_left    %22 
        TL2ou  21 23             tail_out_left   %23 
        WL3     5 26             main_wing       %24 
        WL4    26 28  7          main_wing_dih   %25 
    } 
  
    integration_direction= 1 1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 1 -1 1 -1 -
1 1 -1 1 -1 -1 -1 
    group{ 
    grp1{ 
         1 
        } 
    grp2{ 
         2  3 
         2  4 
         4  5 
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         4  6 
         2  7 
         7  8 
         7  9 
         9 10  
         9 11 
         7 12 
        12 13 
        } 
    grp3{ 
        14 15 
        14 16 
        16 17 
        16 18 
        14 19 
        19 20 
        19 21 
        21 22 
        21 23  
        19 24 
        24 25 
        } 
    } 
    inter member constraint{ 
    } 
    member properties { 
        boom { 
            type = "fuselage" 
            diameter = 0.024 0.013 
            number of elements = 1 
            rigid_element = 1 
            crosssection { 
                reference axis    = 0.5 0   % location of ra from LE 
                                            % User may choose following 
                                            % type of input for varible 
                                            % reference axis locations 
                mass_distribution = 0.01%0.119339623 
                                            % (mass units)/(unit span)  
                center_of_gravity{          % Empty inputs means cg is 
                }                           % located at ra 
                inertia { 
                    Ixx= 2.914E-09 
                    Ixy= 0    
                    Ixz= 0    
                    Iyy= 1.457E-09 
                    Iyz= 0    
                    Izz= 1.457E-09 
                } 
                stiffness {         % Be Set to rigid. These numbers 
are dummy 
                    K11= 5.390E+07  % extension stiffness [E*A] 
                    K12= 0          % extension twist coupling 
                    K13= 0          % extension bend y coupling 
                    K14= 0          % extension bend z coupling 
                    K22= 5.390E+07  % twist stiffness [G*J] 
                    K23= 0          % twist / bend y coupling 
                    K24= 0          % twist / bend z coupling 



 

183 

                    K33= 5.390E+07  % bend y stiffness [E*I] 
                    K34= 0          % bend y / bend z coupling 
                    K44= 5.390E+07  % bend z stiffness 
                } 
            } 
        } 
        main_wing { 
            type = "wing" 
            number of elements = 2 
            control surface{ 
            } 
            airfoil       = NACA4415 
            aero_coefficient = datatable 
%           airfoilfile   = EMX07.dat 
            AoA           = 5 
%           rigid_element = 
            aerodynamic_spanwise_distribution = 0 
            fuel_percentage     =  
            chord               = 0.2       % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 
            crosssection { 
                reference axis    = 0.2878 0 
                                            % location of ra from LE 
                                            % User may choose following 
                                            % type of input for varible 
                                            % reference axis locations 
                mass_distribution = 0.319 
                                            % (mass units)/(unit span)  
                center_of_gravity{          % Empty inputs means cg is 
                    cgx =  0.0 
                    cgy =  0.00756          % @ c/4 
                    cgz =  0.0 
                }                           % located at ra 
                inertia { 
                    Ixx=  8.089765E-04 
                    Ixy= -0.000000E+00 
                    Ixz=  0.000000E+00 
                    Iyy=  1.221712E-05 
                    Iyz= -6.493531E-06 
                    Izz=  7.967593E-04 
                } 
                stiffness { 
                    K11=  2.140827E+06      % extension stiffness [E*A] 
                    K12=  0.000000E+00      % extension twist coupling 
                    K13=  1.544115E+03      % extension bend y coupling 
                    K14= -4.905651E+04      % extension bend z coupling 
                    K22=  7.224739E+01      % twist stiffness [G*J] 
                    K23= -0.000000E+00      % twist / bend y coupling 
                    K24=  0.000000E+00      % twist / bend z coupling 
                    K33=  1.195708E+02      % bend y stiffness [E*I] 
                    K34= -4.634442E+01      % bend y / bend z coupling 
                    K44=  6.350796E+03      % bend z stiffness 
                } 
            } 
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        } 
        main_wing_dih { 
            type = "wing" 
            number of elements = 1 2 
            control surface{ 
                AilR = trail 0.40 2 3 WR4 % [name, percent of chord, 
start element, end element] 
                AilL = trail 0.40 2 3 WL4 % [name, percent of chord, 
start element, end element] 
            } 
            airfoil       = NACA4415 
            aero_coefficient = datatable 
%           airfoilfile   = EMX07.dat 
            AoA           = 5 5 5 
%           rigid_element = 
            aerodynamic_spanwise_distribution = 40 
            fuel_percentage     =  
            chord               = 0.2       % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 
            crosssection { 
                reference axis    = 0.2878 0 
                                            % location of ra from LE 
                                            % User may choose following 
                                            % type of input for varible 
                                            % reference axis locations 
                mass_distribution = 0.319 
                                            % (mass units)/(unit span)  
                center_of_gravity{          % Empty inputs means cg is 
                    cgx =  0.0 
                    cgy =  0.00756          % @ c/4 
                    cgz =  0.0 
                }                           % located at ra 
                inertia { 
                    Ixx=  8.089765E-04 
                    Ixy= -0.000000E+00 
                    Ixz=  0.000000E+00 
                    Iyy=  1.221712E-05 
                    Iyz= -6.493531E-06 
                    Izz=  7.967593E-04 
                } 
                stiffness { 
                    K11=  2.140827E+06      % extension stiffness [E*A] 
                    K12=  0.000000E+00      % extension twist coupling 
                    K13=  1.544115E+03      % extension bend y coupling 
                    K14= -4.905651E+04      % extension bend z coupling 
                    K22=  7.224739E+01      % twist stiffness [G*J] 
                    K23= -0.000000E+00      % twist / bend y coupling 
                    K24=  0.000000E+00      % twist / bend z coupling 
                    K33=  1.195708E+02      % bend y stiffness [E*I] 
                    K34= -4.634442E+01      % bend y / bend z coupling 
                    K44=  6.350796E+03      % bend z stiffness 
                } 
            } 
        } 
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        tail_in_right { 
            type = "wing" 
            number of elements = 1 
            control surface{ 
                % NM = [lead/trail(location),... 
                %       percentage of chord,... 
                %       start element,... 
                %       end element,... 
                %       memb label] 
                ELR1in = trail 0.98 1 1 TR1in % [name, percent of 
chord, start element, end element] 
                ELR2in = trail 0.98 1 1 TR2in % [name, percent of 
chord, start element, end element] 
            } 
            airfoil       = NACA0012 
            aero_coefficient = datatable 
            AoA           = 0 
            rigid_element = 1 
            aerodynamic_spanwise_distribution = 40 
            fuel_percentage =  
            chord           = 0.11          % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 
            crosssection { 
                reference axis    = 0.3235 0% location of ra from LE 
                                            % User may choose following 
                                            % type of input for varible 
                                            % reference axis locations 
                mass_distribution = 0.129   % (mass units)/(unit span)  
                center_of_gravity{          % Empty inputs means cg is 
                    cgx =  0.0 
                    cgy =  0.008085         % @ c/4 
                    cgz =  0.0 
                }                           % located at ra 
                inertia { 
                    Ixx=  1.597900E-04 
                    Ixy= -0.000000E+00 
                    Ixz=  0.000000E+00 
                    Iyy=  2.914098E-06 
                    Iyz= -1.688579E-22 
                    Izz=  1.568759E-04 
                } 
                stiffness {                 % Be Set to rigid. These 
numbers are dummy 
                    K11=  3.214025E+06      % extension stiffness [E*A] 
                    K12=  0.000000E+00      % extension twist coupling 
                    K13= -3.714275E-04      % extension bend y coupling 
                    K14= -7.441697E+04      % extension bend z coupling 
                    K22=  2.138858E+01      % twist stiffness [G*J] 
                    K23= -0.000000E+00      % twist / bend y coupling 
                    K24=  0.000000E+00      % twist / bend z coupling 
                    K33=  9.098072E+01      % bend y stiffness [E*I] 
                    K34=  2.262609E-06      % bend y / bend z coupling 
                    K44=  4.274273E+03      % bend z stiffness 
                } 
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                rigid_body{ 
                    point_mass        = 1 % changed spelling 
                    nodes             = 2 
                    center_of_gravity = 0.04575 4.95E-04 -0.0005 
                    mass              = 0.04873 
                    inertia{ 
                        Ixx =  4.631E-06 
                        Ixy = -3.190E-06 
                        Ixz = -3.057E-07 
                        Iyy =  2.282E-05 
                        Iyz =  2.644E-08 
                        Izz =  2.651E-05 
                    } 
                } 
            } 
        } 
        tail_out_right { 
            type = "wing" 
            number of elements = 1 
            control surface{ 
                % NM = [lead/trail(location),... 
                %       percentage of chord,... 
                %       start element,... 
                %       end element,... 
                %       memb label] 
                ELR1ou = trail 0.98 1 1 TR1ou % [name, percent of 
chord, start element, end element] 
                ELR2ou = trail 0.98 1 1 TR2ou % [name, percent of 
chord, start element, end element] 
            } 
            airfoil       = NACA0012 
            aero_coefficient = datatable 
            AoA           = 0 
            rigid_element = 1 
            aerodynamic_spanwise_distribution = 40 
            fuel_percentage =  
            chord           = 0.11          % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 
            crosssection { 
                reference axis    = 0.3235 0% location of ra from LE 
                                            % User may choose following 
                                            % type of input for varible 
                                            % reference axis locations 
                mass_distribution = 0.129   % (mass units)/(unit span)  
                center_of_gravity{          % Empty inputs means cg is 
                    cgx =  0.0 
                    cgy =  0.008085         % @ c/4 
                    cgz =  0.0 
                }                           % located at ra 
                inertia { 
                    Ixx=  1.597900E-04 
                    Ixy= -0.000000E+00 
                    Ixz=  0.000000E+00 
                    Iyy=  2.914098E-06 
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                    Iyz= -1.688579E-22 
                    Izz=  1.568759E-04 
                } 
                stiffness {                 % Be Set to rigid. These 
numbers are dummy 
                    K11=  3.214025E+06      % extension stiffness [E*A] 
                    K12=  0.000000E+00      % extension twist coupling 
                    K13= -3.714275E-04      % extension bend y coupling 
                    K14= -7.441697E+04      % extension bend z coupling 
                    K22=  2.138858E+01      % twist stiffness [G*J] 
                    K23= -0.000000E+00      % twist / bend y coupling 
                    K24=  0.000000E+00      % twist / bend z coupling 
                    K33=  9.098072E+01      % bend y stiffness [E*I] 
                    K34=  2.262609E-06      % bend y / bend z coupling 
                    K44=  4.274273E+03      % bend z stiffness 
                } 
                rigid_body{ 
                    point_mass        = 1 % changed spelling 
                    nodes             = 1 
                    center_of_gravity =  0.0286 0.008395 0.0 
                    mass              = 0.02 
                    inertia{ 
                        Ixx =  1.866E-07 
                        Ixy =  1.000E-10 
                        Ixz =  0.000E+00 
                        Iyy =  1.341E-06 
                        Iyz =  0.000E+00 
                        Izz =  1.311E-06 
                    } 
                } 
            } 
        } 
        tail_in_left { 
            type = "wing" 
            number of elements = 1 
            control surface{ 
                % NM = [lead/trail(location),... 
                %       percentage of chord,... 
                %       start element,... 
                %       end element,... 
                %       memb label] 
                ELL1in = trail 0.98 1 1 TL1in % [name, percent of 
chord, start element, end element] 
                ELL2in = trail 0.98 1 1 TL2in % [name, percent of 
chord, start element, end element] 
            } 
            airfoil       = NACA0012 
            aero_coefficient = datatable 
            AoA           = 0 
            rigid_element = 1 
            aerodynamic_spanwise_distribution = 40 
            fuel_percentage =  
            chord           = 0.11          % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 



 

188 

            crosssection { 
                reference axis    = 0.3235 0% location of ra from LE 
                                            % User may choose following 
                                            % type of input for varible 
                                            % reference axis locations 
                mass_distribution = 0.129   % (mass units)/(unit span)  
                center_of_gravity{          % Empty inputs means cg is 
                    cgx =  0.0 
                    cgy =  0.008085         % @ c/4 
                    cgz =  0.0 
                }                           % located at ra 
                inertia { 
                    Ixx=  1.597900E-04 
                    Ixy= -0.000000E+00 
                    Ixz=  0.000000E+00 
                    Iyy=  2.914098E-06 
                    Iyz= -1.688579E-22 
                    Izz=  1.568759E-04 
                } 
                stiffness {                 % Be Set to rigid. These 
numbers are dummy 
                    K11=  3.214025E+06      % extension stiffness [E*A] 
                    K12=  0.000000E+00      % extension twist coupling 
                    K13= -3.714275E-04      % extension bend y coupling 
                    K14= -7.441697E+04      % extension bend z coupling 
                    K22=  2.138858E+01      % twist stiffness [G*J] 
                    K23= -0.000000E+00      % twist / bend y coupling 
                    K24=  0.000000E+00      % twist / bend z coupling 
                    K33=  9.098072E+01      % bend y stiffness [E*I] 
                    K34=  2.262609E-06      % bend y / bend z coupling 
                    K44=  4.274273E+03      % bend z stiffness 
                } 
                rigid_body{ 
                    point_mass        = 1 % changed spelling 
                    nodes             = 2 
                    center_of_gravity = -0.04575 4.95E-04 -0.0005 
                    mass              = 0.04873 
                    inertia{ 
                        Ixx =  4.631E-06 
                        Ixy = -3.190E-06 
                        Ixz = -3.057E-07 
                        Iyy =  2.282E-05 
                        Iyz =  2.644E-08 
                        Izz =  2.651E-05 
                    } 
                } 
            } 
        } 
        tail_out_left { 
            type = "wing" 
            number of elements = 1 
            control surface{ 
                % NM = [lead/trail(location),... 
                %       percentage of chord,... 
                %       start element,... 
                %       end element,... 
                %       memb label] 
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                ELL1ou = trail 0.98 1 1 TL1ou % [name, percent of 
chord, start element, end element] 
                ELL2ou = trail 0.98 1 1 TL2ou % [name, percent of 
chord, start element, end element] 
            } 
            airfoil       = NACA0012 
            aero_coefficient = datatable 
            AoA           = 0 
            rigid_element = 1 
            aerodynamic_spanwise_distribution = 40 
            fuel_percentage =  
            chord           = 0.11          % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 
            crosssection { 
                reference axis    = 0.3235 0% location of ra from LE 
                                            % User may choose following 
                                            % type of input for varible 
                                            % reference axis locations 
                mass_distribution = 0.129   % (mass units)/(unit span)  
                center_of_gravity{          % Empty inputs means cg is 
                    cgx =  0.0 
                    cgy =  0.008085         % @ c/4 
                    cgz =  0.0 
                }                           % located at ra 
                inertia { 
                    Ixx=  1.597900E-04 
                    Ixy= -0.000000E+00 
                    Ixz=  0.000000E+00 
                    Iyy=  2.914098E-06 
                    Iyz= -1.688579E-22 
                    Izz=  1.568759E-04 
                } 
                stiffness {                 % Be Set to rigid. These 
numbers are dummy 
                    K11=  3.214025E+06      % extension stiffness [E*A] 
                    K12=  0.000000E+00      % extension twist coupling 
                    K13= -3.714275E-04      % extension bend y coupling 
                    K14= -7.441697E+04      % extension bend z coupling 
                    K22=  2.138858E+01      % twist stiffness [G*J] 
                    K23= -0.000000E+00      % twist / bend y coupling 
                    K24=  0.000000E+00      % twist / bend z coupling 
                    K33=  9.098072E+01      % bend y stiffness [E*I] 
                    K34=  2.262609E-06      % bend y / bend z coupling 
                    K44=  4.274273E+03      % bend z stiffness 
                } 
                rigid_body{ 
                    point_mass        = 1 % changed spelling 
                    nodes             = 1 
                    center_of_gravity = -0.0286 0.008395 0.0 
                    mass              = 0.02 
                    inertia{ 
                        Ixx =  1.866E-07 
                        Ixy =  1.000E-10 
                        Ixz =  0.000E+00 
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                        Iyy =  1.341E-06 
                        Iyz =  0.000E+00 
                        Izz =  1.311E-06 
                    } 
                } 
            } 
        } 
        fairing_center { 
            type               = "vtail" 
            number of elements = 1 
            airfoil            = NACA0018 
            aero_coefficient = datatable 
%           airfoilfile        = mh78.dat 
            AoA                = 0 
            rigid_element      = 1 
            aerodynamic_spanwise_distribution = 40 
            fuel_percentage    =  
            chord = 0.37                    % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 
            crosssection { 
                reference axis= 0.6093 0%0 0% 
                mass_distribution= 1.0e-8   % (mass units)/(unit span) 
                inertia { 
                    Ixx= 1.0e-8 
                    Ixy= 0    
                    Ixz= 0    
                    Iyy= 1.0e-8 
                    Iyz= 0    
                    Izz= 1.0e-8 
                } 
                stiffness {         % Be Set to rigid. These numbers 
are dummy 
                    K11= 5.390E+07  % extension stiffness [E*A] 
                    K12= 0          % extension twist coupling 
                    K13= 0          % extension bend y coupling 
                    K14= 0          % extension bend z coupling 
                    K22= 5.390E+07  % twist stiffness [G*J] 
                    K23= 0          % twist / bend y coupling 
                    K24= 0          % twist / bend z coupling 
                    K33= 5.390E+07  % bend y stiffness [E*I] 
                    K34= 0          % bend y / bend z coupling 
                    K44= 5.390E+07  % bend z stiffness 
                } 
                rigid_body{ 
                    point_mass        = 2 % changed spelling 
                    nodes             = 1 2 
                    center_of_gravity{ 
                        cgx{ 
                            0% 0.0125 % 0.0125 % center pod battery 
                            0%-0.0031 
                        } 
                        cgy{ 
                             0.0591 % 0.0591 % center pod battery 
                             0.0431 
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                        } 
                        cgz{ 
                            -0.0689 %-0.0689 % center pod battery 
                             0.0116 
                        } 
                    } 
                    mass{ 
                        0.3960 
                        1.0248 
                    } 
                    inertia{ 
                        Ixx{ 
                             1.160E-03 
                             1.476E-02 
                        } 
                        Ixy{ 
                             0.000E+00 
                             2.322E-04 
                        } 
                        Ixz{ 
                             0.000E+00 
                             2.267E-05 
                        } 
                        Iyy{ 
                             9.485E-05 
                             2.816E-03 
                        } 
                        Iyz{ 
                             0.000E+00 
                             4.500E-04 
                        } 
                        Izz{ 
                             1.098E-03 
                             2.503E-04 
                        } 
                    } 
                } 
            } 
        } 
        fairing_up_right { 
            type               = "vtail" 
            number of elements = 1 
            airfoil            = NACA0018 
            aero_coefficient = datatable 
%           airfoilfile        = mh78.dat 
            AoA                = 0 
            rigid_element      = 1 
            aerodynamic_spanwise_distribution = 40 
            fuel_percentage    =  
            chord = 0.37                    % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 
            crosssection { 
                reference axis= 0.6093 0%0 0% 
                mass_distribution= 1.0e-8   % (mass units)/(unit span) 
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                inertia { 
                    Ixx= 1.0e-8 
                    Ixy= 0    
                    Ixz= 0    
                    Iyy= 1.0e-8 
                    Iyz= 0    
                    Izz= 1.0e-8 
                } 
                stiffness {         % Be Set to rigid. These numbers 
are dummy 
                    K11= 5.390E+07  % extension stiffness [E*A] 
                    K12= 0          % extension twist coupling 
                    K13= 0          % extension bend y coupling 
                    K14= 0          % extension bend z coupling 
                    K22= 5.390E+07  % twist stiffness [G*J] 
                    K23= 0          % twist / bend y coupling 
                    K24= 0          % twist / bend z coupling 
                    K33= 5.390E+07  % bend y stiffness [E*I] 
                    K34= 0          % bend y / bend z coupling 
                    K44= 5.390E+07  % bend z stiffness 
                } 
                rigid_body{ 
                    point_mass        = 2 % changed spelling 
                    nodes             = 1 2 
                    center_of_gravity{ 
                        cgx{ 
                             0.0125 % 0.0125 % right pods battery 
                            -0.0062 
                        } 
                        cgy{ 
                             0.0591 % 0.0591 % left pods battery 
                             0.0662 
                        } 
                        cgz{ 
                            -0.0689 %-0.0689 % right pods battery 
                             0.0066 
                        } 
                    } 
                    mass{ 
                        0.3960 
                        1.0571 
                    } 
                    inertia{ 
                        Ixx{ 
                             1.160E-03 
                             1.134E-02 
                        } 
                        Ixy{ 
                             0.000E+00 
                            -1.212E-03 
                        } 
                        Ixz{ 
                             0.000E+00 
                             1.055E-05 
                        } 
                        Iyy{ 
                             9.485E-05 
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                             3.209E-03 
                        } 
                        Iyz{ 
                             0.000E+00 
                             4.595E-05 
                        } 
                        Izz{ 
                             1.098E-03 
                             8.484E-03 
                        } 
                    } 
                } 
            } 
        } 
        fairing_up_left { 
            type               = "vtail" 
            number of elements = 1 
            airfoil            = NACA0018 
            aero_coefficient = datatable 
%           airfoilfile        = mh78.dat 
            AoA                = 0 
            rigid_element      = 1 
            aerodynamic_spanwise_distribution = 40 
            fuel_percentage    =  
            chord = 0.37                    % Single value is used for 
                                            % constant chord length 
                                            % The user may specify 
values 
                                            % at each Keypoint 
            crosssection { 
                reference axis= 0.6093 0%0 0% 
                mass_distribution= 1.0e-8   % (mass units)/(unit span) 
                inertia { 
                    Ixx= 1.0e-8 
                    Ixy= 0    
                    Ixz= 0    
                    Iyy= 1.0e-8 
                    Iyz= 0    
                    Izz= 1.0e-8 
                } 
                stiffness {         % Be Set to rigid. These numbers 
are dummy 
                    K11= 5.390E+07  % extension stiffness [E*A] 
                    K12= 0          % extension twist coupling 
                    K13= 0          % extension bend y coupling 
                    K14= 0          % extension bend z coupling 
                    K22= 5.390E+07  % twist stiffness [G*J] 
                    K23= 0          % twist / bend y coupling 
                    K24= 0          % twist / bend z coupling 
                    K33= 5.390E+07  % bend y stiffness [E*I] 
                    K34= 0          % bend y / bend z coupling 
                    K44= 5.390E+07  % bend z stiffness 
                } 
                rigid_body{ 
                    point_mass        = 2 % changed spelling 
                    nodes             = 1 2 
                    center_of_gravity{ 
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                        cgx{ 
                            -0.0125 %-0.0125 % left pods battery 
                             0.0062 
                        } 
                        cgy{ 
                             0.0591 % 0.0591 % left pods battery 
                             0.0662 
                        } 
                        cgz{ 
                            -0.0689 %-0.0689 % left pods battery 
                             0.0066 
                        } 
                    } 
                    mass{ 
                        0.3960 
                        1.0571 
                    } 
                    inertia{ 
                        Ixx{ 
                             1.160E-03 
                             1.134E-02 
                        } 
                        Ixy{ 
                             0.000E+00 
                            -1.212E-03 
                        } 
                        Ixz{ 
                             0.000E+00 
                             1.055E-05 
                        } 
                        Iyy{ 
                             9.485E-05 
                             3.209E-03 
                        } 
                        Iyz{ 
                             0.000E+00 
                             4.595E-05 
                        } 
                        Izz{ 
                             1.098E-03 
                             8.484E-03 
                        } 
                    } 
                } 
            } 
        } 
    } 
} 
  
Loads { 
    frame = body_follower                         % or body_follower or 
inertial 
    load_vec{ 
        % [(1) (2) (3) (4) (5) (6) OPTIONAL (7) OPTIONAL (8)] 
        % (1): load type (force) 
        % (2): member designation 
        % (3): location type(keypoint or node) 
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        % (4): location number 
        % (5): cartesian direction 
        % (6): time-independent value 
        % (7): time-independent value (OPTIONAL) 
        % (8): start time (OPTIONAL) 
        % (9): stop time (OPTIONAL) 
        Mot1    = force  PODC    node  1  y  
1.381910189857558%1.393017135044694%1.397558812228706 
%1.179272806499928%2.076274838533569  -0.5*sin(2*pi/0.10*(t-0.01))  
0.01  0.11 
        Mot2    = force  POD1up  node  1  y  
1.381910189857558%1.393017135044694%1.397558812228706 
%1.179272806499928%2.076274838533569  -0.5*sin(2*pi/0.10*(t-0.01))  
0.01  0.11 
        Mot3    = force  POD2up  node  1  y  
1.381910189857558%1.393017135044694%1.397558812228706 
%1.179272806499928%2.076274838533569  -0.5*sin(2*pi/0.10*(t-0.01))  
0.01  0.11 
        Mot4    = force  POD3up  node  1  y  
1.381910189857558%1.393017135044694%1.397558812228706 
%1.179272806499928%2.076274838533569  -0.5*sin(2*pi/0.10*(t-0.01))  
0.01  0.11 
        Mot5    = force  POD4up  node  1  y  
1.381910189857558%1.393017135044694%1.397558812228706 
%1.179272806499928%2.076274838533569  -0.5*sin(2*pi/0.10*(t-0.01))  
0.01  0.11 
        D1      = force  PODC    node  2  y  -0.4408 
        D2      = force  POD1up  node  2  y  -0.4408 
        D3      = force  POD2up  node  2  y  -0.4408 
        D4      = force  POD3up  node  2  y  -0.4408 
        D5      = force  POD4up  node  2  y  -0.4408 
    % Fexample     = force         WL1 node         60  z  30*sin(20*t) 
        % [(1) (2) (3) (4) (5) (6) OPTIONAL (7) OPTIONAL (8)] 
        % (1): load type (force_dist) 
        % (2): member designation 
        % (3): starting element 
        % (4): ending element 
        % (5): cartesian direction 
        % (6): time-independent value 
        % (7): time-independent value (OPTIONAL) 
        % (8): start time (OPTIONAL) 
        % (9): stop time (OPTIONAL) 
      % FD1    = force_dist    MB        1 20 z   50*sin(40*t)+25 
        % [(1) (2) (3) (4) (5) (6) OPTIONAL (7) OPTIONAL (8)] 
        % (1): load type (moment) 
        % (2): member designation 
        % (3): location type(keypoint or node) 
        % (4): location number 
        % (5): cartesian direction 
        % (6): time-independent value 
        % (7): time-independent value (OPTIONAL) 
        % (8): start time (OPTIONAL) 
        % (9): stop time (OPTIONAL) 
      % M1     = moment        MB     node 60 x   50 
        % [(1) (2) (3) (4) (5) (6) OPTIONAL (7) OPTIONAL (8)] 
        % (1): load type (moment_dist) 
        % (2): member designation 



 

196 

        % (3): starting element 
        % (4): ending element 
        % (5): cartesian direction 
        % (6): time-independent value 
        % (7): time-independent value (OPTIONAL) 
        % (8): start time (OPTIONAL) 
        % (9): stop time (OPTIONAL) 
      % MD1    = moment_dist   MB        9 10 z   50 
        % [load type, member designation, element start, element end, 
mode, voltage value, OPTIONAL--> start time, stop time,...] % NEED TO 
COMPLETE 
      % VA1    = actuator_volt VA1       1 10 
        % [(1) (2) (3) OPTIONAL (4) OPTIONAL (5)] 
        % (1): load type (control_surf) 
        % (2): control surface designation 
        % (3): time-independent value 
        % (4): time-independent value (OPTIONAL) 
        % (5): start time (OPTIONAL) 
        % (6): stop time (OPTIONAL) 
        DEFTAIL1= control_surf  ELR1in  0.255459746972205%-
0.797452909688008%-0.798991452122181%  12*sin(2*pi/7.4*t) %-
0.5*sin(2*pi/0.10*(t-0.01))  0.01  0.11 
        DEFTAIL2= control_surf  ELR1ou  0.255459746972205%-
0.797452909688008%-0.798991452122181%  12*sin(2*pi/7.4*t) %-
0.5*sin(2*pi/0.10*(t-0.01))  0.01  0.11 
        DEFTAIL3= control_surf  ELR2in  0.255459746972205%-
0.797452909688008%-0.798991452122181%  12*sin(2*pi/7.4*t) %-
0.5*sin(2*pi/0.10*(t-0.01))  0.01  0.11 
        DEFTAIL4= control_surf  ELR2ou  0.255459746972205%-
0.797452909688008%-0.798991452122181%  12*sin(2*pi/7.4*t) %-
0.5*sin(2*pi/0.10*(t-0.01))  0.01  0.11 
        DEFTAIL5= control_surf  ELL1in  0.255459746972205%-
0.797452909688008%-0.798991452122181% -12*sin(2*pi/7.4*t) %-
0.5*sin(2*pi/0.10*(t-0.01))  0.01  0.11 
        DEFTAIL6= control_surf  ELL1ou  0.255459746972205%-
0.797452909688008%-0.798991452122181% -12*sin(2*pi/7.4*t) %-
0.5*sin(2*pi/0.10*(t-0.01))  0.01  0.11 
        DEFTAIL7= control_surf  ELL2in  0.255459746972205%-
0.797452909688008%-0.798991452122181% -12*sin(2*pi/7.4*t) %-
0.5*sin(2*pi/0.10*(t-0.01))  0.01  0.11 
        DEFTAIL8= control_surf  ELL2ou  0.255459746972205%-
0.797452909688008%-0.798991452122181% -12*sin(2*pi/7.4*t) %-
0.5*sin(2*pi/0.10*(t-0.01))  0.01  0.11 
        DEFAilR = control_surf  AilR    0  %-25*sin(2*pi/5*t)% 0.1  10 
        DEFAilL = control_surf  AilL    0  %-25*sin(2*pi/5*t)% 0.1  10 
    } 
} 
  
Simulation { 
    mode = "new" 
    type = "dynamic" 
     
    % Model Construction Parameters 
    structural damping   = 1e-4             % Structural damping 
parameter 
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                                            % (set to 0 for no 
structure 
                                            % damping) 
    first mode damping   = -1e-4            % First mode damping (set 
to 
                                            % negative value to use the 
                                            % given alphD) 
    % Steady State Simulation Parameters 
    sssim{ 
        sim_type             = "nonlinear"  % or "linearized" 
        relative tolerance   = .001         % Relative tolerance for 
static 
                                            % solution convergence 
        numerical damping    = .8           % Numerical damping 
parameter 
                                            % for static solution 
        max iterations       = 100          % Maximum number of 
iterations 
                                            % allowed in each steady 
state 
                                            % solution 
    } 
    % Time Simulation Parameters 
    timesim{ 
        integration_type     = "Gen-Alpha"      %"Trapz"% or  
        sim_type             = "linear"  % "nonlinear" or "linear" / 
"reduced_order" 
        time_duration        = 15 
        time_step            = 0.001         % or time_divisions=4000 
%       restart_filename     = "wbt_smpl"   % ?????? 
        rho_inf_1            = 0.999 
        rho_inf_2            = 0.999 
        time_step_save       = 100 
        start_time_flag      = 0 % put a 1 to start from previous 
conditions fresh simulations require 0 
        n_sub_add_time_step  = 1 
        error_states_0       = [] 
        gust_input           = 0 
        local_wrinkling      = 0 
        ref_val_1            = 1e10 
        ref_val_2            = 1e10 
        time_sim_tol         = 1e1 
        no_rigidbody_dof     = 0 
    } 
    % Flutter Analysis Parameters 
    flutsim{ 
        flight_index         =  5           % Flight indices where 
vehicle 
                                            % stability is calculated 
        altitude             = 30 30 30 30 30 
                                            % Altitudes at each index 
        fuel_mass            = 0 0 0 0 0 
                                            % Fuel mass 
        body_angle           = 2.205322913566195 -0.045987813505220 -
1.443354591065910 -2.368166336699205 -3.011227170417016 
                                            % Body angle will come from 
trim solution and have same number of inputs as speeds sep by spaces 
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        flap_angle           = -4.489285620262512 -0.798991452122181 
1.274654009819700 2.561879489113293 3.425940725693468 
                                            % Flap angle 
        thrust               = 1.175649523636680 1.397558812228706 
1.640699000413539 1.919182700376490 2.229785787025574 
                                            % Thrust force 
        U_predict            = 12 2 20       % lower, step, and upper 
        rb_const             = 0            % Type of rigid body 
constraint 
                                            % 0: No rb constraint 
                                            % 1: Full rb constraint 
                                            % 2: only plunging is free 
                                            % 3: only pitching is free 
                                            % 4: plunging and pitching 
free 
        re_trim              = 1            % Flag to indicate retrim 
                                            % during the speed 
increment  
        load_update_flag     = Mot1 Mot2 Mot3 Mot4 Mot5 DEFTAIL1 
DEFTAIL2 DEFTAIL3 DEFTAIL4 DEFTAIL5 DEFTAIL6 DEFTAIL7 DEFTAIL8  
    } % Note about flutter analysis: 
      % altutude and fuel_mass are n by 1 column matrices, where n is 
the 
      % number of index 
      % body_angle, flap_angle, and thrust are also n by 1 column 
matrices 
      % only when re_trim = 0 (no retrim is considered). They are 
usually 
      % n by m matrices where m equals the span of speed increment 
    % Modal Analysis Parameters 
    modalsim{ 
        config       = free                 % and/or deformed_shape 
                                            % Modal analysis using 
                                            % different criteria 
                                            % free vibration (in 
vacuum) 
                                            % deformed vibration (under 
                                            % prescribed load) 
    } 
    % Trim Module Parameters 
    trimsim{ 
        trim_count   = 1%5                                   % Number 
of trim solutions to be performed 
        altitude     = 30%30 30 30 30 30% Altitudes at each index 
        U_trim       = 14%12 14 16 18 20% Flight Speed at each index 
        fuel_mass    = 0%0 0 0 0 0              % Fuel mass at each 
index 
        trimoption   = 0%0 0 0 0 0              % 0: static trim (use 
forces) 1: dynamic trim (use accel.) 
        tol_trim     = 1e-2%1e-2 1e-2 1e-2 1e-2 1e-2   % Tolerance to 
converge 
        parameters {    % They overide the values set in the previous 
sections (as in Loads Structure) 
        baoa    2 0.1     % Body angle of attack, initial guess, 
increment 
        Mot1    4 0.1     % Load name (pt load),  initial guess, 
increment 
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        Mot2    4 0.1 
        Mot3    4 0.1 
        Mot4    4 0.1 
        Mot5    4 0.1 
        DEFTAIL1 2 0.1     % CS name, initial guess, increment 
        DEFTAIL2 2 0.1     % CS name, initial guess, increment 
        DEFTAIL3 2 0.1     % CS name, initial guess, increment 
        DEFTAIL4 2 0.1     % CS name, initial guess, increment 
        DEFTAIL5 2 0.1     % CS name, initial guess, increment 
        DEFTAIL6 2 0.1     % CS name, initial guess, increment 
        DEFTAIL7 2 0.1     % CS name, initial guess, increment 
        DEFTAIL8 2 0.1     % CS name, initial guess, increment 
        }                  
    } 
} 
Screen Output{ 
    refgeom{ 
        undeformed_geometry      = 1 
        sketch_plot              = 1 
        color_style              = "gray" % "spring" or "summer" or 
"autumn" or "winter" or "gray" 
    } 
    sssim{ 
        static_deformed_geometry = 1 
        no_force_lines           = 0 
        text                     = 1 
        print_lift_moment        = 1 
        figure_position          = 0.05 0.05 0.60 0.60 
        figure_color             = 0 
        view                     = 160 45 
        animate_response         = 1 
        movie                    =  
        iteration_output         = 1 
    } 
    timesim{ 
        time_step_output         = 1 
        iteration_output         = 1 
        progress_bar             = 0 
    } 
    flutsim{ 
        plot_poles               = 0 
    } 
    modalsim { 
        numberofmodes            = 10       % Number of modes to be 
displayed on screen 
        scale                    = 1      % Factor to scale the mode 
shapes NOTE: No normalization is done with the modes 
    } 
    trimsim{ 
    } 
%   print_to_file{ 
%       stiffness_matrix     = 1 
%       interial_matrix      = 1 
%       trim_input           = 1 
%       trim_output          = 1 
%       modal_analysis       = frequency 
%   } 
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%   generate_input_treeI     = 1 
%   generate_input_treeC     = 1 
%   response_plot { 
%       keypoint 2 pos_z 
%       keypoint 2 vel_z 
%   } 
%   load_plot                = FL1 F1 
} 
  
  
File Output{ 
    % Time Simulation File Output Request 
    timesim{ 
        bframe_flight_path       = 1 
        bframe_flight_velocity   = 1 
        euler_angles             = 1 
        displacement{ 
            WR4 node 9 
            WR4 node 6 
            WR4 node 3 
            WR3 node 6 
            WR3 node 3 
            WR2 node 6 
            WR2 node 3 
            WR1 node 6 
            WR1 node 3 
            WR1 node 1 
            WL4 node 9 
            WL4 node 6 
            WL4 node 3 
            WL3 node 6 
            WL3 node 3 
            WL2 node 6 
            WL2 node 3 
            WL1 node 6 
            WL1 node 3 
            WL1 node 1 
         } 
%       displacement{ 
%           all 
%       } 
        displacementsort         = "node"   % "node" or "time" 
%       liftdist{ 
%           all 
%       } 
    } 
} 
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