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Methodology for Variable Fidelity Multistage Optimization 
Under Uncertainty 

Eric J. Paulson1  
Air Force Research Laboratory, Edwards AFB, CA, 93524 

Ryan P. Starkey2 
University of Colorado, Boulder, CO, 80309 

A new methodology for solving optimization under uncertainty problems with multi-
objective function, variable-fidelity, mixed-variable characteristics is proposed. Quantifying 
uncertainty in the design, analysis, and optimization of high cost complex systems such as 
launch vehicles promises significant payoffs in understanding and reducing system 
development costs and risk. However, the characteristics of these types of complex system 
during the early research and development pose several challenges to current optimization 
methodologies. These unique characteristics include the presence of uncertain parameters of 
both aleatory and epistemic types. Some of the latter vary quantitatively in time as the 
design iterations progress and higher fidelity tools are applied to the system design and its 
design space. A review of applicable optimization under uncertainty literature is described. 
The capabilities of previous methodologies are compared to the characteristics of 
optimization under uncertainty problems typical in design of complex systems in a 
multistage acquisition environment.  A set of extensions to previous optimization under 
uncertainty methods are proposed for a new optimization algorithm and a single-stage-to-
orbit engineering design problem has been formulated to test the new method.  

Nomenclature 
x   = Set of decision variables 
x(j)   = Decision (design) variables for jth stage 
xi   = ith member of decision variable set 
ෝ࢞ሺ௝ሻ  = Realizations of jth stage decision variables 
x(j)*  = Expected values for jth stage decision variables at stages prior to j  
ξ   = Set of uncertain parameters 
ξ(j)   = Set of uncertain parameters to be observed between stages j and (j+1) 
ξ(j)′   = Modification to jth stage uncertainty with additional information 
ξi   = ith member of uncertain parameter set 
 ෠ሺ௝ሻ  = Realizations of jth stage uncertain parametersࣈ
ࣨሺߤ,  ଶሻ = Normal distribution with mean μ and a standard deviation σߪ
f   = Objective function 
g   = Constraint function 
ॱሾ·ሿ  = Expectation operator 
Զሾ·ሿ  = Probability 
α   = Reliability-Based Design Optimization (RBDO) feasibility target 
α(j)   = Multistage RBDO feasibility target at jth decision stage  
Isp   = Specific impulse 

                                                           
1 Aerospace Engineer, Propulsion Directorate Space and Missile Propulsion Division, 4 Draco Drive, Edwards AFB, 
CA 93524; eric.paulson@edwards.af.mil, Senior Member AIAA. 
2 Assistant Professor, Aerospace Engineering Sciences Department, 429 UCB, Boulder, CO 80309; 
rstarkey@colorado.edu, Associate Fellow AIAA. 
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I. Introduction 
Until relatively recently, optimization processes and methods for complex systems were primarily focused on 

maximizing a system’s individual parameters of performance. However, in the modern Department of Defense 
(DoD) acquisition environment, the research and development of complex engineering designs, such as aircraft and 
spacecraft emphasizes system optimization for high reliability, ease of maintainability, and reduced risk of 
cost/schedule growth, while attempting to quantify the inherent uncertainty present in developing complex systems. 
Modern optimization research in the areas of Optimization Under Uncertainty (OUU) and Reliability-Based Design 
Optimization (RBDO) holds the promise of enabling these types of system optimizations. 

Ensuring system-level optimization of these non-performance-related system attributes requires the integration 
of advanced numerical methods into the design and analysis processes to improve both the results and the efficiency 
of these acquisition processes. For high-cost complex systems that require years of development before reaching 
production, the incorporation of uncertainty methods into the design, analysis, and optimization processes promises 
significant payoffs. However, broad implementation of uncertainty methods poses unique challenges in the context 
of analysis of alternatives and technology development/acquisition. The goal of this research was to identify the key 
optimization challenges, formulate approaches for overcoming them, and create a new methodology for variable-
fidelity multistage optimization under uncertainty of representative engineering design problems. The objective of 
this paper is to present the problem formulations that the new method will be required to solve, a review of previous 
optimization under uncertainty research, the approach that was selected for the new method, initial test results, and a 
summary of the engineering application to which the final methodology will be applied. 

A. System Engineering and Acquisition of Complex Systems 
In order to identify possible areas where current optimization methods fall short, a review of system engineering 

practices within DoD acquisition was performed. The system acquisition timeline in DoD is generally divided into 
several phases. The activities, documentation, and decisions which occur during each of the phases are fairly 
consistent, even when the specific details of the different systems are not. The different timeline phases of a typical 
DoD system acquisition can be seen in Figure 1.  

 
Figure 1. DoD system acquisition phases1 

Depending on technology maturity, an official acquisition program-of-record may start at milestones A, B, or C 
shown in the figure. However, in this research we will consider the acquisition of a new system capability to 
typically start in the 1st phase, Concept Refinement/Concept Decision. This is also known as pre-milestone A. 
During this phase several potential technical solutions which may be capable of providing the desired capability are 
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identified, and early conceptual designs are generated. Trade studies are performed to understand the capabilities, 
limitations, and approximate acquisition costs for each of the candidate systems. If one or more of the concepts 
appear capable of providing the desired capability, preparation for a more rigorous Analysis of Alternatives (AOA) 
is initiated to identify system requirements, key performance parameters, and the modeling approaches/tools needed 
to evaluate the candidates objectively. At this point an AOA is authorized, performed, and the results are 
documented for presentation to the Milestone Decision Authority (MDA). The MDA makes the official decision on 
whether to go forward with the potential acquisition into the next phase, in this case, Technology Development. 
During this phase the key technologies that are on the critical path to develop the leading or alternative concept 
systems are funded for development in order to mature them to a point at which a go/no-go decision can be made. 
Depending on what happens during this phase one or more of the leading system concepts may be authorized to 
proceed into the next acquisition phase, System Development and Demonstration. During this phase, systems such 
as x-planes and/or subsystem demonstrators are built and tested to demonstrate the key technologies and possibly 
down-select to a single system concept to acquire. During these first three phases, engineering design models of 
various levels of fidelity (uncertainty) for each candidate system are exercised. For the purposes of this research, we 
use the term fidelity to describe how well the system models capture the key performance/cost characteristics of the 
concept. Our current definition of fidelity encompasses both fidelity and resolution, as they are described in Figure 
2.  

 
Figure 2. Model fidelity2 

During each of the acquisition phases, a formal System Engineering Process is followed, which consists of a 
functional decomposition followed by a system synthesis. Together these legs are known as the system engineering 
V, due to the logic flow diagram which describes the process, as shown in Figure 3. Internal design/analysis 
iterations can be seen in the figure to take place where the recursive arrows are shown labeled “trades” and 
“analyze”. Typically as a design shows promise at earlier phases, it receives higher fidelity analysis and additional 
design iterations at the subsequent phases of Preliminary Design and Detailed Design, as represented by the 2nd and 
3rd development phases of Figure 1. During these subsequent phases, the concept design is completed to deeper and 
deeper levels of the system work breakdown structure. Conceptual designs may only look at top level specifics of 
the major subsystem design, and iterative design cycles go deeper until all components have complete detailed 
designs. In order to use high fidelity analysis tools on a concept’s design, the specific design variable values of the 
design must be appropriately detailed. As a result, during concept comparison, a balance must be maintained during 
design iterations between design detail and tool fidelity, in order to answer the relevant questions in the shortest 
time, at the least cost necessary to efficiently screen out the inferior designs/concepts. The importance of this 
balancing act can be illustrated by the breadth of designs considered during the Republic of Korea Air Force 
acquisition of their most recent trainer aircraft, the T-50, shown in Figure 4. 
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Figure 3. System engineering process during concept refinement phase2

 

Figure 4. T-50 design evolution during acquisition3 
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B. Specific Challenges for OUU Methods 
Current engineering practice during the early analysis-of-alternatives and technology development phases of a 

system acquisition, as described previously, pose several specific challenges for any candidate OUU method that 
would be utilized for optimization assessments. The most important of these challenges were viewed as the baseline 
capability requirements for the envisioned multi-stage OUU algorithm.  

1. Presence of design variables of mixed types-continuous, discrete, and categorical 

2. Multiple objective functions-often competing 

3. Uncertainty in optimization parameters of both aleatory and epistemic types 

4. Uncertainties present at the input design variables level, intermediate model parameters level, and 
output level within an integrated system model 

5. Uncertainties present in externally imposed system constraint function and in system performance 
requirements, implemented as threshold/objective values for the KPPs 

6. Design problems that rarely allow description of a unitary set of discrete equations solvable by 
traditional derivatives-based optimization codes 

7. Decision-making practice that relies on several discrete time-based events (multiple stage 
decisions) when down selecting among technology alternatives 

8. Uncertainties (represented here as probability distributions) in the modeled parameters that vary 
over time as the overall system design evolves, improved fidelity tools are used, and experimental 
data is incorporated into knowledge of the design 

Optimization Literature Review 
A literature review was conducted of OUU methods applicable to complex system acquisition problems. A 

subset of these methodology papers appears particularly relevant, and forms a basis from which to develop a new 
methodology.  
1. Audet and Dennis: Mixed Variable Generalized Pattern Search (MGPS) 4 

This work extended Torczon’s Generalized Pattern Search (GPS) algorithm for deterministic optimization 
problems. Their algorithm extension was in the form of modifications to allow optimization of mixed variable 
programming problems containing continuous, discrete, and catagorical design variable types. In addition the 
authors created separate Poll and Search steps in the continuous variable algorithm to achieve global optimization 
and convergence efficiency. Lastly, an Extended Poll step was created to search the continuous variables of discrete 
neighbors that are close in objective value to the current incumbent design point. 
2. Sriver and Chrissis: Mixed Generalized Pattern Search with Ranking and Selection (MGPS-RS) 5-6 

This work extended the Audet and Dennis GPS for Mixed Variables algorithm by adding a Ranking and 
Selection statistical selection algorithm for application to linearly constrained stochastic optimization problems. This 
created the MGPS-RS framework in which “iterates converge almost surely to limit points that stationary point 
conditions …over a mixed variable domain.” It also incorporated a surrogate function which utilized previous 
samples to generate an efficient surrogate function to improve convergence time of the algorithm. 
3. Walston: Stochastic Multi-Objective Mesh Adaptive Direct Search (SMOMADS) 7 

This work in turn extended Sriver and Chrissis’s MGPS-RS with the addition of the Mesh Adaptive Direct 
Search (MADS) method from Abramson, Audet, and Dennis to handle problems with nonlinear constraints. This 
implementation also utilized user interactive aspiration/reservation levels as well as scalarization techniques to 
enable stochastic optimization for multi-objective functions. An algorithm was included for multi-objective optimal 
computing budget allocation (MOCBA). The implementation was tested on several problems with aleatory 
uncertainty (stochastic noise) added to the objective functions. 
4. Romero and Chen: Spatially Correlated Uncertainty and Continuous Variable Ordinal Optimization 8-10 

Romero and Chen developed an algorithm implementation to apply to single objective continuous variable OUU 
problems. This work developed several interesting features. The implementation utilized an adaptive ordinal 
optimization method combined with Coordinate Pattern Search (CPS) method. In order to significantly improve 
convergence efficiency, they combined three unique features: spatially-correlated uncertainty sampling, usage of 
threshold and objective values in the response function, and the Point of First Separation (PFS) truncation of 
iterations. The method implementation was shown for an engineering application with uncertainty present in input 
parameters that was propagated into the objective function. 
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5. Nam and Mavris: Multi-Stage Reliability-Based Design Optimization (MSRBDO) 3, 11 
These authors compared the qualities of Reliability-Based Design Optimization (RBDO) and Stochastic 

Programming with Recourse (SPwR) to engineering practice in acquisition. As a result of this comparison they 
proposed an algorithm with characteristics of both. The goal is optimal selection of first stage design variables 
amongst alternatives under the anticipation of reductions in uncertainty at defined future stages. As a result the 
proposed algorithm would incorporate a finite number of planned stages with varying levels of design maturity and 
freedom. It also incorporated delayed final decisions using periodic down selects instead of a single up-front optimal 
selection. The authors tested an initial algorithm on a single objective Two Stage RBDO (TSRBDO) example 
problem with uncertain parameters present in the problem’s constraint function. The authors suggest that MSRBDO 

II. Methodology Discussion 

A. Variable Fidelity Multi-Stage Optimization Under Uncertainty Methodology 
After the review of the applicable research literature, five key capabilities for the MS-OUU method to implement 

were identified. 
1. Efficient algorithms for handling large numbers of design parameters 

2. Multi-objective function capable 

3. An ability to optimize mixed-variable problems 

4. Capability to process varying fidelity in a particular parameter between the optimization stages 

5. Ability to accommodate threshold and objective constraints for key performance parameters  

Table 1 below shows the latter optimization methods discussed in the previous section against the five key needs 
for the proposed MS-OUU method. 

 
Table 1. Key desired characteristics vs. previous methods 

CHARACTERISTICS  Walston  Romero & Chen  Nam & Mavris  

Multi-objective problems  YES  NO  NO  

Threshold/objective levels  *  **  NO  

Multi-stage uncertainty 
(epistemic)  

NO  NO  YES  

Mixed variables  YES  NO  NO  

Efficiency-driven  NO  YES  NO  

Location of uncertainty Objective (Response) Function Input Parameters (Propagated 
into Response Function 

Constraint Functions 

 *Use of Reservation/Aspiration 
levels in scalarization equation to 

bound Pareto frontier limits of 
interactive search 

**Use of threshold/objective 
values in ordinal ranking to 

identify Point of First Separation 
to eliminate lowest performing 

design point candidate 

 

 

B. Initial Test Problem 
The initial implementation of the proposed method is an expansion of MS-RBDO to allow the change of 

uncertain parameters with time, exercised in a modification of the Nam-Mavris test problem used in Ref. 11. 
Expressing the test problem’s modification from a pure deterministic optimization one may be useful here. The 
initial deterministic problem can be expressed as: 
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min
࢞
݂ሺݔଵ, ,ଶݔ ଶሻݔ ൌ ଵଶݔ ൅ ଶଶݔ ൅  ଷଶ                                                               ሺ1ሻݔ

 
ଵݔଵߦ ݋ݐ ݐ݆ܾܿ݁ݑݏ ൅ ଶݔଶߦ ൅ ଷݔ ൒ 5                                                             ሺ2ሻ 

 
where (x1,x2) 2(∞,0] א , x3 [0,2] א, and here ξ represents the constraint function constants ξ1=2 and ξ2=3. 
Reformulating this, with ξ now representing the set of epistemic uncertainty parameters, specifically ߦଵ~ࣨሺ2, 1ଶሻ 
and ߦଶ~ࣨሺ3, 1ଶሻ , equations (2) & (3) represent a classic RBDO problem. 

 
min
࢞
݂ሺݔଵ, ,ଶݔ ଶሻݔ ൌ ଵଶݔ ൅ ଶଶݔ ൅  ଷଶ                                                               ሺ3ሻݔ

 
.ݏ .ݐ Զሾߦଵݔଵ ൅ ଶݔଶߦ ൅ ଷݔ ൒ 5ሿ ൒  ሺ4ሻ                                                             ߙ

 
Nam and Mavris then split the problem into two sequential design decision stages, with the design variables 
partitioned into 1st stage decisions, x(1) = (x1,x2), and 2nd stage decisions, x(2) = (x3). Similarly, the uncertain variables 
were partitioned into 1st stage realized uncertain parameters, ξ(1) = (ξ1), and 2nd stage realized parameters, ξ(2) = (ξ2). 
This set up two sequential optimization problems. The first decision stage selects the optimal members of x(1), which 
is followed by a realization of the values for ξ(1) ࣈ෠ሺଵሻ. The optimal second stage decision variable then selected, 
followed by the realization of the values for the parameters in set ξ(2). The realization of the final uncertainty 
parameter yields the final value of the objective function, and whether the constraint function inequality was met. 
The 1st stage optimization is expressed in Eqns. (5) and (6). 

 
min
࢞ሺ૚ሻ

ॱൣ݂൫࢞ሺ૚ሻ, ࢞ሺ૛ሻכ, ૆ሺ૚ሻ, ૆ሺ૛ሻ൯൧ ൌ ଵଶݔ ൅ ଶଶݔ ൅  ଷଶ                                                               ሺ5ሻݔ

 
.ݏ .ݐ Զሾߦଵݔଵ ൅ ଶݔଶߦ ൅ ଷݔ ൒ 5ሿ ൒  ሺଵሻ                                                             ሺ6ሻߙ

 
Then the 2nd stage optimization is represented by Eqns. (7) and (8). 
 

min
࢞ሺ૛ሻ

ॱൣ݂൫ෝ࢞ሺ૚ሻ, ࢞ሺ૛ሻ, ૆෠ሺ૚ሻ, ૆ሺ૛ሻ൯൧ ൌ ଵଶݔ ൅ ଶଶݔ ൅  ଷଶ                                                               ሺ7ሻݔ

 
.ݏ .ݐ Զሾߦመଵݔଵ ൅ ଶݔଶߦ ൅ ଷݔ ൒ 5ሿ ൒  ሺଶሻ                                                             ሺ8ሻߙ

 
To this point, the problem formulations reflect a process where epistemic uncertainty is reduced during a single 
stage to a deterministic value. The authors of Ref. 11 discuss the possibility that during a decision stage an epistemic 
uncertainty parameter could realize a reduction in its uncertainty, though this wasn’t further examined. In addition, 
they discussed the possibility that a realized uncertainty during an early stage could preclude the selection of later 
stage design variables which still meet the feasibility targets for that stage. In that case, they discuss the addition of 
logic during later stage optimization which would maximize the feasibility of meeting the constraint function in lieu 
of stopping the problem. This appears to be a rational approach which would enable a decision maker to reexamine 
the problem (acquisition) constraints, although the additional logic for the 2nd stage optimization was eliminated 
here for the sake of brevity. In any case, here an addition is necessary to denote a modified uncertainty parameter, 

shown here as ૆ሺ૛ሻ
ᇱ
 . The modified 2nd stage problem is now reflected by Eqns. (9) and (10), where ߦଶԢ~ࣨሺ3, 0.5ଶሻ.  

 
min
࢞ሺ૛ሻ

ॱൣ݂൫ෝ࢞ሺ૚ሻ, ࢞ሺ૛ሻ, ૆෠ሺ૚ሻ, ૆ሺ૛ሻᇱ൯൧ ൌ ଵଶݔ ൅ ଶଶݔ ൅  ଷଶ                                                               ሺ9ሻݔ

 
.ݏ .ݐ Զሾߦመଵݔଵ ൅ ଶݔଶԢߦ ൅ ଷݔ ൒ 5ሿ ൒  ሺଶሻ                                                             ሺ10ሻߙ

 
Generally, we presume that for this research, epistemic uncertainty parameters will undergo reductions in 
uncertainty as measured by decreasing standard deviation, σ, for the symmetric unbounded probability distribution 
functions. 
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C. An Engineering Application Problem 
An engineering application problem has been selected to exercise the optimization method. It is important that 

the engineering design space for the optimization problem should include technology alternatives that are not all at 
the same initial level of uncertainty (or fidelity). During the prelude to most acquisitions, alternative technology 
solutions are proposed which often vary markedly in the levels of uncertainty in the technology. The problem 
selected for the application of the new optimization methodology is a Single Stage To Orbit (SSTO) expendable 
launch vehicle (ELV). Three different nozzle technologies of widely differing Technology Readiness Levels (TRL) 
have been incorporated into the vehicle design space and will provide the primary exercise of the variable fidelity 
optimization portion of the code. 

SSTO vehicles have been discussed almost exclusively in the context of reusable launch vehicles (RLV). There 
is very little discussion in recent literature of SSTO designs which are expendable. In the light of the current 
demand-constrained launch market, an engineering design study of such a vehicle appears timely. When compared 
to an RLV, an SSTO ELV design enables achieving a higher propellant mass fraction for a vehicle, since no reentry 
or long duration in-space support systems are required. To put the relative technology needs for a SSTO vehicle into 
context, it is useful to examine the ELV propellant mass fractions of the 1st stages for selected historical launch 
vehicles, which are shown Figure 5.  

One issue that nominally could hamper utilization of an expendable SSTO launch architecture is the question of 
how to provide in-space propulsion for a wide range of orbital destinations. One benefit of modern multistage 
ELV’s is that the upper stages of the vehicles, such as the Atlas Centaur, are excellent orbit transfer systems for 
moving the payload from a Low Earth Orbit (LEO) parking orbit to a geosynchronous transfer orbit (GTO) or from 
a GTO into the destination geosynchronous/geostationary orbit. Given the recent and continuing developments of 
multiple unmanned vehicle systems for International Space Station (ISS) cargo resupply such as the European ATV, 
the Japanese HTV, and the commercial Cygnus and Dragon systems in the U.S., and the resurgence of the concept 
of propellant depots in space, it seems reasonable to assume the future availability of reusable orbit transfer vehicles 
(OTV). Recently, MDA Corp and Intelsat announced a contract to demonstrate the GEO refueling of an Intelsat 
communication satellite with 1,000 kg of propellant by a MDA Space Infrastructure Services (SIS) robotic servicer 

 

Figure 5. Historical 1st stage propellant mass fractions of TSTO vehicles 
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vehicle. The future realization of such an orbital servicer capability could provide the vital link in a launch 
architecture which includes SSTO ELV payload delivery to a short duration LEO parking orbit. 

The launch vehicle thrust and performance requirements for the selected design reference mission have been 
initially identified by using the rocket equation and a nominal design payload class of 3,000 lbs, along with the 
estimation that the parking orbit requires the launch vehicle to deliver an ideal velocity change of 30,000 ft/sec. The 
resulting vehicle Gross Lift-Off Weights (GLOW) for several different values of vehicle propellant mass fraction 
and mission-effective Isp are shown in Figure 6. Plotted on the same chart for comparison are the values of mission 
average Isp vs. liftoff weight for the 1st stages of several historical ELVs. The 1st stage weights of the historical 
vehicles do not include the weights of any upper stages or payloads, and the 1st stage mission averaged Isp is 

calculated by a weighted average of sea-level and vacuum Isp, with weighting factors of 20% and 80% respectively. 
The rapid growth in the required GLOW with either a decrease in mission average Isp, or a decrease in the vehicle’s 
achieved propellant mass fraction illustrates an important need in quantifying the performance uncertainties in such 
a launch concept. 

D. Results 
The results of the initial MS-OUU methodology when applied to the modified Nam-Mavris test problem will be 

presented in the final version of the paper.  

 

Figure 6. SSTO Mission effective Isp vs. GLOW 
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III. Future Work 
In the near future, the authors intend to further develop the initial method to allow application to multiple 

objective optimization problems similar to those examined in Ref. 7. To address the slow convergence 
characteristics of Walston’s method, the ordinal ranking and spatially correlated sampling approaches of Romero 
and Chen is being modified for application to the Ranking & Selection components.  The resulting method will be 
benchmarked against several test problems previously exercised in our reviewed research. The test problems have 
been nominally selected and their characteristics are listed in Table 2. The results of the benchmarking exercise will 
be used to identify any desired final changes to the existing code to increase the convergence efficiency. The final 
method will then be applied to the SSTO launch vehicle engineering application described previously.  

Some additional work may be necessary to enable application of the method to a broader range of typical 
space/missile vehicle engineering and acquisition problems, since the lead author plans to deploy the new 
methodology at his organization.  

 
Table 2. Test problem characteristics 

Problem Min/ 
max 

Design 
variables 

Number of 
objective 
functions 

Type of 
objective 
functions 

Constraint 
functions 

Equality 
constraint 
functions

Linear 
constraint 
functions

Design 
variable 
bounds 

Notes 

Poloni max 2 2 nonlinear 4 0 4 4 Complex Pareto 
frontier 

Dias 2 min 30 2 linear & 
nonlinear 

60 0 60 60 Concave Pareto 
frontier, large # of 
design variables 

Fonseca 
F1 

min 2 2 nonlinear 4 0 4 4 Fold in objective 
space, concave 

DTLZ7 min 2 2 linear & 
nonlinear 

4 0 4 4 Separate  dispersed 
convex Pareto 
frontier 

Disk 
Brake 

max 4 2 nonlinear 13 0 10 8 Mixed variable, 
convex Pareto 
frontier 

Nam-
Mavris 

min 2 1 nonlinear 5 0 5 4 RBDO, MSRBDO 
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Variable Fidelity MS-OUU
Research Objective

• Conducting Ph. D. Dissertation Research on 
Multistage Optimization Under Uncertainty (MS-OUU)Multistage Optimization Under Uncertainty (MS OUU)

– Early phases of Department of Defense complex system 
acquisition would appear to be able to be profit from an 

li ti f O ti i ti U d U t i t th dapplication of Optimization Under Uncertainty methods

– How can we adapt current methods to these early phases of 
system acquisition?

• Much of research originates in different disciplines for 
solving different problems than those of early concept 
exploration and system acquisitionexploration and system acquisition 

– Operations Research

– Detailed Structural Design
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Variable Fidelity MS-OUU 
Overview-DoD System Acquisition Phases
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Variable Fidelity MS-OUU 
Overview-System Acquisition M&S Burden
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Variable Fidelity MS-OUU 
Overview-Key Optimization Challenges

1) Presence of design variables of mixed types-continuous, discrete, and 
categorical

2) Multiple objective functions-often competing

3) Uncertainty in optimization parameters of both aleatory and epistemic types

4) Uncertainties present at the input design variables level, intermediate model 
parameters level, and output level within an integrated system model

5) Uncertainties present in externally imposed system constraint function and in 
system performance requirements, implemented as threshold/objective values 
for the KPPsfor the KPPs

6) Design problems that rarely allow description of a unitary set of discrete 
equations solvable by traditional derivatives-based optimization codes

7) Decision-making practice that relies on several discrete time-based events7) Decision-making practice that relies on several discrete time-based events 
(multiple-stage decisions) when down selecting among technology 
alternatives

8) Uncertainties in the modeled parameters that vary over time as the overall 
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system design evolves, improved fidelity tools are used, and experimental 
data is incorporated into knowledge of the design



Variable Fidelity MS-OUU 
Overview-Previous Research

1. Audet and Dennis: Mixed Variable Generalized Pattern 
Search (MGPS)Search (MGPS)

2. Sriver and Chrissis: Mixed Generalized Pattern 
Search with Ranking and Selection (MGPS-RS)g ( )

3. Walston: Stochastic Multi-Objective Mesh Adaptive 
Direct Search (SMOMADS)

4. Romero and Chen: Spatially Correlated Uncertainty 
and Continuous Variable Ordinal Optimization

5. Nam and Mavris: Multi-Stage Reliability-Based Design 
Optimization (MSRBDO)
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Variable Fidelity MS-OUU 
Overview-Previous Research

CHARACTERISTICS Walston Romero & Chen Nam & Mavris 

Multi-objective problems YES NO NO 

Th h ld/ bj i * ** NOThreshold/objective 
levels 

* ** NO 

Multi-stage uncertainty 
(epistemic) 

NO NO YES 

Mixed variables YES NO NO 

Efficiency-driven NO YES NO 

Location of uncertainty Objective (Response) Function Input Parameters 
(Propagated into 

Constraint 
Functions( p g

Response Function
*Use of Reservation/Aspiration 

levels in scalarization equation to 
bound Pareto frontier limits of 

i t ti h

**Use of 
threshold/objective 
values in ordinal 

ki t id tifinteractive search ranking to identify 
Point of First 
Separation to 

eliminate lowest 
performing design 
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Variable Fidelity MS-OUU 
Capability Gaps of Previous Methods

After the review of the applicable research literature, 
five key capabilities for the MS-OUU method tofive key capabilities for the MS OUU method to 
implement were identified.

1. Efficient algorithms for handling large numbers of design 
parameters

2. Multi-objective function capable

3 A bilit t ti i i d i bl bl3. An ability to optimize mixed-variable problems

4. Capability to process varying fidelity in a particular 
parameter between the optimization stages

5. Ability to accommodate threshold and objective constraints 
for key performance parameters 
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Variable Fidelity MS-OUU 
Proposed Multistage Methodology

Nomenclature

S fx = Set of decision variables
x(j) = Decision (design) variables for jth stage
xi = ith member of decision variable set

= Realizations of jth stage decision variables
)(ˆ jx  Realizations of j stage decision variables

x(j)* = Expected values for jth stage decision variables at stages prior to j
ξ = Set of uncertain parameters
ξ(j) = Set of uncertain parameters to be observed between stages j and 

(j+1)(j+1)
ξ(j)′ = Modification to jth stage uncertainty with additional information
ξi = ith member of uncertain parameter set

= Realizations of jth stage uncertain parameters)(ˆ j j g p
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Variable Fidelity MS-OUU 
Proposed Multistage Methodology

Nomenclature continued

= Normal distribution with mean μ and a standard deviation σ
f = Objective function
g = Constraint function
E(-) = Expectation operator

),N( 2

E(-) = Expectation operator
P(-) = Probability
α = Reliability-Based Design Optimization (RBDO) feasibility target
α(j) = Multistage RBDO feasibility target at jth decision stage 
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Variable Fidelity MS-OUU 
Proposed Multistage Methodology

Problem Evolution: deterministic to multistage RBDO

Deterministic problem with ξ1=2, ξ2=3, 

(x1,x2) are elements in [0,∞)2, and x3 is element in [0,2]

(2)               5  s.t.

(1)              ),,(min

32211

2
3

2
2

2
1321





xxx

xxxxxxf
x



RBDO problem with uncertain parameters ξ1~N(2,12), 
ξ2~N(3,12)

 
  (4)               5P  s.t.

(3)              ),,(Emin

32211

2
3

2
2

2
1321

 



xxx

xxxxxxf
x
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Variable Fidelity MS-OUU 
Proposed Multistage Methodology

Problem Evolution continued

MSRBDO problem with uncertain parameters 
ξ1~N(2,12), ξ2~N(3,12); 1st stage optimization

  222)2()1()*2()1(
 

  (6)               5P  s.t.

(5)            ),,,(Emin

)1(
32211

2
3

2
2

2
1

)2()1()*2(
2

)1(
1)1(









xxx

xxxξxxf
x




After realization of 1st stage uncertainty, and 1st stage 
decision variables, MSRBDO problem 2nd stage 
optimizationoptimization

 
(7)              ),

ˆ
,,ˆ(Emin 2

3
2

2
2

1
)2()1()2(

2
)1(

1)2(
 



 xxxξxxf

x



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Variable Fidelity MS-OUU 
Proposed Multistage Methodology

Problem Evolution continued

tMSRBDO problem with varying uncertainty. 1st stage 
optimization remains same as previous problem

  222)*2()1(
 

  (6)               5P  s.t.

(5)              ),,,(Emin

)1(
32211

2
3

2
2

2
1

)2()1()*2(
2

)1(
1)1(









xxx

xxxξxxf
x




However, now the 2nd stage uncertainty parameter 
was reevaluated, along with 1st stage realizations, and 
2nd stage optimi ation2nd stage optimization:

 
(9)              ),

ˆ
,,ˆ(Emin 2

3
2

2
2

1
)2()1()2(

2
)1(

1)2(
 



  xxxξxxf

x



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Variable Fidelity MS-OUU 
Future Work

• Complete incorporation of the selected additional 
algorithms necessary to meet method’salgorithms necessary to meet method s 
requirements

– Mixed generalized pattern search (linear constraints)

– Mesh adaptive direct search (nonlinear constraints)

– Ordinal ranking and selection

– Spatially-correlated uncertainty and Point of First Separation 
iteration completion

• Apply the final method• Apply the final method 

– Selected test problems (next slide)

SSTO ELV engineering application
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Variable Fidelity MS-OUU 
Future Work-Test Problems

Problem Min/ 
max

Design 
variables

Number of 
objective 
functions

Type of objective 
functions

Constraint 
functions

Equality 
constraint 
functions

Linear 
constraint 
functions

Design 
variable 
bounds

Notes

Poloni max 2 2 nonlinear 4 0 4 4 Complex ParetoPoloni max 2 2 nonlinear 4 0 4 4 Complex Pareto 
frontier

Dias 2 min 30 2 linear & 
nonlinear

60 0 60 60 Concave Pareto 
frontier, large # of 
design variables

Fonseca F1 min 2 2 nonlinear 4 0 4 4 Fold in objective 
space, concave

DTLZ7 min 2 2 linear & 4 0 4 4 Separate  dispersed 
nonlinear convex Pareto 

frontier

Disk Brake max 4 2 nonlinear 13 0 10 8 Mixed variable, 
convex Pareto 
frontierfrontier

Nam-
Mavris

min 2 1 nonlinear 5 0 5 4 RBDO, MSRBDO
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Variable Fidelity MS-OUU 
Summary

• Research Objective

– Develop methodology for new Optimization Under 
Uncertainty (OUU) algorithm applicable to the 
early system acquisition phases involving y y q p g
uncertain technologies. 

• Investigated previous research on optimization 
under uncertainty methods

• Identified capability gaps and major requirements for 
a new method applicable to early system acquisition

• Tested the selected method for accommodating 
multiple decision stages and varying uncertainty
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multiple decision stages and varying uncertainty 


